Sample records for stimulus equivalence processes

  1. Electrophysiological Correlates of Stimulus Equivalence Processes

    ERIC Educational Resources Information Center

    Haimson, Barry; Wilkinson, Krista M.; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J.

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g.,…

  2. Generalization of cross-modal stimulus equivalence classes: operant processes as components in human category formation.

    PubMed Central

    Lane, S D; Clow, J K; Innis, A; Critchfield, T S

    1998-01-01

    This study employed a stimulus-class rating procedure to explore whether stimulus equivalence and stimulus generalization can combine to promote the formation of open-ended categories incorporating cross-modal stimuli. A pretest of simple auditory discrimination indicated that subjects (college students) could discriminate among a range of tones used in the main study. Before beginning the main study, 10 subjects learned to use a rating procedure for categorizing sets of stimuli as class consistent or class inconsistent. After completing conditional discrimination training with new stimuli (shapes and tones), the subjects demonstrated the formation of cross-modal equivalence classes. Subsequently, the class-inclusion rating procedure was reinstituted, this time with cross-modal sets of stimuli drawn from the equivalence classes. On some occasions, the tones of the equivalence classes were replaced by novel tones. The probability that these novel sets would be rated as class consistent was generally a function of the auditory distance between the novel tone and the tone that was explicitly included in the equivalence class. These data extend prior work on generalization of equivalence classes, and support the role of operant processes in human category formation. PMID:9821680

  3. Whatever Gave You That Idea? False Memories Following Equivalence Training: A Behavioral Account of the Misinformation Effect

    PubMed Central

    Challies, Danna M; Hunt, Maree; Garry, Maryanne; Harper, David N

    2011-01-01

    The misinformation effect is a term used in the cognitive psychological literature to describe both experimental and real-world instances in which misleading information is incorporated into an account of an historical event. In many real-world situations, it is not possible to identify a distinct source of misinformation, and it appears that the witness may have inferred a false memory by integrating information from a variety of sources. In a stimulus equivalence task, a small number of trained relations between some members of a class of arbitrary stimuli result in a large number of untrained, or emergent relations, between all members of the class. Misleading information was introduced into a simple memory task between a learning phase and a recognition test by means of a match-to-sample stimulus equivalence task that included both stimuli from the original learning task and novel stimuli. At the recognition test, participants given equivalence training were more likely to misidentify patterns than those who were not given such training. The misinformation effect was distinct from the effects of prior stimulus exposure, or partial stimulus control. In summary, stimulus equivalence processes may underlie some real-world manifestations of the misinformation effect. PMID:22084495

  4. Rational-emotive behavior therapy and the formation of stimulus equivalence classes.

    PubMed

    Plaud, J J; Gaither, G A; Weller, L A; Bigwood, S J; Barth, J; von Duvillard, S P

    1998-08-01

    Stimulus equivalence is a behavioral approach to analyzing the "meaning" of stimulus sets and has an implication for clinical psychology. The formation of three-member (A --> B --> C) stimulus equivalence classes was used to investigate the effects of three different sets of sample and comparison stimuli on emergent behavior. The three stimulus sets were composed of Rational-Emotive Behavior Therapy (REBT)-related words, non-REBT emotionally charged words, and a third category of neutral words composed of flower labels. Sixty-two women and men participated in a modified matching-to-sample experiment. Using a mixed cross-over design, and controlling for serial order effects, participants received conditional training and emergent relationship training in the three stimulus set conditions. Results revealed a significant interaction between the formation of stimulus equivalence classes and stimulus meaning, indicating consistently biased responding in favor of reaching criterion responding more slowly for REBT-related and non-REBT emotionally charged words. Results were examined in the context of an analysis of the importance of stimulus meaning on behavior and the relation of stimulus meaning to behavioral and cognitive theories, with special appraisal given to the influence of fear-related discriminative stimuli on behavior.

  5. The Effects of Different Training Structures in the Establishment of Conditional Discriminations and Subsequent Performance on Tests for Stimulus Equivalence

    ERIC Educational Resources Information Center

    Arntzen, Erik; Grondahl, Terje; Eilifsen, Christoffer

    2010-01-01

    Previous studies comparing groups of subjects have indicated differential probabilities of stimulus equivalence outcome as a function of training structures. One-to-Many (OTM) and Many-to-One (MTO) training structures seem to produce positive outcomes on tests for stimulus equivalence more often than a Linear Series (LS) training structure does.…

  6. Establishing Derived Equivalence Relations of Basic Geography Skills in Children with Autism

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Stanley, Caleb; Belisle, Jordan; Galliford, Megan E.; Alholail, Amani; Schmick, Ayla M.

    2017-01-01

    The present study evaluated the efficacy of a stimulus-equivalence training procedure in teaching basic geography skills to two children with autism. The procedures were taken directly from a standardized training curriculum based in stimulus equivalence theory called "Promoting the Emergence of Advanced Knowledge Equivalence Module"…

  7. Stimulus Equivalence, Generalization, and Contextual Stimulus Control in Verbal Classes

    PubMed Central

    Sigurðardóttir, Zuilma Gabriela; Mackay, Harry A; Green, Gina

    2012-01-01

    Stimulus generalization and contextual control affect the development of equivalence classes. Experiment 1 demonstrated primary stimulus generalization from the members of trained equivalence classes. Adults were taught to match six spoken Icelandic nouns and corresponding printed words and pictures to one another in computerized three-choice matching-to-sample tasks. Tests confirmed that six equivalence classes had formed. Without further training, plural forms of the stimuli were presented in tests for all matching performances. All participants demonstrated virtually errorless performances. In Experiment 2, classifications of the nouns used in Experiment 1 were brought under contextual control. Three nouns were feminine and three were masculine. The match-to-sample training taught participants to select a comparison of the same number as the sample (i.e., singular or plural) in the presence of contextual stimulus A regardless of noun gender. Concurrently, in the presence of contextual stimulus B, participants were taught to select a comparison of the same gender as the sample (i.e., feminine or masculine), regardless of number. Generalization was assessed using a card-sorting test. All participants eventually sorted the cards correctly into gender and number stimulus classes. When printed words used in training were replaced by their picture equivalents, participants demonstrated almost errorless performances. PMID:22754102

  8. New Knowledge Derived from Learned Knowledge: Functional-Anatomic Correlates of Stimulus Equivalence

    ERIC Educational Resources Information Center

    Schlund, Michael W.; Hoehn-Saric, Rudolf; Cataldo, Michael F.

    2007-01-01

    Forming new knowledge based on knowledge established through prior learning is a central feature of higher cognition that is captured in research on stimulus equivalence (SE). Numerous SE investigations show that reinforcing behavior under control of distinct sets of arbitrary conditional relations gives rise to stimulus control by new, "derived"…

  9. Teaching Brain-Behavior Relations Economically with Stimulus Equivalence Technology

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Covey, Daniel P.; Critchfield, Thomas S.

    2010-01-01

    Instructional interventions based on stimulus equivalence provide learners with the opportunity to acquire skills that are not directly taught, thereby improving the efficiency of instructional efforts. The present report describes a study in which equivalence-based instruction was used to teach college students facts regarding brain anatomy and…

  10. Coactivation of response initiation processes with redundant signals.

    PubMed

    Maslovat, Dana; Hajj, Joëlle; Carlsen, Anthony N

    2018-05-14

    During reaction time (RT) tasks, participants respond faster to multiple stimuli from different modalities as compared to a single stimulus, a phenomenon known as the redundant signal effect (RSE). Explanations for this effect typically include coactivation arising from the multiple stimuli, which results in enhanced processing of one or more response production stages. The current study compared empirical RT data with the predictions of a model in which initiation-related activation arising from each stimulus is additive. Participants performed a simple wrist extension RT task following either a visual go-signal, an auditory go-signal, or both stimuli with the auditory stimulus delayed between 0 and 125 ms relative to the visual stimulus. Results showed statistical equivalence between the predictions of an additive initiation model and the observed RT data, providing novel evidence that the RSE can be explained via a coactivation of initiation-related processes. It is speculated that activation summation occurs at the thalamus, leading to the observed facilitation of response initiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparison of a Stimulus Equivalence Protocol and Traditional Lecture for Teaching Single-Subject Designs

    ERIC Educational Resources Information Center

    Lovett, Sadie; Rehfeldt, Ruth Anne; Garcia, Yors; Dunning, Johnna

    2011-01-01

    This study compared the effects of a computer-based stimulus equivalence protocol to a traditional lecture format in teaching single-subject experimental design concepts to undergraduate students. Participants were assigned to either an equivalence or a lecture group, and performance on a paper-and-pencil test that targeted relations among the…

  12. Teaching Equivalence Relations to Individuals with Minimal Verbal Repertoires: Are Visual and Auditory-Visual Discriminations Predictive of Stimulus Equivalence?

    ERIC Educational Resources Information Center

    Vause, Tricia; Martin, Garry L.; Yu, C.T.; Marion, Carole; Sakko, Gina

    2005-01-01

    The relationship between language, performance on the Assessment of Basic Learning Abilities (ABLA) test, and stimulus equivalence was examined. Five participants with minimal verbal repertoires were studied; 3 who passed up to ABLA Level 4, a visual quasi-identity discrimination and 2 who passed ABLA Level 6, an auditory-visual nonidentity…

  13. Titration of Limited Hold to Comparison in Conditional Discrimination Training and Stimulus Equivalence Testing

    ERIC Educational Resources Information Center

    Arntzen, Erik; Haugland, Silje

    2012-01-01

    Reaction time (RT), thought to be important for acquiring a full understanding of the establishment of equivalence classes, has been reported in a number of studies within the area of stimulus equivalence research. In this study, we trained 3 classes of potentially 3 members, with arbitrary stimuli in a one-to-many training structure in 5 adult…

  14. The transfer of social exclusion and inclusion functions through derived stimulus relations.

    PubMed

    Munnelly, Anita; Martin, Georgina; Dack, Charlotte; Zedginidze, Ann; McHugh, Louise

    2014-09-01

    Previous studies have found that social exclusion can cause distress to those excluded. One method used to study social exclusion is through a virtual ball-toss game known as Cyberball. In this game, participants may be excluded from or included in the ball-toss game and typically report lower feelings of self-esteem, control, belonging, and meaningful existence following exclusion. Experiments 1 and 2 sought to explore the transfer of feelings of exclusion and inclusion through stimulus equivalence classes. In both experiments, participants were trained to form two three-member equivalence classes (e.g., A1-B1, B1-C1; A2-B2, B2-C2) and were tested with novel stimulus combinations (A1-C1, C1-A1, A2-C2, C2-A2). Thereafter, participants were exposed to the Cyberball exclusion and inclusion games. In these games, one stimulus (C1) from one equivalence class was assigned as the Cyberball inclusion game name, whereas one stimulus (C2) from the other equivalence class was assigned as the Cyberball exclusion game name. In Experiment 2, participants were only exposed to the Cyberball exclusion game. During a subsequent transfer test, participants were asked to rate how included in or excluded from they thought they would be in other online games, corresponding to members of both equivalence classes. Participant reported that they felt they would be excluded from online games if the games were members of the same equivalence class as C2. In contrast, participants reported that they felt they would be included in online games if the games were members of the same equivalence class as C1. Results indicated the transfer of feelings of inclusion (Experiment 1) and feelings of exclusion (Experiments 1 and 2) through equivalence classes.

  15. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    PubMed

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  16. Controlling Relations in Baseline Conditional Discriminations as Determinants of Stimulus Equivalence

    ERIC Educational Resources Information Center

    de Rose, Julio C.; Hidalgo, Matheus; Vasconcellos, Mariliz

    2013-01-01

    Variation in baseline controlling relations is suggested as one of the factors determining variability in stimulus equivalence outcomes. This study used single- comparison trials attempting to control such controlling relations. Four children learned AB, BC, and CD conditional discriminations, with 2 samples and 2 comparison stimuli. In Condition…

  17. Teaching Generatively: Learning about Disorders and Disabilities

    ERIC Educational Resources Information Center

    Alter, Margaret M.; Borrero, John C.

    2015-01-01

    Stimulus equivalence procedures have been used to teach course material in higher education in the laboratory and in the classroom. The current study was a systematic replication of Walker, Rehfeldt, and Ninness (2010), who used a stimulus equivalence procedure to train information pertaining to 12 disorders. Specifically, we conducted (a) a…

  18. Teaching generatively: Learning about disorders and disabilities.

    PubMed

    Alter, Margaret M; Borrero, John C

    2015-01-01

    Stimulus equivalence procedures have been used to teach course material in higher education in the laboratory and in the classroom. The current study was a systematic replication of Walker, Rehfeldt, and Ninness (2010), who used a stimulus equivalence procedure to train information pertaining to 12 disorders. Specifically, we conducted (a) a written posttest immediately after each training unit and (b) booster training sessions for poor performers. Results showed immediate improvement from pretest to posttest scores after training, but problems with maintenance were noted in the final examination. Implications of poor maintenance are discussed in the context of the current study and stimulus equivalence research in higher education generally. © Society for the Experimental Analysis of Behavior.

  19. Using the Stimulus Equivalence Paradigm to Teach Course Material in an Undergraduate Rehabilitation Course

    ERIC Educational Resources Information Center

    Walker, Brooke D.; Rehfeldt, Ruth Anne; Ninness, Chris

    2010-01-01

    In 2 experiments, we examined whether the stimulus equivalence instructional paradigm could be used to teach relations among names, definitions, causes, and common treatments for disabilities using a selection-based intraverbal training format. Participants were pre- and posttested on vocal intraverbal relations and were trained using…

  20. Establishing Auditory-Tactile-Visual Equivalence Classes in Children with Autism and Developmental Delays

    ERIC Educational Resources Information Center

    Mullen, Stuart; Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb

    2017-01-01

    The current study sought to evaluate the efficacy of a stimulus equivalence training procedure in establishing auditory-tactile-visual stimulus classes with 2 children with autism and developmental delays. Participants were exposed to vocal-tactile (A-B) and tactile-picture (B-C) conditional discrimination training and were tested for the…

  1. Preliminary Findings on the Effects of Self-Referring and Evaluative Stimuli on Stimulus Equivalence Class Formation

    ERIC Educational Resources Information Center

    Merwin, Rhonda M.; Wilson, Kelly G.

    2005-01-01

    Thirty-two subjects completed 2 stimulus equivalence tasks using a matching-to-sample paradigm. One task involved direct reinforcement of conditional discriminations designed to produce derived relations between self-referring stimuli (e.g., me, myself, I) and positive evaluation words (e.g., whole, desirable, perfect). The other task was designed…

  2. Exploration of the psychophysics of a motion displacement hyperacuity stimulus.

    PubMed

    Verdon-Roe, Gay Mary; Westcott, Mark C; Viswanathan, Ananth C; Fitzke, Frederick W; Garway-Heath, David F

    2006-11-01

    To explore the summation properties of a motion-displacement hyperacuity stimulus with respect to stimulus area and luminance, with the goal of applying the results to the development of a motion-displacement test (MDT) for the detection of early glaucoma. A computer-generated line stimulus was presented with displacements randomized between 0 and 40 minutes of arc (min arc). Displacement thresholds (50% seen) were compared for stimuli of equal area but different edge length (orthogonal to the direction of motion) at four retinal locations. Also, MDT thresholds were recorded at five values of Michelson contrast (25%-84%) for each of five line lengths (11-128 min arc) at a single nasal location (-27,3). Frequency-of-seeing (FOS) curves were generated and displacement thresholds and interquartile ranges (IQR, 25%-75% seen) determined by probit analysis. Equivalent displacement thresholds were found for stimuli of equal area but half the edge length. Elevations of thresholds and IQR were demonstrated as line length and contrast were reduced. Equivalent displacement thresholds were also found for stimuli of equivalent energy (stimulus area x [stimulus luminance - background luminance]), in accordance with Ricco's law. There was a linear relationship (slope -0.5) between log MDT threshold and log stimulus energy. Stimulus area, rather than edge length, determined displacement thresholds within the experimental conditions tested. MDT thresholds are linearly related to the square root of the total energy of the stimulus. A new law, the threshold energy-displacement (TED) law, is proposed to apply to MDT summation properties, giving the relationship T = K logE where, T is the MDT threshold, Kis the constant, and E is the stimulus energy.

  3. Algorithmic analysis of relational learning processes in instructional technology: Some implications for basic, translational, and applied research.

    PubMed

    McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David

    2018-07-01

    A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Using Stimulus Equivalence-Based Instruction to Teach Graduate Students in Applied Behavior Analysis to Interpret Operant Functions of Behavior

    ERIC Educational Resources Information Center

    Albright, Leif; Schnell, Lauren; Reeve, Kenneth F.; Sidener, Tina M.

    2016-01-01

    Stimulus equivalence-based instruction (EBI) was used to teach four, 4-member classes representing functions of behavior to ten graduate students. The classes represented behavior maintained by attention (Class 1), escape (Class 2), access to tangibles (Class 3), and automatic reinforcement (Class 4). Stimuli within each class consisted of a…

  5. Emergence of relations and the essence of learning: a review of Sidman's Equivalence relations and behavior: a research story. Book review

    NASA Technical Reports Server (NTRS)

    Rumbaugh, D. M.

    1995-01-01

    The author reviews and comments on the book Equivalence relations and behavior: a research story by Murray Sidman. Sidman's book reports his research about equivalence relations and competencies in children with mental retardation and how it relates to behavior. Sidman used the idea of stimulus-stimulus relations among features of the environment to develop his theories about equivalence relations. Experimental work with children and animals demonstrated their ability to use equivalence relations to learn new tasks. The subject received feedback and reinforcement for specific choices made during training, then was presented with new choices during testing. Results of the tests indicate that subjects were able to establish relations and retrieve them in different situations.

  6. Equivalence Class Formation in a Trace Stimulus Pairing Two-Response Format: Effects of Response Labels and Prior Programmed Transitivity Induction

    ERIC Educational Resources Information Center

    Fields, Lanny; Doran, Erica; Marroquin, Michael

    2009-01-01

    Three experiments identified factors that did and did not enhance the formation of two-node four-member equivalence classes when training and testing were conducted with trials presented in a trace stimulus pairing two-response (SP2R) format. All trials contained two separately presented stimuli. Half of the trials, called within-class trials,…

  7. Toward a Technology of Derived Stimulus Relations: An Analysis of Articles Published in the "Journal of Applied Behavior Analysis," 1992-2009

    ERIC Educational Resources Information Center

    Rehfeldt, Ruth Anne

    2011-01-01

    Every article on stimulus equivalence or derived stimulus relations published in the "Journal of Applied Behavior Analysis" was evaluated in terms of characteristics that are relevant to the development of applied technologies: the type of participants, settings, procedure automated vs. tabletop), stimuli, and stimulus sensory modality; types of…

  8. Teaching brain-behavior relations economically with stimulus equivalence technology.

    PubMed

    Fienup, Daniel M; Covey, Daniel P; Critchfield, Thomas S

    2010-03-01

    Instructional interventions based on stimulus equivalence provide learners with the opportunity to acquire skills that are not directly taught, thereby improving the efficiency of instructional efforts. The present report describes a study in which equivalence-based instruction was used to teach college students facts regarding brain anatomy and function. The instruction involved creating two classes of stimuli that students understood as being related. Because the two classes shared a common member, they spontaneously merged, thereby increasing the yield of emergent relations. Overall, students mastered more than twice as many facts as were explicitly taught, thus demonstrating the potential of equivalence-based instruction to reduce the amount of student investment that is required to master advanced academic topics.

  9. Naming, the Formation of Stimulus Classes, and Applied Behavior Analysis.

    ERIC Educational Resources Information Center

    Stromer, Robert; And Others

    1996-01-01

    This review of research discusses how children with autism may acquire equivalence classes after learning to supply a common oral name to each stimulus in a potential class. A proposed methodology for researching referent naming and class formation, analysis of stimulus classes, and generalization is offered. (CR)

  10. Measurement of hearing aid internal noise1

    PubMed Central

    Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.

    2010-01-01

    Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034

  11. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    PubMed

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. [Generalization of money-handling though training in equivalence relationships].

    PubMed

    Vives-Montero, Carmen; Valero-Aguayo, Luis; Ascanio, Lourdes

    2011-02-01

    This research used a matching-to-sample procedure and equivalence learning process with language and verbal tasks. In the study, an application of the equivalence relationship of money was used with several kinds of euro coins presented. The sample consisted of 16 children (8 in the experimental group and 8 in the control group) aged 5 years. The prerequisite behaviors, the identification of coins and the practical use of different euro coins, were assessed in the pre and post phases for both groups. The children in the experimental group performed an equivalence task using the matching-to-sample procedure. This consisted of a stimulus sample and four matching stimuli, using a series of euro coins with equivalent value in each set. The children in the control group did not undergo this training process. The results showed a large variability in the children's data of the equivalence tests. The experimental group showed the greatest pre and post changes in the statistically significant data. They also showed a greater generalization in the identification of money and in the use of euro coins than the control group. The implications for educational training and the characteristics of the procedure used here for coin equivalence are discussed.

  13. Naming, the formation of stimulus classes, and applied behavior analysis.

    PubMed

    Stromer, R; Mackay, H A; Remington, B

    1996-01-01

    The methods used in Sidman's original studies on equivalence classes provide a framework for analyzing functional verbal behavior. Sidman and others have shown how teaching receptive, name-referent matching may produce rudimentary oral reading and word comprehension skills. Eikeseth and Smith (1992) have extended these findings by showing that children with autism may acquire equivalence classes after learning to supply a common oral name to each stimulus in a potential class. A stimulus class analysis suggests ways to examine (a) the problem of programming generalization from teaching situations to other environments, (b) the expansion of the repertoires that occur in those settings, and (c) the use of naming to facilitate these forms of generalization. Such research will help to clarify and extend Horne and Lowe's recent (1996) account of the role of verbal behavior in the formation of stimulus classes.

  14. Emergent Verbal Behavior and Analogy: Skinnerian and Linguistic Approaches

    PubMed Central

    Matos, Maria Amelia; de Lourdes Passos, Maria

    2010-01-01

    The production of verbal operants not previously taught is an important aspect of language productivity. For Skinner, new mands, tacts, and autoclitics result from the recombination of verbal operants. The relation between these mands, tacts, and autoclitics is what linguists call analogy, a grammatical pattern that serves as a foundation on which a speaker might emit new linguistic forms. Analogy appears in linguistics as a regularity principle that characterizes language and has been related to how languages change and also to creativity. The approaches of neogrammarians like Hermann Paul, as well as those of Jespersen and Bloomfield, appear to have influenced Skinner's understanding of verbal creativity. Generalization and stimulus equivalence are behavioral processes related to the generative grammatical behavior described in the analogy model. Linguistic forms and grammatical patterns described in analogy are part of the contingencies of reinforcement that produce generalization and stimulus equivalence. The analysis of verbal behavior needs linguistic analyses of the constituents of linguistic forms and their combination patterns. PMID:22479127

  15. Beyond bipolar conceptualizations and measures: the case of attitudes and evaluative space.

    PubMed

    Cacioppo, J T; Gardner, W L; Berntson, G G

    1997-01-01

    All organisms must be capable of differentiating hostile from hospitable stimuli to survive. Typically, this evaluative discrimination is conceptualized as being bipolar (hostile-hospitable). This conceptualization is certainly evident in the area of attitudes, where the ubiquitous bipolar attitude measure, by gauging the net affective predisposition toward a stimulus, treats positive and negative evaluative processes as equivalent, reciprocally activated, and interchangeable. Contrary to conceptualizations of this evaluative process as bipolar, recent evidence suggests that distinguishable motivational systems underlie assessments of the positive and negative significance of a stimulus. Thus, a stimulus may vary in terms of the strength of positive evaluative activation and the strength of negative evaluative activation it evokes. Low activation of positive and negative evaluative processes by a stimulus reflects attitude neutrality or indifference, whereas high activation of positive and negative evaluative processes reflects attitude ambivalence. As such, attitudes can be represented more completely within a bivariate space than along a bipolar continuum. Evidence is reviewed showing that the positive and negative evaluative processes underlying many attitudes are distinguishable (stochastically and functionally independent), are characterized by distinct activation functions (positivity offset and negativity bias principles), are related differentially to attitude ambivalence (corollary of ambivalence asymmetries), have distinguishable antecedents (heteroscedacity principle), and tend to gravitate from a bivariate toward a bipolar structure when the underlying beliefs are the target of deliberation or a guide for behavior (principle of motivational certainty). The implications for society phenomena such as political elections and democratic structures are discussed.

  16. Inferring consistent functional interaction patterns from natural stimulus FMRI data

    PubMed Central

    Sun, Jiehuan; Hu, Xintao; Huang, Xiu; Liu, Yang; Li, Kaiming; Li, Xiang; Han, Junwei; Guo, Lei

    2014-01-01

    There has been increasing interest in how the human brain responds to natural stimulus such as video watching in the neuroimaging field. Along this direction, this paper presents our effort in inferring consistent and reproducible functional interaction patterns under natural stimulus of video watching among known functional brain regions identified by task-based fMRI. Then, we applied and compared four statistical approaches, including Bayesian network modeling with searching algorithms: greedy equivalence search (GES), Peter and Clark (PC) analysis, independent multiple greedy equivalence search (IMaGES), and the commonly used Granger causality analysis (GCA), to infer consistent and reproducible functional interaction patterns among these brain regions. It is interesting that a number of reliable and consistent functional interaction patterns were identified by the GES, PC and IMaGES algorithms in different participating subjects when they watched multiple video shots of the same semantic category. These interaction patterns are meaningful given current neuroscience knowledge and are reasonably reproducible across different brains and video shots. In particular, these consistent functional interaction patterns are supported by structural connections derived from diffusion tensor imaging (DTI) data, suggesting the structural underpinnings of consistent functional interactions. Our work demonstrates that specific consistent patterns of functional interactions among relevant brain regions might reflect the brain's fundamental mechanisms of online processing and comprehension of video messages. PMID:22440644

  17. The Status of Rapid Response Learning in Aging

    PubMed Central

    Dew, Ilana T. Z.; Giovanello, Kelly S.

    2010-01-01

    Strong evidence exists for an age-related impairment in associative processing under intentional encoding and retrieval conditions, but the status of incidental associative processing has been less clear. Two experiments examined the effects of age on rapid response learning – the incidentally learned stimulus-response association that results in a reduction in priming when a learned response becomes inappropriate for a new task. Specifically, we tested whether priming was equivalently sensitive in both age groups to reversing the task-specific decision cue. Experiment 1 showed that cue inversion reduced priming in both age groups using a speeded inside/outside classification task, and in Experiment 2 cue inversion eliminated priming on an associative version of this task. Thus, the ability to encode an association between a stimulus and its initial task-specific response appears to be preserved in aging. These findings provide an important example of a form of associative processing that is unimpaired in older adults. PMID:20853961

  18. Naming, the formation of stimulus classes, and applied behavior analysis.

    PubMed Central

    Stromer, R; Mackay, H A; Remington, B

    1996-01-01

    The methods used in Sidman's original studies on equivalence classes provide a framework for analyzing functional verbal behavior. Sidman and others have shown how teaching receptive, name-referent matching may produce rudimentary oral reading and word comprehension skills. Eikeseth and Smith (1992) have extended these findings by showing that children with autism may acquire equivalence classes after learning to supply a common oral name to each stimulus in a potential class. A stimulus class analysis suggests ways to examine (a) the problem of programming generalization from teaching situations to other environments, (b) the expansion of the repertoires that occur in those settings, and (c) the use of naming to facilitate these forms of generalization. Such research will help to clarify and extend Horne and Lowe's recent (1996) account of the role of verbal behavior in the formation of stimulus classes. PMID:8810064

  19. Formation of new stimulus equivalence classes by exclusion.

    PubMed

    Plazas, Elberto A; Villamil, Carlos-Wilcen

    2018-03-01

    This study presents three experiments that aimed to show the formation of stimulus equivalence relations among stimuli that had been previously related only by exclusion. In Experiment 1, participants were trained on baseline conditional discriminations to establish two 3-member equivalence classes. Then, they were exposed to exclusion trials, without feedback, in which undefined stimuli had to be matched by rejecting the defined baseline stimuli. Finally, participants responded to test trials evaluating the emergence of symmetry and transitivity among the undefined stimuli from the exclusion trials. For half of the participants, the stimuli related by exclusion were introduced as S- stimuli in the baseline trials, whereas for the other half they were not. Further, half of the participants were assessed for emergent relations with stimuli from all the classes, whereas the other half was assessed for emergent relations with only the stimuli related by exclusion. In Experiment 2, the S- comparisons in the emergent relations test trials with stimuli only related by exclusion were stimuli from a null class. In Experiment 3, the number of exclusion trials was doubled. Across experiments, most participants showed emergence of equivalence relations among the stimuli related by exclusion. Some conditions of stimulus control associated with exclusion learning and the emergence of equivalence relations are discussed. © 2018 Society for the Experimental Analysis of Behavior.

  20. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  1. Topography of Responses in Conditional Discrimination Influences Formation of Equivalence Classes

    ERIC Educational Resources Information Center

    Kato, Olivia M.; de Rose, Julio C.; Faleiros, Pedro B.

    2008-01-01

    The effects of response topography on stimulus class formation were studied in two experiments. In Experiment 1, 32 college students were assigned to 2 response topographies and 2 stimulus sets, in a 2 x 2 design. Students selected stimuli by either moving a mouse to lace an arrow-shaped cursor on the stimulus or pressing a key corresponding to…

  2. Learning and generalization from reward and punishment in opioid addiction.

    PubMed

    Myers, Catherine E; Rego, Janice; Haber, Paul; Morley, Kirsten; Beck, Kevin D; Hogarth, Lee; Moustafa, Ahmed A

    2017-01-15

    This study adapts a widely-used acquired equivalence paradigm to investigate how opioid-addicted individuals learn from positive and negative feedback, and how they generalize this learning. The opioid-addicted group consisted of 33 participants with a history of heroin dependency currently in a methadone maintenance program; the control group consisted of 32 healthy participants without a history of drug addiction. All participants performed a novel variant of the acquired equivalence task, where they learned to map some stimuli to correct outcomes in order to obtain reward, and to map other stimuli to correct outcomes in order to avoid punishment; some stimuli were implicitly "equivalent" in the sense of being paired with the same outcome. On the initial training phase, both groups performed similarly on learning to obtain reward, but as memory load grew, the control group outperformed the addicted group on learning to avoid punishment. On a subsequent testing phase, the addicted and control groups performed similarly on retention trials involving previously-trained stimulus-outcome pairs, as well as on generalization trials to assess acquired equivalence. Since prior work with acquired equivalence tasks has associated stimulus-outcome learning with the nigrostriatal dopamine system, and generalization with the hippocampal region, the current results are consistent with basal ganglia dysfunction in the opioid-addicted patients. Further, a selective deficit in learning from punishment could contribute to processes by which addicted individuals continue to pursue drug use even at the cost of negative consequences such as loss of income and the opportunity to engage in other life activities. Published by Elsevier B.V.

  3. Electroencephalography (EEG) in the Study of Equivalence Class Formation. An Explorative Study.

    PubMed

    Arntzen, Erik; Steingrimsdottir, Hanna S

    2017-01-01

    Teaching arbitrary conditional discriminations and testing for derived relations may be essential for understanding changes in cognitive skills. Such conditional discrimination procedures are often used within stimulus equivalence research. For example, the participant is taught AB and BC relations and tested if emergent relations as BA, CB, AC and CA occur. The purpose of the current explorative experiment was to study stimulus equivalence class formation in older adults with electroencephalography (EEG) recordings as an additional measure. The EEG was used to learn about whether there was an indication of cognitive changes such as those observed in neurocognitive disorders (NCD). The present study included four participants who did conditional discrimination training and testing. The experimental design employed pre-class formation sorting and post-class formation sorting of the stimuli used in the experiment. EEG recordings were conducted before training, after training and after testing. The results showed that two participants formed equivalence classes, one participant failed in one of the three test relations, and one participant failed in two of the three test relations. This fourth participant also failed to sort the stimuli in accordance with the experimenter-defined stimulus equivalence classes during post-class formation sorting. The EEG indicated no cognitive decline in the first three participants but possible mild cognitive impairment (MCI) in the fourth participant. The results suggest that equivalence class formation may provide information about cognitive impairments such as those that are likely to occur in the early stages of NCD. The study recommends replications with broader samples.

  4. Transportability of Equivalence-Based Programmed Instruction: Efficacy and Efficiency in a College Classroom

    ERIC Educational Resources Information Center

    Fienup, Daniel M.; Critchfield, Thomas S.

    2011-01-01

    College students in a psychology research-methods course learned concepts related to inferential statistics and hypothesis decision making. One group received equivalence-based instruction on conditional discriminations that were expected to promote the emergence of many untaught, academically useful abilities (i.e., stimulus equivalence group). A…

  5. Stimulus information contaminates summation tests of independent neural representations of features

    NASA Technical Reports Server (NTRS)

    Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.

    2002-01-01

    Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.

  6. The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction

    PubMed Central

    Williamson, Ross S.; Sahani, Maneesh; Pillow, Jonathan W.

    2015-01-01

    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron’s probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as “single-spike information” to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex. PMID:25831448

  7. STIMULUS AND TRANSDUCER EFFECTS ON THRESHOLD

    PubMed Central

    Flamme, Gregory A.; Geda, Kyle; McGregor, Kara; Wyllys, Krista; Deiters, Kristy K.; Murphy, William J.; Stephenson, Mark R.

    2015-01-01

    Objective This study examined differences in thresholds obtained under Sennheiser HDA200 circumaural earphones using pure tone, equivalent rectangular noise bands, and 1/3 octave noise bands relative to thresholds obtained using Telephonics TDH-39P supra-aural earphones. Design Thresholds were obtained via each transducer and stimulus condition six times within a 10-day period. Study Sample Forty-nine adults were selected from a prior study to represent low, moderate, and high threshold reliability. Results The results suggested that (1) only small adjustments were needed to reach equivalent TDH-39P thresholds, (2) pure-tone thresholds obtained with HDA200 circumaural earphones had reliability equal to or better than those obtained using TDH-39P earphones, (3) the reliability of noise-band thresholds improved with broader stimulus bandwidth and was either equal to or better than pure-tone thresholds, and (4) frequency-specificity declined with stimulus bandwidths greater than one Equivalent Rectangular Band, which could complicate early detection of hearing changes that occur within a narrow frequency range. Conclusions These data suggest that circumaural earphones such as the HDA200 headphones provide better reliability for audiometric testing as compared to the TDH-39P earphones. These data support the use of noise bands, preferably ERB noises, as stimuli for audiometric monitoring. PMID:25549164

  8. Training order and structural location of meaningful stimuli: effects on equivalence class formation.

    PubMed

    Nartey, Richard K; Arntzen, Erik; Fields, Lanny

    2015-12-01

    In the present study, equivalence class formation was influenced by the temporal point of inclusion of a meaningful stimulus when baseline relations were serially or sequentially trained, and much less so by the location of the meaningful stimulus in the nodal structure of the class. In Experiment 1, participants attempted to form three 3-node, 5-member classes (A→B→C→D→E) under the simultaneous protocol. After serially training the baseline relations AB, BC, CD, and DE, in that order, the emergence of all emergent relations was tested concurrently. In the A-as-PIC condition, A was meaningful stimulus and B to E were meaningless stimulus, and 60 % of the participants formed classes. In addition, classes were formed by 40 %, 70 %, 40 %, and 20 % of the participants in the B-as-PIC, C-as-PIC, D-as-PIC, and E-as-PIC groups, respectively. Thus, the likelihood of class formation could have been influenced by the location of a meaningful stimulus in the class structure and/or by its order of introduction during training. In Experiment 2, we controlled for any effect of order of introduction by the concurrent training of all of the baseline relations. Regardless of the location of the meaningful stimulus, 0-20 % of participants formed classes. Thus, the temporal order of introducing a meaningful stimulus was the primary modulator of the class-enhancing property of meaningful stimuli, and not the location of the meaningful stimulus in the class structure.

  9. A Derived Transfer of Simple Discrimination and Self-Reported Arousal Functions in Spider Fearful and Non-Spider-Fearful Participants

    ERIC Educational Resources Information Center

    Smyth, Sinead; Barnes-Holmes, Dermot; Forsyth, John P.

    2006-01-01

    Two experiments investigated the derived transfer of functions through equivalence relations established using a stimulus pairing observation procedure. In Experiment 1, participants were trained on a simple discrimination (A1+/A2-) and then a stimulus pairing observation procedure was used to establish 4 stimulus pairings (A1-B1, A2-B2, B1-C1,…

  10. Perceptual grouping enhances visual plasticity.

    PubMed

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.

  11. Electroencephalography (EEG) in the Study of Equivalence Class Formation. An Explorative Study

    PubMed Central

    Arntzen, Erik; Steingrimsdottir, Hanna S.

    2017-01-01

    Teaching arbitrary conditional discriminations and testing for derived relations may be essential for understanding changes in cognitive skills. Such conditional discrimination procedures are often used within stimulus equivalence research. For example, the participant is taught AB and BC relations and tested if emergent relations as BA, CB, AC and CA occur. The purpose of the current explorative experiment was to study stimulus equivalence class formation in older adults with electroencephalography (EEG) recordings as an additional measure. The EEG was used to learn about whether there was an indication of cognitive changes such as those observed in neurocognitive disorders (NCD). The present study included four participants who did conditional discrimination training and testing. The experimental design employed pre-class formation sorting and post-class formation sorting of the stimuli used in the experiment. EEG recordings were conducted before training, after training and after testing. The results showed that two participants formed equivalence classes, one participant failed in one of the three test relations, and one participant failed in two of the three test relations. This fourth participant also failed to sort the stimuli in accordance with the experimenter-defined stimulus equivalence classes during post-class formation sorting. The EEG indicated no cognitive decline in the first three participants but possible mild cognitive impairment (MCI) in the fourth participant. The results suggest that equivalence class formation may provide information about cognitive impairments such as those that are likely to occur in the early stages of NCD. The study recommends replications with broader samples. PMID:28377704

  12. Contextual control using a go/no-go procedure with compound abstract stimuli.

    PubMed

    Modenesi, Rafael Diego; Debert, Paula

    2015-05-01

    Contextual control has been described as (1) a five-term contingency, in which the contextual stimulus exerts conditional control over conditional discriminations, and (2) allowing one stimulus to be a member of different equivalence classes without merging them into one. Matching-to-sample is the most commonly employed procedure to produce and study contextual control. The present study evaluated whether the go/no-go procedure with compound stimuli produces equivalence classes that share stimuli. This procedure does not allow the identification of specific stimulus functions (e.g., contextual, conditional, or discriminative functions). If equivalence classes were established with this procedure, then only the latter part of the contextual control definition (2) would be met. Six undergraduate students participated in the present study. In the training phases, responses to AC, BD, and XY compounds with stimuli from the same classes were reinforced, and responses to AC, BD, and XY compounds with stimuli from different classes were not. In addition, responses to X1A1B1, X1A2B2, X2A1B2, and X2A2B1 compounds were reinforced and responses to the other combinations were not. During the tests, the participants had to respond to new combinations of stimuli compounds YCD to indicate the formation of four equivalence classes that share stimuli: X1A1B1Y1C1D1, X1A2B2Y1C2D2, X2A1B2Y2C1D2, and X2A2B1Y2C2D1. Four of the six participants showed the establishment of these classes. These results indicate that establishing contextual stimulus functions is unnecessary to produce equivalence classes that share stimuli. Therefore, these results are inconsistent with the first part of the definition of contextual control. © Society for the Experimental Analysis of Behavior.

  13. Learning and generalization from reward and punishment in opioid addiction

    PubMed Central

    Myers, Catherine E.; Rego, Janice; Haber, Paul; Morley, Kirsten; Beck, Kevin D.; Hogarth, Lee; Moustafa, Ahmed A.

    2016-01-01

    This study adapts a widely-used acquired equivalence paradigm to investigate how opioid-addicted individuals learn from positive and negative feedback, and how they generalize this learning. The opioid-addicted group consisted of 33 participants with a history of heroin dependency currently in a methadone maintenance program; the control group consisted of 32 healthy participants without a history of drug addiction. All participants performed a novel variant of the acquired equivalence task, where they learned to map some stimuli to correct outcomes in order to obtain reward, and to map other stimuli to correct outcomes in order to avoid punishment; some stimuli were implicitly “equivalent” in the sense of being paired with the same outcome. On the initial training phase, both groups performed similarly on learning to obtain reward, but as memory load grew, the control group outperformed the addicted group on learning to avoid punishment. On a subsequent testing phase, the addicted and control groups performed similarly on retention trials involving previously-trained stimulus-outcome pairs, as well as on generalization trials to assess acquired equivalence. Since prior work with acquired equivalence tasks has associated stimulus-outcome learning with the nigrostriatal dopamine system, and generalization with the hippocampal region, the current results are consistent with basal ganglia dysfunction in the opioid-addicted patients. Further, a selective deficit in learning from punishment could contribute to processes by which addicted individuals continue to pursue drug use even at the cost of negative consequences such as loss of income and the opportunity to engage in other life activities. PMID:27641323

  14. Enhancement of equivalence class formation by pretraining discriminative functions.

    PubMed

    Nartey, Richard K; Arntzen, Erik; Fields, Lanny

    2015-03-01

    The present experiment showed that a simple discriminative function acquired by an abstract stimulus through simultaneous and/or successive discrimination training enhanced the formation of an equivalence class of which that stimulus was a member. College students attempted to form three equivalence classes composed of three nodes and five members (A→B→C→D→E), using the simultaneous protocol. In the PIC group, the C stimuli were pictures and the A, B, D, and E stimuli were abstract shapes. In the ABS group, all of the stimuli were abstract shapes. In the SIM + SUCC (simultaneous and successive) group, simple discriminations were formed with the C stimuli through both simultaneous and successive discrimination training before class formation. Finally, in the SIM-only and SUCC-only groups, prior to class formation, simple discriminations were established for the C stimuli with a simultaneous procedure and a successive procedure, respectively. Equivalence classes were formed by 80% and 70% of the participants in the PIC and SIM + SUCC groups respectively, by 30% in the SUCC-only group, and by 10% apiece in the ABS and SIM-only groups. Thus, pretraining of combined simultaneous and successive discriminations enhanced class formation, as did the inclusion of a meaningful stimulus in a class. The isolated effect of forming successive discriminations was more influential than that of forming simultaneous discriminations. The establishment of both discriminations together produced an enhancement greater than the sum of the two procedures alone. Finally, a sorting test documented the maintenance of the classes formed during the simultaneous protocol. These results also provide a stimulus control-function account of the class-enhancing effects of meaningful stimuli.

  15. Contextual Control by Function and Form of Transfer of Functions

    ERIC Educational Resources Information Center

    Perkins, David R.; Dougher, Michael J.; Greenway, David E.

    2007-01-01

    This study investigated conditions leading to contextual control by stimulus topography over transfer of functions. Three 4-member stimulus equivalence classes, each consisting of four (A, B, C, D) topographically distinct visual stimuli, were established for 5 college students. Across classes, designated A stimuli were open-ended linear figures,…

  16. Effects of a Meaningful, a Discriminative, and a Meaningless Stimulus on Equivalence Class Formation

    ERIC Educational Resources Information Center

    Fields, Lanny; Arntzen, Erik; Nartey, Richard; Eilifsen, Christoffer

    2012-01-01

    Thirty college students attempted to form three 3-node 5-member equivalence classes under the simultaneous protocol. After concurrent training of AB, BC, CD, and DE relations, all probes used to assess the emergence of symmetrical, transitive, and equivalence relations were presented for two test blocks. When the A-E stimuli were all abstract…

  17. Perceptual Grouping Enhances Visual Plasticity

    PubMed Central

    Mastropasqua, Tommaso; Turatto, Massimo

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity. PMID:23301100

  18. The transfer of Cfunc contextual control through equivalence relations.

    PubMed

    Perez, William F; Fidalgo, Adriana P; Kovac, Roberta; Nico, Yara C

    2015-05-01

    Derived relational responding is affected by contextual stimuli (Cfunc) that select specific stimulus functions. The present study investigated the transfer of Cfunc contextual control through equivalence relations by evaluating both (a) the maintenance of Cfunc contextual control after the expansion of a relational network, and (b) the establishment of novel contextual stimuli by the transfer of Cfunc contextual control through equivalence relations. Initially, equivalence relations were established and contingencies were arranged so that colors functioned as Cfunc stimuli controlling participants' key-pressing responses in the presence of any stimulus from a three-member equivalence network. To investigate the first research question, the three-member equivalence relations were expanded to five members and the novel members were presented with the Cfunc stimuli in the key-pressing task. To address the second goal of this study, the colors (Cfunc) were established as equivalent to certain line patterns. The transfer of contextual cue function (Cfunc) was tested replacing the colored backgrounds with line patterns in the key-pressing task. Results suggest that the Cfunc contextual control was transferred to novel stimuli that were added to the relational network. In addition, the line patterns indirectly acquired the contextual cue function (Cfunc) initially established for the colored backgrounds. The conceptual and applied implications of Cfunc contextual control are discussed. © Society for the Experimental Analysis of Behavior.

  19. Cardinal Equivalence of Small Number in Young Children.

    ERIC Educational Resources Information Center

    Kingma, J.; Roelinga, U.

    1982-01-01

    Children completed three types of equivalent cardination tasks which assessed the influence of different stimulus configurations (linear, linear-nonlinear, and nonlinear), and density of object spacing. Prior results reported by Siegel, Brainerd, and Gelman and Gallistel were not replicated. Implications for understanding cardination concept…

  20. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia).

    PubMed

    Johnston, Melissa; Anderson, Catrona; Colombo, Michael

    2017-01-15

    We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Rudimentary Reading Repertoires via Stimulus Equivalence and Recombination of Minimal Verbal Units

    PubMed Central

    Matos, Maria Amelia; Avanzi, Alessandra Lopes; McIlvane, William J

    2006-01-01

    We report a study with sixteen low-SES Brazilian children that sought to establish a repertoire of relations involving dictated words, printed words, and corresponding pictures. Children were taught: (1) in response to dictated words, to select corresponding pictures; (2) in response to syllables presented in both visual and auditory formats, to select words which contained a corresponding syllable in either the first or the last position; (3) in response to dictated-word samples, to “construct” corresponding printed words via arranging their constituent syllabic components; and (4) in response to printed word samples, to construct identical printed words by arranging their syllabic constituents. After training on the first two types of tasks, children were given tests for potentially emergent relations involving printed words and pictures. Almost all exhibited relations consistent with stimulus equivalence. They also displayed emergent naming performances––not only with training words but also with new words that were recombinations of their constituent syllables. The present work was inspired by Sidman's stimulus equivalence paradigm and by Skinner's functional analysis of verbal relations, particularly as applied to conceptions of minimal behavioral units and creativity (i.e., behavioral flexibility) in the analytical units applied to verbal relations. PMID:22477340

  2. Improving accuracy of portion-size estimations through a stimulus equivalence paradigm.

    PubMed

    Hausman, Nicole L; Borrero, John C; Fisher, Alyssa; Kahng, SungWoo

    2014-01-01

    The prevalence of obesity continues to increase in the United States (Gordon-Larsen, The, & Adair, 2010). Obesity can be attributed, in part, to overconsumption of energy-dense foods. Given that overeating plays a role in the development of obesity, interventions that teach individuals to identify and consume appropriate portion sizes are warranted. Specifically, interventions that teach individuals to estimate portion sizes correctly without the use of aids may be critical to the success of nutrition education programs. The current study evaluated the use of a stimulus equivalence paradigm to teach 9 undergraduate students to estimate portion size accurately. Results suggested that the stimulus equivalence paradigm was effective in teaching participants to make accurate portion size estimations without aids, and improved accuracy was observed in maintenance sessions that were conducted 1 week after training. Furthermore, 5 of 7 participants estimated the target portion size of novel foods during extension sessions. These data extend existing research on teaching accurate portion-size estimations and may be applicable to populations who seek treatment (e.g., overweight or obese children and adults) to teach healthier eating habits. © Society for the Experimental Analysis of Behavior.

  3. Effects of muscarinic blockade in perirhinal cortex during visual recognition

    PubMed Central

    Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.

    1997-01-01

    Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507

  4. Toward a technology of derived stimulus relations: an analysis of articles published in the journal of applied behavior analysis, 1992-2009.

    PubMed

    Rehfeldt, Ruth Anne

    2011-01-01

    Every article on stimulus equivalence or derived stimulus relations published in the Journal of Applied Behavior Analysis was evaluated in terms of characteristics that are relevant to the development of applied technologies: the type of participants, settings, procedure (automated vs. tabletop), stimuli, and stimulus sensory modality; types of relations targeted and emergent skills demonstrated by participants; and presence versus absence of evaluation of generalization and maintenance. In most respects, published reports suggested the possibility of applied technologies but left the difficult work of technology development to future investigations, suggestions for which are provided.

  5. Tracking speech comprehension in space and time.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Ilmoniemi, Risto J; Marslen-Wilson, William D

    2006-07-01

    A fundamental challenge for the cognitive neuroscience of language is to capture the spatio-temporal patterns of brain activity that underlie critical functional components of the language comprehension process. We combine here psycholinguistic analysis, whole-head magnetoencephalography (MEG), the Mismatch Negativity (MMN) paradigm, and state-of-the-art source localization techniques (Equivalent Current Dipole and L1 Minimum-Norm Current Estimates) to locate the process of spoken word recognition at a specific moment in space and time. The magnetic MMN to words presented as rare "deviant stimuli" in an oddball paradigm among repetitive "standard" speech stimuli, peaked 100-150 ms after the information in the acoustic input, was sufficient for word recognition. The latency with which words were recognized corresponded to that of an MMN source in the left superior temporal cortex. There was a significant correlation (r = 0.7) of latency measures of word recognition in individual study participants with the latency of the activity peak of the superior temporal source. These results demonstrate a correspondence between the behaviorally determined recognition point for spoken words and the cortical activation in left posterior superior temporal areas. Both the MMN calculated in the classic manner, obtained by subtracting standard from deviant stimulus response recorded in the same experiment, and the identity MMN (iMMN), defined as the difference between the neuromagnetic responses to the same stimulus presented as standard and deviant stimulus, showed the same significant correlation with word recognition processes.

  6. Look before you leap: sensory memory improves decision making.

    PubMed

    Vlassova, Alexandra; Pearson, Joel

    2013-09-01

    Simple decisions require the processing and evaluation of perceptual and cognitive information, the formation of a decision, and often the execution of a motor response. This process involves the accumulation of evidence over time until a particular choice reaches a decision threshold. Using a random-dot-motion stimulus, we showed that simply delaying responses after the stimulus offset can almost double accuracy, even in the absence of new incoming visual information. However, under conditions in which the otherwise blank interval was filled with a sensory mask or concurrent working memory load was high, performance gains were lost. Further, memory and perception showed equivalent rates of evidence accumulation, suggesting a high-capacity memory store. We propose an account of continued evidence accumulation by sequential sampling from a simultaneously decaying memory trace. Memories typically decay with time, hence immediate inquiry trumps later recall from memory. However, the results we report here show the inverse: Inspecting a memory trumps viewing the actual object.

  7. On Learning to Talk: Are Principles Derived from the Learning Laboratory Applicable?

    ERIC Educational Resources Information Center

    Palermo, David S.

    While studies in learning and verbal behavior show that learning comes through paired-associate problems, they do not explain the acquisition of language. Three paradigms demonstrate mediation effect in paired-associate learning: response equivalence, stimulus equivalence, and chaining model. By reviewing children's language acquisition patterns…

  8. Classification of electronically generated phantom targets by an Atlantic bottlenose dolphin (Tursiops truncatus).

    PubMed

    Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M

    2000-05-01

    Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.

  9. A successful search for symmetry (and other derived relations) in the conditional discriminations of pigeons 1, 2

    PubMed Central

    Urcuioli, Peter J.

    2017-01-01

    Symmetry is one of three derived relations (along with transitivity and reflexivity) that indicate that explicitly trained conditional relations are equivalence relations and that the elements of those trained relations are members of a stimulus class. Although BA symmetry is typically observed after AB conditional discrimination training in humans, it has been an elusive phenomenon in other animals until just recently. This paper describes past unsuccessful attempts to observe symmetry in non-human animals and the likely reasons for that lack of success. I then describe how methodological changes made in response to the earlier findings have now yielded robust evidence for symmetry in pigeons, and what these changes indicate about the functional matching stimuli. Finally, I describe a theory of stimulus-class formation (Urcuioli, 2008) which specifies how and why symmetry and other derived relations arise from different sets of trained relations. These derived relations are noteworthy because they demonstrate an impressive repertoire of non-similarity-based categorization effects in animals and the generative effects of reinforcement and stimulus control processes on behavior. PMID:28386579

  10. Stimulus control: Part II

    PubMed Central

    Dinsmoor, James A.

    1995-01-01

    The second part of my tutorial stresses the systematic importance of two parameters of discrimination training: (a) the magnitude of the physical difference between the positive and the negative stimulus (disparity) and (b) the magnitude of the difference between the positive stimulus, in particular, and the background stimulation (salience). It then examines the role these variables play in such complex phenomena as blocking and overshadowing, progressive discrimination training, and the transfer of control by fading. It concludes by considering concept formation and imitation, which are important forms of application, and recent work on equivalence relations. PMID:22478222

  11. Emergent conditional relations in a Go/No-Go procedure: figure-ground and stimulus-position compound relations.

    PubMed

    Debert, Paula; Huziwara, Edson M; Faggiani, Robson Brino; De Mathis, Maria Eugênia Simões; McIlvane, William J

    2009-09-01

    Past research has demonstrated emergent conditional relations using a go/no-go procedure with pairs of figures displayed side-by-side on a computer screen. The present study sought to extend applications of this procedure. In Experiment 1, we evaluated whether emergent conditional relations could be demonstrated when two-component stimuli were displayed in figure-ground relationships-abstract figures displayed on backgrounds of different colors. Five normally capable adults participated. During training, each two-component stimulus was presented successively. Responses emitted in the presence of some stimulus pairs (A1B1, A2B2, A3B3, B1C1, B2C2 and B3C3) were reinforced, whereas responses emitted in the presence of other pairs (A1B2, A1B3, A2B1, A2B3, A3B1, A3B2, B1C2, B1C3, B2C1, B2C3, B3C1 and B3C2) were not. During tests, new configurations (AC and CA) were presented, thus emulating structurally the matching-to-sample tests employed in typical equivalence studies. All participants showed emergent relations consistent with stimulus equivalence during testing. In Experiment 2, we systematically replicated the procedures with stimulus compounds consisting of four figures (A1, A2, C1 and C2) and two locations (left - B1 and right - B2). All 6 normally capable adults exhibited emergent stimulus-stimulus relations. Together, these experiments show that the go/no-go procedure is a potentially useful alternative for studying emergent conditional relations when matching-to-sample is procedurally cumbersome or impossible to use.

  12. Comparing topography-based verbal behavior with stimulus selection-based verbal behavior

    PubMed Central

    Sundberg, Carl T.; Sundberg, Mark L.

    1990-01-01

    Michael (1985) distinguished between two types of verbal behavior: topography-based and stimulus selection-based verbal behavior. The current research was designed to empirically examine these two types of verbal behavior while addressing the frequently debated question, Which augmentative communication system should be used with the nonverbal developmentally disabled person? Four mentally retarded adults served as subjects. Each subject was taught to tact an object by either pointing to its corresponding symbol (selection-based verbal behavior), or making the corresponding sign (topography-based verbal behavior). They were then taught an intraverbal relation, and were tested for the emergence of stimulus equivalence relations. The results showed that signed responses were acquired more readily than pointing responses as measured by the acquisition of tacts and intraverbals, and the formation of equivalence classes. These results support Michael's (1985) analysis, and have important implications for the design of language intervention programs for the developmentally disabled. ImagesFig. 1Fig. 2 PMID:22477602

  13. A Comparison of Match-to-Sample and Respondent-Type Training of Equivalence Classes

    ERIC Educational Resources Information Center

    Clayton, Michael C.; Hayes, Linda J.

    2004-01-01

    Throughout the 25-year history of research on stimulus equivalence, one feature of the training procedure has remained constant, namely, the requirement of operant responding during the training procedures. The present investigation compared the traditional match-to-sample (MTS) training with a more recent respondent-type (ReT) procedure. Another…

  14. Some Tests of Response Membership in Acquired Equivalence Classes

    ERIC Educational Resources Information Center

    Urcuioli, Peter J.; Lionello-DeNolf, Karen; Michalek, Sarah; Vasconcelos, Marco

    2006-01-01

    Pigeons were trained on many-to-one matching in which pairs of samples, each consisting of a visual stimulus and a distinctive pattern of center-key responding, occasioned the same reinforced comparison choice. Acquired equivalence between the visual and response samples then was evaluated by reinforcing new comparison choices to one set of…

  15. Is Conscious Stimulus Identification Dependent on Knowledge of the Perceptual Modality? Testing the “Source Misidentification Hypothesis”

    PubMed Central

    Overgaard, Morten; Lindeløv, Jonas; Svejstrup, Stinna; Døssing, Marianne; Hvid, Tanja; Kauffmann, Oliver; Mouridsen, Kim

    2013-01-01

    This paper reports an experiment intended to test a particular hypothesis derived from blindsight research, which we name the “source misidentification hypothesis.” According to this hypothesis, a subject may be correct about a stimulus without being correct about how she had access to this knowledge (whether the stimulus was visual, auditory, or something else). We test this hypothesis in healthy subjects, asking them to report whether a masked stimulus was presented auditorily or visually, what the stimulus was, and how clearly they experienced the stimulus using the Perceptual Awareness Scale (PAS). We suggest that knowledge about perceptual modality may be a necessary precondition in order to issue correct reports of which stimulus was presented. Furthermore, we find that PAS ratings correlate with correctness, and that subjects are at chance level when reporting no conscious experience of the stimulus. To demonstrate that particular levels of reporting accuracy are obtained, we employ a statistical strategy, which operationally tests the hypothesis of non-equality, such that the usual rejection of the null-hypothesis admits the conclusion of equivalence. PMID:23508677

  16. Testing Response-Stimulus Equivalence Relations Using Differential Responses as a Sample

    ERIC Educational Resources Information Center

    Shimizu, Hirofumi

    2006-01-01

    This study tested the notion that an equivalence relation may include a response when differential responses are paired with stimuli presented during training. Eight normal adults learned three kinds of computer mouse movements as differential response topographies (R1, R2, and R3). Next, in matching-to-sample training, one of the response…

  17. Arbitrary conditional discriminative functions of meaningful stimuli and enhanced equivalence class formation.

    PubMed

    Nedelcu, Roxana I; Fields, Lanny; Arntzen, Erik

    2015-03-01

    Equivalence class formation by college students was influenced through the prior acquisition of conditional discriminative functions by one of the abstract stimuli (C) in the to-be-formed classes. Participants in the GR-0, GR-1, and GR-5 groups attempted to form classes under the simultaneous protocol, after mastering 0, 1, or 5 conditional relations between C and other abstract stimuli (V, W, X, Y, Z) that were not included in the to-be-formed classes (ABCDE). Participants in the GR-many group attempted to form classes that contained four abstract stimuli and one meaningful picture as the C stimulus. In the GR-0, GR-1, GR-5, and GR-many groups, classes were formed by 17, 25, 58, and 67% of participants, respectively. Thus, likelihood of class formation was enhanced by the prior formation of five C-based conditional relations (the GR-5 vs. GR-0 condition), or the inclusion of a meaningful stimulus as a class member (the GR-many vs. GR-0 condition). The GR-5 and GR-many conditions produced very similar yields, indicating that class formation was enhanced to a similar degree by including a meaningful stimulus or an abstract stimulus that had become a member of five conditional relations prior to equivalence class formation. Finally, the low and high yields produced by the GR-1 and GR-5 conditions showed that the class enhancement effect of the GR-5 condition was due to the number of conditional relations established during preliminary training and not to the sheer amount of reinforcement provided while learning these conditional relations. Class enhancement produced by meaningful stimuli, then, can be attributed to their acquired conditional discriminative functions as well as their discriminative, connotative, and denotative properties. © Society for the Experimental Analysis of Behavior.

  18. Reconstruction of audio waveforms from spike trains of artificial cochlea models

    PubMed Central

    Zai, Anja T.; Bhargava, Saurabh; Mesgarani, Nima; Liu, Shih-Chii

    2015-01-01

    Spiking cochlea models describe the analog processing and spike generation process within the biological cochlea. Reconstructing the audio input from the artificial cochlea spikes is therefore useful for understanding the fidelity of the information preserved in the spikes. The reconstruction process is challenging particularly for spikes from the mixed signal (analog/digital) integrated circuit (IC) cochleas because of multiple non-linearities in the model and the additional variance caused by random transistor mismatch. This work proposes an offline method for reconstructing the audio input from spike responses of both a particular spike-based hardware model called the AEREAR2 cochlea and an equivalent software cochlea model. This method was previously used to reconstruct the auditory stimulus based on the peri-stimulus histogram of spike responses recorded in the ferret auditory cortex. The reconstructed audio from the hardware cochlea is evaluated against an analogous software model using objective measures of speech quality and intelligibility; and further tested in a word recognition task. The reconstructed audio under low signal-to-noise (SNR) conditions (SNR < –5 dB) gives a better classification performance than the original SNR input in this word recognition task. PMID:26528113

  19. Bridging the Gap: Understanding Eye Movements and Attentional Mechanisms is Key to Improving Amblyopia Treatment

    NASA Astrophysics Data System (ADS)

    Gambacorta, Christina Grace

    Amblyopia is a developmental visual disorder resulting in sensory, motor and attentional deficits, including delays in both saccadic and manual reaction time. It is unclear whether this delay is due to differences in sensory processing of the stimulus, or the processes required to dis-engage/shift/re-engage attention when moving the eye from fixation to a saccadic target. In the first experiment we compare asymptotic saccadic and manual reaction times between the two eyes, using equivalent stimulus strength to account for differences in sensory processing. In a follow-up study, we modulate RT by removing the fixation dot, which is thought to release spatial attention at the fovea, and reduces reaction time in normal observers. Finally, we discuss the implications for these findings on future amblyopic treatment, specifically dichoptic video game playing. Playing videogames may help engage the attentional network, leading to greater improvements than traditional treatment of patching the non- amblyopic eye. Further, when treatment involves both eyes, fixation stability may be improved during the therapeutic intervention, yielding a better outcome than just playing a video game with a patch over the non-amblyopic eye.

  20. Interval timing in children: effects of auditory and visual pacing stimuli and relationships with reading and attention variables.

    PubMed

    Birkett, Emma E; Talcott, Joel B

    2012-01-01

    Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks that are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty-one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.

  1. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance

    PubMed Central

    Green, David B.; Ohlemacher, Jocelyn; Rosen, Merri J.

    2016-01-01

    Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing. PMID:27378837

  2. DETECTION AND IDENTIFICATION OF SPEECH SOUNDS USING CORTICAL ACTIVITY PATTERNS

    PubMed Central

    Centanni, T.M.; Sloan, A.M.; Reed, A.C.; Engineer, C.T.; Rennaker, R.; Kilgard, M.P.

    2014-01-01

    We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/sec), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech processing disorders. PMID:24286757

  3. Stimulus-response learning in long-term cocaine users: acquired equivalence and probabilistic category learning.

    PubMed

    Vadhan, Nehal P; Myers, Catherine E; Rubin, Eric; Shohamy, Daphna; Foltin, Richard W; Gluck, Mark A

    2008-01-11

    The purpose of this study was to examine stimulus-response (S-R) learning in active cocaine users. Twenty-two cocaine-dependent participants (20 males and 2 females) and 21 non-drug using control participants (19 males and 2 females) who were similar in age and education were administered two computerized learning tasks. The Acquired Equivalence task initially requires learning of simple antecedent-consequent discriminations, but later requires generalization of this learning when the stimuli are presented in novel recombinations. The Weather Prediction task requires the prediction of a dichotomous outcome based on different stimuli combinations when the stimuli predict the outcome only probabilistically. On the Acquired Equivalence task, cocaine users made significantly more errors than control participants when required to learn new discriminations while maintaining previously learned discriminations, but performed similarly to controls when required to generalize this learning. No group differences were seen on the Weather Prediction task. Cocaine users' learning of stimulus discriminations under conflicting response demands was impaired, but their ability to generalize this learning once they achieved criterion was intact. This performance pattern is consistent with other laboratory studies of long-term cocaine users that demonstrated that established learning interfered with new learning on incremental learning tasks, relative to healthy controls, and may reflect altered dopamine transmission in the basal ganglia of long-term cocaine users.

  4. Impaired Contingent Attentional Capture Predicts Reduced Working Memory Capacity in Schizophrenia

    PubMed Central

    Mayer, Jutta S.; Fukuda, Keisuke; Vogel, Edward K.; Park, Sohee

    2012-01-01

    Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding. PMID:23152783

  5. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia.

    PubMed

    Mayer, Jutta S; Fukuda, Keisuke; Vogel, Edward K; Park, Sohee

    2012-01-01

    Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding.

  6. Transfers of stimulus function during roulette wagering.

    PubMed

    Dixon, Mark R; Enoch, Mary Rachel; Belisle, Jordan

    2017-10-01

    Twenty-five recreational gamblers were initially asked to place bets on either red or black positions on a roulette board in a simulated casino setting. Each participant was then exposed to a stimulus pairing observing procedure which attempted to develop equivalence classes between one color (black or red) and traditionally positive words (e.g., love, happy, sex) and another color (black or red) and traditionally negative words (e.g., death, cancer, taxes), in the absence of consequence manipulations. Twenty-one of the twenty-five participants demonstrated greater response allocation to the color position on the roulette board that participated in a relational network with the positive words. Variations in sequencing of experimental conditions had no impact on poststimulus-pairing wagers, but did impact tests for equivalence accuracy. © 2017 Society for the Experimental Analysis of Behavior.

  7. Orienting attention to locations in internal representations.

    PubMed

    Griffin, Ivan C; Nobre, Anna C

    2003-11-15

    Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.

  8. Words putting pain in motion: the generalization of pain-related fear within an artificial stimulus category

    PubMed Central

    Bennett, Marc P.; Meulders, Ann; Baeyens, Frank; Vlaeyen, Johan W. S.

    2015-01-01

    Patients with chronic pain are often fearful of movements that never featured in painful episodes. This study examined whether a neutral movement’s conceptual relationship with pain-relevant stimuli could precipitate pain-related fear; a process known as symbolic generalization. As a secondary objective, we also compared experiential and verbal fear learning in the generalization of pain-related fear. We conducted an experimental study with 80 healthy participants who were recruited through an online experimental management system (Mage = 23.04 years, SD = 6.80 years). First, two artificial categories were established wherein nonsense words and joystick arm movements were equivalent. Using a between-groups design, nonsense words from one category were paired with either an electrocutaneous stimulus (pain-US) or threatening information, while nonsense words from the other category were paired with no pain-US or safety information. During a final testing phase, participants were prompted to perform specific joystick arm movements that were never followed by a pain-US, although they were informed that it could occur. The results showed that movements equivalent to the pain-relevant nonsense words evoked heightened pain-related fear as measured by pain-US expectancy, fear of pain, and unpleasantness ratings. Also, experience with the pain-US evinced stronger acquisition and generalization compared to experience with threatening information. The clinical importance and theoretical implications of these findings are discussed. PMID:25983704

  9. Automatic and Controlled Response Inhibition: Associative Learning in the Go/No-Go and Stop-Signal Paradigms

    PubMed Central

    Verbruggen, Frederick; Logan, Gordon D.

    2008-01-01

    In five experiments, the authors examined the development of automatic response inhibition in the go/no-go paradigm and a modified version of the stop-signal paradigm. They hypothesized that automatic response inhibition may develop over practice when stimuli are consistently associated with stopping. All five experiments consisted of a training phase and a test phase in which the stimulus mapping was reversed for a subset of the stimuli. Consistent with the automatic-inhibition hypothesis, the authors found that responding in the test phase was slowed when the stimulus had been consistently associated with stopping in the training phase. In addition, they found that response inhibition benefited from consistent stimulus-stop associations. These findings suggest that response inhibition may rely on the retrieval of stimulus-stop associations after practice with consistent stimulus-stop mappings. Stimulus-stop mapping is typically consistent in the go/no-go paradigm, so automatic inhibition is likely to occur. However, stimulus-stop mapping is typically inconsistent in the stop-signal paradigm, so automatic inhibition is unlikely to occur. Thus, the results suggest that the two paradigms are not equivalent because they allow different kinds of response inhibition. PMID:18999358

  10. Schistosoma mansoni: cercarial responses to irradiance changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saladin, K.S.

    1982-02-01

    Cercariae of Schistosoma mansoni alternate between active swimming and passive drifting. They began swimming in response to either an increase or decrease in irradiance experienced during the passive phase. The number of cercariae reacting to a shadow was proportional to the magnitude of the stimulus. The shadow response may be mediated by the cercaria's ciliary receptors. About half as many cercariae reacted to an irradiance increase as to an equivalent decrease. This report is the first quantitative study of photosensory stimulus-response relationships in schistosome cercariae.

  11. Psychophysical testing of spatial and temporal dimensions of endogenous analgesia: conditioned pain modulation and offset analgesia.

    PubMed

    Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit

    2013-08-01

    The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.

  12. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each.

  13. Effects of a meaningful, a discriminative, and a meaningless stimulus on equivalence class formation.

    PubMed

    Fields, Lanny; Arntzen, Erik; Nartey, Richard K; Eilifsen, Christoffer

    2012-03-01

    Thirty college students attempted to form three 3-node 5-member equivalence classes under the simultaneous protocol. After concurrent training of AB, BC, CD, and DE relations, all probes used to assess the emergence of symmetrical, transitive, and equivalence relations were presented for two test blocks. When the A-E stimuli were all abstract shapes, none of 10 participants formed classes. When the A, B, D, and E stimuli were abstract shapes and the C stimuli were meaningful pictures, 8 of 10 participants formed classes. This high yield may reflect the expansion of existing classes that consist of the associates of the meaningful stimuli, rather than the formation of the ABCDE classes, per se. When the A-E stimuli were abstract shapes and the C stimuli became S(D)s prior to class formation, 5 out of 10 participants formed classes. Thus, the discriminative functions served by the meaningful stimuli can account for some of the enhancement of class formation produced by the inclusion of a meaningful stimulus as a class member. A sorting task, which provided a secondary measure of class formation, indicated the formation of all three classes when the emergent relations probes indicated the same outcome. In contrast, the sorting test indicated "partial" class formation when the emergent relations test indicated no class formation. Finally, the effects of nodal distance on the relatedness of stimuli in the equivalence classes were not influenced by the functions served by the C stimuli in the equivalence classes.

  14. Effects of a Meaningful, a Discriminative, and a Meaningless Stimulus on Equivalence Class Formation

    PubMed Central

    Fields, Lanny; Arntzen, Erik; Nartey, Richard K; Eilifsen, Christoffer

    2012-01-01

    Thirty college students attempted to form three 3-node 5-member equivalence classes under the simultaneous protocol. After concurrent training of AB, BC, CD, and DE relations, all probes used to assess the emergence of symmetrical, transitive, and equivalence relations were presented for two test blocks. When the A–E stimuli were all abstract shapes, none of 10 participants formed classes. When the A, B, D, and E stimuli were abstract shapes and the C stimuli were meaningful pictures, 8 of 10 participants formed classes. This high yield may reflect the expansion of existing classes that consist of the associates of the meaningful stimuli, rather than the formation of the ABCDE classes, per se. When the A–E stimuli were abstract shapes and the C stimuli became SDs prior to class formation, 5 out of 10 participants formed classes. Thus, the discriminative functions served by the meaningful stimuli can account for some of the enhancement of class formation produced by the inclusion of a meaningful stimulus as a class member. A sorting task, which provided a secondary measure of class formation, indicated the formation of all three classes when the emergent relations probes indicated the same outcome. In contrast, the sorting test indicated “partial” class formation when the emergent relations test indicated no class formation. Finally, the effects of nodal distance on the relatedness of stimuli in the equivalence classes were not influenced by the functions served by the C stimuli in the equivalence classes. PMID:22389524

  15. Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials.

    PubMed

    Saville, Christopher W N; Feige, Bernd; Kluckert, Christian; Bender, Stephan; Biscaldi, Monica; Berger, Andrea; Fleischhaker, Christian; Henighausen, Klaus; Klein, Christoph

    2015-07-01

    Increased intra-subject variability (ISV) in reaction times (RTs) is a promising endophenotype for attention-deficit hyperactivity disorder (ADHD) and among the most robust hallmarks of the disorder. ISV has been assumed to represent an attentional deficit, either reflecting lapses in attention or increased neural noise. Here, we use an innovative single-trial event-related potential approach to assess whether the increased ISV associated with ADHD is indeed attributable to attention, or whether it is related to response-related processing. We measured electroencephalographic responses to working memory oddball tasks in patients with ADHD (N = 20, aged 11.3 ± 1.1) and healthy controls (N = 25, aged 11.7 ± 1.1), and analysed these data with a recently developed method of single-trial event-related potential analysis. Estimates of component latency variability were computed for the stimulus-locked and response-locked forms of the P3b and the lateralised readiness potential (LRP). ADHD patients showed significantly increased ISV in behavioural ISV. This increased ISV was paralleled by an increase in variability in response-locked event-related potential latencies, while variability in stimulus-locked latencies was equivalent between groups. This result held across the P3b and LRP. Latency of all components predicted RTs on a single-trial basis, confirming that all were relevant for speed of processing. These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon. © 2014 Association for Child and Adolescent Mental Health.

  16. TRANSFER OF AVERSIVE RESPONDENT ELICITATION IN ACCORDANCE WITH EQUIVALENCE RELATIONS

    PubMed Central

    Valverde, Miguel RodrÍguez; Luciano, Carmen; Barnes-Holmes, Dermot

    2009-01-01

    The present study investigates the transfer of aversively conditioned respondent elicitation through equivalence classes, using skin conductance as the measure of conditioning. The first experiment is an attempt to replicate Experiment 1 in Dougher, Augustson, Markham, Greenway, and Wulfert (1994), with different temporal parameters in the aversive conditioning procedure employed. Match-to-sample procedures were used to teach 17 participants two 4-member equivalence classes. Then, one member of one class was paired with electric shock and one member of the other class was presented without shock. The remaining stimuli from each class were presented in transfer tests. Unlike the findings in the original study, transfer of conditioning was not achieved. In Experiment 2, similar procedures were used with 30 participants, although several modifications were introduced (formation of five-member classes, direct conditioning with several elements of each class, random sequences of stimulus presentation in transfer tests, reversal in aversive conditioning contingencies). More than 80% of participants who had shown differential conditioning also showed the transfer of function effect. Moreover, this effect was replicated within subjects for 3 participants. This is the first demonstration of the transfer of aversive respondent elicitation through stimulus equivalence classes with the presentation of transfer test trials in random order. The latter prevents the possibility that transfer effects are an artefact of transfer test presentation order. PMID:20119523

  17. Stimulus-response correspondence effect as a function of temporal overlap between relevant and irrelevant information processing.

    PubMed

    Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany

    2016-01-01

    The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.

  18. On the origins of naming and other symbolic behavior

    PubMed Central

    Horne, Pauline J.; Lowe, C. Fergus

    1996-01-01

    We identify naming as the basic unit of verbal behavior, describe the conditions under which it is learned, and outline its crucial role in the development of stimulus classes and, hence, of symbolic behavior. Drawing upon B. F. Skinner's functional analysis and the theoretical work of G. H. Mead and L. S. Vygotsky, we chart how a child, through learning listener behavior and then echoic responding, learns bidirectional relations between classes of objects or events and his or her own speaker-listener behavior, thus acquiring naming—a higher order behavioral relation. Once established, the bidirectionality incorporated in naming extends across behavior classes such as those identified by Skinner as the mand, tact, and intraverbal so that each becomes a variant of the name relation. We indicate how our account informs the specification of rule-governed behavior and provides the basis for an experimental analysis of symbolic behavior. Furthermore, because naming is both evoked by, and itself evokes, classes of events it brings about new or emergent behavior such as that reported in studies of stimulus equivalence. This account is supported by data from a wide range of match-to-sample studies that also provide evidence that stimulus equivalence in humans is not a unitary phenomenon but the outcome of a number of different types of naming behavior. PMID:16812780

  19. The uncertain response in humans and animals

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Shields, W. E.; Schull, J.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)

    1997-01-01

    There has been no comparative psychological study of uncertainty processes. Accordingly, the present experiments asked whether animals, like humans, escape adaptively when they are uncertain. Human and animal observers were given two primary responses in a visual discrimination task, and the opportunity to escape from some trials into easier ones. In one psychophysical task (using a threshold paradigm), humans escaped selectively the difficult trials that left them uncertain of the stimulus. Two rhesus monkeys (Macaca mulatta) also showed this pattern. In a second psychophysical task (using the method of constant stimuli), some humans showed this pattern but one escaped infrequently and nonoptimally. Monkeys showed equivalent individual differences. The data suggest that escapes by humans and monkeys are interesting cognitive analogs and may reflect controlled decisional processes prompted by the perceptual ambiguity at threshold.

  20. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  1. Two-dimensional adaptation in the auditory forebrain

    PubMed Central

    Nagel, Katherine I.; Doupe, Allison J.

    2011-01-01

    Sensory neurons exhibit two universal properties: sensitivity to multiple stimulus dimensions, and adaptation to stimulus statistics. How adaptation affects encoding along primary dimensions is well characterized for most sensory pathways, but if and how it affects secondary dimensions is less clear. We studied these effects for neurons in the avian equivalent of primary auditory cortex, responding to temporally modulated sounds. We showed that the firing rate of single neurons in field L was affected by at least two components of the time-varying sound log-amplitude. When overall sound amplitude was low, neural responses were based on nonlinear combinations of the mean log-amplitude and its rate of change (first time differential). At high mean sound amplitude, the two relevant stimulus features became the first and second time derivatives of the sound log-amplitude. Thus a strikingly systematic relationship between dimensions was conserved across changes in stimulus intensity, whereby one of the relevant dimensions approximated the time differential of the other dimension. In contrast to stimulus mean, increases in stimulus variance did not change relevant dimensions, but selectively increased the contribution of the second dimension to neural firing, illustrating a new adaptive behavior enabled by multidimensional encoding. Finally, we demonstrated theoretically that inclusion of time differentials as additional stimulus features, as seen so prominently in the single-neuron responses studied here, is a useful strategy for encoding naturalistic stimuli, because it can lower the necessary sampling rate while maintaining the robustness of stimulus reconstruction to correlated noise. PMID:21753019

  2. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    PubMed

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  3. Language performance and auditory evoked fields in 2- to 5-year-old children.

    PubMed

    Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Ueno, Sanae; Remijn, Gerard B; Haruta, Yasuhiro; Oi, Manabu; Munesue, Toshio; Tsubokawa, Tsunehisa; Higashida, Haruhiro; Minabe, Yoshio

    2012-02-01

    Language development progresses at a dramatic rate in preschool children. As rapid temporal processing of speech signals is important in daily colloquial environments, we performed magnetoencephalography (MEG) to investigate the linkage between speech-evoked responses during rapid-rate stimulus presentation (interstimulus interval < 1 s) and language performance in 2- to 5-year-old children (n = 59). Our results indicated that syllables with this short stimulus interval evoked detectable P50m, but not N100m, in most participants, indicating a marked influence of longer neuronal refractory period for stimulation. The results of equivalent dipole estimation showed that the intensity of the P50m component in the left hemisphere was positively correlated with language performance (conceptual inference ability). The observed positive correlations were suggested to reflect the maturation of synaptic organisation or axonal maturation and myelination underlying the acquisition of linguistic abilities. The present study is among the first to use MEG to study brain maturation pertaining to language abilities in preschool children. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.

    PubMed

    Allard, Rémy; Arleo, Angelo

    2017-01-01

    The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.

  5. Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.

    PubMed

    Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F

    2003-04-15

    When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.

  6. Merging separately established stimulus classes with outcome-specific reinforcement.

    PubMed

    Johnson, Cammarie; Meleshkevich, Olga; Dube, William V

    2014-01-01

    This study extended previous research on equivalence relations established with outcome-specific reinforcers to include the merger of separately established stimulus classes. Participants were four adults. Conditional discriminations AC and BC were trained first. Correct selections of C1 (C2, or C3) in the presence of A1 or B1 (A2 or B2, or A3 or B3) were followed by red (blue, or white) tokens; tokens were exchanged for value added to three participant-selected gift cards. Outcomes on equivalence tests for three-member classes ABC were positive. DF and EF were trained with the same reinforcing consequences, and tests were positive for three-member classes DEF. Results of class merger tests with combinations of stimuli from the ABC and DEF classes (AD, FB, etc.) were immediately positive for two participants, demonstrating six-member classes ABCDEF with reinforcers as nodes. Merger tests for a third participant were initially negative but became positive after brief exposure to unreinforced probe trials with reinforcers as comparison stimuli. Following class merger, tests for matching the reinforcers to samples and comparisons were also positive. Class-merger test results were negative for a fourth participant. The results provide the first demonstration of eight-member equivalence classes including two outcome-specific conditioned reinforcing stimuli. © Society for the Experimental Analysis of Behavior.

  7. Relational Learning in Children with Deafness and Cochlear Implants

    ERIC Educational Resources Information Center

    Almeida-Verdu, Ana Claudia; Huziwara, Edson M.; de Souza, Deisy G.; de Rose, Julio C.; Bevilacqua, Maria Cecilia; Lopes, Jair, Jr.; Alves, Cristiane O.; McIlvane, William J.

    2008-01-01

    This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards…

  8. Neural correlates of species-typical illogical cognitive bias in human inference.

    PubMed

    Ogawa, Akitoshi; Yamazaki, Yumiko; Ueno, Kenichi; Cheng, Kang; Iriki, Atsushi

    2010-09-01

    The ability to think logically is a hallmark of human intelligence, yet our innate inferential abilities are marked by implicit biases that often lead to illogical inference. For example, given AB ("if A then B"), people frequently but fallaciously infer the inverse, BA. This mode of inference, called symmetry, is logically invalid because, although it may be true, it is not necessarily true. Given pairs of conditional relations, such as AB and BC, humans reflexively perform two additional modes of inference: transitivity, whereby one (validly) infers AC; and equivalence, whereby one (invalidly) infers CA. In sharp contrast, nonhuman animals can handle transitivity but can rarely be made to acquire symmetry or equivalence. In the present study, human subjects performed logical and illogical inferences about the relations between abstract, visually presented figures while their brain activation was monitored with fMRI. The prefrontal, medial frontal, and intraparietal cortices were activated during all modes of inference. Additional activation in the precuneus and posterior parietal cortex was observed during transitivity and equivalence, which may reflect the need to retrieve the intermediate stimulus (B) from memory. Surprisingly, the patterns of brain activation in illogical and logical inference were very similar. We conclude that the observed inference-related fronto-parietal network is adapted for processing categorical, but not logical, structures of association among stimuli. Humans might prefer categorization over the memorization of logical structures in order to minimize the cognitive working memory load when processing large volumes of information.

  9. Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence☆

    PubMed Central

    Killikelly, Clare; Szűcs, Dénes

    2013-01-01

    Several studies have shown that conflict processing improves from childhood to adulthood and declines from adulthood to old age. However the neural mechanisms underlying this lifespan asymmetry were previously unexplored. We combined event-related potentials (ERPs) and electromyography (EMG) to examine lifespan changes in stimulus and response conflict processing using a modified Stroop task. We used a Stroop task that a priori dissociated stimulus and response conflict. Delayed P3b latency and increased amplitude revealed that middle age adults have a deficit in stimulus processing. Additionally a sustained P3a across frontal and central electrodes occurred only in middle age adults indicating the recruitment of frontal activity. Conversely, decreased lateralized readiness potential (LRP) amplitude and increased EMG activity in the incorrect hand in adolescents reveal protracted development of response processing into late adolescence. The N450, a measure of conflict processing, was found to be sensitive to both stimulus and response conflict. Altogether these results provide evidence for asymmetrical differences in stimulus and response conflict processing across adolescence, young adulthood and middle age. PMID:24134924

  10. The influence of spontaneous activity on stimulus processing in primary visual cortex.

    PubMed

    Schölvinck, M L; Friston, K J; Rees, G

    2012-02-01

    Spontaneous activity in the resting human brain has been studied extensively; however, how such activity affects the local processing of a sensory stimulus is relatively unknown. Here, we examined the impact of spontaneous activity in primary visual cortex on neuronal and behavioural responses to a simple visual stimulus, using functional MRI. Stimulus-evoked responses remained essentially unchanged by spontaneous fluctuations, combining with them in a largely linear fashion (i.e., with little evidence for an interaction). However, interactions between spontaneous fluctuations and stimulus-evoked responses were evident behaviourally; high levels of spontaneous activity tended to be associated with increased stimulus detection at perceptual threshold. Our results extend those found in studies of spontaneous fluctuations in motor cortex and higher order visual areas, and suggest a fundamental role for spontaneous activity in stimulus processing. Copyright © 2011. Published by Elsevier Inc.

  11. Harmonic context influences pitch class equivalence judgments through gestalt and congruency effects.

    PubMed

    Slana, Anka; Repovš, Grega; Fitch, W Tecumseh; Gingras, Bruno

    2016-05-01

    The context in which a stimulus is presented shapes the way it is processed. This effect has been studied extensively in the field of visual perception. Our understanding of how context affects the processing of auditory stimuli is, however, rather limited. Western music is primarily built on melodies (succession of pitches) typically accompanied by chords (harmonic context), which provides a natural template for the study of context effects in auditory processing. Here, we investigated whether pitch class equivalence judgments of tones are affected by the harmonic context within which the target tones are embedded. Nineteen musicians and 19 non-musicians completed a change detection task in which they were asked to determine whether two successively presented target tones, heard either in isolation or with a chordal accompaniment (same or different chords), belonged to the same pitch class. Both musicians and non-musicians were most accurate when the chords remained the same, less so in the absence of chordal accompaniment, and least when the chords differed between both target tones. Further analysis investigating possible mechanisms underpinning these effects of harmonic context on task performance revealed that both a change in gestalt (change in either chord or pitch class), as well as incongruency between change in target tone pitch class and change in chords, led to reduced accuracy and longer reaction times. Our results demonstrate that, similarly to visual processing, auditory processing is influenced by gestalt and congruency effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Electrophysiological differences in the processing of affective information in words and pictures.

    PubMed

    Hinojosa, José A; Carretié, Luis; Valcárcel, María A; Méndez-Bértolo, Constantino; Pozo, Miguel A

    2009-06-01

    It is generally assumed that affective picture viewing is related to higher levels of physiological arousal than is the reading of emotional words. However, this assertion is based mainly on studies in which the processing of either words or pictures has been investigated under heterogenic conditions. Positive, negative, relaxing, neutral, and background (stimulus fragments) words and pictures were presented to subjects in two experiments under equivalent experimental conditions. In Experiment 1, neutral words elicited an enhanced late positive component (LPC) that was associated with an increased difficulty in discriminating neutral from background stimuli. In Experiment 2, high-arousing pictures elicited an enhanced early negativity and LPC that were related to a facilitated processing for these stimuli. Thus, it seems that under some circumstances, the processing of affective information captures attention only with more biologically relevant stimuli. Also, these data might be better interpreted on the basis of those models that postulate a different access to affective information for words and pictures.

  13. Emotional Picture and Word Processing: An fMRI Study on Effects of Stimulus Complexity

    PubMed Central

    Schlochtermeier, Lorna H.; Kuchinke, Lars; Pehrs, Corinna; Urton, Karolina; Kappelhoff, Hermann; Jacobs, Arthur M.

    2013-01-01

    Neuroscientific investigations regarding aspects of emotional experiences usually focus on one stimulus modality (e.g., pictorial or verbal). Similarities and differences in the processing between the different modalities have rarely been studied directly. The comparison of verbal and pictorial emotional stimuli often reveals a processing advantage of emotional pictures in terms of larger or more pronounced emotion effects evoked by pictorial stimuli. In this study, we examined whether this picture advantage refers to general processing differences or whether it might partly be attributed to differences in visual complexity between pictures and words. We first developed a new stimulus database comprising valence and arousal ratings for more than 200 concrete objects representable in different modalities including different levels of complexity: words, phrases, pictograms, and photographs. Using fMRI we then studied the neural correlates of the processing of these emotional stimuli in a valence judgment task, in which the stimulus material was controlled for differences in emotional arousal. No superiority for the pictorial stimuli was found in terms of emotional information processing with differences between modalities being revealed mainly in perceptual processing regions. While visual complexity might partly account for previously found differences in emotional stimulus processing, the main existing processing differences are probably due to enhanced processing in modality specific perceptual regions. We would suggest that both pictures and words elicit emotional responses with no general superiority for either stimulus modality, while emotional responses to pictures are modulated by perceptual stimulus features, such as picture complexity. PMID:23409009

  14. The working memory stroop effect: when internal representations clash with external stimuli.

    PubMed

    Kiyonaga, Anastasia; Egner, Tobias

    2014-08-01

    Working memory (WM) has recently been described as internally directed attention, which implies that WM content should affect behavior exactly like an externally perceived and attended stimulus. We tested whether holding a color word in WM, rather than attending to it in the external environment, can produce interference in a color-discrimination task, which would mimic the classic Stroop effect. Over three experiments, the WM Stroop effect recapitulated core properties of the classic attentional Stroop effect, displaying equivalent congruency effects, additive contributions from stimulus- and response-level congruency, and susceptibility to modulation by the percentage of congruent and incongruent trials. Moreover, WM maintenance was inversely related to attentional demands during the WM delay between stimulus presentation and recall, with poorer memory performance following incongruent than congruent trials. Together, these results suggest that WM and attention rely on the same resources and operate over the same representations. © The Author(s) 2014.

  15. Carving Executive Control at Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, but Not Stimulus-Response, Conflict

    ERIC Educational Resources Information Center

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…

  16. EFFICIENTLY ESTABLISHING CONCEPTS OF INFERENTIAL STATISTICS AND HYPOTHESIS DECISION MAKING THROUGH CONTEXTUALLY CONTROLLED EQUIVALENCE CLASSES

    PubMed Central

    Fienup, Daniel M; Critchfield, Thomas S

    2010-01-01

    Computerized lessons that reflect stimulus equivalence principles were used to teach college students concepts related to inferential statistics and hypothesis decision making. Lesson 1 taught participants concepts related to inferential statistics, and Lesson 2 taught them to base hypothesis decisions on a scientific hypothesis and the direction of an effect. Lesson 3 taught the conditional influence of inferential statistics over decisions regarding the scientific and null hypotheses. Participants entered the study with low scores on the targeted skills and left the study demonstrating a high level of accuracy on these skills, which involved mastering more relations than were taught formally. This study illustrates the efficiency of equivalence-based instruction in establishing academic skills in sophisticated learners. PMID:21358904

  17. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    PubMed Central

    Kent, A R; Grill, W M

    2012-01-01

    Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375

  18. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration

    PubMed Central

    Ghose, Dipanwita; Wallace, Mark T.

    2013-01-01

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location – highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping SC mediated behaviors. PMID:24183964

  19. Heart rate variability and cognitive processing: The autonomic response to task demands.

    PubMed

    Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel

    2016-01-01

    This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Improving Accuracy of Portion-Size Estimations through a Stimulus Equivalence Paradigm

    ERIC Educational Resources Information Center

    Hausman, Nicole L.; Borrero, John C.; Fisher, Alyssa; Kahng, SungWoo

    2014-01-01

    The prevalence of obesity continues to increase in the United States (Gordon-Larsen, The, & Adair, 2010). Obesity can be attributed, in part, to overconsumption of energy-dense foods. Given that overeating plays a role in the development of obesity, interventions that teach individuals to identify and consume appropriate portion sizes are…

  1. The Induction of Emergent Relations in Children with Severe Cognitive and Language Delays

    ERIC Educational Resources Information Center

    Howarth, Matthew

    2012-01-01

    In three experiments I sought to experimentally test a source of emergent relations defined as transitivity by Stimulus Equivalence theory or as combinatorial entailment in Relational Frame Theory. In Experiment I, the participants were 4 children diagnosed with autism who also demonstrated significant cognitive and language delays, who were…

  2. Teaching Early Braille Literacy Skills within a Stimulus Equivalence Paradigm to Children with Degenerative Visual Impairments

    ERIC Educational Resources Information Center

    Toussaint, Karen A.; Tiger, Jeffrey H.

    2010-01-01

    Despite the need for braille literacy, there has been little attempt to systematically evaluate braille-instruction programs. The current study evaluated an instructive procedure for teaching early braille-reading skills with 4 school-aged children with degenerative visual impairments. Following a series of pretests, braille instruction involved…

  3. A Relational Frame Training Intervention to Raise Intelligence Quotients: A Pilot Study

    ERIC Educational Resources Information Center

    Cassidy, Sarah; Roche, Bryan; Hayes, Steven C.

    2011-01-01

    The current research consisted of 2 studies designed to test the effectiveness of automated multiple-exemplar relational training in raising children's general intellectual skills. In Study 1, 4 participants were exposed to multiple exemplar training in stimulus equivalence and the relational frames of SAME, OPPOSITE, MORE THAN, and LESS THAN…

  4. Gestalt perception modulates early visual processing.

    PubMed

    Herrmann, C S; Bosch, V

    2001-04-17

    We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.

  5. Perceptual advantage for category-relevant perceptual dimensions: the case of shape and motion.

    PubMed

    Folstein, Jonathan R; Palmeri, Thomas J; Gauthier, Isabel

    2014-01-01

    Category learning facilitates perception along relevant stimulus dimensions, even when tested in a discrimination task that does not require categorization. While this general phenomenon has been demonstrated previously, perceptual facilitation along dimensions has been documented by measuring different specific phenomena in different studies using different kinds of objects. Across several object domains, there is support for acquired distinctiveness, the stretching of a perceptual dimension relevant to learned categories. Studies using faces and studies using simple separable visual dimensions have also found evidence of acquired equivalence, the shrinking of a perceptual dimension irrelevant to learned categories, and categorical perception, the local stretching across the category boundary. These later two effects are rarely observed with complex non-face objects. Failures to find these effects with complex non-face objects may have been because the dimensions tested previously were perceptually integrated. Here we tested effects of category learning with non-face objects categorized along dimensions that have been found to be processed by different areas of the brain, shape and motion. While we replicated acquired distinctiveness, we found no evidence for acquired equivalence or categorical perception.

  6. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.

    PubMed

    Doricchi, Fabrizio; Macci, Enrica; Silvetti, Massimo; Macaluso, Emiliano

    2010-07-01

    Voluntary orienting of visual attention is conventionally measured in tasks with predictive central cues followed by frequent valid targets at the cued location and by infrequent invalid targets at the uncued location. This implies that invalid targets entail both spatial reorienting of attention and breaching of the expected spatial congruency between cues and targets. Here, we used event-related functional magnetic resonance imaging (fMRI) to separate the neural correlates of the spatial and expectancy components of both endogenous orienting and stimulus-driven reorienting of attention. We found that during endogenous orienting with predictive cues, there was a significant deactivation of the right Temporal-Parietal Junction (TPJ). We also discovered that the lack of an equivalent deactivation with nonpredictive cues was matched to drop in attentional costs and preservation of attentional benefits. The right TPJ showed equivalent responses to invalid targets following predictive and nonpredictive cues. On the contrary, infrequent-unexpected invalid targets following predictive cues specifically activated the right Middle and Inferior Frontal Gyrus (MFG-IFG). Additional comparisons with spatially neutral trials demonstrated that, independently of cue predictiveness, valid targets activate the left TPJ, whereas invalid targets activate both the left and right TPJs. These findings show that the selective right TPJ activation that is found in the comparison between invalid and valid trials results from the reciprocal cancelling of the different activations that in the left TPJ are related to the processing of valid and invalid targets. We propose that left and right TPJs provide "matching and mismatching to attentional template" signals. These signals enable reorienting of attention and play a crucial role in the updating of the statistical contingency between cues and targets.

  7. On Categorizing Sounds.

    DTIC Science & Technology

    1987-11-17

    associated with stimulus intensities, sensory processes, encoding processes, perceptual mechanisms, memory systems, or response processes. Each possibility...has been proposed in the literature and the answer is not known. If SEs are due to a single mechanism, it is not stimulus intensity, a sensory ...on neural activities in the ear. Since the stimuli and the stimulus sequences were identical the ME and ME-with-feedback studies, sensory

  8. Behavior analysis and neuroscience: Complementary disciplines.

    PubMed

    Donahoe, John W

    2017-05-01

    Behavior analysis and neuroscience are disciplines in their own right but are united in that both are subfields of a common overarching field-biology. What most fundamentally unites these disciplines is a shared commitment to selectionism, the Darwinian mode of explanation. In selectionism, the order and complexity observed in nature are seen as the cumulative products of selection processes acting over time on a population of variants-favoring some and disfavoring others-with the affected variants contributing to the population on which future selections operate. In the case of behavior analysis, the central selection process is selection by reinforcement; in neuroscience it is natural selection. The two selection processes are inter-related in that selection by reinforcement is itself the product of natural selection. The present paper illustrates the complementary nature of behavior analysis and neuroscience through considering their joint contributions to three central problem areas: reinforcement-including conditioned reinforcement, stimulus control-including equivalence classes, and memory-including reminding and remembering. © 2017 Society for the Experimental Analysis of Behavior.

  9. Conditional Discriminations by Preverbal Children in an Identity Matching-to-Sample Task

    ERIC Educational Resources Information Center

    de Alcantara Gil, Maria Stella C.; de Oliveira, Thais Porlan; McIlvane, William J.

    2011-01-01

    This study sought to develop methodology for assessing whether children ages 16-21 months could learn to match stimuli on the basis of physical identity in conditional discrimination procedures routinely used in stimulus equivalence research with older participants. The study was conducted in a private room at a day-care center for children and…

  10. Relational Discrimination by Pigeons in a Go/No-Go Procedure with Compound Stimuli: A Methodological Note

    ERIC Educational Resources Information Center

    Campos, Heloisa Cursi; Debert, Paula; Barros, Romariz da Silva; McIlvane, William J.

    2011-01-01

    A go/no-go procedure with compound stimuli typically establishes emergent behavior that parallels in structure and typical outcome that of conventional tests for symmetric, transitive, and equivalence relations in normally capable adults. The present study employed a go/no-go compound stimulus procedure with pigeons. During training, pecks to…

  11. Perceptual load modifies processing of unattended stimuli both in the presence and absence of attended stimuli.

    PubMed

    Couperus, J W

    2010-11-26

    This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. A model of the hierarchy of behaviour, cognition, and consciousness.

    PubMed

    Toates, Frederick

    2006-03-01

    Processes comparable in important respects to those underlying human conscious and non-conscious processing can be identified in a range of species and it is argued that these reflect evolutionary precursors of the human processes. A distinction is drawn between two types of processing: (1) stimulus-based and (2) higher-order. For 'higher-order,' in humans the operations of processing are themselves associated with conscious awareness. Conscious awareness sets the context for stimulus-based processing and its end-point is accessible to conscious awareness. However, the mechanics of the translation between stimulus and response proceeds without conscious control. The paper argues that higher-order processing is an evolutionary addition to stimulus-based processing. The model's value is shown for gaining insight into a range of phenomena and their link with consciousness. These include brain damage, learning, memory, development, vision, emotion, motor control, reasoning, the voluntary versus involuntary debate, and mental disorder.

  13. Habituation of the orienting reflex and the development of Preliminary Process Theory.

    PubMed

    Barry, Robert J

    2009-09-01

    The orienting reflex (OR), elicited by an innocuous stimulus, can be regarded as a model of the organism's interaction with its environment, and has been described as the unit of attentional processing. A major determinant of the OR is the novelty of the eliciting stimulus, generally operationalized in terms of its reduction with stimulus repetition, the effects of which are commonly described in habituation terms. This paper provides an overview of a research programme, spanning more than 30 years, investigating psychophysiological aspects of the OR in humans. The major complication in this research is that the numerous physiological measures used as dependent variables in the OR context fail to jointly covary with stimulus parameters. This has led to the development of the Preliminary Process Theory (PPT) of the OR to accommodate the complexity of the observed stimulus-response patterns. PPT is largely grounded in autonomic measures, and current work is attempting to integrate electroencephalographic measures, particularly components in the event-related brain potentials reflecting aspects of stimulus processing. The emphasis in the current presentation is on the use of the defining criteria of the habituation phenomenon, and Groves and Thompson's Dual-process Theory, in the development of PPT.

  14. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  15. Comparison of bandwidths in the inferior colliculus and the auditory nerve. II: Measurement using a temporally manipulated stimulus.

    PubMed

    Mc Laughlin, Myles; Chabwine, Joelle Nsimire; van der Heijden, Marcel; Joris, Philip X

    2008-10-01

    To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.

  16. Conditional discriminations, symmetry, and semantic priming.

    PubMed

    Vaidya, Manish; Hudgins, Caleb D; Ortu, Daniele

    2015-09-01

    Psychologists interested in the study of symbolic behavior have found that people are faster at reporting that two words are related to one another than they are in reporting that two words are not related - an effect called semantic priming. This phenomenon has largely been documented in the context of natural languages using real words as stimuli. The current study asked whether laboratory-generated stimulus-stimulus relations established between arbitrary geometrical shapes would also show the semantic priming effect. Participants learned six conditional relations using a one-to-many training structure (A1-B1, A1-C1, A1-D1, A2-B2, A2-C2, A2-D2) and demonstrated, via accurate performance on tests of derived symmetry, that the trained stimulus functions had become reversible. In a lexical decision task, subjects also demonstrated a priming effect as they displayed faster reaction times to target stimuli when the prime and target came from the same trained or derived conditional relations, compared to the condition in which the prime and target came from different trained or derived conditional relations. These data suggest that laboratory-generated equivalence relations may serve as useful analogues of symbolic behavior. However, the fact that conditional relations training and symmetry alone were sufficient to produce the effect suggests that semantic priming like effects may be the byproduct of simpler stimulus-stimulus relations. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multiple serial picture presentation with millisecond resolution using a three-way LC-shutter-tachistoscope

    PubMed Central

    Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert

    2010-01-01

    Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963

  18. Differential Influence of Safe Versus Threatening Facial Expressions on Decision-Making during an Inhibitory Control Task in Adolescence and Adulthood

    PubMed Central

    Cohen-Gilbert, JE; Killgore, WDS; White, CN; Schwab, ZJ; Crowley, DJ; Covell, MJ; Sneider, JT; Silveri, MM

    2015-01-01

    Social cognition matures dramatically during adolescence and into early adulthood, supported by continued improvements in inhibitory control. During this time, developmental changes in interpreting and responding to social signals such as facial expressions also occur. In the present study, subjects performed a Go No-Go task that required them to respond or inhibit responding based on threat or safety cues present in facial expressions. Subjects (N = 112) were divided into three age groups: adolescent (12–15 years), emerging adult (18–25 years) and adult (26–44 years). Analyses revealed a significant improvement in accuracy on No-Go trials, but not Go trials, during both safe and threat face conditions, with changes evident through early adulthood. In order to better identify the decision-making processes responsible for these changes in inhibitory control, a drift diffusion model (DDM) was fit to the accuracy and reaction time data, generating measures of caution, response bias, nondecision time (encoding + motor response), and drift rate (face processing efficiency). Caution and nondecision time both increased significantly with age while bias towards the Go response decreased. Drift rate analyses revealed significant age-related improvements in the ability to map threat faces to a No-Go response while drift rates on all other trial types were equivalent across age groups. These results suggest both stimulus-independent and stimulus-dependent processes contribute to improvements in inhibitory control in adolescence with processing of negative social cues being specifically impaired by self-regulatory demands. Findings from this novel investigation of emotional responsiveness integrated with inhibitory control may provide useful insights about healthy development that can be applied to better understanding adolescent risk taking behavior and the elevated incidence of related forms of psychopathology during this period of life. PMID:24387267

  19. Humans treat unreliable filled-in percepts as more real than veridical ones

    PubMed Central

    Ehinger, Benedikt V; Häusser, Katja; Ossandón, José P; König, Peter

    2017-01-01

    Humans often evaluate sensory signals according to their reliability for optimal decision-making. However, how do we evaluate percepts generated in the absence of direct input that are, therefore, completely unreliable? Here, we utilize the phenomenon of filling-in occurring at the physiological blind-spots to compare partially inferred and veridical percepts. Subjects chose between stimuli that elicit filling-in, and perceptually equivalent ones presented outside the blind-spots, looking for a Gabor stimulus without a small orthogonal inset. In ambiguous conditions, when the stimuli were physically identical and the inset was absent in both, subjects behaved opposite to optimal, preferring the blind-spot stimulus as the better example of a collinear stimulus, even though no relevant veridical information was available. Thus, a percept that is partially inferred is paradoxically considered more reliable than a percept based on external input. In other words: Humans treat filled-in inferred percepts as more real than veridical ones. DOI: http://dx.doi.org/10.7554/eLife.21761.001 PMID:28506359

  20. Estimating linear-nonlinear models using Rényi divergences

    PubMed Central

    Kouh, Minjoon; Sharpee, Tatyana O.

    2009-01-01

    This paper compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramér-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data. PMID:19568981

  1. Estimating linear-nonlinear models using Renyi divergences.

    PubMed

    Kouh, Minjoon; Sharpee, Tatyana O

    2009-01-01

    This article compares a family of methods for characterizing neural feature selectivity using natural stimuli in the framework of the linear-nonlinear model. In this model, the spike probability depends in a nonlinear way on a small number of stimulus dimensions. The relevant stimulus dimensions can be found by optimizing a Rényi divergence that quantifies a change in the stimulus distribution associated with the arrival of single spikes. Generally, good reconstructions can be obtained based on optimization of Rényi divergence of any order, even in the limit of small numbers of spikes. However, the smallest error is obtained when the Rényi divergence of order 1 is optimized. This type of optimization is equivalent to information maximization, and is shown to saturate the Cramer-Rao bound describing the smallest error allowed for any unbiased method. We also discuss conditions under which information maximization provides a convenient way to perform maximum likelihood estimation of linear-nonlinear models from neural data.

  2. Dissociating Stimulus-Set and Response-Set in the Context of Task-Set Switching

    PubMed Central

    Kieffaber, Paul D.; Kruschke, John K.; Cho, Raymond Y.; Walker, Philip M.; Hetrick, William P.

    2014-01-01

    The primary aim of the present research was to determine how stimulus-set and response-set components of task-set contribute to switch costs and conflict processing. Three experiments are described wherein participants completed an explicitly cued task-switching procedure. Experiment 1 established that task switches requiring a reconfiguration of both stimulus- and response-set incurred larger residual switch costs than task switches requiring the reconfiguration of stimulus-set alone. Between-task interference was also drastically reduced for response-set conflict compared with stimulus-set conflict. A second experiment replicated these findings and demonstrated that stimulus- and response-conflict have dissociable effects on the “decision time” and “motor time” components of total response time. Finally, a third experiment replicated Experiment 2 and demonstrated that the stimulus- and response- components of task switching and conflict processing elicit dissociable neural activity as evidence by event-related brain potentials. PMID:22984990

  3. Cortical processing of tactile stimuli applied in quick succession across the fingertips: temporal evolution of dipole sources revealed by magnetoencephalography.

    PubMed

    Karageorgiou, Elissaios; Koutlas, Ioannis G; Alonso, Aurelio A; Leuthold, Arthur C; Lewis, Scott M; Georgopoulos, Apostolos P

    2008-08-01

    We used magnetoencephalography (MEG) in 10 healthy human subjects to study cortical responses to tactile stimuli applied to the fingertips of digits 2-5 of the right hand. Each stimulus lasted 50 ms and was produced by air-driven elastic membranes. Four-hundred stimuli were delivered on each finger in three temporal patterns (conditions). In the "Discrete" condition, stimuli were applied to each finger repetitively with an interstimulus interval (ISI) of 1-2 s. In the "Continuous" condition, stimuli were applied to the fingers sequentially as four-stimulus trains with zero ISI and 1-2 s intervening between trains. Finally, in the "Gap" condition, stimuli were applied as in the Continuous condition but with an ISI of 50 ms. A sensation of tactile motion across fingers (digit 2 --> digit 5) was reported by all subjects in the Continuous and Gap conditions. Cortical responses were extracted as single equivalent current dipoles over a period of 1 s following stimulus onset. In all three conditions, initial responses in left primary somatosensory cortex (SI) were observed ~20 to 50 ms after stimulus onset and were followed by additional left SI responses and bilateral responses in the secondary somatosensory cortex (SII). In addition, in the Continuous and Gap conditions, there was an activation of the precentral gyrus, the temporal aspects of which depended on the temporal relation of the administered stimuli, as follows. An ISI of 0 ms led to activation of the precentral gyrus shortly after the second stimulation, whereas an ISI of 50 ms led to activation of the precentral gyrus after the third stimulation. The current findings support results from previous studies on temporal activity patterns in SI and SII, verify the participation of the precentral gyrus during tactile motion perception and, in addition, reveal aspects of integration of sequential sensory stimulations over nonadjacent areas as well as temporal activity patterns in the postcentral and precentral gyri.

  4. Incongruent Abstract Stimulus-Response Bindings Result in Response Interference: fMRI and EEG Evidence from Visual Object Classification Priming

    ERIC Educational Resources Information Center

    Horner, Aidan J.; Henson, Richard N.

    2012-01-01

    Stimulus repetition often leads to facilitated processing, resulting in neural decreases (repetition suppression) and faster RTs (repetition priming). Such repetition-related effects have been attributed to the facilitation of repeated cognitive processes and/or the retrieval of previously encoded stimulus-response (S-R) bindings. Although…

  5. TEACHING EARLY BRAILLE LITERACY SKILLS WITHIN A STIMULUS EQUIVALENCE PARADIGM TO CHILDREN WITH DEGENERATIVE VISUAL IMPAIRMENTS

    PubMed Central

    Toussaint, Karen A; Tiger, Jeffrey H

    2010-01-01

    Despite the need for braille literacy, there has been little attempt to systematically evaluate braille-instruction programs. The current study evaluated an instructive procedure for teaching early braille-reading skills with 4 school-aged children with degenerative visual impairments. Following a series of pretests, braille instruction involved providing a sample braille letter and teaching the selection of the corresponding printed letter from a comparison array. Concomitant with increases in the accuracy of this skill, we assessed and captured the formation of equivalence classes through tests of symmetry and transitivity among the printed letters, the corresponding braille letters, and their spoken names. PMID:21119894

  6. Teaching early braille literacy skills within a stimulus equivalence paradigm to children with degenerative visual impairments.

    PubMed

    Toussaint, Karen A; Tiger, Jeffrey H

    2010-01-01

    Despite the need for braille literacy, there has been little attempt to systematically evaluate braille-instruction programs. The current study evaluated an instructive procedure for teaching early braille-reading skills with 4 school-aged children with degenerative visual impairments. Following a series of pretests, braille instruction involved providing a sample braille letter and teaching the selection of the corresponding printed letter from a comparison array. Concomitant with increases in the accuracy of this skill, we assessed and captured the formation of equivalence classes through tests of symmetry and transitivity among the printed letters, the corresponding braille letters, and their spoken names.

  7. Teaching Manual Signs to Adults with Mental Retardation Using Matching-to-Sample Procedures and Stimulus Equivalence

    ERIC Educational Resources Information Center

    Elias, N. C.; Goyos, C.; Saunders, M.; Saunders, R.

    2008-01-01

    The objective of this study was to teach manual signs through an automated matching-to-sample procedure and to test for the emergence of new conditional relations and imitative behaviors. Seven adults with mild to severe mental retardation participated. Four were also hearing impaired. Relations between manual signs (set A) and pictures (set B)…

  8. Some considerations of two alleged kinds of selective attention.

    PubMed

    Keren, G

    1976-12-01

    The present article deals with selective attention phenomena and elaborates on a stimulus material classification, "stimulus set" versus "response set," proposed by Broadbent (1970, 1971)9 Stimulus set is defined by some distinct and conspicuous physical properties that are inherent in the stimulus. Response set is characterized by the meaning it conveys, and thus its properties are determined by cognitive processing on the part of the organism. Broadbent's framework is related to Neisser's (1967) distinction between two perceptual-cognitive processes, namely, preattentive control and focal attention. Three experiments are reported. A before-after paradigm was employed in Experiment 1, together with a sptial arrangement manipulation of relevant versus irrelevant stimuli (being grouped or mixed). The results indicated that before-after instruction had a stronger effect under stimulus set than under response set conditions. Spatial arrangement, on the other hand, affected performances under response set but not under stimulus set conditions. These results were interpreted as supporting the idea that stimulus set material, which is handled by preattentive mechanisms, may be processed in parallel, while response set material requires focal attention that is probably serial in nature. Experiment 2 used a search task with different levels of noise elements. Although subjects were not able to avoid completely the processing of noise elements, they had much more control under stimulus set than under response set conditions. Experiment 3 dealt with memory functions and suggests differential levels of perceptual processing depending on the nature of the stimulus material. This extends the memory framework suggested by Craik and Lockhart (1972). The results of these experiments, together with evidence from other behavioral and physiological studies, lend strong support to the proposed theory. At the theoretical level, it is suggested that the distinction between stimulus and response set, and the corresponding one between preattentive mechanisms and focal attention, are on a continuum rather than being an all-or-none classification. Thus, it permits greater congnitive flexibility on the part of the organism, which is reflected through the assumption that both preattentive mechanisms and focal attention may operate simultaneously and differ only in the salience of their functioning. From a methodological point of view, the distinction between stimulus material and organismic processes is emphasized. It is argued that researchers have not given sufficient attention to the properties of the stimulus materials that they have used, and as a consequence have reached unwarranted conclusions, as exemplified by a few studies that are briefly discussed.

  9. Heterogeneity in the spatial receptive field architecture of multisensory neurons of the superior colliculus and its effects on multisensory integration.

    PubMed

    Ghose, D; Wallace, M T

    2014-01-03

    Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. Although these stimulus-specific factors have generally been considered in isolation (i.e., manipulating stimulus location while holding all other factors constant), they have an intrinsic interdependency that has yet to be fully elucidated. For example, changes in stimulus location will likely also impact both the temporal profile of response and the effectiveness of the stimulus. The importance of better describing this interdependency is further reinforced by the fact that SC neurons have large receptive fields, and that responses at different locations within these receptive fields are far from equivalent. To address these issues, the current study was designed to examine the interdependency between the stimulus factors of space and effectiveness in dictating the multisensory responses of SC neurons. The results show that neuronal responsiveness changes dramatically with changes in stimulus location - highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping SC-mediated behaviors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.

    PubMed

    Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred

    2011-01-01

    It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus.

    PubMed

    Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos

    2017-01-01

    Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.

  12. Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus

    PubMed Central

    Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M.

    2017-01-01

    Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex. PMID:29240804

  13. The Extent of Active Processing of a Long-Duration Stimulus Modulates the Scalp-Recorded Sustained Potential

    ERIC Educational Resources Information Center

    Campbell, Kenneth; Herzig, Alyssa; Jashmidi, Parastoo

    2009-01-01

    A long-duration stimulus will elicit a negative sustained potential (SP) that is maximum in amplitude over fronto-central areas of the scalp. This study examines how the duration of active attentional processing of the stimulus might also elicit a nonsensory contingent negative variation (CNV) that overlaps and summates to the SP. Subjects were…

  14. Terminator Disparity Contributes to Stereo Matching for Eye Movements and Perception

    PubMed Central

    Optican, Lance M.; Cumming, Bruce G.

    2013-01-01

    In the context of motion detection, the endings (or terminators) of 1-D features can be detected as 2-D features, affecting the perceived direction of motion of the 1-D features (the barber-pole illusion) and the direction of tracking eye movements. In the realm of binocular disparity processing, an equivalent role for the disparity of terminators has not been established. Here we explore the stereo analogy of the barber-pole stimulus, applying disparity to a 1-D noise stimulus seen through an elongated, zero-disparity, aperture. We found that, in human subjects, these stimuli induce robust short-latency reflexive vergence eye movements, initially in the direction orthogonal to the 1-D features, but shortly thereafter in the direction predicted by the disparity of the terminators. In addition, these same stimuli induce vivid depth percepts, which can only be attributed to the disparity of line terminators. When the 1-D noise patterns are given opposite contrast in the two eyes (anticorrelation), both components of the vergence response reverse sign. Finally, terminators drive vergence even when the aperture is defined by a texture (as opposed to a contrast) boundary. These findings prove that terminators contribute to stereo matching, and constrain the type of neuronal mechanisms that might be responsible for the detection of terminator disparity. PMID:24285893

  15. Terminator disparity contributes to stereo matching for eye movements and perception.

    PubMed

    Quaia, Christian; Optican, Lance M; Cumming, Bruce G

    2013-11-27

    In the context of motion detection, the endings (or terminators) of 1-D features can be detected as 2-D features, affecting the perceived direction of motion of the 1-D features (the barber-pole illusion) and the direction of tracking eye movements. In the realm of binocular disparity processing, an equivalent role for the disparity of terminators has not been established. Here we explore the stereo analogy of the barber-pole stimulus, applying disparity to a 1-D noise stimulus seen through an elongated, zero-disparity, aperture. We found that, in human subjects, these stimuli induce robust short-latency reflexive vergence eye movements, initially in the direction orthogonal to the 1-D features, but shortly thereafter in the direction predicted by the disparity of the terminators. In addition, these same stimuli induce vivid depth percepts, which can only be attributed to the disparity of line terminators. When the 1-D noise patterns are given opposite contrast in the two eyes (anticorrelation), both components of the vergence response reverse sign. Finally, terminators drive vergence even when the aperture is defined by a texture (as opposed to a contrast) boundary. These findings prove that terminators contribute to stereo matching, and constrain the type of neuronal mechanisms that might be responsible for the detection of terminator disparity.

  16. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  17. Neural basis of superior performance of action videogame players in an attention-demanding task.

    PubMed

    Mishra, Jyoti; Zinni, Marla; Bavelier, Daphne; Hillyard, Steven A

    2011-01-19

    Steady-state visual evoked potentials (SSVEPs) were recorded from action videogame players (VGPs) and from non-videogame players (NVGPs) during an attention-demanding task. Participants were presented with a multi-stimulus display consisting of rapid sequences of alphanumeric stimuli presented at rates of 8.6/12 Hz in the left/right peripheral visual fields, along with a central square at fixation flashing at 5.5 Hz and a letter sequence flashing at 15 Hz at an upper central location. Subjects were cued to attend to one of the peripheral or central stimulus sequences and detect occasional targets. Consistent with previous behavioral studies, VGPs detected targets with greater speed and accuracy than NVGPs. This behavioral advantage was associated with an increased suppression of SSVEP amplitudes to unattended peripheral sequences in VGPs relative to NVGPs, whereas the magnitude of the attended SSVEPs was equivalent in the two groups. Group differences were also observed in the event-related potentials to targets in the alphanumeric sequences, with the target-elicited P300 component being of larger amplitude in VGPS than NVGPs. These electrophysiological findings suggest that the superior target detection capabilities of the VGPs are attributable, at least in part, to enhanced suppression of distracting irrelevant information and more effective perceptual decision processes.

  18. Stimulus-to-matching-stimulus interval influences N1, P2, and P3b in an equiprobable Go/NoGo task.

    PubMed

    Steiner, Genevieve Z; Barry, Robert J; Gonsalvez, Craig J

    2014-10-01

    Previous research has shown that as the stimulus-to-matching-stimulus interval (including the target-to-target interval, TTI, and nontarget-to-nontarget interval, NNI) increases, the amplitude of the P300 ERP component increases systematically. Here, we extended previous P300 research and explored TTI and NNI effects on the various ERP components elicited in an auditory equiprobable Go/NoGo task. We also examined whether a similar mechanism was underpinning interval effects in early ERP components (e.g., N1). Thirty participants completed a specially-designed variable-ISI equiprobable task whilst their EEG activity was recorded. Component amplitudes were extracted using temporal PCA with unrestricted Varimax rotation. As expected, N1, P2, and P3b amplitudes increased as TTI and NNI increased, however, Processing Negativity (PN) and Slow Wave (SW) did not show the same systematic change with interval increments. To determine the origin of interval effects in sequential processing, a multiple regression analysis was conducted on each ERP component including stimulus type, interval, and all preceding components as predictors. These analyses showed that matching-stimulus interval predicted N1, P3b, and weakly predicted P2, but not PN or SW; SW was determined by P3b only. These results suggest that N1, P3b, and to some extent, P2, are affected by a similar temporal mechanism. However, the dissimilar pattern of results obtained for sequential ERP components indicates that matching-stimulus intervals are not affecting all aspects of stimulus processing. This argues against a global mechanism, such as a pathway-specific refractory effect, and suggests that stimulus processing is occurring in parallel pathways, some of which are not affected by temporal manipulations of matching-stimulus interval. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Stimulus Sensitivity of a Spiking Neural Network Model

    NASA Astrophysics Data System (ADS)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  20. Neural processing of visual information under interocular suppression: a critical review

    PubMed Central

    Sterzer, Philipp; Stein, Timo; Ludwig, Karin; Rothkirch, Marcus; Hesselmann, Guido

    2014-01-01

    When dissimilar stimuli are presented to the two eyes, only one stimulus dominates at a time while the other stimulus is invisible due to interocular suppression. When both stimuli are equally potent in competing for awareness, perception alternates spontaneously between the two stimuli, a phenomenon called binocular rivalry. However, when one stimulus is much stronger, e.g., due to higher contrast, the weaker stimulus can be suppressed for prolonged periods of time. A technique that has recently become very popular for the investigation of unconscious visual processing is continuous flash suppression (CFS): High-contrast dynamic patterns shown to one eye can render a low-contrast stimulus shown to the other eye invisible for up to minutes. Studies using CFS have produced new insights but also controversies regarding the types of visual information that can be processed unconsciously as well as the neural sites and the relevance of such unconscious processing. Here, we review the current state of knowledge in regard to neural processing of interocularly suppressed information. Focusing on recent neuroimaging findings, we discuss whether and to what degree such suppressed visual information is processed at early and more advanced levels of the visual processing hierarchy. We review controversial findings related to the influence of attention on early visual processing under interocular suppression, the putative differential roles of dorsal and ventral areas in unconscious object processing, and evidence suggesting privileged unconscious processing of emotional and other socially relevant information. On a more general note, we discuss methodological and conceptual issues, from practical issues of how unawareness of a stimulus is assessed to the overarching question of what constitutes an adequate operational definition of unawareness. Finally, we propose approaches for future research to resolve current controversies in this exciting research area. PMID:24904469

  1. Emotion and attention: event-related brain potential studies.

    PubMed

    Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus

    2006-01-01

    Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.

  2. Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.

    PubMed

    Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun

    2014-04-01

    The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Visual Presentation Effects on Identification of Multiple Environmental Sounds

    PubMed Central

    Masakura, Yuko; Ichikawa, Makoto; Shimono, Koichi; Nakatsuka, Reio

    2016-01-01

    This study examined how the contents and timing of a visual stimulus affect the identification of mixed sounds recorded in a daily life environment. For experiments, we presented four environment sounds as auditory stimuli for 5 s along with a picture or a written word as a visual stimulus that might or might not denote the source of one of the four sounds. Three conditions of temporal relations between the visual stimuli and sounds were used. The visual stimulus was presented either: (a) for 5 s simultaneously with the sound; (b) for 5 s, 1 s before the sound (SOA between the audio and visual stimuli was 6 s); or (c) for 33 ms, 1 s before the sound (SOA was 1033 ms). Participants reported all identifiable sounds for those audio–visual stimuli. To characterize the effects of visual stimuli on sound identification, the following were used: the identification rates of sounds for which the visual stimulus denoted its sound source, the rates of other sounds for which the visual stimulus did not denote the sound source, and the frequency of false hearing of a sound that was not presented for each sound set. Results of the four experiments demonstrated that a picture or a written word promoted identification of the sound when it was related to the sound, particularly when the visual stimulus was presented for 5 s simultaneously with the sounds. However, a visual stimulus preceding the sounds had a benefit only for the picture, not for the written word. Furthermore, presentation with a picture denoting a sound simultaneously with the sound reduced the frequency of false hearing. These results suggest three ways that presenting a visual stimulus affects identification of the auditory stimulus. First, activation of the visual representation extracted directly from the picture promotes identification of the denoted sound and suppresses the processing of sounds for which the visual stimulus did not denote the sound source. Second, effects based on processing of the conceptual information promote identification of the denoted sound and suppress the processing of sounds for which the visual stimulus did not denote the sound source. Third, processing of the concurrent visual representation suppresses false hearing. PMID:26973478

  4. Suboptimal choice in rats: incentive salience attribution promotes maladaptive decision-making

    PubMed Central

    Chow, Jonathan J; Smith, Aaron P; Wilson, A George; Zentall, Thomas R; Beckmann, Joshua S

    2016-01-01

    Stimuli that are more predictive of subsequent reward also function as better conditioned reinforcers. Moreover, stimuli attributed with incentive salience function as more robust conditioned reinforcers. Some theories have suggested that conditioned reinforcement plays an important role in promoting suboptimal choice behavior, like gambling. The present experiments examined how different stimuli, those attributed with incentive salience versus those without, can function in tandem with stimulus-reward predictive utility to promote maladaptive decision-making in rats. One group of rats had lights associated with goal-tracking as the reward-predictive stimuli and another had levers associated with sign-tracking as the reward-predictive stimuli. All rats were first trained on a choice procedure in which the expected value across both alternatives was equivalent but differed in their stimulus-reward predictive utility. Next, the expected value across both alternatives was systematically changed so that the alternative with greater stimulus-reward predictive utility was suboptimal in regard to primary reinforcement. The results demonstrate that in order to obtain suboptimal choice behavior, incentive salience alongside strong stimulus-reward predictive utility may be necessary; thus, maladaptive decision-making can be driven more by the value attributed to stimuli imbued with incentive salience that reliably predict a reward rather than the reward itself. PMID:27993692

  5. Suboptimal choice in rats: Incentive salience attribution promotes maladaptive decision-making.

    PubMed

    Chow, Jonathan J; Smith, Aaron P; Wilson, A George; Zentall, Thomas R; Beckmann, Joshua S

    2017-03-01

    Stimuli that are more predictive of subsequent reward also function as better conditioned reinforcers. Moreover, stimuli attributed with incentive salience function as more robust conditioned reinforcers. Some theories have suggested that conditioned reinforcement plays an important role in promoting suboptimal choice behavior, like gambling. The present experiments examined how different stimuli, those attributed with incentive salience versus those without, can function in tandem with stimulus-reward predictive utility to promote maladaptive decision-making in rats. One group of rats had lights associated with goal-tracking as the reward-predictive stimuli and another had levers associated with sign-tracking as the reward-predictive stimuli. All rats were first trained on a choice procedure in which the expected value across both alternatives was equivalent but differed in their stimulus-reward predictive utility. Next, the expected value across both alternatives was systematically changed so that the alternative with greater stimulus-reward predictive utility was suboptimal in regard to primary reinforcement. The results demonstrate that in order to obtain suboptimal choice behavior, incentive salience alongside strong stimulus-reward predictive utility may be necessary; thus, maladaptive decision-making can be driven more by the value attributed to stimuli imbued with incentive salience that reliably predict a reward rather than the reward itself. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Near-field visual acuity of pigeons: effects of head location and stimulus luminance.

    PubMed

    Hodos, W; Leibowitz, R W; Bonbright, J C

    1976-03-01

    Two pigeons were trained to discriminate a grating stimulus from a blank stimulus of equivalent luminance in a three-key chamber. The stimuli and blanks were presented behind a transparent center key. The procedure was a conditional discrimination in which pecks on the left key were reinforced if the blank had been present behind the center key and pecks on the right key were reinforced if the grating had been present behind the center key. The spatial frequency of the stimuli was varied in each session from four to 29.5 lines per millimeter in accordance with a variation of the method of constant stimuli. The number of lines per millimeter that the subjects could discriminate at threshold was determined from psychometric functions. Data were collected at five values of stimulus luminance ranging from--0.07 to 3.29 log cd/m2. The distance from the stimulus to the anterior nodal point of the eye, which was determined from measurements taken from high-speed motion-picture photographs of three additional pigeons and published intraocular measurements, was 62.0 mm. This distance and the grating detection thresholds were used to calculate the visual acuity of the birds at each level of luminance. Acuity improved with increasing luminance to a peak value of 0.52, which corresponds to a visual angle of 1.92 min, at a luminance of 2.33 log cd/m2. Further increase in luminance produced a small decline in acuity.

  7. A Derived Relations Analysis of Approach-Avoidance Conflict: Implications for the Behavioral Analysis of Human Anxiety

    ERIC Educational Resources Information Center

    Gannon, Steven; Roche, Bryan; Kanter, Jonathan W.; Forsyth, John P.; Linehan, Conor

    2011-01-01

    The current article reports two experiments designed to examine the effects of creating competing approach and avoidance response functions for 2 stimuli that participate in the same derived stimulus relation. Experiment 1 involved establishing each of 2 distinct members (i.e., B1 and D1) of the same 1-node equivalence relation (A-B-C-D) as a…

  8. Evidence for two attentional components in visual working memory.

    PubMed

    Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2014-11-01

    How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Disabled vs nondisabled readers: perceptual vs higher-order processing of one vs three letters.

    PubMed

    Allegretti, C L; Puglisi, J T

    1986-10-01

    12 disabled and 12 nondisabled readers (mean age, 11 yr.) were compared on a letter-search task which separated perceptual processing from higher-order processing. Participants were presented a first stimulus (for 200 msec. to minimize eye movements) followed by a second stimulus immediately to estimate the amount of information initially perceived or after a 3000-msec. interval to examine information more permanently stored. Participants were required to decide whether any letter present in the first stimulus was also present in the second. Two processing loads (1 and 3 letters) were examined. Disabled readers showed more pronounced deficits when they were given very little time to process information or more information to process.

  10. Uncertainty during pain anticipation: the adaptive value of preparatory processes.

    PubMed

    Seidel, Eva-Maria; Pfabigan, Daniela M; Hahn, Andreas; Sladky, Ronald; Grahl, Arvina; Paul, Katharina; Kraus, Christoph; Küblböck, Martin; Kranz, Georg S; Hummer, Allan; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus

    2015-02-01

    Anticipatory processes prepare the organism for upcoming experiences. The aim of this study was to investigate neural responses related to anticipation and processing of painful stimuli occurring with different levels of uncertainty. Twenty-five participants (13 females) took part in an electroencephalography and functional magnetic resonance imaging (fMRI) experiment at separate times. A visual cue announced the occurrence of an electrical painful or nonpainful stimulus, delivered with certainty or uncertainty (50% chance), at some point during the following 15 s. During the first 2 s of the anticipation phase, a strong effect of uncertainty was reflected in a pronounced frontal stimulus-preceding negativity (SPN) and increased fMRI activation in higher visual processing areas. In the last 2 s before stimulus delivery, we observed stimulus-specific preparatory processes indicated by a centroparietal SPN and posterior insula activation that was most pronounced for the certain pain condition. Uncertain anticipation was associated with attentional control processes. During stimulation, the results revealed that unexpected painful stimuli produced the strongest activation in the affective pain processing network and a more pronounced offset-P2. Our results reflect that during early anticipation uncertainty is strongly associated with affective mechanisms and seems to be a more salient event compared to certain anticipation. During the last 2 s before stimulation, attentional control mechanisms are initiated related to the increased salience of uncertainty. Furthermore, stimulus-specific preparatory mechanisms during certain anticipation also shaped the response to stimulation, underlining the adaptive value of stimulus-targeted preparatory activity which is less likely when facing an uncertain event. © 2014 Wiley Periodicals, Inc.

  11. Audio-visual synchrony and spatial attention enhance processing of dynamic visual stimulation independently and in parallel: A frequency-tagging study.

    PubMed

    Covic, Amra; Keitel, Christian; Porcu, Emanuele; Schröger, Erich; Müller, Matthias M

    2017-11-01

    The neural processing of a visual stimulus can be facilitated by attending to its position or by a co-occurring auditory tone. Using frequency-tagging, we investigated whether facilitation by spatial attention and audio-visual synchrony rely on similar neural processes. Participants attended to one of two flickering Gabor patches (14.17 and 17 Hz) located in opposite lower visual fields. Gabor patches further "pulsed" (i.e. showed smooth spatial frequency variations) at distinct rates (3.14 and 3.63 Hz). Frequency-modulating an auditory stimulus at the pulse-rate of one of the visual stimuli established audio-visual synchrony. Flicker and pulsed stimulation elicited stimulus-locked rhythmic electrophysiological brain responses that allowed tracking the neural processing of simultaneously presented Gabor patches. These steady-state responses (SSRs) were quantified in the spectral domain to examine visual stimulus processing under conditions of synchronous vs. asynchronous tone presentation and when respective stimulus positions were attended vs. unattended. Strikingly, unique patterns of effects on pulse- and flicker driven SSRs indicated that spatial attention and audiovisual synchrony facilitated early visual processing in parallel and via different cortical processes. We found attention effects to resemble the classical top-down gain effect facilitating both, flicker and pulse-driven SSRs. Audio-visual synchrony, in turn, only amplified synchrony-producing stimulus aspects (i.e. pulse-driven SSRs) possibly highlighting the role of temporally co-occurring sights and sounds in bottom-up multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Stimulus onset predictability modulates proactive action control in a Go/No-go task

    PubMed Central

    Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco

    2015-01-01

    The aim of the study was to evaluate whether the presence/absence of visual cues specifying the onset of an upcoming, action-related stimulus modulates pre-stimulus brain activity, associated with the proactive control of goal-directed actions. To this aim we asked 12 subjects to perform an equal probability Go/No-go task with four stimulus configurations in two conditions: (1) uncued, i.e., without any external information about the timing of stimulus onset; and (2) cued, i.e., with external visual cues providing precise information about the timing of stimulus onset. During task both behavioral performance and event-related potentials (ERPs) were recorded. Behavioral results showed faster response times in the cued than uncued condition, confirming existing literature. ERPs showed novel results in the proactive control stage, that started about 1 s before the motor response. We observed a slow rising prefrontal positive activity, more pronounced in the cued than the uncued condition. Further, also pre-stimulus activity of premotor areas was larger in cued than uncued condition. In the post-stimulus period, the P3 amplitude was enhanced when the time of stimulus onset was externally driven, confirming that external cueing enhances processing of stimulus evaluation and response monitoring. Our results suggest that different pre-stimulus processing come into play in the two conditions. We hypothesize that the large prefrontal and premotor activities recorded with external visual cues index the monitoring of the external stimuli in order to finely regulate the action. PMID:25964751

  13. Positive and negative affect produce opposing task-irrelevant stimulus preexposure effects.

    PubMed

    Lazar, Josef; Kaplan, Oren; Sternberg, Terri; Lubow, R E

    2012-06-01

    In three experiments, groups were exposed to either positive or negative affect video clips, after which they were presented with a series of task-irrelevant stimuli. In the subsequent test task, subjects were required to learn an association between the previously irrelevant stimulus and a consequence, and between a new stimulus and a consequence. Induced positive affect produced a latent inhibition effect (poorer evidence of learning with the previously irrelevant stimulus than with the novel stimulus). In opposition to this, induced negative affect resulted in better evidence of learning with a previously irrelevant stimulus than with a novel stimulus. In general, the opposing effects also were present in participants scoring high on self-report questionnaires of depression (Experiments 2 and 3). These unique findings were predicted and accounted for on the basis of two principles: (a) positive affect broadens the attentional field and negative affect contracts it; and (b) task-irrelevant stimuli are processed in two successive stages, the first encodes stimulus properties, and the second encodes stimulus relationships. The opposing influences of negative and positive mood on the processing of irrelevant stimuli have implications for the role of emotion in general theories of cognition, and possibly for resolving some of the inconsistent findings in research with schizophrenia patients.

  14. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing

    PubMed Central

    Harris, Joseph A.; McMahon, Alex R.; Woldorff, Marty G.

    2015-01-01

    Any information represented in the brain holds the potential to influence behavior. It is therefore of broad interest to determine the extent and quality of neural processing of stimulus input that occurs with and without awareness. The attentional blink is a useful tool for dissociating neural and behavioral measures of perceptual visual processing across conditions of awareness. The extent of higher-order visual information beyond basic sensory signaling that is processed during the attentional blink remains controversial. To determine what neural processing at the level of visual-object identification occurs in the absence of awareness, electrophysiological responses to images of faces and houses were recorded both within and outside of the attentional blink period during a rapid serial visual presentation (RSVP) stream. Electrophysiological results were sorted according to behavioral performance (correctly identified targets versus missed targets) within these blink and non-blink periods. An early index of face-specific processing (the N170, 140–220 ms post-stimulus) was observed regardless of whether the subject demonstrated awareness of the stimulus, whereas a later face-specific effect with the same topographic distribution (500–700 ms post-stimulus) was only seen for accurate behavioral discrimination of the stimulus content. The present findings suggest a multi-stage process of object-category processing, with only the later phase being associated with explicit visual awareness. PMID:23859644

  15. Big Stimulus, Little Ears: Safety in Administering Vestibular Evoked Myogenic Potentials (VEMP) in Children

    PubMed Central

    Thomas, Megan L.A.; Fitzpatrick, Denis; McCreery, Ryan; Janky, Kristen L.

    2017-01-01

    Background Cervical and ocular Vestibular Evoked Myogenic Potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. Purpose The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level (nHL)) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Research Design Prospective Experimental. Study Sample Ten children (4–6 years) and ten young adults (24 – 35 years) with normal hearing sensitivity and middle ear function participated in the study. Data Collection and Analysis Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant’s ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Results Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or non-linearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127–136.5 dB peSPL in adult ears and 128.7–138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2 – 128.2 dB peSPL in adult ears and 124.8–130.8 dB peSPL in child ears. Conclusions Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child’s ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level. PMID:28534730

  16. Big Stimulus, Little Ears: Safety in Administering Vestibular-Evoked Myogenic Potentials in Children.

    PubMed

    Thomas, Megan L A; Fitzpatrick, Denis; McCreery, Ryan; Janky, Kristen L

    2017-05-01

    Cervical and ocular vestibular-evoked myogenic potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level [nHL]) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Prospective experimental. Ten children (4-6 years) and ten young adults (24-35 years) with normal hearing sensitivity and middle ear function participated in the study. Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant's ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or nonlinearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127-136.5 dB peSPL in adult ears and 128.7-138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2-128.2 dB peSPL in adult ears and 124.8-130.8 dB peSPL in child ears. Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child's ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level. American Academy of Audiology

  17. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    PubMed Central

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  18. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    PubMed

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  19. Carving Executive Control At Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, But Not Stimulus-Response, Conflict

    PubMed Central

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774

  20. Carving executive control at its joints: Working memory capacity predicts stimulus-stimulus, but not stimulus-response, conflict.

    PubMed

    Meier, Matt E; Kane, Michael J

    2015-11-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).

  1. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention.

    PubMed

    Chang, Sau Hou

    2017-03-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing.

  2. The Effects of Test Trial and Processing Level on Immediate and Delayed Retention

    PubMed Central

    Chang, Sau Hou

    2017-01-01

    The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing. PMID:28344679

  3. Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model

    PubMed Central

    Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E.; Tripathy, Srimant P.

    2013-01-01

    Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing. PMID:24391806

  4. Bottlenecks of motion processing during a visual glance: the leaky flask model.

    PubMed

    Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E; Tripathy, Srimant P

    2013-01-01

    Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.

  5. Source memory that encoding was self-referential: the influence of stimulus characteristics.

    PubMed

    Durbin, Kelly A; Mitchell, Karen J; Johnson, Marcia K

    2017-10-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one's self-schema, and that depends, in part, on the stimulus' valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation.

  6. Stimulus-level interference disrupts repetition benefit during task switching in middle childhood

    PubMed Central

    Karayanidis, Frini; Jamadar, Sharna; Sanday, Dearne

    2013-01-01

    The task-switching paradigm provides a powerful tool to measure the development of core cognitive control processes. In this study, we use the alternating runs task-switching paradigm to assess preparatory control processes involved in flexibly preparing for a predictable change in task and stimulus-driven control processes involved in controlling stimulus-level interference. We present three experiments that examine behavioral and event-related potential (ERP) measures of task-switching performance in middle childhood and young adulthood under low and high stimulus interference conditions. Experiment 1 confirms that our new child-friendly tasks produce similar behavioral and electrophysiological findings in young adults as those previously reported. Experiment 2 examines task switching with univalent stimuli across a range of preparation intervals in middle childhood. Experiment 3 compares task switching with bivalent stimuli across the same preparation intervals in children and young adults. Children produced a larger RT switch cost than adults with univalent stimuli and a short preparation interval. Both children and adults showed significant reduction in switch cost with increasing preparation interval, but in children this was caused by greater increase in RT for repeat than switch trials. Response-locked ERPs showed intact preparation for univalent, but less efficient preparation for bivalent stimulus conditions. Stimulus-locked ERPs confirmed that children showed greater stimulus-level interference for repeat trials, especially with bivalent stimuli. We conclude that children show greater stimulus-level interference especially for repeat trials under high interference conditions, suggesting weaker mental representation of the current task set. PMID:24367317

  7. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  8. More Similar but Less Satisfying: Comparing Preferences for and the Efficacy of Within- and Cross-Category Substitutes for Food.

    PubMed

    Huh, Young Eun; Vosgerau, Joachim; Morewedge, Carey K

    2016-06-01

    When people cannot get what they want, they often satisfy their desire by consuming a substitute. Substitutes can originate from within the taxonomic category of the desired stimulus (i.e., within-category substitutes) or from a different taxonomic category that serves the same basic goal (i.e., cross-category substitutes). Both a store-brand chocolate (within-category substitute) and a granola bar (cross-category substitute), for example, can serve as substitutes for gourmet chocolate. Here, we found that people believe that within-category substitutes, which are more similar to desired stimuli, will more effectively satisfy their cravings than will cross-category substitutes (Experiments 1, 2a, and 2b). However, because within-category substitutes are more similar than cross-category substitutes to desired stimuli, they are more likely to evoke an unanticipated negative contrast effect. As a result, unless substitutes are equivalent in quality to the desired stimulus, cross-category substitutes more effectively satisfy cravings for the desired stimulus (Experiments 3 and 4). © The Author(s) 2016.

  9. Effects of set-size and selective spatial attention on motion processing.

    PubMed

    Dobkins, K R; Bosworth, R G

    2001-05-01

    In order to investigate the effects of divided attention and selective spatial attention on motion processing, we obtained direction-of-motion thresholds using a stochastic motion display under various attentional manipulations and stimulus durations (100-600 ms). To investigate divided attention, we compared motion thresholds obtained when a single motion stimulus was presented in the visual field (set-size=1) to those obtained when the motion stimulus was presented amongst three confusable noise distractors (set-size=4). The magnitude of the observed detriment in performance with an increase in set-size from 1 to 4 could be accounted for by a simple decision model based on signal detection theory, which assumes that attentional resources are not limited in capacity. To investigate selective attention, we compared motion thresholds obtained when a valid pre-cue alerted the subject to the location of the to-be-presented motion stimulus to those obtained when no pre-cue was provided. As expected, the effect of pre-cueing was large when the visual field contained noise distractors, an effect we attribute to "noise reduction" (i.e. the pre-cue allows subjects to exclude irrelevant distractors that would otherwise impair performance). In the single motion stimulus display, we found a significant benefit of pre-cueing only at short durations (< or =150 ms), a result that can potentially be explained by a "time-to-orient" hypothesis (i.e. the pre-cue improves performance by eliminating the time it takes to orient attention to a peripheral stimulus at its onset, thereby increasing the time spent processing the stimulus). Thus, our results suggest that the visual motion system can analyze several stimuli simultaneously without limitations on sensory processing per se, and that spatial pre-cueing serves to reduce the effects of distractors and perhaps increase the effective processing time of the stimulus.

  10. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes

    PubMed Central

    Almeida, Inês; Soares, Sandra C.; Castelo-Branco, Miguel

    2015-01-01

    Introduction Visual processing of ecologically relevant stimuli involves a central bias for stimuli demanding detailed processing (e.g., faces), whereas peripheral object processing is based on coarse identification. Fast detection of animal shapes holding a significant phylogenetic value, such as snakes, may benefit from peripheral vision. The amygdala together with the pulvinar and the superior colliculus are implicated in an ongoing debate regarding their role in automatic and deliberate spatial processing of threat signals. Methods Here we tested twenty healthy participants in an fMRI task, and investigated the role of spatial demands (the main effect of central vs. peripheral vision) in the processing of fear-relevant ecological features. We controlled for stimulus dependence using true or false snakes; snake shapes or snake faces and for task constraints (implicit or explicit). The main idea justifying this double task is that amygdala and superior colliculus are involved in both automatic and controlled processes. Moreover the explicit/implicit instruction in the task with respect to emotion is not necessarily equivalent to explicit vs. implicit in the sense of endogenous vs. exogenous attention, or controlled vs. automatic processes. Results We found that stimulus-driven processing led to increased amygdala responses specifically to true snake shapes presented in the centre or in the peripheral left hemifield (right hemisphere). Importantly, the superior colliculus showed significantly biased and explicit central responses to snake-related stimuli. Moreover, the pulvinar, which also contains foveal representations, also showed strong central responses, extending the results of a recent single cell pulvinar study in monkeys. Similar hemispheric specialization was found across structures: increased amygdala responses occurred to true snake shapes presented to the right hemisphere, with this pattern being closely followed by the superior colliculus and the pulvinar. Conclusion These results show that subcortical structures containing foveal representations such as the amygdala, pulvinar and superior colliculus play distinct roles in the central and peripheral processing of snake shapes. Our findings suggest multiple phylogenetic fingerprints in the responses of subcortical structures to fear-relevant stimuli. PMID:26075614

  11. Habituation and sensitization of aggression in bullfrogs (Rana catesbeiana): testing the dual-process theory of habituation.

    PubMed

    Bee, M A

    2001-09-01

    The aggressive response of male bullfrogs (Rana catesbeiana) habituates with repeated broadcasts of acoustic stimuli simulating a new territorial neighbor. The effects of stimulus repetition rate and stimulus intensity on bullfrog aggressive responses were tested in a field experiment designed to test the assumptions of a dual-process theory of habituation. Synthetic advertisement calls were broadcast at 2 repetition rates and 2 intensities in a factorial design. Bullfrogs were more aggressive at the higher stimulus intensity at both repetition rates. Aggressive responses habituated more slowly at the higher stimulus intensity and slower repetition rate compared with other treatments. Several biotic and abiotic factors had small or negligible effects on aggressive responses. Although consistent with the operation of 2 opposing processes, habituation and sensitization, the data provide only partial support for the assumptions of dual-process theory.

  12. Does temporal contiguity moderate contingency learning in a speeded performance task?

    PubMed

    Schmidt, James R; De Houwer, Jan

    2012-01-01

    In four experiments, we varied the time between the onset of distracting nonwords and target colour words in a word-word version of the colour-word contingency learning paradigm. Contingencies were created by pairing a distractor nonword more often with one target colour word than with other colour words. A contingency effect corresponds to faster responses to the target colour word on high-contingency trials (i.e., distractor nonword followed by the target colour word with which it appears most often) than on low-contingency trials (i.e., distractor nonword followed by a target colour word with which it appears only occasionally). Roughly equivalent-sized contingency effects were found at stimulus-onset asynchronies (SOAs) of 50, 250, and 450 ms in Experiment 1, and 50, 500, and 1,000 ms in Experiment 2. In Experiment 3, a contingency effect was observed at SOAs of -50, -200, and -350 ms. In Experiment 4, interstimulus interval (ISI) was varied along with SOA, and learning was equivalent for 200-, 700-, and 1,200-ms SOAs. Together, these experiments suggest that the distracting stimulus does not need to be presented in close temporal contiguity with the response to induce learning. Relations to past research on causal judgement and implications for further contingency learning research are discussed.

  13. Impairment of willed actions and use of advance information for movement preparation in schizophrenia

    PubMed Central

    Fuller, R.; Jahanshahi, M.

    1999-01-01

    OBJECTIVES—To assess willed actions in patients with schizophrenia using reaction time (RT) tasks that differ in the degree to which they involve volitionally controlled versus stimulus driven responses.
METHODS—Ten patients diagnosed with schizophrenia and 13 normal controls of comparable age were tested. Subjects performed a visual simple RT (SRT), an uncued four choice reaction time (CRT), and a fully cued four choice RT task. A stimulus 1(S1)−stimulus 2(S2) paradigm was used. The warning signal/precue (S1) preceded the imperative stimulus (S2) by either 0 (no warning signal or precue) 200, 800, 1600, or 3200ms.
RESULTS—The patients with schizophrenia had significantly slower RTs and movement times than normal subjects across all RT tasks. The unwarned SRT trials were significantly faster than the uncued CRT trials for both groups. For both groups, fully cued CRTs were significantly faster than the uncued CRTs. However, the S1−S2 interval had a differential effect on CRTs in the two groups. For the normal subjects fully cued CRTs and SRTs were equivalent when S1-S2 intervals were 800 ms or longer. A similar pattern of effects was not seen in the patients with schizophrenia, for whom the fully cued CRT were unexpectedly equivalent to SRT for the 200 ms interval and expectedly for the 1600 ms S1-S2 interval, but not the 3200 or 800 ms intervals.
CONCLUSIONS—Patients with schizophrenia were able to use advance information inherent in SRT or provided by the precue in fully cued CRT to speed up RT relative to uncued CRT. However, in the latter task, in which the volitional demands of preprogramming are higher since a different response has to be prepared on each trial, patients showed some unusual and inconsistent interval effects suggesting instability of attentional set. It is possible that future studies using RT tasks with higher volitional demands in patients with predominance of negative signs may disclose greater deficits in willed action in schizophrenia.

 PMID:10201424

  14. Top-Down Beta Enhances Bottom-Up Gamma

    PubMed Central

    Thompson, William H.

    2017-01-01

    Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus. PMID:28592697

  15. Concurrent visual and tactile steady-state evoked potentials index allocation of inter-modal attention: a frequency-tagging study.

    PubMed

    Porcu, Emanuele; Keitel, Christian; Müller, Matthias M

    2013-11-27

    We investigated effects of inter-modal attention on concurrent visual and tactile stimulus processing by means of stimulus-driven oscillatory brain responses, so-called steady-state evoked potentials (SSEPs). To this end, we frequency-tagged a visual (7.5Hz) and a tactile stimulus (20Hz) and participants were cued, on a trial-by-trial basis, to attend to either vision or touch to perform a detection task in the cued modality. SSEPs driven by the stimulation comprised stimulus frequency-following (i.e. fundamental frequency) as well as frequency-doubling (i.e. second harmonic) responses. We observed that inter-modal attention to vision increased amplitude and phase synchrony of the fundamental frequency component of the visual SSEP while the second harmonic component showed an increase in phase synchrony, only. In contrast, inter-modal attention to touch increased SSEP amplitude of the second harmonic but not of the fundamental frequency, while leaving phase synchrony unaffected in both responses. Our results show that inter-modal attention generally influences concurrent stimulus processing in vision and touch, thus, extending earlier audio-visual findings to a visuo-tactile stimulus situation. The pattern of results, however, suggests differences in the neural implementation of inter-modal attentional influences on visual vs. tactile stimulus processing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Brain responses to 40-Hz binaural beat and effects on emotion and memory.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-10-01

    Gamma oscillation plays a role in binding process or sensory integration, a process by which several brain areas beside primary cortex are activated for higher perception of the received stimulus. Beta oscillation is also involved in interpreting received stimulus and occurs following gamma oscillation, and this process is known as gamma-to-beta transition, a process for neglecting unnecessary stimuli in surrounding environment. Gamma oscillation also associates with cognitive functions, memory and emotion. Therefore, modulation of the brain activity can lead to manipulation of cognitive functions. The stimulus used in this study was 40-Hz binaural beat because binaural beat induces frequency following response. This study aimed to investigate the neural oscillation responding to the 40-Hz binaural beat and to evaluate working memory function and emotional states after listening to that stimulus. Two experiments were developed based on the study aims. In the first experiment, electroencephalograms were recorded while participants listened to the stimulus for 30min. The results suggested that frontal, temporal, and central regions were activated within 15min. In the second experiment, word list recall task was conducted before and after listening to the stimulus for 20min. The results showed that, after listening, the recalled words were increase in the working memory portion of the list. Brunel Mood Scale, a questionnaire to evaluate emotional states, revealed changes in emotional states after listening to the stimulus. The emotional results suggested that these changes were consistent with the induced neural oscillations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex.

    PubMed

    van Ede, Freek; de Lange, Floris P; Maris, Eric

    2014-10-01

    Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Prioritization of arbitrary faces associated to self: An EEG study.

    PubMed

    Woźniak, Mateusz; Kourtis, Dimitrios; Knoblich, Günther

    2018-01-01

    Behavioral and neuroimaging studies have demonstrated that people process preferentially self-related information such as an image of their own face. Furthermore, people rapidly incorporate stimuli into their self-representation even if these stimuli do not have an intrinsic relation to self. In the present study, we investigated the time course of the processes involved in preferential processing of self-related information. In two EEG experiments three unfamiliar faces were identified with verbal labels as either the participant, a friend, or a stranger. Afterwards, participants judged whether two stimuli presented in succession (ISI = 1500ms) matched. In experiment 1, faces were followed by verbal labels and in experiment 2, labels were followed by faces. Both experiments showed the same pattern of behavioral and electrophysiological results. If the first stimulus (face or label) was associated with self, reaction times were faster and the late frontal positivity following the first stimulus was more pronounced. The self-association of the second stimulus (label or face) did not affect response times. However, the central-parietal P3 following presentation of the second stimulus was more pronounced when the second stimulus was preceded by self-related first stimulus. These results indicate that even unfamiliar faces that are associated to self can activate a self-representation. Once the self-representation has been activated the processing of ensuing stimuli is facilitated, irrespective of whether they are associated with the self.

  19. Prioritization of arbitrary faces associated to self: An EEG study

    PubMed Central

    Kourtis, Dimitrios; Knoblich, Günther

    2018-01-01

    Behavioral and neuroimaging studies have demonstrated that people process preferentially self-related information such as an image of their own face. Furthermore, people rapidly incorporate stimuli into their self-representation even if these stimuli do not have an intrinsic relation to self. In the present study, we investigated the time course of the processes involved in preferential processing of self-related information. In two EEG experiments three unfamiliar faces were identified with verbal labels as either the participant, a friend, or a stranger. Afterwards, participants judged whether two stimuli presented in succession (ISI = 1500ms) matched. In experiment 1, faces were followed by verbal labels and in experiment 2, labels were followed by faces. Both experiments showed the same pattern of behavioral and electrophysiological results. If the first stimulus (face or label) was associated with self, reaction times were faster and the late frontal positivity following the first stimulus was more pronounced. The self-association of the second stimulus (label or face) did not affect response times. However, the central-parietal P3 following presentation of the second stimulus was more pronounced when the second stimulus was preceded by self-related first stimulus. These results indicate that even unfamiliar faces that are associated to self can activate a self-representation. Once the self-representation has been activated the processing of ensuing stimuli is facilitated, irrespective of whether they are associated with the self. PMID:29293670

  20. Single neuron firing properties impact correlation-based population coding

    PubMed Central

    Hong, Sungho; Ratté, Stéphanie; Prescott, Steven A.; De Schutter, Erik

    2012-01-01

    Correlated spiking has been widely observed but its impact on neural coding remains controversial. Correlation arising from co-modulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate co-modulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate co-modulation whereas “ideal” coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate co-modulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. PMID:22279226

  1. Learning to inhibit the response during instrumental (operant) extinction

    PubMed Central

    Bouton, Mark E.; Trask, Sydney; Carranza-Jasso, Rodrigo

    2016-01-01

    Five experiments tested implications of the idea that instrumental (operant) extinction involves learning to inhibit the learned response. All experiments used a discriminated operant procedure in which rats were reinforced for lever pressing or chain pulling in the presence of a discriminative stimulus (S), but not in its absence. In Experiment 1, extinction of the response (R) in the presence of S weakened responding in S, but equivalent nonreinforced exposure to S (without the opportunity to make R) did not. Experiment 2 replicated that result and found that extinction of R had no effect on a different R that had also been reinforced in the stimulus. In Experiments 3 and 4, rats first learned to perform several different stimulus and response combinations (S1R1, S2R1, S3R2, and S4R2). Extinction of a response in one stimulus (i.e., S1R1) transferred and weakened the same response, but not a different response, when it was tested in another stimulus (i.e., S2R1 but not S3R2). In Experiment 5, extinction still transferred between S1 and S2 when the stimuli set the occasion for R's association with different types of food pellets. The results confirm the importance of response inhibition in instrumental extinction: Nonreinforcement of the response in S causes the most effective suppression of responding, and response suppression is specific to the response but transfers and influences performance of the same response when it is occasioned by other stimuli. Theoretical and practical implications are discussed. PMID:27379715

  2. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    PubMed

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. On application of kernel PCA for generating stimulus features for fMRI during continuous music listening.

    PubMed

    Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani

    2018-06-01

    There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Differences in reward processing between putative cell types in primate prefrontal cortex

    PubMed Central

    Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734

  5. Differences in reward processing between putative cell types in primate prefrontal cortex.

    PubMed

    Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi

    2017-01-01

    Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.

  6. Mismatch and conflict: neurophysiological and behavioral evidence for conflict priming.

    PubMed

    Mager, Ralph; Meuth, Sven G; Kräuchi, Kurt; Schmidlin, Maria; Müller-Spahn, Franz; Falkenstein, Michael

    2009-11-01

    Conflict-related cognitive processes are critical for adapting to sudden environmental changes that confront the individual with inconsistent or ambiguous information. Thus, these processes play a crucial role to cope with daily life. Generally, conflicts tend to accumulate especially in complex and threatening situations. Therefore, the question arises how conflict-related cognitive processes are modulated by the close succession of conflicts. In the present study, we investigated the effect of interactions between different types of conflict on performance as well as on electrophysiological parameters. A task-irrelevant auditory stimulus and a task-relevant visual stimulus were presented successively. The auditory stimulus consisted of a standard or deviant tone, followed by a congruent or incongruent Stroop stimulus. After standard prestimuli, performance deteriorated for incongruent compared to congruent Stroop stimuli, which were accompanied by a widespread negativity for incongruent versus congruent stimuli in the event-related potentials (ERPs). However, after deviant prestimuli, performance was better for incongruent than for congruent Stroop stimuli and an additional early negativity in the ERP emerged with a fronto-central maximum. Our data show that deviant auditory prestimuli facilitate specifically the processing of stimulus-related conflict, providing evidence for a conflict-priming effect.

  7. Shared Processing of Language and Music.

    PubMed

    Atherton, Ryan P; Chrobak, Quin M; Rauscher, Frances H; Karst, Aaron T; Hanson, Matt D; Steinert, Steven W; Bowe, Kyra L

    2018-01-01

    The present study sought to explore whether musical information is processed by the phonological loop component of the working memory model of immediate memory. Original instantiations of this model primarily focused on the processing of linguistic information. However, the model was less clear about how acoustic information lacking phonological qualities is actively processed. Although previous research has generally supported shared processing of phonological and musical information, these studies were limited as a result of a number of methodological concerns (e.g., the use of simple tones as musical stimuli). In order to further investigate this issue, an auditory interference task was employed. Specifically, participants heard an initial stimulus (musical or linguistic) followed by an intervening stimulus (musical, linguistic, or silence) and were then asked to indicate whether a final test stimulus was the same as or different from the initial stimulus. Results indicated that mismatched interference conditions (i.e., musical - linguistic; linguistic - musical) resulted in greater interference than silence conditions, with matched interference conditions producing the greatest interference. Overall, these results suggest that processing of linguistic and musical information draws on at least some of the same cognitive resources.

  8. Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict

    PubMed Central

    Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao

    2015-01-01

    Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758

  9. Effects of High Sound Exposure During Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children and Young Adults.

    PubMed

    Rodriguez, Amanda I; Thomas, Megan L A; Fitzpatrick, Denis; Janky, Kristen L

    Vestibular evoked myogenic potential (VEMP) testing is increasingly utilized in pediatric vestibular evaluations due to its diagnostic capability to identify otolith dysfunction and feasibility of testing. However, there is evidence demonstrating that the high-intensity stimulation level required to elicit a reliable VEMP response causes acoustic trauma in adults. Despite utility of VEMP testing in children, similar findings are unknown. It is hypothesized that increased sound exposure may exist in children because differences in ear-canal volume (ECV) compared with adults, and the effect of stimulus parameters (e.g., signal duration and intensity) will alter exposure levels delivered to a child's ear. The objectives of this study are to (1) measure peak to peak equivalent sound pressure levels (peSPL) in children with normal hearing (CNH) and young adults with normal hearing (ANH) using high-intensity VEMP stimuli, (2) determine the effect of ECV on peSPL and calculate a safe exposure level for VEMP, and (3) assess whether cochlear changes exist after VEMP exposure. This was a 2-phase approach. Fifteen CNH and 12 ANH participated in phase I. Equivalent ECV was measured. In 1 ear, peSPL was recorded for 5 seconds at 105 to 125 dB SPL, in 5-dB increments for 500- and 750-Hz tone bursts. Recorded peSPL values (accounting for stimulus duration) were then used to calculate safe sound energy exposure values for VEMP testing using the 132-dB recommended energy allowance from the 2003 European Union Guidelines. Fifteen CNH and 10 ANH received cervical and ocular VEMP testing in 1 ear in phase II. Subjects completed tympanometry, pre- and postaudiometric threshold testing, distortion product otoacoustic emissions, and questionnaire addressing subjective otologic symptoms to study the effect of VEMP exposure on cochlear function. (1) In response to high-intensity stimulation levels (e.g., 125 dB SPL), CNH had significantly higher peSPL measurements and smaller ECVs compared with ANH. (2) A significant linear relationship between equivalent ECV (as measured by diagnostic tympanometry) and peSPL exists and has an effect on total sound energy exposure level; based on data from phase I, 120 dB SPL was determined to be an acoustically safe stimulation level for testing in children. (3) Using calculated safe stimulation level for VEMP testing, there were no significant effect of VEMP exposure on cochlear function (as measured by audiometric thresholds, distortion product otoacoustic emission amplitude levels, or subjective symptoms) in CNH and ANH. peSPL sound recordings in children's ears are significantly higher (~3 dB) than that in adults in response to high-intensity VEMP stimuli that are commonly practiced. Equivalent ECV contributes to peSPL delivered to the ear during VEMP testing and should be considered to determine safe acoustic VEMP stimulus parameters; children with smaller ECVs are at risk for unsafe sound exposure during routine VEMP testing, and stimuli should not exceed 120 dB SPL. Using 120 dB SPL stimulus level for children during VEMP testing yields no change to cochlear function and reliable VEMP responses.

  10. Predictive information speeds up visual awareness in an individuation task by modulating threshold setting, not processing efficiency.

    PubMed

    De Loof, Esther; Van Opstal, Filip; Verguts, Tom

    2016-04-01

    Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stimulus and response conflict processing during perceptual decision making.

    PubMed

    Wendelken, Carter; Ditterich, Jochen; Bunge, Silvia A; Carter, Cameron S

    2009-12-01

    Encoding and dealing with conflicting information is essential for successful decision making in a complex environment. In the present fMRI study, stimulus conflict and response conflict are contrasted in the context of a perceptual decision-making dot-motion discrimination task. Stimulus conflict was manipulated by varying dot-motion coherence along task-relevant and task-irrelevant dimensions. Response conflict was manipulated by varying whether or not competing stimulus dimensions provided evidence for the same or different responses. The right inferior frontal gyrus was involved specifically in the resolution of stimulus conflict, whereas the dorsal anterior cingulate cortex was shown to be sensitive to response conflict. Additionally, two regions that have been linked to perceptual decision making with dot-motion stimuli in monkey physiology studies were differentially engaged by stimulus conflict and response conflict. The middle temporal area, previously linked to processing of motion, was strongly affected by the presence of stimulus conflict. On the other hand, the superior parietal lobe, previously associated with accumulation of evidence for a response, was affected by the presence of response conflict. These results shed light on the neural mechanisms that support decision making in the presence of conflict, a cognitive operation fundamental to both basic survival and high-level cognition.

  12. Signaling added response-independent reinforcement to assess Pavlovian processes in resistance to change and relapse.

    PubMed

    Podlesnik, Christopher A; Fleet, James D

    2014-09-01

    Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.

  13. An ALE meta-analysis on the audiovisual integration of speech signals.

    PubMed

    Erickson, Laura C; Heeg, Elizabeth; Rauschecker, Josef P; Turkeltaub, Peter E

    2014-11-01

    The brain improves speech processing through the integration of audiovisual (AV) signals. Situations involving AV speech integration may be crudely dichotomized into those where auditory and visual inputs contain (1) equivalent, complementary signals (validating AV speech) or (2) inconsistent, different signals (conflicting AV speech). This simple framework may allow the systematic examination of broad commonalities and differences between AV neural processes engaged by various experimental paradigms frequently used to study AV speech integration. We conducted an activation likelihood estimation metaanalysis of 22 functional imaging studies comprising 33 experiments, 311 subjects, and 347 foci examining "conflicting" versus "validating" AV speech. Experimental paradigms included content congruency, timing synchrony, and perceptual measures, such as the McGurk effect or synchrony judgments, across AV speech stimulus types (sublexical to sentence). Colocalization of conflicting AV speech experiments revealed consistency across at least two contrast types (e.g., synchrony and congruency) in a network of dorsal stream regions in the frontal, parietal, and temporal lobes. There was consistency across all contrast types (synchrony, congruency, and percept) in the bilateral posterior superior/middle temporal cortex. Although fewer studies were available, validating AV speech experiments were localized to other regions, such as ventral stream visual areas in the occipital and inferior temporal cortex. These results suggest that while equivalent, complementary AV speech signals may evoke activity in regions related to the corroboration of sensory input, conflicting AV speech signals recruit widespread dorsal stream areas likely involved in the resolution of conflicting sensory signals. Copyright © 2014 Wiley Periodicals, Inc.

  14. The effect of changes in stimulus level on electrically evoked cortical auditory potentials.

    PubMed

    Kim, Jae-Ryong; Brown, Carolyn J; Abbas, Paul J; Etler, Christine P; O'Brien, Sara

    2009-06-01

    The purpose of this study was to determine whether the electrically evoked acoustic change complex (EACC) could be used to assess sensitivity to changes in stimulus level in cochlear implant (CI) recipients and to investigate the relationship between EACC amplitude and rate of growth of the N1-P2 onset response with increases in stimulus level. Twelve postlingually deafened adults using Nucleus CI24 CIs participated in this study. Nucleus Implant Communicator (NIC) routines were used to bypass the speech processor and to control the stimulation of the implant directly. The stimulus consisted of an 800 msec burst of a 1000 pps biphasic pulse train. A change in the stimulus level was introduced 400 msec after stimulus onset. Band-pass filtering (1 to 100 Hz) was used to minimize stimulus artifact. Four to six recordings of 50 sweeps were obtained for each condition, and averaged responses were analyzed in the time domain using standard peak picking procedures. Cortical auditory change potentials were recorded from CI users in response to both increases and decreases in stimulation level. The amplitude of the EACC was found to be dependent on the magnitude of the stimulus change. Increases in stimulus level elicited more robust EACC responses than decreases in stimulus level. Also, EACC amplitudes were significantly correlated with the slope of the growth of the onset response. This work describes the effect of change in stimulus level on electrically evoked auditory change potentials in CI users. The amplitude of the EACC was found to be related both to the magnitude of the stimulus change introduced and to the rate of growth of the N1-P2 onset response. To the extent that the EACC reflects processing of stimulus change, it could potentially be a valuable tool for assessing neural processing of the kinds of stimulation patterns produced by a CI. Further studies are needed, however, to determine the relationships between the EACC and psychophysical measures of intensity discrimination in CI recipients.

  15. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    PubMed Central

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  16. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study.

    PubMed

    Harrison, Neil R; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.

  17. The Role of Multiple-Exemplar Training and Naming in Establishing Derived Equivalence in an Infant

    PubMed Central

    Luciano, Carmen; Becerra, Inmaculada Gómez; Valverde, Miguel Rodríguez

    2007-01-01

    The conditions under which symmetry and equivalence relations develop are still controversial. This paper reports three experiments that attempt to analyze the impact of multiple-exemplar training (MET) in receptive symmetry on the emergence of visual–visual equivalence relations with a very young child, Gloria. At the age of 15 months 24 days (15m24d), Gloria was tested for receptive symmetry and naming and showed no evidence of either repertoire. In the first experiment, MET in immediate and delayed receptive symmetrical responding or listener behavior (from object–sound to immediate and delayed sound–object selection) proceeded for one month with 10 different objects. This was followed, at 16m25d, by a second test conducted with six new objects. Gloria showed generalized receptive symmetry with a 3-hr delay; however no evidence of naming with new objects was found. Experiment 2 began at 17m with the aim of establishing derived visual–visual equivalence relations using a matching-to-sample format with two comparisons. Visual–visual equivalence responding emerged at 19m, although Gloria still had not shown evidence of naming. Experiment 3 (22m to 23m25d) used a three-comparison matching-to-sample procedure to establish visual–visual equivalence. Equivalence responding emerged as in Experiment 2, and naming emerged by the end of Experiment 3. Results are discussed in terms of the history of training in bidirectional relations responsible for the emergence of visual–visual equivalence relations and of their implications for current theories of stimulus equivalence. PMID:17575901

  18. Extremely selective attention: eye-tracking studies of the dynamic allocation of attention to stimulus features in categorization.

    PubMed

    Blair, Mark R; Watson, Marcus R; Walshe, R Calen; Maj, Fillip

    2009-09-01

    Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories make differing predictions about the degree of flexibility with which attention can be deployed in response to stimulus properties. Results from 2 eye-tracking studies show that humans can rapidly learn to differently allocate attention to members of different categories. These results provide the first unequivocal demonstration of stimulus-responsive attention in a categorization task. Furthermore, the authors found clear temporal patterns in the shifting of attention within trials that follow from the informativeness of particular stimulus features. These data provide new insights into the attention processes involved in categorization. (c) 2009 APA, all rights reserved.

  19. Adaptation to stimulus statistics in the perception and neural representation of auditory space.

    PubMed

    Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J

    2010-06-24

    Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.

  20. Probability effects on stimulus evaluation and response processes

    NASA Technical Reports Server (NTRS)

    Gehring, W. J.; Gratton, G.; Coles, M. G.; Donchin, E.

    1992-01-01

    This study investigated the effects of probability information on response preparation and stimulus evaluation. Eight subjects responded with one hand to the target letter H and with the other to the target letter S. The target letter was surrounded by noise letters that were either the same as or different from the target letter. In 2 conditions, the targets were preceded by a warning stimulus unrelated to the target letter. In 2 other conditions, a warning letter predicted that the same letter or the opposite letter would appear as the imperative stimulus with .80 probability. Correct reaction times were faster and error rates were lower when imperative stimuli confirmed the predictions of the warning stimulus. Probability information affected (a) the preparation of motor responses during the foreperiod, (b) the development of expectancies for a particular target letter, and (c) a process sensitive to the identities of letter stimuli but not to their locations.

  1. Spontaneous evaluative inferences and their relationship to spontaneous trait inferences.

    PubMed

    Schneid, Erica D; Carlston, Donal E; Skowronski, John J

    2015-05-01

    Three experiments are reported that explore affectively based spontaneous evaluative impressions (SEIs) of stimulus persons. Experiments 1 and 2 used modified versions of the savings in relearning paradigm (Carlston & Skowronski, 1994) to confirm the occurrence of SEIs, indicating that they are equivalent whether participants are instructed to form trait impressions, evaluative impressions, or neither. These experiments also show that SEIs occur independently of explicit recall for the trait implications of the stimuli. Experiment 3 provides a single dissociation test to distinguish SEIs from spontaneous trait inferences (STIs), showing that disrupting cognitive processing interferes with a trait-based prediction task that presumably reflects STIs, but not with an affectively based social approach task that presumably reflects SEIs. Implications of these findings for the potential independence of spontaneous trait and evaluative inferences, as well as limitations and important steps for future study are discussed. (c) 2015 APA, all rights reserved).

  2. ERP Energy and Cognitive Activity Correlates

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael Jay; Vendemia, Jennifer M. C.

    2014-03-01

    We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.

  3. Encoding and Retrieving Faces and Places: Distinguishing Process- and Stimulus-Specific Differences in Brain Activity

    ERIC Educational Resources Information Center

    Prince, Steven E.; Dennis, Nancy A.; Cabeza, Roberto

    2009-01-01

    Among the most fundamental issues in cognitive neuroscience is how the brain may be organized into process-specific and stimulus-specific regions. In the episodic memory domain, most functional neuroimaging studies have focused on the former dimension, typically investigating the neural correlates of various memory processes. Thus, there is little…

  4. Working memory at work: how the updating process alters the nature of working memory transfer.

    PubMed

    Zhang, Yanmin; Verhaeghen, Paul; Cerella, John

    2012-01-01

    In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Working Memory at Work: How the Updating Process Alters the Nature of Working Memory Transfer

    PubMed Central

    Zhang, Yanmin; Verhaeghen, Paul; Cerella, John

    2011-01-01

    In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. PMID:22105718

  6. Cortical sources of visual evoked potentials during consciousness of executive processes.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Iacoboni, Marco; Buffo, Paola; Eusebi, Fabrizio; Rossini, Paolo Maria

    2009-03-01

    What is the timing of cortical activation related to consciousness of visuo-spatial executive functions? Electroencephalographic data (128 channels) were recorded in 13 adults. Cue stimulus briefly appeared on right or left (equal probability) monitor side for a period, inducing about 50% of recognitions. It was then masked and followed (2 s) by a central visual go stimulus. Left (right) mouse button had to be clicked after right (left) cue stimulus. This "inverted" response indexed executive processes. Afterward, subjects said "seen" if they had detected the cue stimulus or "not seen" when it was missed. Sources of event-related potentials (ERPs) were estimated by LORETA software. The inverted responses were about 95% in seen trials and about 60% in not seen trials. Cue stimulus evoked frontal-parietooccipital potentials, having the same peak latencies in the seen and not seen data. Maximal difference in amplitude of the seen and not seen ERPs was detected at about +300-ms post-stimulus (P3). P3 sources were higher in amplitude in the seen than not seen trials in dorsolateral prefrontal, premotor and parietooccipital areas. This was true in dorsolateral prefrontal and premotor cortex even when percentage of the inverted responses and reaction time were paired in the seen and not seen trials. These results suggest that, in normal subjects, the primary consciousness enhances the efficacy of visuo-spatial executive processes and is sub-served by a late (100- to 400-ms post-stimulus) enhancement of the neural synchronization in frontal areas.

  7. Differential influence of safe versus threatening facial expressions on decision-making during an inhibitory control task in adolescence and adulthood.

    PubMed

    Cohen-Gilbert, J E; Killgore, W D S; White, C N; Schwab, Z J; Crowley, D J; Covell, M J; Sneider, J T; Silveri, M M

    2014-03-01

    Social cognition matures dramatically during adolescence and into early adulthood, supported by continued improvements in inhibitory control. During this time, developmental changes in interpreting and responding to social signals such as facial expressions also occur. In the present study, subjects performed a Go No-Go task that required them to respond or inhibit responding based on threat or safety cues present in facial expressions. Subjects (N = 112) were divided into three age groups: adolescent (12-15 years), emerging adult (18-25 years) and adult (26-44 years). Analyses revealed a significant improvement in accuracy on No-Go trials, but not Go trials, during both safe and threat face conditions, with changes evident through early adulthood. In order to better identify the decision-making processes responsible for these changes in inhibitory control, a drift diffusion model (DDM) was fit to the accuracy and reaction time data, generating measures of caution, response bias, nondecision time (encoding + motor response), and drift rate (face processing efficiency). Caution and nondecision time both increased significantly with age while bias towards the Go response decreased. Drift rate analyses revealed significant age-related improvements in the ability to map threat faces to a No-Go response while drift rates on all other trial types were equivalent across age groups. These results suggest that both stimulus-independent and stimulus-dependent processes contribute to improvements in inhibitory control in adolescence with processing of negative social cues being specifically impaired by self-regulatory demands. Findings from this novel investigation of emotional responsiveness integrated with inhibitory control may provide useful insights about healthy development that can be applied to better understand adolescent risk-taking behavior and the elevated incidence of related forms of psychopathology during this period of life. © 2014 John Wiley & Sons Ltd.

  8. Processing of pitch and location in human auditory cortex during visual and auditory tasks.

    PubMed

    Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu

    2015-01-01

    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.

  9. Processing of pitch and location in human auditory cortex during visual and auditory tasks

    PubMed Central

    Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu

    2015-01-01

    The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand. PMID:26594185

  10. Dissociation of binding and learning processes.

    PubMed

    Moeller, Birte; Frings, Christian

    2017-11-01

    A single encounter of a stimulus together with a response can result in a short-lived association between the stimulus and the response [sometimes called an event file, see Hommel, Müsseler, Aschersleben, & Prinz, (2001) Behavioral and Brain Sciences, 24, 910-926]. The repetition of stimulus-response pairings typically results in longer lasting learning effects indicating stimulus-response associations (e.g., Logan & Etherton, (1994) Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1022-1050]. An important question is whether or not what has been described as stimulus-response binding in action control research is actually identical with an early stage of incidental learning (e.g., binding might be seen as single-trial learning). Here, we present evidence that short-lived binding effects can be distinguished from learning of longer lasting stimulus-response associations. In two experiments, participants always responded to centrally presented target letters that were flanked by response irrelevant distractor letters. Experiment 1 varied whether distractors flanked targets on the horizontal or vertical axis. Binding effects were larger for a horizontal than for a vertical distractor-target configuration, while stimulus configuration did not influence incidental learning of longer lasting stimulus-response associations. In Experiment 2, the duration of the interval between response n - 1 and presentation of display n (500 ms vs. 2000 ms) had opposing influences on binding and learning effects. Both experiments indicate that modulating factors influence stimulus-response binding and incidental learning effects in different ways. We conclude that distinct underlying processes should be assumed for binding and incidental learning effects.

  11. Aesthetic Pleasure versus Aesthetic Interest: The Two Routes to Aesthetic Liking

    PubMed Central

    Graf, Laura K. M.; Landwehr, Jan R.

    2017-01-01

    Although existing research has established that aesthetic pleasure and aesthetic interest are two distinct positive aesthetic responses, empirical research on aesthetic preferences usually considers only aesthetic liking to capture participants’ aesthetic response. This causes some fundamental contradictions in the literature; some studies find a positive relationship between easy-to-process stimulus characteristics and aesthetic liking, while others suggest a negative relationship. The present research addresses these empirical contradictions by investigating the dual character of aesthetic liking as manifested in both the pleasure and interest components. Based on the Pleasure-Interest Model of Aesthetic Liking (PIA Model; Graf and Landwehr, 2015), two studies investigated the formation of pleasure and interest and their relationship with aesthetic liking responses. Using abstract art as the stimuli, Study 1 employed a 3 (stimulus fluency: low, medium, high) × 2 (processing style: automatic, controlled) × 2 (aesthetic response: pleasure, interest) experimental design to examine the processing dynamics responsible for experiencing aesthetic pleasure versus aesthetic interest. We find that the effect of stimulus fluency on pleasure is mediated by a gut-level fluency experience. Stimulus fluency and interest, by contrast, are related through a process of disfluency reduction, such that disfluent stimuli that grow more fluent due to processing efforts become interesting. The second study employed product designs (bikes, chairs, and lamps) as stimuli and a 2 (fluency: low, high) × 2 (processing style: automatic, controlled) × 3 (product type: bike, chair, lamp) experimental design to examine pleasure and interest as mediators of the relationship between stimulus fluency and design attractiveness. With respect to lamps and chairs, the results suggest that the effect of stimulus fluency on attractiveness is fully mediated by aesthetic pleasure, especially in the automatic processing style. Conversely, disfluent product designs can enhance design attractiveness judgments due to interest when a controlled processing style is adopted. PMID:28194119

  12. [Modality specific systems of representation and processing of information. Superfluous images, useful representations, necessary evil or inevitable consequences of optimal stimulus processing].

    PubMed

    Zimmer, H D

    1993-01-01

    It is discussed what is underlying the assumption of modality-specific processing systems and representations. Starting from the information processing approach relevant aspects of mental representations and their physiological realizations are discussed. Then three different forms of modality-specific systems are distinguished: as stimulus specific processing, as specific informational formats, and as modular part systems. Parallel to that three kinds of analogue systems are differentiated: as holding an analogue-relation, as having a specific informational format and as a set of specific processing constraints. These different aspects of the assumption of modality-specific systems are demonstrated in the example of visual and spatial information processing. It is concluded that postulating information-specific systems is not a superfluous assumption, but it is necessary, and even more likely it is an inevitable consequence of an optimization of stimulus processing.

  13. Affective picture processing: An integrative review of ERP findings

    PubMed Central

    Olofsson, Jonas K.; Nordin, Steven; Sequeira, Henrique; Polich, John

    2008-01-01

    The review summarizes and integrates findings from 40 years of event-related potential (ERP) studies using pictures that differ in valence (unpleasant-to-pleasant) and arousal (low-to-high) and that are used to elicit emotional processing. Affective stimulus factors primarily modulate ERP component amplitude, with little change in peak latency observed. Arousal effects are consistently obtained, and generally occur at longer latencies. Valence effects are inconsistently reported at several latency ranges, including very early components. Some affective ERP modulations vary with recording methodology, stimulus factors, as well as task-relevance and emotional state. Affective ERPs have been linked theoretically to attention orientation for unpleasant pictures at earlier components (< 300 ms). Enhanced stimulus processing has been associated with memory encoding for arousing pictures of assumed intrinsic motivational relevance, with task-induced differences contributing to emotional reactivity at later components (> 300 ms). Theoretical issues, stimulus factors, task demands, and individual differences are discussed. PMID:18164800

  14. The impact of the stimulus features and task instructions on facial processing in social anxiety: an ERP investigation.

    PubMed

    Peschard, Virginie; Philippot, Pierre; Joassin, Frédéric; Rossignol, Mandy

    2013-04-01

    Social anxiety has been characterized by an attentional bias towards threatening faces. Electrophysiological studies have demonstrated modulations of cognitive processing from 100 ms after stimulus presentation. However, the impact of the stimulus features and task instructions on facial processing remains unclear. Event-related potentials were recorded while high and low socially anxious individuals performed an adapted Stroop paradigm that included a colour-naming task with non-emotional stimuli, an emotion-naming task (the explicit task) and a colour-naming task (the implicit task) on happy, angry and neutral faces. Whereas the impact of task factors was examined by contrasting an explicit and an implicit emotional task, the effects of perceptual changes on facial processing were explored by including upright and inverted faces. The findings showed an enhanced P1 in social anxiety during the three tasks, without a moderating effect of the type of task or stimulus. These results suggest a global modulation of attentional processing in performance situations. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Efficient Vocational Skills Training for People with Cognitive Disabilities: An Exploratory Study Comparing Computer-Assisted Instruction to One-on-One Tutoring.

    PubMed

    Larson, James R; Juszczak, Andrew; Engel, Kathryn

    2016-03-01

    This study compared the effectiveness of computer-assisted instruction to that of one-on-one tutoring for teaching people with mild and moderate cognitive disabilities when both training methods are designed to take account of the specific mental deficits most commonly found in cognitive disability populations. Fifteen participants (age 22-71) received either computer-assisted instruction or one-on-one tutoring in three content domains that were of functional and daily relevance to them: behavioural limits, rights and responsibilities (two modules) and alphabetical sorting. Learning was assessed by means of a series of pretests and four learning cycle post-tests. Both instructional conditions maintained time-on-task and teaching material equivalence, and both incorporated a set of best-practices and empirically supported teaching techniques designed to address attentional deficits, stimulus processing inefficiencies and cognitive load limitations. Strong evidence of learning was found in both instructional method conditions. Moreover, in all content domains the two methods yielded approximately equivalent rates of learning and learning attainment. These findings offer tentative evidence that a repetitive, computer-assisted training program can produce learning outcomes in people with mild and moderate cognitive disabilities that are comparable to those achieved by high-quality one-on-one tutoring. © 2015 John Wiley & Sons Ltd.

  16. The Mere Exposure Instruction Effect.

    PubMed

    Van Dessel, Pieter; Mertens, Gaëtan; Smith, Colin Tucker; De Houwer, Jan

    2017-09-01

    The mere exposure effect refers to the well-established finding that people evaluate a stimulus more positively after repeated exposure to that stimulus. We investigated whether a change in stimulus evaluation can occur also when participants are not repeatedly exposed to a stimulus, but are merely instructed that one stimulus will occur frequently and another stimulus will occur infrequently. We report seven experiments showing that (1) mere exposure instructions influence implicit stimulus evaluations as measured with an Implicit Association Test (IAT), personalized Implicit Association Test (pIAT), or Affect Misattribution Procedure (AMP), but not with an Evaluative Priming Task (EPT), (2) mere exposure instructions influence explicit evaluations, and (3) the instruction effect depends on participants' memory of which stimulus will be presented more frequently. We discuss how these findings inform us about the boundary conditions of mere exposure instruction effects, as well as the mental processes that underlie mere exposure and mere exposure instruction effects.

  17. Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation

    PubMed Central

    Kaping, Daniel; Vinck, Martin; Hutchison, R. Matthew; Everling, Stefan; Womelsdorf, Thilo

    2011-01-01

    Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network. PMID:22215982

  18. Deprivation in American Affluence: The Theory of Stimulus Addiction.

    ERIC Educational Resources Information Center

    Machell, David F.

    1991-01-01

    Discusses theory of stimulus addiction, a process of human accommodation to stimuli which fosters dependency and may foster addiction. Suggests that a society of affluence may be prone to addictiveness because the more continuous the stimuli the person experiences, the more tolerance is created, and with tolerance comes stimulus deprivation.…

  19. Sampling capacity underlies individual differences in human associative learning.

    PubMed

    Byrom, Nicola C; Murphy, Robin A

    2014-04-01

    Though much work has studied how external factors, such as stimulus properties, influence generalization of associative strength, there has been limited exploration of the influence that internal dispositions may contribute to stimulus processing. Here we report 2 studies using a modified negative patterning discrimination to test the relationship between global processing and generalization. Global processing was associated with stronger negative patterning discrimination, indicative of limited generalization between distinct stimulus compounds and their constituent elements. In Experiment 2, participants pretrained to adopt global processing similarly showed strong negative patterning discrimination. These results demonstrate considerable individual difference in capacity to engage in negative patterning discrimination and suggest that the tendency toward global processing may be one factor explaining this variability. The need for models of learning to account for this variability in learning is discussed.

  20. Processing of prosodic changes in natural speech stimuli in school-age children.

    PubMed

    Lindström, R; Lepistö, T; Makkonen, T; Kujala, T

    2012-12-01

    Speech prosody conveys information about important aspects of communication: the meaning of the sentence and the emotional state or intention of the speaker. The present study addressed processing of emotional prosodic changes in natural speech stimuli in school-age children (mean age 10 years) by recording the electroencephalogram, facial electromyography, and behavioral responses. The stimulus was a semantically neutral Finnish word uttered with four different emotional connotations: neutral, commanding, sad, and scornful. In the behavioral sound-discrimination task the reaction times were fastest for the commanding stimulus and longest for the scornful stimulus, and faster for the neutral than for the sad stimulus. EEG and EMG responses were measured during non-attentive oddball paradigm. Prosodic changes elicited a negative-going, fronto-centrally distributed neural response peaking at about 500 ms from the onset of the stimulus, followed by a fronto-central positive deflection, peaking at about 740 ms. For the commanding stimulus also a rapid negative deflection peaking at about 290 ms from stimulus onset was elicited. No reliable stimulus type specific rapid facial reactions were found. The results show that prosodic changes in natural speech stimuli activate pre-attentive neural change-detection mechanisms in school-age children. However, the results do not support the suggestion of automaticity of emotion specific facial muscle responses to non-attended emotional speech stimuli in children. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli.

    PubMed

    Qin, Pengmin; Grimm, Simone; Duncan, Niall W; Fan, Yan; Huang, Zirui; Lane, Timothy; Weng, Xuchu; Bajbouj, Malek; Northoff, Georg

    2016-04-01

    Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Emotion self-regulation and empathy depend upon longer stimulus exposure.

    PubMed

    Ikezawa, Satoru; Corbera, Silvia; Wexler, Bruce E

    2014-10-01

    Observation of others in pain induces positive elevation (pain effect) in late event-related potentials (ERP). This effect is associated with top-down attention regulating processes. It has previously been shown that stimulus exposure duration can affect top-down attentional modulation of response to threat-related stimuli. We investigated the effect of exposure duration on ERP response to others in pain. Two late ERP components, P3 and late positive potentials (LPP), from 18 healthy people were measured while they viewed pictures of hands in painful or neutral situations for either 200 or 500 ms, during two task conditions (pain judgment and counting hands). P3 and LPP pain effects during the pain judgment condition were significantly greater with 500 ms than 200 ms stimulus presentation. Ours is the first study to suggest that engagement of empathy-related self-regulatory processes reflected in late potentials requires longer exposure to the pain-related stimulus. Although this is important information about the relationship between early sensory and subsequent brain processing, and about engagement of self-regulatory processes, the neural basis of this time-dependence remains unclear. It might be important to investigate the relationship between stimulus duration and empathic response in clinical populations where issues of self-regulation, empathic response and speed of information processing exist. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Sound Asleep: Processing and Retention of Slow Oscillation Phase-Targeted Stimuli

    PubMed Central

    Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M.

    2014-01-01

    The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep. PMID:24999803

  4. Sound asleep: processing and retention of slow oscillation phase-targeted stimuli.

    PubMed

    Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M

    2014-01-01

    The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep.

  5. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2016-01-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441

  6. The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation.

    PubMed

    VanRullen, Rufin

    2007-07-01

    The occurrence of perceived reversed motion while observers view a continuous, periodically moving stimulus (a bistable phenomenon coined the "continuous Wagon Wheel Illusion" or "c-WWI") has been taken as evidence that some aspects of motion perception rely on discrete sampling of visual information. Alternative accounts rely on the possibility of a motion aftereffect that may become visible even while the adapting stimulus is present. Here I show that motion adaptation might be necessary, but is not sufficient to explain the illusion. When local adaptation is prevented by slowly drifting the moving wheel across the retina, the c-WWI illusion tends to decrease, as do other bistable percepts (e.g. binocular rivalry). However, the strength of the c-WWI and that of adaptation (as measured by either the static or flicker motion aftereffects) are not directly related: although the c-WWI decreases with increasing eccentricity, the aftereffects actually intensify concurrently. A similar dissociation can be induced by manipulating stimulus contrast. This indicates that the c-WWI may be enabled by, but is not equivalent to, local motion adaptation - and that other factors such as discrete sampling may be involved in its generation.

  7. Comparison of nine methods to estimate ear-canal stimulus levels

    PubMed Central

    Souza, Natalie N.; Dhar, Sumitrajit; Neely, Stephen T.; Siegel, Jonathan H.

    2014-01-01

    The reliability of nine measures of the stimulus level in the human ear canal was compared by measuring the sensitivity of behavioral hearing thresholds to changes in the depth of insertion of an otoacoustic emission probe. Four measures were the ear-canal pressure, the eardrum pressure estimated from it and the pressure measured in an ear simulator with and without compensation for insertion depth. The remaining five quantities were derived from the ear-canal pressure and the Thévenin-equivalent source characteristics of the probe: Forward pressure, initial forward pressure, the pressure transmitted into the middle ear, eardrum sound pressure estimated by summing the magnitudes of the forward and reverse pressure (integrated pressure) and absorbed power. Two sets of behavioral thresholds were measured in 26 subjects from 0.125 to 20 kHz, with the probe inserted at relatively deep and shallow positions in the ear canal. The greatest dependence on insertion depth was for transmitted pressure and absorbed power. The measures with the least dependence on insertion depth throughout the frequency range (best performance) included the depth-compensated simulator, eardrum, forward, and integrated pressures. Among these, forward pressure is advantageous because it quantifies stimulus phase. PMID:25324079

  8. Endogenous pyrogen production by human blood monocytes stimulated by staphylococcal cell wall components.

    PubMed

    Oken, M M; Peterson, P K; Wilkinson, B J

    1981-01-01

    To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.

  9. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2016-09-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.

  10. Goal Relevance Moderates Evaluative Conditioning Effects

    ERIC Educational Resources Information Center

    Verwijmeren, Thijs; Karremans, Johan C.; Stroebe, Wolfgang; Wigboldus, Daniel H. J.

    2012-01-01

    An important process by which preferences emerge is evaluative conditioning, defined as a change in the evaluation of a stimulus by pairing it repeatedly and consistently with an affective stimulus. The current research focuses on the role of motivation in this learning process. Specifically, it was investigated whether a conditioning procedure…

  11. Stimulus Characteristics Affect Humor Processing in Individuals with Asperger Syndrome

    ERIC Educational Resources Information Center

    Samson, Andrea C.; Hegenloh, Michael

    2010-01-01

    The present paper aims to investigate whether individuals with Asperger syndrome (AS) show global humor processing deficits or whether humor comprehension and appreciation depends on stimulus characteristics. Non-verbal visual puns, semantic and Theory of Mind cartoons were rated on comprehension, funniness and the punchlines were explained. AS…

  12. The interplay between the anticipation and subsequent online processing of emotional stimuli as measured by pupillary dilatation: the role of cognitive reappraisal.

    PubMed

    Vanderhasselt, Marie-Anne; Remue, Jonathan; Ng, Kwun Kei; De Raedt, Rudi

    2014-01-01

    Emotions can occur during an emotion-eliciting event, but they can also arise when anticipating the event. We used pupillary responses, as a measure of effortful cognitive processing, to test whether the anticipation of an emotional stimulus (positive and negative) influences the subsequent online processing of that emotional stimulus. Moreover, we tested whether individual differences in the habitual use of emotion regulation strategies are associated with pupillary responses during the anticipation and/or online processing of this emotional stimulus. Our results show that, both for positive and negative stimuli, pupillary diameter during the anticipation of emotion-eliciting events is inversely and strongly correlated to pupillary responses during the emotional image presentation. The variance in this temporal interplay between anticipation and online processing was related to individual differences in emotion regulation. Specifically, the results show that high reappraisal scores are related to larger pupil diameter during the anticipation which is related to smaller pupillary responses during the online processing of emotion-eliciting events. The habitual use of expressive suppression was not associated to pupillary responses in the anticipation and subsequent online processing of emotional stimuli. Taken together, the current data suggest (most strongly for individuals scoring high on the habitual use of reappraisal) that larger pupillary responses during the anticipation of an emotional stimulus are indicative of a sustained attentional set activation to prepare for an upcoming emotional stimulus, which subsequently directs a reduced need to cognitively process that emotional event. Hence, because the habitual use of reappraisal is known to have a positive influence on emotional well-being, the interplay between anticipation and online processing of emotional stimuli might be a significant marker of this well-being.

  13. Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.

    PubMed

    Wutz, Andreas; Muschter, Evelyn; van Koningsbruggen, Martijn G; Weisz, Nathan; Melcher, David

    2016-07-11

    When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact.

    PubMed

    Kent, A R; Grill, W M

    2012-06-01

    The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.

  15. Learning to inhibit the response during instrumental (operant) extinction.

    PubMed

    Bouton, Mark E; Trask, Sydney; Carranza-Jasso, Rodrigo

    2016-07-01

    Five experiments tested implications of the idea that instrumental (operant) extinction involves learning to inhibit the learned response. All experiments used a discriminated operant procedure in which rats were reinforced for lever pressing or chain pulling in the presence of a discriminative stimulus (S), but not in its absence. In Experiment 1, extinction of the response (R) in the presence of S weakened responding in S, but equivalent nonreinforced exposure to S (without the opportunity to make R) did not. Experiment 2 replicated that result and found that extinction of R had no effect on a different R that had also been reinforced in the stimulus. In Experiments 3 and 4, rats first learned to perform several different stimulus and response combinations (S1R1, S2R1, S3R2, and S4R2). Extinction of a response in one stimulus (i.e., S1R1) transferred and weakened the same response, but not a different response, when it was tested in another stimulus (i.e., S2R1 but not S3R2). In Experiment 5, extinction still transferred between S1 and S2 when the stimuli set the occasion for R's association with different types of food pellets. The results confirm the importance of response inhibition in instrumental extinction: Nonreinforcement of the response in S causes the most effective suppression of responding, and response suppression is specific to the response but transfers and influences performance of the same response when it is occasioned by other stimuli. Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  17. Equivalence and test-retest reproducibility of conventional and extended-high-frequency audiometric thresholds obtained using pure-tone and narrow-band-noise stimuli.

    PubMed

    John, Andrew B; Kreisman, Brian M

    2017-09-01

    Extended high-frequency (EHF) audiometry is useful for evaluating ototoxic exposures and may relate to speech recognition, localisation and hearing aid benefit. There is a need to determine whether common clinical practice for EHF audiometry using tone and noise stimuli is reliable. We evaluated equivalence and compared test-retest (TRT) reproducibility for audiometric thresholds obtained using pure tones and narrowband noise (NBN) from 0.25 to 16 kHz. Thresholds and test-retest reproducibility for stimuli in the conventional (0.25-6 kHz) and EHF (8-16 kHz) frequency ranges were compared in a repeated-measures design. A total of 70 ears of adults with normal hearing. Thresholds obtained using NBN were significantly lower than thresholds obtained using pure tones from 0.5 to 16 kHz, but not 0.25 kHz. Good TRT reproducibility (within 2 dB) was observed for both stimuli at all frequencies. Responses at the lower limit of the presentation range for NBN centred at 14 and 16 kHz suggest unreliability for NBN as a threshold stimulus at these frequencies. Thresholds in the conventional and EHF ranges showed good test-retest reproducibility, but differed between stimulus types. Care should be taken when comparing pure-tone thresholds with NBN thresholds especially at these frequencies.

  18. Evidence for different processes involved in the effects of nontemporal stimulus size and numerical digit value on duration judgments.

    PubMed

    Rammsayer, Thomas H; Verner, Martin

    2016-05-01

    Perceived duration has been shown to be positively related to task-irrelevant, nontemporal stimulus magnitude. To account for this finding, Walsh's (2003) A Theory of Magnitude (ATOM) model suggests that magnitude of time is not differentiated from magnitude of other nontemporal stimulus characteristics and collectively processed by a generalized magnitude system. In Experiment 1, we investigated the combined effects of stimulus size and numerical quantity, as two nontemporal stimulus dimensions covered by the ATOM model, on duration judgments. Participants were required to reproduce the duration of target intervals marked by Arabic digits varying in physical size and numerical value. While the effect of stimulus size was effectively moderated by target duration, the effect of numerical value appeared to require attentional resources directed to the numerical value in order to become effective. Experiment 2 was designed to further elucidate the mediating influence of attention on the effect of numerical value on duration judgments. An effect of numerical value was only observed when participants' attention was directed to digit value, but not when participants were required to pay special attention to digit parity. While the ATOM model implies a common metrics and generalized magnitude processing for time, size, and quantity, the present findings provided converging evidence for the notion of two qualitatively different mechanisms underlying the effects of nontemporal stimulus size and numerical value on duration judgments. Furthermore, our data challenge the implicit common assumption that the effect of numerical value on duration judgments represents a continuously increasing function of digit magnitude.

  19. Introducing the Event Related Fixed Interval Area (ERFIA) Multilevel Technique: a Method to Analyze the Complete Epoch of Event-Related Potentials at Single Trial Level

    PubMed Central

    Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018

  20. Monkeys have a limited form of short-term memory in audition

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2012-01-01

    A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to “overwriting” by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ∼1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample’s trace, but to retroactive interference from the intervening nonmatch stimulus. This “overwriting” effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory. PMID:22778411

  1. Monkeys have a limited form of short-term memory in audition.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2012-07-24

    A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to "overwriting" by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ~1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample's trace, but to retroactive interference from the intervening nonmatch stimulus. This "overwriting" effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory.

  2. Does dorsolateral prefrontal cortex (DLPFC) activation return to baseline when sexual stimuli cease? The role of DLPFC in visual sexual stimulation.

    PubMed

    Leon-Carrion, Jose; Martín-Rodríguez, Juan Francisco; Damas-López, Jesús; Pourrezai, Kambiz; Izzetoglu, Kurtulus; Barroso Y Martin, Juan Manuel; Dominguez-Morales, M Rosario

    2007-04-06

    A fundamental question in human sexuality regards the neural substrate underlying sexually-arousing representations. Lesion and neuroimaging studies suggest that dorsolateral pre-frontal cortex (DLPFC) plays an important role in regulating the processing of visual sexual stimulation. The aim of this Functional Near-Infrared Spectroscopy (fNIRS) study was to explore DLPFC structures involved in the processing of erotic and non-sexual films. fNIRS was used to image the evoked-cerebral blood oxygenation (CBO) response in 15 male and 15 female subjects. Our hypothesis is that a sexual stimulus would produce DLPFC activation during the period of direct stimulus perception ("on" period), and that this activation would continue after stimulus cessation ("off" period). A new paradigm was used to measure the relative oxygenated hemoglobin (oxyHb) concentrations in DLPFC while subjects viewed the two selected stimuli (Roman orgy and a non-sexual film clip), and also immediately following stimulus cessation. Viewing of the non-sexual stimulus produced no overshoot in DLPFC, whereas exposure to the erotic stimulus produced rapidly ascendant overshoot, which became even more pronounced following stimulus cessation. We also report on gender differences in the timing and intensity of DLPFC activation in response to a sexually explicit visual stimulus. We found evidence indicating that men experience greater and more rapid sexual arousal when exposed to erotic stimuli than do women. Our results point out that self-regulation of DLPFC activation is modulated by subjective arousal and that cognitive appraisal of the sexual stimulus (valence) plays a secondary role in this regulation.

  3. Impairment of probabilistic reward-based learning in schizophrenia.

    PubMed

    Weiler, Julia A; Bellebaum, Christian; Brüne, Martin; Juckel, Georg; Daum, Irene

    2009-09-01

    Recent models assume that some symptoms of schizophrenia originate from defective reward processing mechanisms. Understanding the precise nature of reward-based learning impairments might thus make an important contribution to the understanding of schizophrenia and the development of treatment strategies. The present study investigated several features of probabilistic reward-based stimulus association learning, namely the acquisition of initial contingencies, reversal learning, generalization abilities, and the effects of reward magnitude. Compared to healthy controls, individuals with schizophrenia exhibited attenuated overall performance during acquisition, whereas learning rates across blocks were similar to the rates of controls. On the group level, persons with schizophrenia were, however, unable to learn the reversal of the initial reward contingencies. Exploratory analysis of only the subgroup of individuals with schizophrenia who showed significant learning during acquisition yielded deficits in reversal learning with low reward magnitudes only. There was further evidence of a mild generalization impairment of the persons with schizophrenia in an acquired equivalence task. In summary, although there was evidence of intact basic processing of reward magnitudes, individuals with schizophrenia were impaired at using this feedback for the adaptive guidance of behavior.

  4. Temporal expectancy in the context of a theory of visual attention.

    PubMed

    Vangkilde, Signe; Petersen, Anders; Bundesen, Claus

    2013-10-19

    Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue-stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s(-1)) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations.

  5. Iconic-memory processing of unfamiliar stimuli by retarded and nonretarded individuals.

    PubMed

    Hornstein, H A; Mosley, J L

    1979-07-01

    The iconic-memory processing of unfamiliar stimuli was undertaken employing a visually cued partial-report procedure and a visual masking procedure. Subjects viewed stimulus arrays consisting of six Chinese characters arranged in a circular pattern for 100 msec. At variable stimulus-onset asynchronies, a teardrop indicator or an annulus was presented for 100 msec. Immediately upon cue offset, the subject was required to recognize the cued stimulus from a card containing a single character. Retarded subjects' performance was comparable to that of MA- and CA-matched subjects. We suggested that earlier reported iconic-memory differences between retarded and nonretarded individuals may be attributable to processes other than iconic memory.

  6. Emotional arousal amplifies the effects of biased competition in the brain

    PubMed Central

    Lee, Tae-Ho; Sakaki, Michiko; Cheng, Ruth; Velasco, Ricardo

    2014-01-01

    The arousal-biased competition model predicts that arousal increases the gain on neural competition between stimuli representations. Thus, the model predicts that arousal simultaneously enhances processing of salient stimuli and impairs processing of relatively less-salient stimuli. We tested this model with a simple dot-probe task. On each trial, participants were simultaneously exposed to one face image as a salient cue stimulus and one place image as a non-salient stimulus. A border around the face cue location further increased its bottom-up saliency. Before these visual stimuli were shown, one of two tones played: one that predicted a shock (increasing arousal) or one that did not. An arousal-by-saliency interaction in category-specific brain regions (fusiform face area for salient faces and parahippocampal place area for non-salient places) indicated that brain activation associated with processing the salient stimulus was enhanced under arousal whereas activation associated with processing the non-salient stimulus was suppressed under arousal. This is the first functional magnetic resonance imaging study to demonstrate that arousal can enhance information processing for prioritized stimuli while simultaneously impairing processing of non-prioritized stimuli. Thus, it goes beyond previous research to show that arousal does not uniformly enhance perceptual processing, but instead does so selectively in ways that optimizes attention to highly salient stimuli. PMID:24532703

  7. Sampling Capacity Underlies Individual Differences in Human Associative Learning

    PubMed Central

    2014-01-01

    Though much work has studied how external factors, such as stimulus properties, influence generalization of associative strength, there has been limited exploration of the influence that internal dispositions may contribute to stimulus processing. Here we report 2 studies using a modified negative patterning discrimination to test the relationship between global processing and generalization. Global processing was associated with stronger negative patterning discrimination, indicative of limited generalization between distinct stimulus compounds and their constituent elements. In Experiment 2, participants pretrained to adopt global processing similarly showed strong negative patterning discrimination. These results demonstrate considerable individual difference in capacity to engage in negative patterning discrimination and suggest that the tendency toward global processing may be one factor explaining this variability. The need for models of learning to account for this variability in learning is discussed. PMID:24446699

  8. Does sensitivity in binary choice tasks depend on response modality?

    PubMed

    Szumska, Izabela; van der Lubbe, Rob H J; Grzeczkowski, Lukasz; Herzog, Michael H

    2016-07-01

    In most models of vision, a stimulus is processed in a series of dedicated visual areas, leading to categorization of this stimulus, and possible decision, which subsequently may be mapped onto a motor-response. In these models, stimulus processing is thought to be independent of the response modality. However, in theories of event coding, common coding, and sensorimotor contingency, stimuli may be very specifically mapped onto certain motor-responses. Here, we compared performance in a shape localization task and used three different response modalities: manual, saccadic, and verbal. Meta-contrast masking was employed at various inter-stimulus intervals (ISI) to manipulate target visibility. Although we found major differences in reaction times for the three response modalities, accuracy remained at the same level for each response modality (and all ISIs). Our results support the view that stimulus-response (S-R) associations exist only for specific instances, such as reflexes or skills, but not for arbitrary S-R pairings. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Selective Attention with Separable Stimuli Using a Speeded Task.

    ERIC Educational Resources Information Center

    Kolbet, Lori L.; Garvey, Jackie

    The ability to allocate attentional resources to relevant aspects of a stimulus event is a critical skill needed for efficient information processing. Evidence suggests that this ability to focus on relevant information without interference is dependent on the nature of the stimulus structure of the information to be processed. To test the…

  10. Additive Factors Analysis of Inhibitory Processing in the Stop-Signal Paradigm

    ERIC Educational Resources Information Center

    van den Wildenberg, W.P.M.; van der Molen, M.W.

    2004-01-01

    This article reports an additive factors analysis of choice reaction and selective stop processes manipulated in a stop-signal paradigm. Three experiments were performed in which stimulus discriminability (SD) and stimulus-response compatibility (SRC) were manipulated in a factorial fashion. In each experiment, the effects of SD and SRC were…

  11. Visuomotor Binding in Older Adults

    ERIC Educational Resources Information Center

    Bloesch, Emily K.; Abrams, Richard A.

    2010-01-01

    Action integration is the process through which actions performed on a stimulus and perceptual aspects of the stimulus become bound as a unitary object. This process appears to be controlled by the dopaminergic system in the prefrontal cortex, an area that is known to decrease in volume and dopamine functioning in older adults. Although the…

  12. Age-related changes in cognitive conflict processing: an event-related potential study.

    PubMed

    Mager, Ralph; Bullinger, Alex H; Brand, Serge; Schmidlin, Maria; Schärli, Heinz; Müller-Spahn, Franz; Störmer, Robert; Falkenstein, Michael

    2007-12-01

    Cognitive tasks involving conflicting stimuli and responses are associated with an early age-related decline in performance. Conflict and conflict-induced interference can be stimulus- or response-related. In classical stimulus-response compatibility tasks, such as the Stroop task, the event-related potential (ERP) usually reveals a greater negativity on incongruent versus congruent trials which has often been linked with conflict processing. However, it is unclear whether this negativity is related to stimulus- or response-related conflict, thus rendering the meaning of age-related changes inconclusive. In the present study, a modified Stroop task was used to focus on stimulus-related interference processes while excluding response-related interference. Since we intended to study work-relevant effects ERPs and performance were determined in young (about 30 years old) and middle-aged (about 50 years old) healthy subjects (total n=80). In the ERP, a broad negativity developed after incongruent versus congruent stimuli between 350 and 650 ms. An age-related increase of the latency and amplitude of this negativity was observed. These results indicate age-related alterations in the processing of conflicting stimuli already in middle age.

  13. Differential effects of ongoing EEG beta and theta power on memory formation

    PubMed Central

    Scholz, Sebastian; Schneider, Signe Luisa

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459

  14. Highly Reconfigurable Beamformer Stimulus Generator

    NASA Astrophysics Data System (ADS)

    Vaviļina, E.; Gaigals, G.

    2018-02-01

    The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.

  15. [Cognitive Functions in the Prefrontal Association Cortex; Transitive Inference and the Lateral Prefrontal Cortex].

    PubMed

    Tanaka, Shingo; Oguchi, Mineki; Sakagami, Masamichi

    2016-11-01

    To behave appropriately in a complex and uncertain world, the brain makes use of several distinct learning systems. One such system is called the "model-free process", via which conditioning allows the association between a stimulus or response and a given reward to be learned. Another system is called the "model-based process". Via this process, the state transition between a stimulus and a response is learned so that the brain is able to plan actions prior to their execution. Several studies have tried to relate the difference between model-based and model-free processes to the difference in functions of the lateral prefrontal cortex (LPFC) and the striatum. Here, we describe a series of studies that demonstrate the ability of LPFC neurons to categorize visual stimuli by their associated behavioral responses and to generate abstract information. If LPFC neurons utilize abstract code to associate a stimulus with a reward, they should be able to infer similar relationships between other stimuli of the same category and their rewards without direct experience of these stimulus-reward contingencies. We propose that this ability of LPFC neurons to utilize abstract information can contribute to the model-based learning process.

  16. Prefrontal contributions to domain-general executive control processes during temporal context retrieval.

    PubMed

    Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark

    2008-03-07

    Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.

  17. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

    PubMed

    Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo

    2016-02-01

    Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

  18. Spontaneous Chronic Pain After Experimental Thoracotomy Revealed by Conditioned Place Preference: Morphine Differentiates Tactile Evoked Pain From Spontaneous Pain.

    PubMed

    Hung, Ching-Hsia; Wang, Jeffrey Chi-Fei; Strichartz, Gary R

    2015-09-01

    Chronic pain after surgery limits social activity, interferes with work, and causes emotional suffering. A major component of such pain is reported as resting or spontaneous pain with no apparent external stimulus. Although experimental animal models can simulate the stimulus-evoked chronic pain that occurs after surgery, there have been no studies of spontaneous chronic pain in such models. Here the conditioned place preference (CPP) paradigm was used to reveal resting pain after experimental thoracotomy. Male Sprague Dawley rats received a thoracotomy with 1-hour rib retraction, resulting in evoked tactile hypersensitivity, previously shown to last for at least 9 weeks. Intraperitoneal injections of morphine (2.5 mg/kg) or gabapentin (40 mg/kg) gave equivalent 2- to 3-hour-long relief of tactile hypersensitivity when tested 12 to 14 days postoperatively. In separate experiments, single trial CPP was conducted 1 week before thoracotomy and then 12 days (gabapentin) or 14 days (morphine) after surgery, followed the next day by 1 conditioning session with morphine or gabapentin, both versus saline. The gabapentin-conditioned but not the morphine-conditioned rats showed a significant preference for the analgesia-paired chamber, despite the equivalent effect of the 2 agents in relieving tactile allodynia. These results show that experimental thoracotomy in rats causes spontaneous pain and that some analgesics, such as morphine, that reduce evoked pain do not also relieve resting pain, suggesting that pathophysiological mechanisms differ between these 2 aspects of long-term postoperative pain. Perspective: Spontaneous pain, a hallmark of chronic postoperative pain, is demonstrated here in a rat model of experimental postthoracotomy pain, further validating the use of this model for the development of analgesics to treat such symptoms. Although stimulus-evoked pain was sensitive to systemic morphine, spontaneous pain was not, suggesting different mechanistic underpinnings. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  19. Moving the eye of the beholder. Motor components in vision determine aesthetic preference.

    PubMed

    Topolinski, Sascha

    2010-09-01

    Perception entails not only sensory input (e.g., merely seeing), but also subsidiary motor processes (e.g., moving the eyes); such processes have been neglected in research on aesthetic preferences. To fill this gap, the present research manipulated the fluency of perceptual motor processes independently from sensory input and predicted that this increased fluency would result in increased aesthetic preference for stimulus movements that elicited the same motor movements as had been previously trained. Specifically, addressing the muscles that move the eyes, I trained participants to follow a stimulus movement without actually seeing it. Experiment 1 demonstrated that ocular-muscle training resulted in the predicted increase in preference for trained stimulus movements compared with untrained stimulus movements, although participants had not previously seen any of the movements. Experiments 2 and 3 showed that actual motor matching and not perceptual similarity drove this effect. Thus, beauty may be not only in the eye of the beholder, but also in the eyes' movements.

  20. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Ageing differentially affects neural processing of different conflict types-an fMRI study.

    PubMed

    Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred

    2014-01-01

    Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.

  2. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making.

    PubMed

    Lou, Bin; Li, Yun; Philiastides, Marios G; Sajda, Paul

    2014-02-15

    Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. © 2013 Elsevier Inc. All rights reserved.

  3. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making

    PubMed Central

    Lou, Bin; Li, Yun; Philiastides, Marios G.; Sajda, Paul

    2013-01-01

    Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. PMID:24185020

  4. Dynamic Integration of Reward and Stimulus Information in Perceptual Decision-Making

    PubMed Central

    Gao, Juan; Tortell, Rebecca; McClelland, James L.

    2011-01-01

    In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a “go” cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data. PMID:21390225

  5. Dynamic integration of reward and stimulus information in perceptual decision-making.

    PubMed

    Gao, Juan; Tortell, Rebecca; McClelland, James L

    2011-03-03

    In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a "go" cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data.

  6. Task choice and semantic interference in picture naming.

    PubMed

    Piai, Vitória; Roelofs, Ardi; Schriefers, Herbert

    2015-05-01

    Evidence from dual-task performance indicates that speakers prefer not to select simultaneous responses in picture naming and another unrelated task, suggesting a response selection bottleneck in naming. In particular, when participants respond to tones with a manual response and name pictures with superimposed semantically related or unrelated distractor words, semantic interference in naming tends to be constant across stimulus onset asynchronies (SOAs) between the tone stimulus and the picture-word stimulus. In the present study, we examine whether semantic interference in picture naming depends on SOA in case of a task choice (naming the picture vs reading the word of a picture-word stimulus) based on tones. This situation requires concurrent processing of the tone stimulus and the picture-word stimulus, but not a manual response to the tones. On each trial, participants either named a picture or read aloud a word depending on the pitch of a tone, which was presented simultaneously with picture-word onset or 350 ms or 1000 ms before picture-word onset. Semantic interference was present with tone pre-exposure, but absent when tone and picture-word stimulus were presented simultaneously. Against the background of the available studies, these results support an account according to which speakers tend to avoid concurrent response selection, but can engage in other types of concurrent processing, such as task choices. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.

    PubMed

    Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo

    2017-01-01

    Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.

  8. Induced rotational motion with nonabutting inducing and induced stimuli: implications regarding two forms of induced motion.

    PubMed

    Reinhardt-Rutland, A H

    2003-07-01

    Induced motion is the illusory motion of a static stimulus in the opposite direction to a moving stimulus. Two types of induced motion have been distinguished: (a) when the moving stimulus is distant from the static stimulus and undergoes overall displacement, and (b) when the moving stimulus is pattern viewed within fixed boundaries that abut the static stimulus. Explanations of the 1st type of induced motion refer to mediating phenomena, such as vection, whereas the 2nd type is attributed to local processing by motion-sensitive neurons. The present research was directed to a display that elicited induced rotational motion with the characteristics of both types of induced motion: the moving stimulus lay within fixed boundaries, but the inducing and induced stimuli were distant from each other. The author investigated the properties that distinguished the two types of induced motion. In 3 experiments, induced motion persisted indefinitely, interocular transfer of the aftereffect of induced motion was limited to about 20%, and the time-course of the aftereffect of induced motion could not be attributed to vection. Those results were consistent with fixed-boundary induced motion. However, they could not be explained by local processing. Instead, the results might reflect the detection of object motion within a complex flow-field that resulted from the observer's motion.

  9. Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity.

    PubMed

    Nickel, Moritz M; May, Elisabeth S; Tiemann, Laura; Postorino, Martina; Ta Dinh, Son; Ploner, Markus

    2017-11-01

    Pain serves the protection of the body by translating noxious stimulus information into a subjective percept and protective responses. Such protective responses rely on autonomic responses that allocate energy resources to protective functions. However, the precise relationship between objective stimulus intensity, subjective pain intensity, autonomic responses, and brain activity is not fully clear yet. Here, we addressed this question by continuously recording pain ratings, skin conductance, heart rate, and electroencephalography during tonic noxious heat stimulation of the hand in 39 healthy human subjects. The results confirmed that pain intensity dissociates from stimulus intensity during 10 minutes of noxious stimulation. Furthermore, skin conductance measures were significantly related to stimulus intensity but not to pain intensity. Correspondingly, skin conductance measures were significantly related to alpha and beta oscillations in contralateral sensorimotor cortex, which have been shown to encode stimulus intensity rather than pain intensity. No significant relationships were found between heart rate and stimulus intensity or pain intensity. The findings were consistent for stimulation of the left and the right hands. These results suggest that sympathetic autonomic responses to noxious stimuli in part directly result from nociceptive rather than from perceptual processes. Beyond, these observations support concepts of pain and emotions in which sensory, motor, and autonomic components are partially independent processes that together shape emotional and painful experiences.

  10. Normative Bilateral Brainstem Evoked Response Data for a Naval Aviation Student Population: Group Statistics

    DTIC Science & Technology

    1979-08-07

    laus levels of the present study all fall within the plus and sinus one -standard deviation boundar; limits of the composite laboratory data plotted by...to be the case in the present study in that the =pz!Aude of the contralateral response prtduced by a given stimulus level follcuzd, in general, that...equivalent Gaussian distribution was applied to Cia study data. Such an analysis, performed by Thornton (36) on the latcncy and amplitude measurements

  11. Spatial and Temporal Visual Masking and Visibility.

    DTIC Science & Technology

    1984-10-01

    10x darker. Eutjects vie- d ’d binocularlI with free fi:aticn; heaa pcsiti:n was maintainel b -7 healrest The test stimulus was always a 4 fid vertical...In particular, our theoretical explanation (especially Birdsall’s Theorem) is in many ways equivalent to that presented by Lasley and Cohn b to...amplitude. In part A it it indicated that the width of the dark bars 901, BE) varies in different parts of the pattern. In part B is indicated tOe

  12. Higher-order neural networks, Polyà polynomials, and Fermi cluster diagrams

    NASA Astrophysics Data System (ADS)

    Kürten, K. E.; Clark, J. W.

    2003-09-01

    The problem of controlling higher-order interactions in neural networks is addressed with techniques commonly applied in the cluster analysis of quantum many-particle systems. For multineuron synaptic weights chosen according to a straightforward extension of the standard Hebbian learning rule, we show that higher-order contributions to the stimulus felt by a given neuron can be readily evaluated via Polyà’s combinatoric group-theoretical approach or equivalently by exploiting a precise formal analogy with fermion diagrammatics.

  13. Stress films, emotion, and cognitive response.

    PubMed

    Horowitz, M; Wilner, N

    1976-11-01

    The clinical theory of the repetition compulsion is sometimes taken to mean that neurotic persons, when traumatized, will develop compulsive repetitions of the trauma. Our experiment suggests that there is a more general effect--that various types of persons, after a variety of stressful events, will tend to develop intrusive and stimulus-repetitive thought; the stress itself does not necessarily have to have a negative valence. Equivalent effects were noted after stimuli that aroused positive emotions and after those stimuli that aroused dysphoric affects.

  14. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    ERIC Educational Resources Information Center

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  15. Past Experience Influences the Processing of Stimulus Compounds in Human Pavlovian Conditioning

    ERIC Educational Resources Information Center

    Melchers, Klaus G.; Lachnit, Harold; Shanks, David R.

    2004-01-01

    In two human skin conductance conditioning experiments we investigated whether processing of stimulus compounds can be influenced by past experience. Participants were either pre-trained with a discrimination problem that could be solved elementally (A+, B-, AB+, C- in Experiment 1 and A+, AB+, C-, CB- in Experiment 2) or one that required a…

  16. The Selectivity of Aversive Memory Reconsolidation and Extinction Processes Depends on the Initial Encoding of the Pavlovian Association

    ERIC Educational Resources Information Center

    Debiec, Jacek; Diaz-Mataix, Lorenzo; Bush, David E. A.; Doyère, Valérie; LeDoux, Joseph E.

    2013-01-01

    In reconsolidation studies, memories are typically retrieved by an exposure to a single conditioned stimulus (CS). We have previously demonstrated that reconsolidation processes are CS-selective, suggesting that memories retrieved by the CS exposure are discrete and reconsolidate separately. Here, using a compound stimulus in which two distinct…

  17. Effects of select and reject control on equivalence class formation and transfer of function.

    PubMed

    Perez, William F; Tomanari, Gerson Y; Vaidya, Manish

    2015-09-01

    The present study used a single-subject design to evaluate the effects of select or reject control on equivalence class formation and transfer of function. Adults were exposed to a matching-to-sample task with observing requirements (MTS-OR) in order to bias the establishment of sample/S+ (select) or sample/S- (reject) relations. In Experiment 1, four sets of baseline conditional relations were taught-two under reject control (A1B2C1, A2B1C2) and two under select control (D1E1F1, D2E2F2). Participants were tested for transitivity, symmetry, equivalence and reflexivity. They also learned a simple discrimination involving one of the stimuli from the equivalence classes and were tested for the transfer of the discriminative function. In general, participants performed with high accuracy on all equivalence-related probes as well as the transfer of function probes under select control. Under reject control, participants had high scores only on the symmetry test; transfer of function was attributed to stimuli programmed as S-. In Experiment 2, the equivalence class under reject control was expanded to four members (A1B2C1D2; A2B1C2D1). Participants had high scores only on symmetry and on transitivity and equivalence tests involving two nodes. Transfer of function was extended to the programmed S- added to each class. Results from both experiments suggest that select and reject controls might differently affect the formation of equivalence classes and the transfer of stimulus functions. © Society for the Experimental Analysis of Behavior.

  18. Temporal expectancy in the context of a theory of visual attention

    PubMed Central

    Vangkilde, Signe; Petersen, Anders; Bundesen, Claus

    2013-01-01

    Temporal expectation is expectation with respect to the timing of an event such as the appearance of a certain stimulus. In this paper, temporal expectancy is investigated in the context of the theory of visual attention (TVA), and we begin by summarizing the foundations of this theoretical framework. Next, we present a parametric experiment exploring the effects of temporal expectation on perceptual processing speed in cued single-stimulus letter recognition with unspeeded motor responses. The length of the cue–stimulus foreperiod was exponentially distributed with one of six hazard rates varying between blocks. We hypothesized that this manipulation would result in a distinct temporal expectation in each hazard rate condition. Stimulus exposures were varied such that both the temporal threshold of conscious perception (t0 ms) and the perceptual processing speed (v letters s−1) could be estimated using TVA. We found that the temporal threshold t0 was unaffected by temporal expectation, but the perceptual processing speed v was a strikingly linear function of the logarithm of the hazard rate of the stimulus presentation. We argue that the effects on the v values were generated by changes in perceptual biases, suggesting that our perceptual biases are directly related to our temporal expectations. PMID:24018716

  19. Electrophysiological indices of brain activity to content and function words in discourse.

    PubMed

    Neumann, Yael; Epstein, Baila; Shafer, Valerie L

    2016-09-01

    An increase in positivity of event-related potentials (ERPs) at the lateral anterior sites has been hypothesized to be an index of semantic and discourse processing, with the right lateral anterior positivity (LAP) showing particular sensitivity to discourse factors. However, the research investigating the LAP is limited; it is unclear whether the effect is driven by word class (function word versus content word) or by a more general process of structure building triggered by elements of a determiner phrase (DP). To examine the neurophysiological indices of semantic/discourse integration using two different word categories (function versus content word) in the discourse contexts and to contrast processing of these word categories in meaningful versus nonsense contexts. Planned comparisons of ERPs time locked to a function word stimulus 'the' and a content word stimulus 'cats' in sentence-initial position were conducted in both discourse and nonsense contexts to examine the time course of processing following these word forms. A repeated-measures analysis of variance (ANOVA) for the Discourse context revealed a significant interaction of condition and site due to greater positivity for 'the' relative to 'cats' at anterior and superior sites. In the Nonsense context, there was a significant interaction of condition, time and site due to greater positivity for 'the' relative to 'cats' at anterior sites from 150 to 350 ms post-stimulus offset and at superior sites from 150 to 200 ms post-stimulus offset. Overall, greater positivity for both 'the' and 'cats' was observed in the discourse relative to the nonsense context beginning approximately 150 ms post-stimulus offset. Additionally, topographical analyses were highly correlated for the two word categories when processing meaningful discourse. This topographical pattern could be characterized as a prominent right LAP. The LAP was attenuated when the target stimulus word initiated a nonsense context. The results of this study support the view that the right LAP is an index of general discourse processing rather than an index of word class. These findings demonstrate that the LAP can be used to study discourse processing in populations with compromised metalinguistic skills, such as adults with aphasia or traumatic brain injury. © 2016 Royal College of Speech and Language Therapists.

  20. Short-term memory for event duration: modality specificity and goal dependency.

    PubMed

    Takahashi, Kohske; Watanabe, Katsumi

    2012-11-01

    Time perception is involved in various cognitive functions. This study investigated the characteristics of short-term memory for event duration by examining how the length of the retention period affects inter- and intramodal duration judgment. On each trial, a sample stimulus was followed by a comparison stimulus, after a variable delay period (0.5-5 s). The sample and comparison stimuli were presented in the visual or auditory modality. The participants determined whether the comparison stimulus was longer or shorter than the sample stimulus. The distortion pattern of subjective duration during the delay period depended on the sensory modality of the comparison stimulus but was not affected by that of the sample stimulus. When the comparison stimulus was visually presented, the retained duration of the sample stimulus was shortened as the delay period increased. Contrarily, when the comparison stimulus was presented in the auditory modality, the delay period had little to no effect on the retained duration. Furthermore, whenever the participants did not know the sensory modality of the comparison stimulus beforehand, the effect of the delay period disappeared. These results suggest that the memory process for event duration is specific to sensory modality and that its performance is determined depending on the sensory modality in which the retained duration will be used subsequently.

  1. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs.

    PubMed

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-07-22

    Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli.Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  2. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    PubMed Central

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-01-01

    Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal. PMID:18647397

  3. On the use of continuous flash suppression for the study of visual processing outside of awareness

    PubMed Central

    Yang, Eunice; Brascamp, Jan; Kang, Min-Suk; Blake, Randolph

    2014-01-01

    The interocular suppression technique termed continuous flash suppression (CFS) has become an immensely popular tool for investigating visual processing outside of awareness. The emerging picture from studies using CFS is that extensive processing of a visual stimulus, including its semantic and affective content, occurs despite suppression from awareness of that stimulus by CFS. However, the current implementation of CFS in many studies examining processing outside of awareness has several drawbacks that may be improved upon for future studies using CFS. In this paper, we address some of those shortcomings, particularly ones that affect the assessment of unawareness during CFS, and ones to do with the use of “visible” conditions that are often included as a comparison to a CFS condition. We also discuss potential biases in stimulus processing as a result of spatial attention and feature-selective suppression. We suggest practical guidelines that minimize the effects of those limitations in using CFS to study visual processing outside of awareness. PMID:25071685

  4. Priming processes in the Simon task: more evidence from the lexical decision task for a third route in the Simon effect.

    PubMed

    Metzker, Manja; Dreisbach, Gesine

    2011-06-01

    Recently, it was proposed that the Simon effect would result not only from two interfering processes, as classical dual-route models assume, but from three processes. It was argued that priming from the spatial code to the nonspatial code might facilitate the identification of the nonspatial stimulus feature in congruent Simon trials. In the present study, the authors provide evidence that the identification of the nonspatial information can be facilitated by the activation of an associated spatial code. In three experiments, participants first associated centrally presented animal and fruit pictures with spatial responses. Subsequently, participants decided whether laterally presented letter strings were words (animal, fruit, or other words) or nonwords; stimulus position could be congruent or incongruent to the associated spatial code. As hypothesized, animal and fruit words were identified faster at congruent than at incongruent stimulus positions from the association phase. The authors conclude that the activation of the spatial code spreads to the nonspatial code, resulting in facilitated stimulus identification in congruent trials. These results speak to the assumption of a third process involved in the Simon task.

  5. Genuine eye contact elicits self-referential processing.

    PubMed

    Hietanen, Jonne O; Hietanen, Jari K

    2017-05-01

    The effect of eye contact on self-awareness was investigated with implicit measures based on the use of first-person singular pronouns in sentences. The measures were proposed to tap into self-referential processing, that is, information processing associated with self-awareness. In addition, participants filled in a questionnaire measuring explicit self-awareness. In Experiment 1, the stimulus was a video clip showing another person and, in Experiment 2, the stimulus was a live person. In both experiments, participants were divided into two groups and presented with the stimulus person either making eye contact or gazing downward, depending on the group assignment. During the task, the gaze stimulus was presented before each trial of the pronoun-selection task. Eye contact was found to increase the use of first-person pronouns, but only when participants were facing a real person, not when they were looking at a video of a person. No difference in self-reported self-awareness was found between the two gaze direction groups in either experiment. The results indicate that eye contact elicits self-referential processing, but the effect may be stronger, or possibly limited to, live interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Age-related differences in reaction time task performance in young children.

    PubMed

    Kiselev, Sergey; Espy, Kimberly Andrews; Sheffield, Tiffany

    2009-02-01

    Performance of reaction time (RT) tasks was investigated in young children and adults to test the hypothesis that age-related differences in processing speed supersede a "global" mechanism and are a function of specific differences in task demands and processing requirements. The sample consisted of 54 4-year-olds, 53 5-year-olds, 59 6-year-olds, and 35 adults from Russia. Using the regression approach pioneered by Brinley and the transformation method proposed by Madden and colleagues and Ridderinkhoff and van der Molen, age-related differences in processing speed differed among RT tasks with varying demands. In particular, RTs differed between children and adults on tasks that required response suppression, discrimination of color or spatial orientation, reversal of contingencies of previously learned stimulus-response rules, and greater stimulus-response complexity. Relative costs of these RT task differences were larger than predicted by the global difference hypothesis except for response suppression. Among young children, age-related differences larger than predicted by the global difference hypothesis were evident when tasks required color or spatial orientation discrimination and stimulus-response rule complexity, but not for response suppression or reversal of stimulus-response contingencies. Process-specific, age-related differences in processing speed that support heterochronicity of brain development during childhood were revealed.

  7. Decomposing decision components in the Stop-signal task: A model-based approach to individual differences in inhibitory control

    PubMed Central

    White, Corey N.; Congdon, Eliza; Mumford, Jeanette A.; Karlsgodt, Katherine H.; Sabb, Fred W.; Freimer, Nelson B.; London, Edythe D.; Cannon, Tyrone D.; Bilder, Robert M.; Poldrack, Russell A.

    2014-01-01

    The Stop-signal task (SST), in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision-making, a drift diffusion model of simple decisions was fitted to SST data from Go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the Go stimulus correlated with greater activation in the right frontal pole for both Go and Stop trials. On Stop trials stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and basal ganglia. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control, and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology. PMID:24405185

  8. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study

    PubMed Central

    2012-01-01

    Background Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of the Anterior Cingulate Cortex (ACC), is related to stimulus- or to response-conflict processing. EMG provided paradigm-independent measure of response conflict. In a numerical Stroop paradigm participants compared pairs of digits and pressed a button on the side where they saw the larger digit. 50% of digit-pairs were preceded by an effective cue which provided accurate information about the required response. 50% of trials were preceded by a neutral cue which did not communicate the side of response. Results EMG showed that response conflict was significantly larger in neutrally than in effectively cued trials. The N450 was similar when response conflict was high and when it was low. Conclusions We conclude that the N450 is related to stimulus or abstract, rather than to response conflict detection/resolution. Findings may enable timing ACC conflict effects. PMID:22452924

  9. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study.

    PubMed

    Szűcs, Dénes; Soltész, Fruzsina

    2012-03-27

    Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of the Anterior Cingulate Cortex (ACC), is related to stimulus- or to response-conflict processing. EMG provided paradigm-independent measure of response conflict. In a numerical Stroop paradigm participants compared pairs of digits and pressed a button on the side where they saw the larger digit. 50% of digit-pairs were preceded by an effective cue which provided accurate information about the required response. 50% of trials were preceded by a neutral cue which did not communicate the side of response. EMG showed that response conflict was significantly larger in neutrally than in effectively cued trials. The N450 was similar when response conflict was high and when it was low. We conclude that the N450 is related to stimulus or abstract, rather than to response conflict detection/resolution. Findings may enable timing ACC conflict effects.

  10. Modeling depth from motion parallax with the motion/pursuit ratio

    PubMed Central

    Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith

    2014-01-01

    The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926

  11. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus.

    PubMed

    Burke, M R; Barnes, G R

    2008-12-15

    We used passive and active following of a predictable smooth pursuit stimulus in order to establish if predictive eye movement responses are equivalent under both passive and active conditions. The smooth pursuit stimulus was presented in pairs that were either 'predictable' in which both presentations were matched in timing and velocity, or 'randomized' in which each presentation in the pair was varied in both timing and velocity. A visual cue signaled the type of response required from the subject; a green cue indicated the subject should follow both the target presentations (Go-Go), a pink cue indicated that the subject should passively observe the 1st target and follow the 2nd target (NoGo-Go), and finally a green cue with a black cross revealed a randomized (Rnd) trial in which the subject should follow both presentations. The results revealed better prediction in the Go-Go trials than in the NoGo-Go trials, as indicated by higher anticipatory velocity and earlier eye movement onset (latency). We conclude that velocity and timing information stored from passive observation of a moving target is diminished when compared to active following of the target. This study has significant consequences for understanding how visuomotor memory is generated, stored and subsequently released from short-term memory.

  12. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation.

    PubMed

    Tapia, Evelina; Beck, Diane M

    2014-01-01

    A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness.

  13. The Impact of Attention on Judgments of Frequency and Duration

    PubMed Central

    Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter

    2015-01-01

    Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested. PMID:26000712

  14. The impact of attention on judgments of frequency and duration.

    PubMed

    Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter

    2015-01-01

    Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested.

  15. Abstract feature codes: The building blocks of the implicit learning system.

    PubMed

    Eberhardt, Katharina; Esser, Sarah; Haider, Hilde

    2017-07-01

    According to the Theory of Event Coding (TEC; Hommel, Müsseler, Aschersleben, & Prinz, 2001), action and perception are represented in a shared format in the cognitive system by means of feature codes. In implicit sequence learning research, it is still common to make a conceptual difference between independent motor and perceptual sequences. This supposedly independent learning takes place in encapsulated modules (Keele, Ivry, Mayr, Hazeltine, & Heuer 2003) that process information along single dimensions. These dimensions have remained underspecified so far. It is especially not clear whether stimulus and response characteristics are processed in separate modules. Here, we suggest that feature dimensions as they are described in the TEC should be viewed as the basic content of modules of implicit learning. This means that the modules process all stimulus and response information related to certain feature dimensions of the perceptual environment. In 3 experiments, we investigated by means of a serial reaction time task the nature of the basic units of implicit learning. As a test case, we used stimulus location sequence learning. The results show that a stimulus location sequence and a response location sequence cannot be learned without interference (Experiment 2) unless one of the sequences can be coded via an alternative, nonspatial dimension (Experiment 3). These results support the notion that spatial location is one module of the implicit learning system and, consequently, that there are no separate processing units for stimulus versus response locations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Differential modulation of visual object processing in dorsal and ventral stream by stimulus visibility.

    PubMed

    Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido

    2016-10-01

    As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Overlearned responses hinder S-R binding.

    PubMed

    Moeller, Birte; Frings, Christian

    2017-01-01

    Two mechanisms that are important for human action control are the integration of individual action plans (see Hommel, Müsseler, Aschersleben, & Prinz, 2001) and the automatization of overlearned actions to familiar stimuli (see Logan, 1988). In the present study, we analyzed the influence of automatization on action plan integration. Integration with pronunciation responses were compared for response incompatible word and nonword stimuli. Stimulus-response binding effects were observed for nonwords. In contrast, words that automatically triggered an overlearned pronunciation response were not integrated with pronunciation of a different word. That is, automatized response retrieval hindered binding effects regarding the retrieving stimulus and a new response. The results are a first indication of the way that binding and learning processes interact, and might also be a first step to understanding the more complex interdependency of the processes responsible for stimulus-response binding in action control and stimulus-response associations in learning research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Unconscious and conscious processing of negative emotions examined through affective priming.

    PubMed

    Okubo, Chisa; Ogawa, Toshiki

    2013-04-01

    This study investigated unconscious and conscious processes by which negative emotions arise. Participants (26 men, 47 women; M age = 20.3 yr.) evaluated target words that were primed with subliminally or supraliminally presented emotional pictures. Stimulus onset asynchrony was either 200 or 800 msec. With subliminal presentations, reaction times to negative targets were longer than reaction times to positive targets after negative primes for the 200-msec. stimulus onset asynchrony. Reaction times to positive targets after negative or positive primes were shorter when the stimulus onset asynchrony was 800 msec. For supraliminal presentations, reaction times were longer when evaluating targets that followed emotionally opposite primes. When emotional stimuli were consciously distinguished, the evoked emotional states might lead to emotional conflicts, although the qualitatively different effects might be caused when subliminally presented emotion evoking stimulus was appraised unconsciously; that possibility was discussed.

  19. Edges, colour and awareness in blindsight.

    PubMed

    Alexander, Iona; Cowey, Alan

    2010-06-01

    It remains unclear what is being processed in blindsight in response to faces, colours, shapes, and patterns. This was investigated in two hemianopes with chromatic and achromatic stimuli with sharp or shallow luminance or chromatic contrast boundaries or temporal onsets. Performance was excellent only when stimuli had sharp spatial boundaries. When discrimination between isoluminant coloured Gaussians was good it declined to chance levels if stimulus onset was slow. The ability to discriminate between instantaneously presented colours in the hemianopic field depended on their luminance, indicating that wavelength discrimination totally independent of other stimulus qualities is absent. When presented with narrow-band colours the hemianopes detected a stimulus maximally effective for S-cones but invisible to M- and L-cones, indicating that blindsight is mediated not just by the mid-brain, which receives no S-cone input, or that the rods contribute to blindsight. The results show that only simple stimulus features are processed in blindsight. 2010 Elsevier Inc. All rights reserved.

  20. Neurophysiology of pain.

    PubMed

    Aguggia, M

    2003-05-01

    The transmission of pain-related information from the periphery to the cortex depends on signal integration at three levels of the nervous system: the spinal medulla, brainstem and telencephalon. In fulfilling its task of safeguarding human health, pain may develop as a result of damaged or altered primary afferent neurons (stimulus-dependent) or arise spontaneously without any apparent causal stimulus (stimulus-independent). Hyperalgesia (i.e. an exaggerated perception of pain after a painful stimulus) is due to an anomaly in the processing of nociceptive inputs in the central and peripheral nervous systems leading to the activation of the primary afferents by stimuli other than the usual stimuli.

  1. [Effects of an implicit internal working model on attachment in information processing assessed using Go/No-Go Association Task].

    PubMed

    Fujii, Tsutomu; Uebuchi, Hisashi; Yamada, Kotono; Saito, Masahiro; Ito, Eriko; Tonegawa, Akiko; Uebuchi, Marie

    2015-06-01

    The purposes of the present study were (a) to use both a relational-anxiety Go/No-Go Association Task (GNAT) and an avoidance-of-intimacy GNAT in order to assess an implicit Internal Working Model (IWM) of attachment; (b) to verify the effects of both measured implicit relational anxiety and implicit avoidance of intimacy on information processing. The implicit IWM measured by GNAT differed from the explicit IWM measured by questionnaires in terms of the effects on information processing. In particular, in subliminal priming tasks involving with others, implicit avoidance of intimacy predicted accelerated response times with negative stimulus words about attachment. Moreover, after subliminally priming stimulus words about self, implicit relational anxiety predicted delayed response times with negative stimulus words about attachment.

  2. Desktop publishing and validation of custom near visual acuity charts.

    PubMed

    Marran, Lynn; Liu, Lei; Lau, George

    2008-11-01

    Customized visual acuity (VA) assessment is an important part of basic and clinical vision research. Desktop computer based distance VA measurements have been utilized, and shown to be accurate and reliable, but computer based near VA measurements have not been attempted, mainly due to the limited spatial resolution of computer monitors. In this paper, we demonstrate how to use desktop publishing to create printed custom near VA charts. We created a set of six near VA charts in a logarithmic progression, 20/20 through 20/63, with multiple lines of the same acuity level, different letter arrangements in each line and a random noise background. This design allowed repeated measures of subjective accommodative amplitude without the potential artifact of familiarity of the optotypes. The background maintained a constant and spatial frequency rich peripheral stimulus for accommodation across the six different acuity levels. The paper describes in detail how pixel-wise accurate black and white bitmaps of Sloan optotypes were used to create the printed custom VA charts. At all acuity levels, the physical sizes of the printed custom optotypes deviated no more than 0.034 log units from that of the standard, satisfying the 0.05 log unit ISO criterion we used to demonstrate physical equivalence. Also, at all acuity levels, log unit differences in the mean target distance for which reliable recognition of letters first occurred for the printed custom optotypes compared to the standard were found to be below 0.05, satisfying the 0.05 log unit ISO criterion we used to demonstrate functional equivalence. It is possible to use desktop publishing to create custom near VA charts that are physically and functionally equivalent to standard VA charts produced by a commercial printing process.

  3. Graded effects in hierarchical figure-ground organization: reply to Peterson (1999).

    PubMed

    Vecera, S P; O'Reilly, R C

    2000-06-01

    An important issue in vision research concerns the order of visual processing. S. P. Vecera and R. C. O'Reilly (1998) presented an interactive, hierarchical model that placed figure-ground segregation prior to object recognition. M. A. Peterson (1999) critiqued this model, arguing that because it used ambiguous stimulus displays, figure-ground processing did not precede object processing. In the current article, the authors respond to Peterson's (1999) interpretation of ambiguity in the model and her interpretation of what it means for figure-ground processing to come before object recognition. The authors argue that complete stimulus ambiguity is not critical to the model and that figure-ground precedes object recognition architecturally in the model. The arguments are supported with additional simulation results and an experiment, demonstrating that top-down inputs can influence figure-ground organization in displays that contain stimulus cues.

  4. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  5. Source memory that encoding was self-referential: the influence of stimulus characteristics

    PubMed Central

    Durbin, Kelly A.; Mitchell, Karen J.; Johnson, Marcia K.

    2017-01-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one’s self-schema, and that depends, in part, on the stimulus’ valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation. PMID:28276984

  6. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation.

    PubMed

    Satterfield, Brieann C; Hinson, John M; Whitney, Paul; Schmidt, Michelle A; Wisor, Jonathan P; Van Dongen, Hans P A

    2018-02-01

    Adaptive decision making is profoundly impaired by total sleep deprivation (TSD). This suggests that TSD impacts fronto-striatal pathways involved in cognitive control, where dopamine is a key neuromodulator. In the prefrontal cortex (PFC), dopamine is catabolized by the enzyme catechol-O-methyltransferase (COMT). A functional polymorphism (Val158Met) influences COMT's enzymatic activity, resulting in markedly different levels of prefrontal dopamine. We investigated the effect of this polymorphism on adaptive decision making during TSD. Sixty-six healthy young adults participated in one of two in-laboratory studies. After a baseline day, subjects were randomized to either a TSD group (n = 32) with 38 h or 62 h of extended wakefulness or a well-rested control group (n = 34) with 10 h nighttime sleep opportunities. Subjects performed a go/no-go reversal learning (GNGr) task at well-rested baseline and again during TSD or equivalent control. During the task, subjects were required to learn stimulus-response relationships from accuracy feedback. The stimulus-response relationships were reversed halfway through the task, which required subjects to learn the new stimulus-response relationships from accuracy feedback. Performance on the GNGr task was quantified by discriminability (d') between go and no-go stimuli before and after the stimulus-response reversal. GNGr performance did not differ between COMT genotypes when subjects were well-rested. However, TSD exposed a significant vulnerability to adaptive decision making impairment in subjects with the Val allele. Our results indicate that sleep deprivation degrades cognitive control through a fronto-striatal, dopaminergic mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Critical and maximally informative encoding between neural populations in the retina

    PubMed Central

    Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.

    2015-01-01

    Computation in the brain involves multiple types of neurons, yet the organizing principles for how these neurons work together remain unclear. Information theory has offered explanations for how different types of neurons can maximize the transmitted information by encoding different stimulus features. However, recent experiments indicate that separate neuronal types exist that encode the same filtered version of the stimulus, but then the different cell types signal the presence of that stimulus feature with different thresholds. Here we show that the emergence of these neuronal types can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation (SD) of noise affecting neural responses. The average noise across the neural population plays the role of temperature in the classic theory of phase transitions, whereas the SD is equivalent to pressure or magnetic field, in the case of liquid–gas and magnetic transitions, respectively. Our results account for properties of two recently discovered types of salamander Off retinal ganglion cells, as well as the absence of multiple types of On cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid–gas critical point and described by the nearest-neighbor Ising model in three dimensions. By operating near a critical point, neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. PMID:25675497

  8. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.

    PubMed

    Chan, S A; Smith, C

    2001-12-15

    1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.

  9. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells

    PubMed Central

    Chan, Shyue-An; Smith, Corey

    2001-01-01

    Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761

  10. Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparities

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.; Stone, Leland S.

    2004-01-01

    The role of two binocular cues to motion in depth-changing disparity (CD) and interocular velocity difference (IOVD)- was investigated by measuring stereomotion speed discrimination and static disparity discrimination performance (stereoacuity). Speed discrimination thresholds were assessed both for random dot stereograms (RDS), and for their temporally uncorrelated equivalents, dynamic random dot stereograms (DRDS), at relative disparity pedestals of -19, 0, and +19 arcmin. While RDS stimuli contain both CD and IOVD cues, DRDS stimuli carry only CD information. On average, thresholds were a factor of 1.7 higher for DRDS than for RDS stimuli with no clear effect of relative disparity pedestal. Results were similar for approaching and receding targets. Variations in stimulus duration had no significant effect on thresholds, and there was no observed correlation between stimulus displacement and perceived speed, confirming that subjects responded to stimulus speed in each condition. Stereoacuity was equally good for our RDS and DRDS stimuli, showing that the difference in stereomotion speed discrimination performance for these stimuli was not due to any difference in the precision of the disparity cue. In addition, when we altered stereomotion stimulus trajectory by independently manipulating the speeds and directions of its monocular half-images, perceived stereomotion speed remained accurate. This finding is inconsistent with response strategies based on properties of either monocular half-image motion, or any ad hoc combination of the monocular speeds. We conclude that although subjects are able to discriminate stereomotion speed reliably on the basis of CD information alone, IOVD provides a precise additional cue to stereomotion speed perception.

  11. Solid shape discrimination from vision and haptics: natural objects (Capsicum annuum) and Gibson's "feelies".

    PubMed

    Norman, J Farley; Phillips, Flip; Holmin, Jessica S; Norman, Hideko F; Beers, Amanda M; Boswell, Alexandria M; Cheeseman, Jacob R; Stethen, Angela G; Ronning, Cecilia

    2012-10-01

    A set of three experiments evaluated 96 participants' ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson's "feelies" and a set of naturally shaped objects--bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants' visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539-543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.

  12. The price of fame: the impact of stimulus familiarity on proactive interference resolution.

    PubMed

    Prabhakaran, Ranjani; Thompson-Schill, Sharon L

    2011-04-01

    Interference from previously learned information, known as proactive interference (PI), limits our memory retrieval abilities. Previous studies of PI resolution have focused on the role of short-term familiarity, or recency, in causing PI. In the present study, we investigated the impact of long-term stimulus familiarity on PI resolution processes. In two behavioral experiments and one event-related fMRI experiment, long-term familiarity was manipulated through the use of famous and nonfamous stimuli, and short-term familiarity was manipulated through the use of recent and nonrecent probe items in an item recognition task. The right middle frontal gyrus demonstrated greater sensitivity to famous stimuli, suggesting that long-term stimulus familiarity plays a role in influencing PI resolution processes. Further examination of the effect of long-term stimulus familiarity on PI resolution revealed a larger behavioral interference effect for famous stimuli, but only under speeded response conditions. Thus, models of memory retrieval--and of the cognitive control mechanisms that guide retrieval processes--should consider the impact of and interactions among sources of familiarity on multiple time scales.

  13. Effects of aging, word frequency, and text stimulus quality on reading across the adult lifespan: Evidence from eye movements.

    PubMed

    Warrington, Kayleigh L; McGowan, Victoria A; Paterson, Kevin B; White, Sarah J

    2018-04-19

    Reductions in stimulus quality may disrupt the reading performance of older adults more when compared with young adults because of sensory declines that begin early in middle age. However, few studies have investigated adult age differences in the effects of stimulus quality on reading, and none have examined how this affects lexical processing and eye movement control. Accordingly, we report two experiments that examine the effects of reduced stimulus quality on the eye movements of young (18-24 years), middle-aged (41-51 years), and older (65+ years) adult readers. In Experiment 1, participants read sentences that contained a high- or low-frequency critical word and that were presented normally or with contrast reduced so that words appeared faint. Experiment 2 further investigated effects of reduced stimulus quality using a gaze-contingent technique to present upcoming text normally or with contrast reduced. Typical patterns of age-related reading difficulty (e.g., slower reading, more regressions) were observed in both experiments. In addition, eye movements were disrupted more for older than younger adults when all text (Experiment 1) or just upcoming text (Experiment 2) appeared faint. Moreover, there was an interaction between stimulus quality and word frequency (Experiment 1), such that readers fixated faint low-frequency words for disproportionately longer. Crucially, this effect was similar across all age groups. Thus, although older readers suffer more from reduced stimulus quality, this additional difficulty primarily affects their visual processing of text. These findings have important implications for understanding the role of stimulus quality on reading behavior across the lifespan. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. A model of smoldering combustion applied to flexible polyurethane foams

    NASA Technical Reports Server (NTRS)

    Ohlemiller, T. J.; Rogers, F.; Bellan, J.

    1979-01-01

    Smoldering combustion, particularly in upholstery and bedding materials, has been proven a serious life hazard. The simplest representation of this hazard situation is one-dimensional downward propagation of a smolder wave against a buoyant upflow (cocurrent smolder); the configuration treated here is identical in all respects to this except for the presence of a forced flow replacing the buoyant one. The complex degradation chemistry of the polyurethanes is here reduced to the two major overall reactions of char formation and char oxidation. The model solutions, which are in reasonable agreement with experimental results, show the smolder process to be oxygen-limited, which leads to some very simple trends. More subtle behavior aspects determine actual propagation velocity, fraction of fuel consumed, and apparent equivalence ratio (all of which are variable). The self-insulating character of the smolder wave makes it viable in a wide-ranging set of conditions if the igniting stimulus is sufficiently long. These results have significant implications regarding the problem of smolder prevention or hindrance.

  15. Bone loss during long term space flight is prevented by the application of a short term impulsive mechanical stimulus

    NASA Astrophysics Data System (ADS)

    Goodship, A. E.; Cunningham, J. L.; Oganov, V.; Darling, J.; Miles, A. W.; Owen, G. W.

    In long term space flight, the mechanical forces applied to the skeleton are substantially reduced and are altered in character. This reduced skeletal loading results in a reduction in bone mass. Exercise techmques currently used in space can maintain muscle mass but the mechanical stimulus provided by this exercise does not prevent bone loss. By applying an external impulsive load for a short period each day, which is intended to mimic the heel strike transient, to the lower limb of an astronaut during a long term space flight (5 months), this study tests the hypothesis that the bone cells can be activated by an appropriate external mechanical stimulus to maintain bone mass throughout prolonged periods of weightlessness. A mechanical loading device was developed to produce a loading of the os-calcis similar to that observed during the heel strike transient. The device is activated by the astronaut to provide a transient load to the heel of one leg whilst providing an equivalent exercising load to the other leg. During the EUROMIR95 mission on the MIR space station, an astronaut used this device for a short period daily throughout the duration of the mission. Pre- and post-flight measurements of bone mineral density (BMD) of the os-calcis and femoral neck of the astronaut were made to determine the efficacy of the device in preventing loss of bone mineral during the mission. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical Stimulation does not produce a positive effect. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical stimulation does not produce a positive effect.

  16. Does attention speed up processing? Decreases and increases of processing rates in visual prior entry.

    PubMed

    Tünnermann, Jan; Petersen, Anders; Scharlau, Ingrid

    2015-03-02

    Selective visual attention improves performance in many tasks. Among others, it leads to "prior entry"--earlier perception of an attended compared to an unattended stimulus. Whether this phenomenon is purely based on an increase of the processing rate of the attended stimulus or if a decrease in the processing rate of the unattended stimulus also contributes to the effect is, up to now, unanswered. Here we describe a novel approach to this question based on Bundesen's Theory of Visual Attention, which we use to overcome the limitations of earlier prior-entry assessment with temporal order judgments (TOJs) that only allow relative statements regarding the processing speed of attended and unattended stimuli. Prevalent models of prior entry in TOJs either indirectly predict a pure acceleration or cannot model the difference between acceleration and deceleration. In a paradigm that combines a letter-identification task with TOJs, we show that indeed acceleration of the attended and deceleration of the unattended stimuli conjointly cause prior entry. © 2015 ARVO.

  17. Automatic processing of pragmatic information in the human brain: a mismatch negativity study.

    PubMed

    Zhao, Ming; Liu, Tao; Chen, Feiyan

    2018-05-23

    Language comprehension involves pragmatic information processing, which allows world knowledge to influence the interpretation of a sentence. This study explored whether pragmatic information can be automatically processed during spoken sentence comprehension. The experiment adopted the mismatch negativity (MMN) paradigm to capture the neurophysiological indicators of automatic processing of spoken sentences. Pragmatically incorrect ('Foxes have wings') and correct ('Butterflies have wings') sentences were used as the experimental stimuli. In condition 1, the pragmatically correct sentence was the deviant and the pragmatically incorrect sentence was the standard stimulus, whereas the opposite case was presented in condition 2. The experimental results showed that, compared with the condition that the pragmatically correct sentence is the deviant stimulus, when the condition that the pragmatically incorrect sentence is the deviant stimulus MMN effects were induced within 60-120 and 220-260 ms. The results indicated that the human brain can monitor for incorrect pragmatic information in the inattentive state and can automatically process pragmatic information at the beginning of spoken sentence comprehension.

  18. Closed head injury and perceptual processing in dual-task situations.

    PubMed

    Hein, G; Schubert, T; von Cramon, D Y

    2005-01-01

    Using a classical psychological refractory period (PRP) paradigm we investigated whether increased interference between dual-task input processes is one possible source of dual-task deficits in patients with closed-head injury (CHI). Patients and age-matched controls were asked to give speeded motor reactions to an auditory and a visual stimulus. The perceptual difficulty of the visual stimulus was manipulated by varying its intensity. The results of Experiment 1 showed that CHI patients suffer from increased interference between dual-task input processes, which is related to the salience of the visual stimulus. A second experiment indicated that this input interference may be specific to brain damage following CHI. It is not evident in other groups of neurological patients like Parkinson's disease patients. We conclude that the non-interfering processing of input stages in dual-tasks requires cognitive control. A decline in the control of input processes should be considered as one source of dual-task deficits in CHI patients.

  19. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d) mean interaural phases. 4. All cells responding to a dynamically changing stimulus exhibited a linear relationship between mean interaural phase and beat frequency. Most cells responded equally well to binaural beats regardless of the initial direction of phase change. For a fixed duration stimulus, and at relatively low fb, the number of spikes evoked increased with increasing fb, reflecting the increasing number of effective stimulus cycles. At higher fb, AI neurons were unable to follow the rate at which the most effective phase repeated itself during the 3 s of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Eccentricity effects in vision and attention.

    PubMed

    Staugaard, Camilla Funch; Petersen, Anders; Vangkilde, Signe

    2016-11-01

    Stimulus eccentricity affects visual processing in multiple ways. Performance on a visual task is often better when target stimuli are presented near or at the fovea compared to the retinal periphery. For instance, reaction times and error rates are often reported to increase with increasing eccentricity. Such findings have been interpreted as purely visual, reflecting neurophysiological differences in central and peripheral vision, as well as attentional, reflecting a central bias in the allocation of attentional resources. Other findings indicate that in some cases, information from the periphery is preferentially processed. Specifically, it has been suggested that visual processing speed increases with increasing stimulus eccentricity, and that this positive correlation is reduced, but not eliminated, when the amount of cortex activated by a stimulus is kept constant by magnifying peripheral stimuli (Carrasco et al., 2003). In this study, we investigated effects of eccentricity on visual attentional capacity with and without magnification, using computational modeling based on Bundesen's (1990) theory of visual attention. Our results suggest a general decrease in attentional capacity with increasing stimulus eccentricity, irrespective of magnification. We discuss these results in relation to the physiology of the visual system, the use of different paradigms for investigating visual perception across the visual field, and the use of different stimulus materials (e.g. Gabor patches vs. letters). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Sequential Processing and the Matching-Stimulus Interval Effect in ERP Components: An Exploration of the Mechanism Using Multiple Regression

    PubMed Central

    Steiner, Genevieve Z.; Barry, Robert J.; Gonsalvez, Craig J.

    2016-01-01

    In oddball tasks, increasing the time between stimuli within a particular condition (target-to-target interval, TTI; nontarget-to-nontarget interval, NNI) systematically enhances N1, P2, and P300 event-related potential (ERP) component amplitudes. This study examined the mechanism underpinning these effects in ERP components recorded from 28 adults who completed a conventional three-tone oddball task. Bivariate correlations, partial correlations and multiple regression explored component changes due to preceding ERP component amplitudes and intervals found within the stimulus series, rather than constraining the task with experimentally constructed intervals, which has been adequately explored in prior studies. Multiple regression showed that for targets, N1 and TTI predicted N2, TTI predicted P3a and P3b, and Processing Negativity (PN), P3b, and TTI predicted reaction time. For rare nontargets, P1 predicted N1, NNI predicted N2, and N1 predicted Slow Wave (SW). Findings show that the mechanism is operating on separate stages of stimulus-processing, suggestive of either increased activation within a number of stimulus-specific pathways, or very long component generator recovery cycles. These results demonstrate the extent to which matching-stimulus intervals influence ERP component amplitudes and behavior in a three-tone oddball task, and should be taken into account when designing similar studies. PMID:27445774

  2. Sequential Processing and the Matching-Stimulus Interval Effect in ERP Components: An Exploration of the Mechanism Using Multiple Regression.

    PubMed

    Steiner, Genevieve Z; Barry, Robert J; Gonsalvez, Craig J

    2016-01-01

    In oddball tasks, increasing the time between stimuli within a particular condition (target-to-target interval, TTI; nontarget-to-nontarget interval, NNI) systematically enhances N1, P2, and P300 event-related potential (ERP) component amplitudes. This study examined the mechanism underpinning these effects in ERP components recorded from 28 adults who completed a conventional three-tone oddball task. Bivariate correlations, partial correlations and multiple regression explored component changes due to preceding ERP component amplitudes and intervals found within the stimulus series, rather than constraining the task with experimentally constructed intervals, which has been adequately explored in prior studies. Multiple regression showed that for targets, N1 and TTI predicted N2, TTI predicted P3a and P3b, and Processing Negativity (PN), P3b, and TTI predicted reaction time. For rare nontargets, P1 predicted N1, NNI predicted N2, and N1 predicted Slow Wave (SW). Findings show that the mechanism is operating on separate stages of stimulus-processing, suggestive of either increased activation within a number of stimulus-specific pathways, or very long component generator recovery cycles. These results demonstrate the extent to which matching-stimulus intervals influence ERP component amplitudes and behavior in a three-tone oddball task, and should be taken into account when designing similar studies.

  3. Electrophysiological correlates of preparation and implementation for different types of task shifts.

    PubMed

    Hsieh, Shulan; Wu, Mengyao

    2011-11-14

    The ability to flexibly shift between tasks is central to cognitive control, but whether the same brain mechanisms mediate shifting across different tasks is unknown. In this study, we investigated whether variations in stimulus-dimensions or response-mapping might influence task switching in terms of its preparatory processes, as reflected in cue-locked event-related potentials (ERPs), and its implementation processes, as reflected in stimulus-locked ERPs. Participants judged pairs of digits as same or different in one of two conditions. In one condition, the task-relevant stimulus-dimension was either repeated or switched across trials while the response-mapping rule was kept constant. In the other condition, the task-relevant stimulus-dimension was kept constant while the response-mapping rule was repeated or switched across trials. The length of the preparatory interval was manipulated. Data revealed switch-related preparatory ERP components (including N2 and a late slow positivity) that were associated with both types of task shifting and an N400-like negativity that distinguished between the two types. Several switch-related implementation ERP components associated with both types of task shifting were found at posterior sites. Distinct frontal modulations of the N1, P2, and N2 were found to associate with the implementation of the response-mapping shift, whereas a slow positivity was associated with the implementation of the stimulus-dimension shift. Therefore, this study demonstrates that there are shared and distinct processes across different types of task shifting. Finally, because the same transition-cue was used for different task shifts, the distinct processes cannot be explained simply by differences in cue processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effects of aging and involuntary capture of attention on event-related potentials associated with the processing of and the response to a target stimulus

    PubMed Central

    Cid-Fernández, Susana; Lindín, Mónica; Díaz, Fernando

    2014-01-01

    The main aim of the present study was to assess whether aging modulates the effects of involuntary capture of attention by novel stimuli on performance, and on event-related potentials (ERPs) associated with target processing (N2b and P3b) and subsequent response processes (stimulus-locked Lateralized Readiness Potential -sLRP- and response-locked Lateralized Readiness Potential -rLRP-). An auditory-visual distraction-attention task was performed by 77 healthy participants, divided into three age groups (Young: 21–29, Middle-aged: 51–64, Old: 65–84 years old). Participants were asked to attend to visual stimuli and to ignore auditory stimuli. Aging was associated with slowed reaction times, target stimulus processing in working memory (WM, longer N2b and P3b latencies) and selection and preparation of the motor response (longer sLRP and earlier rLRP onset latencies). In the novel relative to the standard condition we observed, in the three age groups: (1) a distraction effect, reflected in a slowing of reaction times, of stimuli categorization in WM (longer P3b latency), and of motor response selection (longer sLRP onset latency); (2) a facilitation effect on response preparation (later rLRP onset latency), and (3) an increase in arousal (larger amplitudes of all ERPs evaluated, except for N2b amplitude in the Old group). A distraction effect on the stimulus evaluation processes (longer N2b latency) were also observed, but only in middle-aged and old participants, indicating that the attentional capture slows the stimulus evaluation in WM from early ages (from 50 years onwards, without differences between middle-age and older adults), but not in young adults. PMID:25294999

  5. Stimulus Processing and Associative Learning in Wistar and WKHA Rats

    PubMed Central

    Chess, Amy C.; Keene, Christopher S.; Wyzik, Elizabeth C.; Bucci, David J.

    2007-01-01

    This study assessed basic learning and attention abilities in WKHA (Wistar-Kyoto Hyperactive) rats using appetitive conditioning preparations. Two measures of conditioned responding to a visual stimulus, orienting behavior (rearing on the hindlegs) and food cup behavior (placing the head inside the recessed food cup) were measured. In Experiment 1, simple conditioning but not extinction was impaired in WKHA rats compared to Wistar rats. In Experiment 2, non-reinforced presentations of the visual cue preceded the conditioning sessions. WKHA rats displayed less orienting behavior than Wistar rats, but comparable levels of food cup behavior. These data suggest that WKHA rats exhibit specific abnormalities in attentional processing as well as learning stimulus-reward relationships. PMID:15998198

  6. Post-conflict slowing: cognitive adaptation after conflict processing.

    PubMed

    Verguts, Tom; Notebaert, Wim; Kunde, Wilfried; Wühr, Peter

    2011-02-01

    The aftereffects of error and conflict (i.e., stimulus or response incongruency) have been extensively studied in the cognitive control literature. Each has been characterized by its own behavioral signature on the following trial. Conflict leads to a reduced congruency effect (Gratton effect), whereas an error leads to increased response time (post-error slowing). The reason for this dissociation has remained unclear. Here, we show that post-conflict slowing is not typically observed because it is masked by the processing of the irrelevant stimulus dimension. We demonstrate that post-conflict slowing does occur when tested in pure trials where helpful or detrimental impacts from irrelevant stimulus dimensions are removed (i.e., univalent stimuli).

  7. Prediction of truly random future events using analysis of prestimulus electroencephalographic data

    NASA Astrophysics Data System (ADS)

    Baumgart, Stephen L.; Franklin, Michael S.; Jimbo, Hiroumi K.; Su, Sharon J.; Schooler, Jonathan

    2017-05-01

    Our hypothesis is that pre-stimulus physiological data can be used to predict truly random events tied to perceptual stimuli (e.g., lights and sounds). Our experiment presents light and sound stimuli to a passive human subject while recording electrocortical potentials using a 32-channel Electroencephalography (EEG) system. For every trial a quantum random number generator (qRNG) chooses from three possible selections with equal probability: a light stimulus, a sound stimulus, and no stimulus. Time epochs are defined preceding and post-ceding each stimulus for which mean average potentials were computed across all trials for the three possible stimulus types. Data from three regions of the brain are examined. In all three regions mean potential for light stimuli was generally enhanced relative to baseline during the period starting approximately 2 seconds before the stimulus. For sound stimuli, mean potential decreased relative to baseline during the period starting approximately 2 seconds before the stimulus. These changes from baseline may indicated the presence of evoked potentials arising from the stimulus. A P200 peak was observed in data recorded from frontal electrodes. The P200 is a well-known potential arising from the brain's processing of visual stimuli and its presence represents a replication of a known neurological phenomenon.

  8. Evaluative conditioning may incur attentional costs.

    PubMed

    Pleyers, Gordy; Corneille, Olivier; Yzerbyt, Vincent; Luminet, Olivier

    2009-04-01

    Evaluative conditioning (EC) refers to changes in the liking of an affectively neutral stimulus (conditioned stimulus, or CS) after pairing this stimulus with an affect-laden stimulus (unconditioned stimulus, or US). Several authors proposed that EC incurs little or no attentional cost. Using a rigorous design, we provide evidence that a reduction in attentional resources may have a negative impact on EC. Additional analyses also revealed that participants correctly encoded fewer CS-US pairings when their attentional resources were depleted. Replicating Pleyers, Corneille, Luminet, and Yzerbyt's (2007) findings, EC was also obtained only for CSs that could be correctly linked to their associated US in the context of an identification task. This research clarifies the role of higher order processes in EC and has significant practical implications. Copyright (c) 2009 APA, all rights reserved.

  9. Approach-Avoidance Training Effects Are Moderated by Awareness of Stimulus-Action Contingencies.

    PubMed

    Van Dessel, Pieter; De Houwer, Jan; Gast, Anne

    2016-01-01

    Prior research suggests that repeatedly approaching or avoiding a stimulus changes the liking of that stimulus. In two experiments, we investigated the relationship between, on one hand, effects of approach-avoidance (AA) training on implicit and explicit evaluations of novel faces and, on the other hand, contingency awareness as indexed by participants' memory for the relation between stimulus and action. We observed stronger effects for faces that were classified as contingency aware and found no evidence that AA training caused changes in stimulus evaluations in the absence of contingency awareness. These findings challenge the standard view that AA training effects are (exclusively) the product of implicit learning processes, such as the automatic formation of associations in memory. © 2015 by the Society for Personality and Social Psychology, Inc.

  10. Size matters: Perceived depth magnitude varies with stimulus height.

    PubMed

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2016-06-01

    Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity. We used three estimation techniques: a virtual ruler, a touch-sensor (for haptic estimates) and a disparity probe. We found that depth estimates were significantly larger for the bar stimuli than for the disc stimuli for all methods of estimation and different configurations. In a second experiment, we measured perceived depth as a function of the height of the bar and the radius of the disc. Perceived depth increased with increasing bar height and disc radius suggesting that disparity is integrated along the vertical edges. We discuss size-disparity correlation and inter-neural excitatory connections as potential mechanisms that could account for these results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Allocentrically implied target locations are updated in an eye-centred reference frame.

    PubMed

    Thompson, Aidan A; Glover, Christopher V; Henriques, Denise Y P

    2012-04-18

    When reaching to remembered target locations following an intervening eye movement a systematic pattern of error is found indicating eye-centred updating of visuospatial memory. Here we investigated if implicit targets, defined only by allocentric visual cues, are also updated in an eye-centred reference frame as explicit targets are. Participants viewed vertical bars separated by varying distances, and horizontal lines of equivalently varying lengths, implying a "target" location at the midpoint of the stimulus. After determining the implied "target" location from only the allocentric stimuli provided, participants saccaded to an eccentric location, and reached to the remembered "target" location. Irrespective of the type of stimulus reaching errors to these implicit targets are gaze-dependent, and do not differ from those found when reaching to remembered explicit targets. Implicit target locations are coded and updated as a function of relative gaze direction with respect to those implied locations just as explicit targets are, even though no target is specifically represented. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Larger Stimuli Require Longer Processing Time for Perception.

    PubMed

    Kanai, Ryota; Dalmaijer, Edwin S; Sherman, Maxine T; Kawakita, Genji; Paffen, Chris L E

    2017-05-01

    The time it takes for a stimulus to reach awareness is often assessed by measuring reaction times (RTs) or by a temporal order judgement (TOJ) task in which perceived timing is compared against a reference stimulus. Dissociations of RT and TOJ have been reported earlier in which increases in stimulus intensity such as luminance intensity results in a decrease of RT, whereas perceived perceptual latency in a TOJ task is affected to a lesser degree. Here, we report that a simple manipulation of stimulus size has stronger effects on perceptual latency measured by TOJ than on motor latency measured by RT tasks. When participants were asked to respond to the appearance of a simple stimulus such as a luminance blob, the perceptual latency measured against a standard reference stimulus was up to 40 ms longer for a larger stimulus. In other words, the smaller stimulus was perceived to occur earlier than the larger one. RT on the other hand was hardly affected by size. The TOJ results were further replicated in a simultaneity judgement task, suggesting that the effects of size are not due to TOJ-specific response biases but more likely reflect an effect on perceived timing.

  13. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    PubMed Central

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  14. The dynamic-stimulus advantage of visual symmetry perception.

    PubMed

    Niimi, Ryosuke; Watanabe, Katsumi; Yokosawa, Kazuhiko

    2008-09-01

    It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2-4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.

  15. On framing effects in decision making: linking lateral versus medial orbitofrontal cortex activation to choice outcome processing.

    PubMed

    Windmann, Sabine; Kirsch, Peter; Mier, Daniela; Stark, Rudolf; Walter, Bertram; Güntürkün, Onur; Vaitl, Dieter

    2006-07-01

    Two correlates of outcome processing in the orbitofrontal cortex (OFC) have been proposed in the literature: One hypothesis suggests that the lateral/medial division relates to representation of outcome valence (negative vs. positive), and the other suggests that the medial OFC maintains steady stimulus-outcome associations, whereas the lateral OFC represents changing (unsteady) outcomes to prepare for response shifts. These two hypotheses were contrasted by comparing the original with the inverted version of the Iowa Gambling Task in an event-related functional magnetic resonance imaging experiment. Results showed (1) that (caudo) lateral OFC was indeed sensitive to the steadiness of the outcomes and not merely to outcome valence and (2) that the original and the inverted tasks, although both designed to measure sensitivity for future outcomes, were not equivalent as they enacted different behaviors and brain activation patterns. Results are interpreted in terms of Kahneman and Tversky's prospect theory suggesting that cognitions and decisions are biased differentially when probabilistic future rewards are weighed against consistent punishments relative to the opposite scenario [Kahneman, D., & Tversky, A. Choices, values, and frames. American Psychologist, 39, 341-350, 1984]. Specialized processing of unsteady rewards (involving caudolateral OFC) may have developed during evolution in support of goal-related thinking, prospective planning, and problem solving.

  16. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect.

    PubMed

    Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa

    2009-08-04

    In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory traces, which match to stimulus-stimulus connection and stimulus-response connection. This is the first study to suggest that classical conditioning in insects involves, as does classical conditioning in higher vertebrates, the formation of stimulus-stimulus connection and its activation for memory recall, which are often called cognitive processes.

  17. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation

    PubMed Central

    Tapia, Evelina; Beck, Diane M.

    2014-01-01

    A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness. PMID:25374548

  18. Domain-Specific and Unspecific Reaction Times in Experienced Team Handball Goalkeepers and Novices.

    PubMed

    Helm, Fabian; Reiser, Mathias; Munzert, Jörn

    2016-01-01

    In our everyday environments, we are constantly having to adapt our behavior to changing conditions. Hence, processing information is a fundamental cognitive activity, especially the linking together of perceptual and action processes. In this context, expertise research in the sport domain has concentrated on arguing that superior processing performance is driven by an advantage to be found in anticipatory processes (see Williams et al., 2011, for a review). This has resulted in less attention being paid to the benefits coming from basic internal perceptual-motor processing. In general, research on reaction time (RT) indicates that practicing a RT task leads to an increase in processing speed (Mowbray and Rhoades, 1959; Rabbitt and Banerji, 1989). Against this background, the present study examined whether the speed of internal processing is dependent on or independent from domain-specific motor expertise in unpredictable stimulus-response tasks and in a double stimulus-response paradigm. Thirty male participants (15 team handball goalkeepers and 15 novices) performed domain-unspecific simple or choice stimulus-response (CSR) tasks as well as CSR tasks that were domain-specific only for goalkeepers. As expected, results showed significantly faster RTs for goalkeepers on domain-specific tasks, whereas novices' RTs were more frequently excessively long. However, differences between groups in the double stimulus-response paradigm were not significant. It is concluded that the reported expertise advantage might be due to recalling stored perceptual-motor representations for the domain-specific tasks, implying that experience with (practice of) a motor task explicitly enhances the internal processing of other related domain-specific tasks.

  19. Selective attention to affective value alters how the brain processes taste stimuli.

    PubMed

    Grabenhorst, Fabian; Rolls, Edmund T

    2008-02-01

    How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 M monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect-related vs. more sensory-related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.

  20. Toward the influence of temporal attention on the selection of targets in a visual search task: An ERP study.

    PubMed

    Rolke, Bettina; Festl, Freya; Seibold, Verena C

    2016-11-01

    We used ERPs to investigate whether temporal attention interacts with spatial attention and feature-based attention to enhance visual processing. We presented a visual search display containing one singleton stimulus among a set of homogenous distractors. Participants were asked to respond only to target singletons of a particular color and shape that were presented in an attended spatial position. We manipulated temporal attention by presenting a warning signal before each search display and varying the foreperiod (FP) between the warning signal and the search display in a blocked manner. We observed distinctive ERP effects of both spatial and temporal attention. The amplitudes for the N2pc, SPCN, and P3 were enhanced by spatial attention indicating a processing benefit of relevant stimulus features at the attended side. Temporal attention accelerated stimulus processing; this was indexed by an earlier onset of the N2pc component and a reduction in reaction times to targets. Most importantly, temporal attention did not interact with spatial attention or stimulus features to influence visual processing. Taken together, the results suggest that temporal attention fosters visual perceptual processing in a visual search task independently from spatial attention and feature-based attention; this provides support for the nonspecific enhancement hypothesis of temporal attention. © 2016 Society for Psychophysiological Research.

  1. Simultaneous chromatic and luminance human electroretinogram responses.

    PubMed

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-07-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.

  2. Local active information storage as a tool to understand distributed neural information processing

    PubMed Central

    Wibral, Michael; Lizier, Joseph T.; Vögler, Sebastian; Priesemann, Viola; Galuske, Ralf

    2013-01-01

    Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today's digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, definitions were given for the dynamics of these information processing operations on a local scale in space and time in a distributed system, and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure the space-time dynamics of local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding. PMID:24501593

  3. Seeing Objects as Faces Enhances Object Detection.

    PubMed

    Takahashi, Kohske; Watanabe, Katsumi

    2015-10-01

    The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.

  4. Seeing Objects as Faces Enhances Object Detection

    PubMed Central

    Watanabe, Katsumi

    2015-01-01

    The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness. PMID:27648219

  5. Changes in the magnitude of the eyeblink startle response during habituation of sexual arousal.

    PubMed

    Koukounas, E; Over, R

    2000-06-01

    Modulation of the startle response was used to examine emotional processing of sexual stimulation across trials within a session. Eyeblink startle was elicited by a probe (burst of intense white noise) presented intermittently while men were viewing an erotic film segment. Repeated display of the film segment resulted in a progressive decrease in sexual arousal. Habituation of sexual arousal was accompanied by a reduction over trials in the extent the men felt absorbed when viewing the erotic stimulus and by an increase over trials in the magnitude of the eyeblink startle response. Replacing the familiar stimulus by a novel erotic stimulus increased in sexual arousal and absorption and reduced startle (novelty effect), while dishabituation was evident for all three response measures when the familiar stimulus was reintroduced. This pattern of results indicates that with repeated presentation an erotic stimulus is experienced not only as less sexually arousing but also as less appetitive and absorbing. The question of whether habituation of sexual arousal is mediated by changes in attentional and affective processing over trials is discussed, as are clinical contexts in which eyeblink startle can be used in studying aspects of sexual functioning.

  6. Spatiotemporal integration for tactile localization during arm movements: a probabilistic approach.

    PubMed

    Maij, Femke; Wing, Alan M; Medendorp, W Pieter

    2013-12-01

    It has been shown that people make systematic errors in the localization of a brief tactile stimulus that is delivered to the index finger while they are making an arm movement. Here we modeled these spatial errors with a probabilistic approach, assuming that they follow from temporal uncertainty about the occurrence of the stimulus. In the model, this temporal uncertainty converts into a spatial likelihood about the external stimulus location, depending on arm velocity. We tested the prediction of the model that the localization errors depend on arm velocity. Participants (n = 8) were instructed to localize a tactile stimulus that was presented to their index finger while they were making either slow- or fast-targeted arm movements. Our results confirm the model's prediction that participants make larger localization errors when making faster arm movements. The model, which was used to fit the errors for both slow and fast arm movements simultaneously, accounted very well for all the characteristics of these data with temporal uncertainty in stimulus processing as the only free parameter. We conclude that spatial errors in dynamic tactile perception stem from the temporal precision with which tactile inputs are processed.

  7. Object form discontinuity facilitates displacement discrimination across saccades.

    PubMed

    Demeyer, Maarten; De Graef, Peter; Wagemans, Johan; Verfaillie, Karl

    2010-06-01

    Stimulus displacements coinciding with a saccadic eye movement are poorly detected by human observers. In recent years, converging evidence has shown that this phenomenon does not result from poor transsaccadic retention of presaccadic stimulus position information, but from the visual system's efforts to spatially align presaccadic and postsaccadic perception on the basis of visual landmarks. It is known that this process can be disrupted, and transsaccadic displacement detection performance can be improved, by briefly blanking the stimulus display during and immediately after the saccade. In the present study, we investigated whether this improvement could also follow from a discontinuity in the task-irrelevant form of the displaced stimulus. We observed this to be the case: Subjects more accurately identified the direction of intrasaccadic displacements when the displaced stimulus simultaneously changed form, compared to conditions without a form change. However, larger improvements were still observed under blanking conditions. In a second experiment, we show that facilitation induced by form changes and blanks can combine. We conclude that a strong assumption of visual stability underlies the suppression of transsaccadic change detection performance, the rejection of which generalizes from stimulus form to stimulus position.

  8. Human perceptual decision making: disentangling task onset and stimulus onset.

    PubMed

    Cardoso-Leite, Pedro; Waszak, Florian; Lepsien, Jöran

    2014-07-01

    The left dorsolateral prefrontal cortex (ldlPFC) has been highlighted as a key actor in human perceptual decision-making (PDM): It is theorized to support decision-formation independently of stimulus type or motor response. PDM studies however generally confound stimulus onset and task onset: when the to-be-recognized stimulus is presented, subjects know that a stimulus is shown and can set up processing resources-even when they do not know which stimulus is shown. We hypothesized that the ldlPFC might be involved in task preparation rather than decision-formation. To test this, we asked participants to report whether sequences of noisy images contained a face or a house within an experimental design that decorrelates stimulus and task onset. Decision-related processes should yield a sustained response during the task, whereas preparation-related areas should yield transient responses at its beginning. The results show that the brain activation pattern at task onset is strikingly similar to that observed in previous PDM studies. In particular, they contradict the idea that ldlPFC forms an abstract decision and suggest instead that its activation reflects preparation for the upcoming task. We further investigated the role of the fusiform face areas and parahippocampal place areas which are thought to be face and house detectors, respectively, that feed their signals to higher level decision areas. The response patterns within these areas suggest that this interpretation is unlikely and that the decisions about the presence of a face or a house in a noisy image might instead already be computed within these areas without requiring higher-order areas. Copyright © 2013 Wiley Periodicals, Inc.

  9. Pre-stimulus thalamic theta power predicts human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of aging and text-stimulus quality on the word-frequency effect during Chinese reading.

    PubMed

    Wang, Jingxin; Li, Lin; Li, Sha; Xie, Fang; Liversedge, Simon P; Paterson, Kevin B

    2018-06-01

    Age-related reading difficulty is well established for alphabetic languages. Compared to young adults (18-30 years), older adults (65+ years) read more slowly, make more and longer fixations, make more regressions, and produce larger word-frequency effects. However, whether similar effects are observed for nonalphabetic languages like Chinese remains to be determined. In particular, recent research has suggested Chinese readers experience age-related reading difficulty but do not produce age differences in the word-frequency effect. This might represent an important qualitative difference in aging effects, so we investigated this further by presenting young and older adult Chinese readers with sentences that included high- or low-frequency target words. Additionally, to test theories that suggest reductions in text-stimulus quality differentially affect lexical processing by adult age groups, we presented either the target words (Experiment 1) or all characters in sentences (Experiment 2) normally or with stimulus quality reduced. Analyses based on mean eye-movement parameters and distributional analyses of fixation times for target words showed typical age-related reading difficulty. We also observed age differences in the word-frequency effect, predominantly in the tails of fixation-time distributions, consistent with an aging effect on the processing of high- and low-frequency words. Reducing stimulus quality disrupted eye movements more for the older readers, but the influence of stimulus quality on the word-frequency effect did not differ across age groups. This suggests Chinese older readers' lexical processing is resilient to reductions in stimulus quality, perhaps due to greater experience recognizing words from impoverished visual input. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    PubMed

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.

  12. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.

    PubMed

    Gulbinaite, Rasa; van Viegen, Tara; Wieling, Martijn; Cohen, Michael X; VanRullen, Rufin

    2017-10-18

    Rhythmic visual stimulation ("flicker") is primarily used to "tag" processing of low-level visual and high-level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (∼10 Hz) oscillations during a selective visuospatial attention task. We recorded EEG from human participants (both genders) while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-frequency, and single-trial linear mixed-effects modeling, we demonstrate that 10 Hz flicker interfered with stimulus processing more on incongruent than congruent trials (high vs low selective attention demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect on task performance was more strongly predicted by EEG flicker responses during stimulus processing than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with reactive than proactive selective attention. These findings are consistent with our hypothesis that visual flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is determined by the correspondence between the exogenous flicker frequency and the endogenous brain rhythms. SIGNIFICANCE STATEMENT Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when selective attention demands were high, and was stronger during stimulus processing and response selection compared with the prestimulus anticipatory period. These findings provide novel evidence that frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when testing for frequency-specific cognitive effects of flicker. Copyright © 2017 the authors 0270-6474/17/3710173-12$15.00/0.

  13. Double dissociation of the anterior and posterior dorsomedial caudate-putamen in the acquisition and expression of associative learning with the nicotine stimulus.

    PubMed

    Charntikov, Sergios; Pittenger, Steven T; Swalve, Natashia; Li, Ming; Bevins, Rick A

    2017-07-15

    Tobacco use is the leading cause of preventable deaths worldwide. This habit is not only debilitating to individual users but also to those around them (second-hand smoking). Nicotine is the main addictive component of tobacco products and is a moderate stimulant and a mild reinforcer. Importantly, besides its unconditional effects, nicotine also has conditioned stimulus effects that may contribute to the tenacity of the smoking habit. Because the neurobiological substrates underlying these processes are virtually unexplored, the present study investigated the functional involvement of the dorsomedial caudate putamen (dmCPu) in learning processes with nicotine as an interoceptive stimulus. Rats were trained using the discriminated goal-tracking task where nicotine injections (0.4 mg/kg; SC), on some days, were paired with intermittent (36 per session) sucrose deliveries; sucrose was not available on interspersed saline days. Pre-training excitotoxic or post-training transient lesions of anterior or posterior dmCPu were used to elucidate the role of these areas in acquisition or expression of associative learning with nicotine stimulus. Pre-training lesion of p-dmCPu inhibited acquisition while post-training lesions of p-dmCPu attenuated the expression of associative learning with the nicotine stimulus. On the other hand, post-training lesions of a-dmCPu evoked nicotine-like responding following saline treatment indicating the role of this area in disinhibition of learned motor behaviors. These results, for the first time, show functionally distinct involvement of a- and p-dmCPu in various stages of associative learning using nicotine stimulus and provide an initial account of neural plasticity underlying these learning processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict

    PubMed Central

    van den Berg, Berry; Krebs, Ruth M.; Lorist, Monicque M.; Woldorff, Marty G.

    2015-01-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus-conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive-task performance. In this task the cue indicated whether or not the subject needed to prepare for an upcoming Stroop stimulus, and if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued-attention and cued-reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (CNV) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted faster versus slower response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across-subjects with the degree to which reward-prospect both facilitated overall task performance (faster RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263

  15. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    PubMed

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  16. Unconscious neural processing differs with method used to render stimuli invisible

    PubMed Central

    Fogelson, Sergey V.; Kohler, Peter J.; Miller, Kevin J.; Granger, Richard; Tse, Peter U.

    2014-01-01

    Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS) or chromatic flicker fusion (CFF). In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness. PMID:24982647

  17. Unconscious neural processing differs with method used to render stimuli invisible.

    PubMed

    Fogelson, Sergey V; Kohler, Peter J; Miller, Kevin J; Granger, Richard; Tse, Peter U

    2014-01-01

    Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS) or chromatic flicker fusion (CFF). In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness.

  18. Unintended Imitation in Nonword Repetition

    ERIC Educational Resources Information Center

    Kappes, Juliane; Baumgaertner, Annette; Peschke, Claudia; Ziegler, Wolfram

    2009-01-01

    Verbal repetition is conventionally considered to require motor-reproduction of only the phonologically relevant content of a perceived linguistic stimulus, while imitation of incidental acoustic properties of the stimulus is not an explicit part of this task. Exemplar-based theories of speech processing, however, would predict that imitation…

  19. The time course from gender categorization to gender-stereotype activation.

    PubMed

    Zhang, Xiaobin; Li, Qiong; Sun, Shan; Zuo, Bin

    2018-02-01

    Social categorization is the foundation of stereotype activation, and the process from social categorization to stereotype activation is rapid. However, the time from social categorization to stereotype activation is unknown. This study involves a real-time measurement of the time course of gender-stereotype activation beginning with gender categorization using event-related potential technology with a face as the priming stimulus. We found that 195 ms after a face stimulus was presented, brain waves stimulated by male or female gender categorization showed a clear separation, with male faces stimulating larger N200 waves. In addition, 475 ms after a face stimulus appeared or 280 ms after the gendercategorization process occurred, gender-stereotype-consistent and gender-stereotype-inconsistent stimuli were distinct, with gender-stereotype-inconsistent stimuli inducing larger N400 waves. These results indicate that during gender-stereotype activation by face perception, gender categorization occurs approximately 195 ms after seeing a face stimulus and a gender stereotype is activated at approximately 475 ms.

  20. The transfer of Crel contextual control (same, opposite, less than, more than) through equivalence relations.

    PubMed

    Perez, William F; Kovac, Roberta; Nico, Yara C; Caro, Daniel M; Fidalgo, Adriana P; Linares, Ila; de Almeida, João Henrique; de Rose, Júlio C

    2017-11-01

    According to Relational Frame Theory (RFT) C rel denotes a contextual stimulus that controls a particular type of relational response (sameness, opposition, comparative, temporal, hierarchical etc.) in a given situation. Previous studies suggest that contextual functions may be indirectly acquired via transfer of function. The present study investigated the transfer of C rel contextual control through equivalence relations. Experiment 1 evaluated the transfer of C rel contextual functions for relational responses based on sameness and opposition. Experiment 2 extended these findings by evaluating transfer of function using comparative C rel stimuli. Both experiments followed a similar sequence of phases. First, abstract forms were established as C rel stimuli via multiple exemplar training (Phase 1). The contextual cues were then applied to establish arbitrary relations among nonsense words and to test derived relations (Phase 2). After that, equivalence relations involving the original C rel stimuli and other abstract forms were trained and tested (Phase 3). Transfer of function was evaluated by replacing the directly established C rel stimuli with their equivalent stimuli in the former experimental tasks (Phases 1 and 2). Results from both experiments suggest that C rel contextual control may be extended via equivalence relations, allowing other arbitrarily related stimuli to indirectly acquire C rel functions and regulate behavior by evoking appropriate relational responses in the presence of both previously known and novel stimuli. © 2017 Society for the Experimental Analysis of Behavior.

  1. Neurophysiological Distinction between Schizophrenia and Schizoaffective Disorder

    PubMed Central

    Mathalon, Daniel H.; Hoffman, Ralph E.; Watson, Todd D.; Miller, Ryan M.; Roach, Brian J.; Ford, Judith M.

    2009-01-01

    Schizoaffective disorder (SA) is distinguished from schizophrenia (SZ) based on the presence of prominent mood symptoms over the illness course. Despite this clinical distinction, SA and SZ patients are often combined in research studies, in part because data supporting a distinct pathophysiological boundary between the disorders are lacking. Indeed, few studies have addressed whether neurobiological abnormalities associated with SZ, such as the widely replicated reduction and delay of the P300 event-related potential (ERP), are also present in SA. Scalp EEG was acquired from patients with DSM-IV SA (n = 15) or SZ (n = 22), as well as healthy controls (HC; n = 22) to assess the P300 elicited by infrequent target (15%) and task-irrelevant distractor (15%) stimuli in separate auditory and visual ”oddball” tasks. P300 amplitude was reduced and delayed in SZ, relative to HC, consistent with prior studies. These SZ abnormalities did not interact with stimulus type (target vs. task-irrelevant distractor) or modality (auditory vs. visual). Across sensory modality and stimulus type, SA patients exhibited normal P300 amplitudes (significantly larger than SZ patients and indistinguishable from HC). However, P300 latency and reaction time were both equivalently delayed in SZ and SA patients, relative to HC. P300 differences between SA and SZ patients could not be accounted for by variation in symptom severity, socio-economic status, education, or illness duration. Although both groups show similar deficits in processing speed, SA patients do not exhibit the P300 amplitude deficits evident in SZ, consistent with an underlying pathophysiological boundary between these disorders. PMID:20140266

  2. Patients with Parkinson's disease display a dopamine therapy related negative bias and an enlarged range in emotional responses to facial emotional stimuli.

    PubMed

    Lundqvist, Daniel; Svärd, Joakim; Michelgård Palmquist, Åsa; Fischer, Håkan; Svenningsson, Per

    2017-09-01

    The literature on emotional processing in Parkinson's disease (PD) patients shows mixed results. This may be because of various methodological and/or patient-related differences, such as failing to adjust for cognitive functioning, depression, and/or mood. In the current study, we tested PD patients and healthy controls (HCs) using emotional stimuli across a variety of tasks, including visual search, short-term memory (STM), categorical perception, and emotional stimulus rating. The PD and HC groups were matched on cognitive ability, depression, and mood. We also explored possible relationships between task results and antiparkinsonian treatment effects, as measured by levodopa equivalent dosages (LED), in the PD group. The results show that PD patients use a larger emotional range compared with HCs when reporting their impression of emotional faces on rated emotional valence, arousal, and potency. The results also show that dopaminergic therapy was correlated with stimulus rating results such that PD patients with higher LED scores rated negative faces as less arousing, less negative, and less powerful. Finally, results also show that PD patients display a general slowing effect in the visual search tasks compared with HCs, indicating overall slowed responses. There were no group differences observed in the STM or categorical perception tasks. Our results indicate a relationship between emotional responses, PD, and dopaminergic therapy, in which PD per se is associated with stronger emotional responses, whereas LED levels are negatively correlated with the strength of emotional responses. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Decoding stimulus features in primate somatosensory cortex during perceptual categorization

    PubMed Central

    Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo

    2015-01-01

    Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711

  4. Capturing attention is not that simple: different mechanisms for stimulus-driven and contingent capture.

    PubMed

    Liao, Hsin-I; Yeh, Su-Ling

    2013-11-01

    Attentional orienting can be involuntarily directed to task-irrelevant stimuli, but it remains unsolved whether such attentional capture is contingent on top-down settings or could be purely stimulus-driven. We propose that attentional capture depends on the stimulus property because transient and static features are processed differently; thus, they might be modulated differently by top-down controls. To test this hybrid account, we adopted a spatial cuing paradigm in which a noninformative onset or color cue preceded an onset or color target with various stimulus onset asynchronies (SOAs). Results showed that the onset cue captured attention regardless of target type at short-but not long-SOAs. In contrast, the color cue captured attention at short and long SOAs, but only with a color target. The overall pattern of results corroborates our hypothesis, suggesting that different mechanisms are at work for stimulus-driven capture (by onset) and contingent capture (by color). Stimulus-driven capture elicits reflexive involuntary orienting, and contingent capture elicits voluntary feature-based enhancement.

  5. Flexible categorization of relative stimulus strength by the optic tectum

    PubMed Central

    Mysore, Shreesh P.; Knudsen, Eric I.

    2011-01-01

    Categorization is the process by which the brain segregates continuously variable stimuli into discrete groups. We report that patterns of neural population activity in the owl optic tectum (OT) categorize stimuli based on their relative strengths into “strongest” versus “other”. The category boundary shifts adaptively to track changes in the absolute strength of the strongest stimulus. This population-wide categorization is mediated by the responses of a small subset of neurons. Our data constitute the first direct demonstration of an explicit categorization of stimuli by a neural network based on relative stimulus strength or salience. The finding of categorization by the population code relaxes constraints on the properties of downstream decoders that might read out the location of the strongest stimulus. These results indicate that the ensemble neural code in the OT could mediate bottom-up stimulus selection for gaze and attention, a form of stimulus categorization in which the category boundary often shifts within hundreds of milliseconds. PMID:21613487

  6. Stimulus Load and Oscillatory Activity in Higher Cortex

    PubMed Central

    Kornblith, Simon; Buschman, Timothy J.; Miller, Earl K.

    2016-01-01

    Exploring and exploiting a rich visual environment requires perceiving, attending, and remembering multiple objects simultaneously. Recent studies have suggested that this mental “juggling” of multiple objects may depend on oscillatory neural dynamics. We recorded local field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal cortex while monkeys maintained variable numbers of visual stimuli in working memory. Behavior suggested independent processing of stimuli in each hemifield. During stimulus presentation, higher-frequency power (50–100 Hz) increased with the number of stimuli (load) in the contralateral hemifield, whereas lower-frequency power (8–50 Hz) decreased with the total number of stimuli in both hemifields. During the memory delay, lower-frequency power increased with contralateral load. Load effects on higher frequencies during stimulus encoding and lower frequencies during the memory delay were stronger when neural activity also signaled the location of the stimuli. Like power, higher-frequency synchrony increased with load, but beta synchrony (16–30 Hz) showed the opposite effect, increasing when power decreased (stimulus presentation) and decreasing when power increased (memory delay). Our results suggest roles for lower-frequency oscillations in top-down processing and higher-frequency oscillations in bottom-up processing. PMID:26286916

  7. Conditioned pain modulation is minimally influenced by cognitive evaluation or imagery of the conditioning stimulus

    PubMed Central

    Bernaba, Mario; Johnson, Kevin A; Kong, Jiang-Ti; Mackey, Sean

    2014-01-01

    Purpose Conditioned pain modulation (CPM) is an experimental approach for probing endogenous analgesia by which one painful stimulus (the conditioning stimulus) may inhibit the perceived pain of a subsequent stimulus (the test stimulus). Animal studies suggest that CPM is mediated by a spino–bulbo–spinal loop using objective measures such as neuronal firing. In humans, pain ratings are often used as the end point. Because pain self-reports are subject to cognitive influences, we tested whether cognitive factors would impact on CPM results in healthy humans. Methods We conducted a within-subject, crossover study of healthy adults to determine the extent to which CPM is affected by 1) threatening and reassuring evaluation and 2) imagery alone of a cold conditioning stimulus. We used a heat stimulus individualized to 5/10 on a visual analog scale as the testing stimulus and computed the magnitude of CPM by subtracting the postconditioning rating from the baseline pain rating of the heat stimulus. Results We found that although evaluation can increase the pain rating of the conditioning stimulus, it did not significantly alter the magnitude of CPM. We also found that imagery of cold pain alone did not result in statistically significant CPM effect. Conclusion Our results suggest that CPM is primarily dependent on sensory input, and that the cortical processes of evaluation and imagery have little impact on CPM. These findings lend support for CPM as a useful tool for probing endogenous analgesia through subcortical mechanisms. PMID:25473310

  8. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.

    PubMed

    Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam

    2011-01-01

    One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

  9. Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention.

    PubMed

    Forschack, Norman; Nierhaus, Till; Müller, Matthias M; Villringer, Arno

    2017-07-19

    Attention filters and weights sensory information according to behavioral demands. Stimulus-related neural responses are increased for the attended stimulus. Does alpha-band activity mediate this effect and is it restricted to conscious sensory events (suprathreshold), or does it also extend to unconscious stimuli (subthreshold)? To address these questions, we recorded EEG in healthy male and female volunteers undergoing subthreshold and suprathreshold somatosensory electrical stimulation to the left or right index finger. The task was to detect stimulation at the randomly alternated cued index finger. Under attention, amplitudes of somatosensory evoked potentials increased 50-60 ms after stimulation (P1) for both suprathreshold and subthreshold events. Prestimulus amplitude of peri-Rolandic alpha, that is mu, showed an inverse relationship to P1 amplitude during attention compared to when the finger was unattended. Interestingly, intermediate and high amplitudes of mu rhythm were associated with the highest P1 amplitudes during attention and smallest P1 during lack of attention, that is, these levels of alpha rhythm seemed to optimally support the behavioral goal ("detect" stimuli at the cued finger while ignoring the other finger). Our results show that attention enhances neural processing for both suprathreshold and subthreshold stimuli and they highlight a rather complex interaction between attention, Rolandic alpha activity, and their effects on stimulus processing. SIGNIFICANCE STATEMENT Attention is crucial in prioritizing processing of relevant perceptible (suprathreshold) stimuli: it filters and weights sensory input. The present study investigates the controversially discussed question whether this attention effect extends to imperceptible (subthreshold) stimuli as well. We found noninvasive EEG signatures for attentional modulation of neural events following perceptible and imperceptible somatosensory stimulation in human participants. Specifically, stimulus processing for both kinds of stimulation, subthreshold and suprathreshold, is enhanced by attention. Interestingly, Rolandic alpha rhythm strength and its influence on stimulus processing are strikingly altered by attention most likely to optimally achieve the behavioral goal. Copyright © 2017 the authors 0270-6474/17/376983-12$15.00/0.

  10. Topographic brain mapping of emotion-related hemisphere asymmetries.

    PubMed

    Roschmann, R; Wittling, W

    1992-03-01

    The study used topographic brain mapping of visual evoked potentials to investigate emotion-related hemisphere asymmetries. The stimulus material consisted of color photographs of human faces, grouped into two emotion-related categories: normal faces (neutral stimuli) and faces deformed by dermatological diseases (emotional stimuli). The pictures were presented tachistoscopically to 20 adult right-handed subjects. Brain activity was recorded by 30 EEG electrodes with linked ears as reference. The waveforms were averaged separately with respect to each of the two stimulus conditions. Statistical analysis by means of significance probability mapping revealed significant differences between stimulus conditions for two periods of time, indicating right hemisphere superiority in emotion-related processing. The results are discussed in terms of a 2-stage-model of emotional processing in the cerebral hemispheres.

  11. Differential priming effects of color-opponent subliminal stimulation on visual magnetic responses.

    PubMed

    Hoshiyama, Minoru; Kakigi, Ryusuke; Takeshima, Yasuyuki; Miki, Kensaku; Watanabe, Shoko

    2006-10-01

    We investigated the effects of subliminal stimulation on visible stimulation to demonstrate the priority of facial discrimination processing, using a unique, indiscernible, color-opponent subliminal (COS) stimulation. We recorded event-related magnetic cortical fields (ERF) by magnetoencephalography (MEG) after the presentation of a face or flower stimulus with COS conditioning using a face, flower, random pattern, and blank. The COS stimulation enhanced the response to visible stimulation when the figure in the COS stimulation was identical to the target visible stimulus, but more so for the face than for the flower stimulus. The ERF component modulated by the COS stimulation was estimated to be located in the ventral temporal cortex. We speculated that the enhancement was caused by an interaction of the responses after subthreshold stimulation by the COS stimulation and the suprathreshold stimulation after target stimulation, such as in the processing for categorization or discrimination. We also speculated that the face was processed with priority at the level of the ventral temporal cortex during visual processing outside of consciousness.

  12. Social priming of hemispatial neglect affects spatial coding: Evidence from the Simon task.

    PubMed

    Arend, Isabel; Aisenberg, Daniela; Henik, Avishai

    2016-10-01

    In the Simon effect (SE), choice reactions are fast if the location of the stimulus and the response correspond when stimulus location is task-irrelevant; therefore, the SE reflects the automatic processing of space. Priming of social concepts was found to affect automatic processing in the Stroop effect. We investigated whether spatial coding measured by the SE can be affected by the observer's mental state. We used two social priming manipulations of impairments: one involving spatial processing - hemispatial neglect (HN) and another involving color perception - achromatopsia (ACHM). In two experiments the SE was reduced in the "neglected" visual field (VF) under the HN, but not under the ACHM manipulation. Our results show that spatial coding is sensitive to spatial representations that are not derived from task-relevant parameters, but from the observer's cognitive state. These findings dispute stimulus-response interference models grounded on the idea of the automaticity of spatial processing. Copyright © 2016. Published by Elsevier Inc.

  13. FROM CONCEPT TO EQUIVALENCY: GETTING YOUR INNOVATIVE SLUDGE DISINFECTION PROCESS CLASSIFIED AS A OR B IS NOW LESS OF A MYSTERY

    EPA Science Inventory

    The Pathogen Equivalency Committee has updated the criteria it uses to make recommendations of equivalency on innovative or alternative sludge pathogen reduction processes. To assist new applicants through the equivalency recommendation process the pathogen equivalency committee ...

  14. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  15. Modulation of additive and interactive effects in lexical decision by trial history.

    PubMed

    Masson, Michael E J; Kliegl, Reinhold

    2013-05-01

    Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model analyses applied to 2 lexical decision experiments indicating that apparent additive effects can be the product of aggregating over- and underadditive interaction effects that are modulated by recent trial history, particularly the lexical status and stimulus quality of the previous trial's target. Even a simple practice effect expressed as improved response speed across trials was powerfully modulated by the nature of the previous target item. These results suggest that additivity and interaction between factors may reflect trial-to-trial variation in stimulus representations and decision processes rather than fundamental differences in processing architecture.

  16. High-resolution eye tracking using V1 neuron activity

    PubMed Central

    McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.

    2014-01-01

    Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783

  17. What is extinguished in auditory extinction?

    PubMed

    Deouell, L Y; Soroker, N

    2000-09-11

    Extinction is a frequent sequel of brain damage, whereupon patients disregard (extinguish) a contralesional stimulus, and report only the more ipsilesional stimulus, of a pair of stimuli presented simultaneously. We investigated the possibility of a dissociation between the detection and the identification of extinguished phonemes. Fourteen right hemisphere damaged patients with severe auditory extinction were examined using a paradigm that separated the localization of stimuli and the identification of their phonetic content. Patients reported the identity of left-sided phonemes, while extinguishing them at the same time, in the traditional sense of the term. This dissociation suggests that auditory extinction is more about acknowledging the existence of a stimulus in the contralesional hemispace than about the actual processing of the stimulus.

  18. Reactive control processes contributing to residual switch cost and mixing cost across the adult lifespan.

    PubMed

    Whitson, Lisa R; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T; Heathcote, Andrew; Hsieh, Shulan

    2014-01-01

    In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these "mixed" repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility.

  19. Reactive control processes contributing to residual switch cost and mixing cost across the adult lifespan

    PubMed Central

    Whitson, Lisa R.; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T.; Heathcote, Andrew; Hsieh, Shulan

    2014-01-01

    In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these “mixed” repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility. PMID:24817859

  20. Signals, resistance to change, and conditioned reinforcement in a multiple schedule.

    PubMed

    Bell, Matthew C; Gomez, Belen E; Kessler, Kira

    2008-06-01

    The effect of signals on resistance to change was evaluated using pigeons responding on a three-component multiple schedule. Each component contained a variable-interval initial link followed by a fixed-time terminal link. One component was an unsignaled-delay schedule, and two were equivalent signaled-delay schedules. After baseline training, resistance to change was assessed through (a) extinction and (b) adding free food to the intercomponent interval. During these tests, the signal stimulus from one of the signaled-delay components (SIG-T) was replaced with the initial-link stimulus from that component, converting it to an unsignaled-delay schedule. That signal stimulus was added to the delay period of the unsignaled-delay component (UNS), converting it to a signaled-delay schedule. The remaining signaled component remained unchanged (SIG-C). Resistance-to-change tests showed removing the signal had a minimal effect on resistance to change in the SIG-T component compared to the unchanged SIG-C component except for one block during free-food testing. Adding the signal to the UNS component significantly increased response rates suggesting that component had low response strength. Interestingly, the direction of the effect was in the opposite direction from what is typically observed. Results are consistent with the conclusion that the signal functioned as a conditioned reinforcer and inconsistent with a generalization-decrement explanation.

  1. Information-Processing Correlates of Computer-Assisted Word Learning by Mentally Retarded Students.

    ERIC Educational Resources Information Center

    Conners, Frances A.; Detterman, Douglas K.

    1987-01-01

    Nineteen moderately/severely retarded students (ages 9-22) completed ten 15-minute computer-assisted instruction sessions and seven basic cognitive tasks measuring simple learning, choice reaction time, relearning, probed recall, stimulus discrimination, tachictoscopic threshold, and recognition memory. Stimulus discrimination, probed recall, and…

  2. Task by stimulus interactions in brain responses during Chinese character processing.

    PubMed

    Yang, Jianfeng; Wang, Xiaojuan; Shu, Hua; Zevin, Jason D

    2012-04-02

    In the visual word recognition literature, it is well understood that various stimulus effects interact with behavioral task. For example, effects of word frequency are exaggerated and effects of spelling-to-sound regularity are reduced in the lexical decision task, relative to reading aloud. Neuroimaging studies of reading often examine effects of task and stimulus properties on brain activity independently, but potential interactions between task demands and stimulus effects have not been extensively explored. To address this issue, we conducted lexical decision and symbol detection tasks using stimuli that varied parametrically in their word-likeness, and tested for task by stimulus class interactions. Interactions were found throughout the reading system, such that stimulus selectivity was observed during the lexical decision task, but not during the symbol detection task. Further, the pattern of stimulus selectivity was directly related to task difficulty, so that the strongest brain activity was observed to the most word-like stimuli that required "no" responses, whereas brain activity to words, which elicit rapid and accurate "yes" responses were relatively weak. This is in line with models that argue for task-dependent specialization of brain regions, and contrasts with the notion of task-independent stimulus selectivity in the reading system. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Distinct contributions of attention and working memory to visual statistical learning and ensemble processing.

    PubMed

    Hall, Michelle G; Mattingley, Jason B; Dux, Paul E

    2015-08-01

    The brain exploits redundancies in the environment to efficiently represent the complexity of the visual world. One example of this is ensemble processing, which provides a statistical summary of elements within a set (e.g., mean size). Another is statistical learning, which involves the encoding of stable spatial or temporal relationships between objects. It has been suggested that ensemble processing over arrays of oriented lines disrupts statistical learning of structure within the arrays (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). Here we asked whether ensemble processing and statistical learning are mutually incompatible, or whether this disruption might occur because ensemble processing encourages participants to process the stimulus arrays in a way that impedes statistical learning. In Experiment 1, we replicated Zhao and colleagues' finding that ensemble processing disrupts statistical learning. In Experiments 2 and 3, we found that statistical learning was unimpaired by ensemble processing when task demands necessitated (a) focal attention to individual items within the stimulus arrays and (b) the retention of individual items in working memory. Together, these results are consistent with an account suggesting that ensemble processing and statistical learning can operate over the same stimuli given appropriate stimulus processing demands during exposure to regularities. (c) 2015 APA, all rights reserved).

  4. Words and pictures: An electrophysiological investigation of domain specific processing in native Chinese and English speakers

    PubMed Central

    Yum, Yen Na; Holcomb, Phillip J.; Grainger, Jonathan

    2011-01-01

    Comparisons of word and picture processing using Event-Related Potentials (ERPs) are contaminated by gross physical differences between the two types of stimuli. In the present study, we tackle this problem by comparing picture processing with word processing in an alphabetic and a logographic script, that are also characterized by gross physical differences. Native Mandarin Chinese speakers viewed pictures (line drawings) and Chinese characters (Experiment 1), native English speakers viewed pictures and English words (Experiment 2), and naïve Chinese readers (native English speakers) viewed pictures and Chinese characters (Experiment 3) in a semantic categorization task. The varying pattern of differences in the ERPs elicited by pictures and words across the three experiments provided evidence for i) script-specific processing arising between 150–200 ms post-stimulus onset, ii) domain-specific but script-independent processing arising between 200–300 ms post-stimulus onset, and iii) processing that depended on stimulus meaningfulness in the N400 time window. The results are interpreted in terms of differences in the way visual features are mapped onto higher-level representations for pictures and words in alphabetic and logographic writing systems. PMID:21439991

  5. Common and distinct networks for self-referential and social stimulus processing in the human brain.

    PubMed

    Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix

    2016-09-01

    Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.

  6. Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features.

    PubMed

    Herrmann, C S; Mecklinger, A

    2000-12-01

    We examined evoked and induced responses in event-related fields and gamma activity in the magnetoencephalogram (MEG) during a visual classification task. The objective was to investigate the effects of target classification and the different levels of discrimination between certain stimulus features. We performed two experiments, which differed only in the subjects' task while the stimuli were identical. In Experiment 1, subjects responded by a button-press to rare Kanizsa squares (targets) among Kanizsa triangles and non-Kanizsa figures (standards). This task requires the processing of both stimulus features (colinearity and number of inducer disks). In Experiment 2, the four stimuli of Experiment 1 were used as standards and the occurrence of an additional stimulus without any feature overlap with the Kanizsa stimuli (a rare and highly salient red fixation cross) had to be detected. Discrimination of colinearity and number of inducer disks was not necessarily required for task performance. We applied a wavelet-based time-frequency analysis to the data and calculated topographical maps of the 40 Hz activity. The early evoked gamma activity (100-200 ms) in Experiment 1 was higher for targets as compared to standards. In Experiment 2, no significant differences were found in the gamma responses to the Kanizsa figures and non-Kanizsa figures. This pattern of results suggests that early evoked gamma activity in response to visual stimuli is affected by the targetness of a stimulus and the need to discriminate between the features of a stimulus.

  7. Contextual within-trial adaptation of cognitive control: Evidence from the combination of conflict tasks.

    PubMed

    Rey-Mermet, Alodie; Gade, Miriam

    2016-10-01

    It is assumed that we recruit cognitive control (i.e., attentional adjustment and/or inhibition) to resolve 2 conflicts at a time, such as driving toward a red traffic light and taking care of a near-by ambulance car. A few studies have addressed this issue by combining a Simon task (that required responding with left or right key-press to a stimulus presented on the left or right side of the screen) with either a Stroop task (that required identifying the color of color words) or a Flanker task (that required identifying the target character among flankers). In most studies, the results revealed no interaction between the conflict tasks. However, these studies include a small stimulus set, and participants might have learned the stimulus-response mappings for each stimulus. Thus, it is possible that participants have more relied on episodic memory than on cognitive control to perform the task. In 5 experiments, we combined the 3 tasks pairwise, and we increased the stimulus set size to circumvent episodic memory contributions. The results revealed an interaction between the conflict tasks: Irrespective of task combination, the congruency effect of 1 task was smaller when the stimulus was incongruent for the other task. This suggests that when 2 conflicts are presented concurrently, the control processes induced by 1 conflict source can affect the control processes induced by the other conflict source. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Preattentive binding of auditory and visual stimulus features.

    PubMed

    Winkler, István; Czigler, István; Sussman, Elyse; Horváth, János; Balázs, Lászlo

    2005-02-01

    We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or longterm retention of the feature-conjoined memory representations may require attentive processes.

  9. Attention to the Color of a Moving Stimulus Modulates Motion-Signal Processing in Macaque Area MT: Evidence for a Unified Attentional System.

    PubMed

    Katzner, Steffen; Busse, Laura; Treue, Stefan

    2009-01-01

    Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tuning properties of the recorded neuron and the perceptual task at hand. We recorded extracellular responses from individual direction-selective neurons in the middle temporal area (MT) of rhesus monkeys trained to attend either to the color or the motion signal of a moving stimulus. We found that effects of spatial and feature-based attention in MT, which are typically observed in tasks allocating attention to motion, were very similar even when attention was directed to the color of the stimulus. We conclude that attentional modulation can occur in extrastriate cortex, even under conditions without a match between the tuning properties of the recorded neuron and the perceptual task at hand. Our data are consistent with theories of object-based attention describing a transfer of attention from relevant to irrelevant features, within the attended object and across the visual field. These results argue for a unified attentional system that modulates responses to a stimulus across cortical areas, even if a given area is specialized for processing task-irrelevant aspects of that stimulus.

  10. Dynamic reweighting of three modalities for sensor fusion.

    PubMed

    Hwang, Sungjae; Agada, Peter; Kiemel, Tim; Jeka, John J

    2014-01-01

    We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ± 1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a "fixed" reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.

  11. Effects of Instructions and Stimulus Representation on Children's Selective Learning.

    ERIC Educational Resources Information Center

    Gottfried, Adele E.

    Developmental selective learning processes of elementary school age children were investigated using two types of incidental learning methodologies. The purposes of this study were to: (1) compare the effects of the two types of incidental learning paradigms, and (2) determine the influence of different kinds of stimulus relationships on…

  12. Environmental Inversion Effects in Face Perception

    ERIC Educational Resources Information Center

    Davidenko, Nicolas; Flusberg, Stephen J.

    2012-01-01

    Visual processing is highly sensitive to stimulus orientation; for example, face perception is drastically worse when faces are oriented inverted vs. upright. However, stimulus orientation must be established in relation to a particular reference frame, and in most studies, several reference frames are conflated. Which reference frame(s) matter in…

  13. About Turn: How Object Orientation Affects Categorisation and Mental Rotation

    ERIC Educational Resources Information Center

    Milivojevic, Branka; Hamm, Jeff P.; Corballis, Michael C.

    2011-01-01

    High-density ERPs evoked by rotated alphanumeric characters were examined to determine how neural processing is affected by stimulus orientation during letter/digit classifications and during mirror/normal discriminations. The former task typically produces response times that are unaffected by stimulus orientation while the latter is thought to…

  14. Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance.

    PubMed

    Wildegger, Theresa; Humphreys, Glyn; Nobre, Anna C

    2016-01-01

    Orienting attention retrospectively to selective contents in working memory (WM) influences performance. A separate line of research has shown that stimulus strength shapes perceptual representations. There is little research on how stimulus strength during encoding shapes WM performance, and how effects of retrospective orienting might vary with changes in stimulus strength. We explore these questions in three experiments using a continuous-recall WM task. In Experiment 1 we show that benefits of cueing spatial attention retrospectively during WM maintenance (retrocueing) varies according to stimulus contrast during encoding. Retrocueing effects emerge for supraliminal but not sub-threshold stimuli. However, once stimuli are supraliminal, performance is no longer influenced by stimulus contrast. In Experiments 2 and 3 we used a mixture-model approach to examine how different sources of error in WM are affected by contrast and retrocueing. For high-contrast stimuli (Experiment 2), retrocues increased the precision of successfully remembered items. For low-contrast stimuli (Experiment 3), retrocues decreased the probability of mistaking a target with distracters. These results suggest that the processes by which retrospective attentional orienting shape WM performance are dependent on the quality of WM representations, which in turn depends on stimulus strength during encoding.

  15. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    PubMed

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  16. Alterations to multisensory and unisensory integration by stimulus competition

    PubMed Central

    Rowland, Benjamin A.; Stanford, Terrence R.; Stein, Barry E.

    2011-01-01

    In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations. PMID:21957224

  17. Alterations to multisensory and unisensory integration by stimulus competition.

    PubMed

    Pluta, Scott R; Rowland, Benjamin A; Stanford, Terrence R; Stein, Barry E

    2011-12-01

    In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations.

  18. Factors Influencing Hemispheric Specialization.

    DTIC Science & Technology

    1982-05-01

    eyposuro -’va’ irsufficient to allow enoug7h depth of 2ros-in- t o occur ( Craik ^ Lockhart , 1972). The pres-nt *xrirrent .%Il to . the Fardyck et al... levels of processing theory offer another way of explaining these results. 14hen the stimulus is unfamiliar, contains no meanin7ful material, and is...et al. (1978) nor the levels of processing theory (1,"oscovitch et al., 1976) can explain the results obtained for the familiar type of stimulus

  19. The stimulus integration area for horizontal vergence.

    PubMed

    Allison, Robert S; Howard, Ian P; Fang, Xueping

    2004-06-01

    Over what region of space are horizontal disparities integrated to form the stimulus for vergence? The vergence system might be expected to respond to disparities within a small area of interest to bring them into the range of precise stereoscopic processing. However, the literature suggests that disparities are integrated over a fairly large parafoveal area. We report the results of six experiments designed to explore the spatial characteristics of the stimulus for vergence. Binocular eye movements were recorded using magnetic search coils. Each dichoptic display consisted of a central target stimulus that the subject attempted to fuse, and a competing stimulus with conflicting disparity. In some conditions the target was stationary, providing a fixation stimulus. In other conditions, the disparity of the target changed to provide a vergence-tracking stimulus. The target and competing stimulus were combined in a variety of conditions including those in which (1) a transparent textured-disc target was superimposed on a competing textured background, (2) a textured-disc target filled the centre of a competing annular background, and (3) a small target was presented within the centre of a competing annular background of various inner diameters. In some conditions the target and competing stimulus were separated in stereoscopic depth. The results are consistent with a disparity integration area with a diameter of about 5 degrees. Stimuli beyond this integration area can drive vergence in their own right, but they do not appear to be summed or averaged with a central stimulus to form a combined disparity signal. A competing stimulus had less effect on vergence when separated from the target by a disparity pedestal. As a result, we propose that it may be more useful to think in terms of an integration volume for vergence rather than a two-dimensional retinal integration area.

  20. Simultaneous chromatic and luminance human electroretinogram responses

    PubMed Central

    Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan

    2012-01-01

    The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211

  1. Visual perception and frontal lobe in intellectual disabilities: a study with evoked potentials and neuropsychology.

    PubMed

    Muñoz-Ruata, J; Caro-Martínez, E; Martínez Pérez, L; Borja, M

    2010-12-01

    Perception disorders are frequently observed in persons with intellectual disability (ID) and their influence on cognition has been discussed. The objective of this study is to clarify the mechanisms behind these alterations by analysing the visual event related potentials early component, the N1 wave, which is related to perception alterations in several pathologies. Additionally, the relationship between N1 and neuropsychological visual tests was studied with the aim to understand its functional significance in ID persons. A group of 69 subjects, with etiologically heterogeneous mild ID, performed an odd-ball task of active discrimination of geometric figures. N1a (frontal) and N1b (post-occipital) waves were obtained from the evoked potentials. They also performed several neuropsychological tests. Only component N1a, produced by the target stimulus, showed significant correlations with the visual integration, visual semantic association, visual analogical reasoning tests, Perceptual Reasoning Index (Wechsler Intelligence Scale for Children Fourth Edition) and intelligence quotient. The systematic correlations, produced by the target stimulus in perceptual abilities tasks, with the N1a (frontal) and not with N1b (posterior), suggest that the visual perception process involves frontal participation. These correlations support the idea that the N1a and N1b are not equivalent. The relationship between frontal functions and early stages of visual perception is revised and discussed, as well as the frontal contribution with the neuropsychological tests used. A possible relationship between the frontal activity dysfunction in ID and perceptive problems is suggested. Perceptive alteration observed in persons with ID could indeed be because of altered sensory areas, but also to a failure in the frontal participation of perceptive processes conceived as elaborations inside reverberant circuits of perception-action. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.

  2. The path to memory is guided by strategy: distinct networks are engaged in associative encoding under visual and verbal strategy and influence memory performance in healthy and impaired individuals

    PubMed Central

    Hales, J. B.; Brewer, J. B.

    2018-01-01

    Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus-types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus-type is held constant. In this study, subjects encoded object pairs using a visual or verbal associative strategy during functional magnetic resonance imaging (fMRI), and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle / superior frontal, lateral parietal, and lateral occipital for visually-associated pairs and inferior frontal, medial frontal, and medial occipital for verbally-associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy, and not simply by stimulus-type. The clinical relevance of these findings, probed in two patients with recent aphasic strokes, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage. PMID:22390467

  3. Task- and age-dependent effects of visual stimulus properties on children's explicit numerosity judgments.

    PubMed

    Defever, Emmy; Reynvoet, Bert; Gebuis, Titia

    2013-10-01

    Researchers investigating numerosity processing manipulate the visual stimulus properties (e.g., surface). This is done to control for the confound between numerosity and its visual properties and should allow the examination of pure number processes. Nevertheless, several studies have shown that, despite different visual controls, visual cues remained to exert their influence on numerosity judgments. This study, therefore, investigated whether the impact of the visual stimulus manipulations on numerosity judgments is dependent on the task at hand (comparison task vs. same-different task) and whether this impact changes throughout development. In addition, we examined whether the influence of visual stimulus manipulations on numerosity judgments plays a role in the relation between performance on numerosity tasks and mathematics achievement. Our findings confirmed that the visual stimulus manipulations affect numerosity judgments; more important, we found that these influences changed with increasing age and differed between the comparison and the same-different tasks. Consequently, direct comparisons between numerosity studies using different tasks and age groups are difficult. No meaningful relationship between the performance on the comparison and same-different tasks and mathematics achievement was found in typically developing children, nor did we find consistent differences between children with and without mathematical learning disability (MLD). Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Integration time for the perception of depth from motion parallax.

    PubMed

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Generalization of conditioned fear along a dimension of increasing fear intensity

    PubMed Central

    Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.

    2009-01-01

    The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two experimental groups underwent discriminative fear conditioning between a face stimulus of 55% fear intensity (conditioned stimulus, CS+), reinforced with an electric shock, and a second stimulus that was unreinforced (CS−). In Experiment 1 the CS− was a relatively neutral face stimulus, while in Experiment 2 the CS− was the most fear-intense stimulus. Before and following fear conditioning, skin conductance responses (SCR) were recorded to different morph values along the neutral-to-fear dimension. Both experimental groups showed gradients of generalization following fear conditioning that increased with the fear intensity of the stimulus. In Experiment 1 a peak shift in SCRs extended to the most fear-intense stimulus. In contrast, generalization to the most fear-intense stimulus was reduced in Experiment 2, suggesting that discriminative fear learning procedures can attenuate fear generalization. Together, the findings indicate that fear generalization is broadly tuned and sensitive to the amount of fear intensity in nonconditioned stimuli, but that fear generalization can come under stimulus control. These results reveal a novel form of fear generalization in humans that is not merely based on physical similarity to a conditioned exemplar, and may have implications for understanding generalization processes in anxiety disorders characterized by heightened sensitivity to nonthreatening stimuli. PMID:19553384

  6. Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus).

    PubMed Central

    Nelson, D E; Takahashi, J S

    1991-01-01

    1. Light-induced phase shifts of the circadian rhythm of wheel-running activity were used to measure the photic sensitivity of a circadian pacemaker and the visual pathway that conveys light information to it in the golden hamster (Mesocricetus auratus). The sensitivity to stimulus irradiance and duration was assessed by measuring the magnitude of phase-shift responses to photic stimuli of different irradiance and duration. The visual sensitivity was also measured at three different phases of the circadian rhythm. 2. The stimulus-response curves measured at different circadian phases suggest that the maximum phase-shift is the only aspect of visual responsivity to change as a function of the circadian day. The half-saturation constants (sigma) for the stimulus-response curves are not significantly different over the three circadian phases tested. The photic sensitivity to irradiance (1/sigma) appears to remain constant over the circadian day. 3. The hamster circadian pacemaker and the photoreceptive system that subserves it are more sensitive to the irradiance of longer-duration stimuli than to irradiance of briefer stimuli. The system is maximally sensitive to the irradiance of stimuli of 300 s and longer in duration. A quantitative model is presented to explain the changes that occur in the stimulus-response curves as a function of photic stimulus duration. 4. The threshold for photic stimulation of the hamster circadian pacemaker is also quite high. The threshold irradiance (the minimum irradiance necessary to induce statistically significant responses) is approximately 10(11) photons cm-2 s-1 for optimal stimulus durations. This threshold is equivalent to a luminance at the cornea of 0.1 cd m-2. 5. We also measured the sensitivity of this visual pathway to the total number of photons in a stimulus. This system is maximally sensitive to photons in stimuli between 30 and 3600 s in duration. The maximum quantum efficiency of photic integration occurs in 300 s stimuli. 6. These results suggest that the visual pathways that convey light information to the mammalian circadian pacemaker possess several unique characteristics. These pathways are relatively insensitive to light irradiance and also integrate light inputs over relatively long durations. This visual system, therefore, possesses an optimal sensitivity of 'tuning' to total photons delivered in stimuli of several minutes in duration. Together these characteristics may make this visual system unresponsive to environmental 'noise' that would interfere with the entrainment of circadian rhythms to light-dark cycles. PMID:1895235

  7. The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human.

    PubMed

    Wang, Yao; Gong, Qin; Zhang, Tao

    2016-05-10

    Frequency selectivity (FS) of the auditory system is established at the level of the cochlea and it is important for the perception of complex sounds. Although direct measurements of cochlear FS require surgical preparation, it can also be estimated with the measurements of otoacoustic emissions or behavioral tests, including stimulus frequency otoacoustic emission suppression tuning curves (SFOAE STCs) or psychophysical tuning curves (PTCs). These two methods result in similar estimates of FS at low probe levels. As the compressive nonlinearity of cochlea is strongly dependent on the stimulus intensity, the sharpness of tuning curves which is relevant to the cochlear nonlinearity will change as a function of probe level. The present study aims to investigate the influence of different probe levels on the relationship between SFOAE STCs and PTCs. The study included 15 young subjects with normal hearing. SFOAE STCs and PTCs were recorded at low and moderate probe levels for frequencies centred at 1, 2, and 4 kHz. The ratio or the difference of the characteristic parameters between the two methods was calculated at each probe level. The effect of probe level on the ratio or the difference between the parameters of SFOAE STCs and PTCs was then statistically analysed. The tuning of SFOAE STCs was significantly positively correlated with the tuning of the PTCs at both low and moderate probe levels; yet, at the moderate probe level, the SFOAE STCs were consistently broader than the PTCs. The mean ratio of sharpness of tuning at low probe levels was constantly around 1 while around 1.5 at moderate probe levels. Probe level had a significant effect on the sharpness of tuning between the two methods of estimating FS. SFOAE STC seems a good alternative measurement of PTC for FS assessment at low probe levels. At moderate probe levels, SFOAE STC and PTC were not equivalent measures of the FS in terms of their bandwidths. Because SFOAE STCs are not biased by higher levels auditory processing, they may represent cochlear FS better than PTCs.

  8. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    PubMed

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  9. Abnormalities in the Visual Processing of Viewing Complex Visual Stimuli Amongst Individuals With Body Image Concern.

    PubMed

    Duncum, A J F; Atkins, K J; Beilharz, F L; Mundy, M E

    2016-01-01

    Individuals with body dysmorphic disorder (BDD) and clinically concerning body-image concern (BIC) appear to possess abnormalities in the way they perceive visual information in the form of a bias towards local visual processing. As inversion interrupts normal global processing, forcing individuals to process locally, an upright-inverted stimulus discrimination task was used to investigate this phenomenon. We examined whether individuals with nonclinical, yet high levels of BIC would show signs of this bias, in the form of reduced inversion effects (i.e., increased local processing). Furthermore, we assessed whether this bias appeared for general visual stimuli or specifically for appearance-related stimuli, such as faces and bodies. Participants with high-BIC (n = 25) and low-BIC (n = 30) performed a stimulus discrimination task with upright and inverted faces, scenes, objects, and bodies. Unexpectedly, the high-BIC group showed an increased inversion effect compared to the low-BIC group, indicating perceptual abnormalities may not be present as local processing biases, as originally thought. There was no significant difference in performance across stimulus types, signifying that any visual processing abnormalities may be general rather than appearance-based. This has important implications for whether visual processing abnormalities are predisposing factors for BDD or develop throughout the disorder.

  10. Perceptual Learning in the Absence of Task or Stimulus Specificity

    PubMed Central

    Webb, Ben S.; Roach, Neil W.; McGraw, Paul V.

    2007-01-01

    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection) and stimulus configuration (vertical or horizontal orientation). Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment. PMID:18094748

  11. Decoding the auditory brain with canonical component analysis.

    PubMed

    de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund

    2018-05-15

    The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Neural Correlates of Individual Differences in Infant Visual Attention and Recognition Memory

    PubMed Central

    Reynolds, Greg D.; Guy, Maggie W.; Zhang, Dantong

    2010-01-01

    Past studies have identified individual differences in infant visual attention based upon peak look duration during initial exposure to a stimulus. Colombo and colleagues (e.g., Colombo & Mitchell, 1990) found that infants that demonstrate brief visual fixations (i.e., short lookers) during familiarization are more likely to demonstrate evidence of recognition memory during subsequent stimulus exposure than infants that demonstrate long visual fixations (i.e., long lookers). The current study utilized event-related potentials to examine possible neural mechanisms associated with individual differences in visual attention and recognition memory for 6- and 7.5-month-old infants. Short- and long-looking infants viewed images of familiar and novel objects during ERP testing. There was a stimulus type by looker type interaction at temporal and frontal electrodes on the late slow wave (LSW). Short lookers demonstrated a LSW that was significantly greater in amplitude in response to novel stimulus presentations. No significant differences in LSW amplitude were found based on stimulus type for long lookers. These results indicate deeper processing and recognition memory of the familiar stimulus for short lookers. PMID:21666833

  13. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Qing; Wang, Jiang; Yu, Haitao

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less

  14. Hemispheric specialization for global and local processing: A direct comparison of linguistic and non-linguistic stimuli.

    PubMed

    Brederoo, Sanne G; Nieuwenstein, Mark R; Lorist, Monicque M; Cornelissen, Frans W

    2017-12-01

    It is often assumed that the human brain processes the global and local properties of visual stimuli in a lateralized fashion, with a left hemisphere (LH) specialization for local detail, and a right hemisphere (RH) specialization for global form. However, the evidence for such global-local lateralization stems predominantly from studies using linguistic stimuli, the processing of which has shown to be LH lateralized in itself. In addition, some studies have reported a reversal of global-local lateralization when using non-linguistic stimuli. Accordingly, it remains unclear whether global-local lateralization may in fact be stimulus-specific. To address this issue, we asked participants to respond to linguistic and non-linguistic stimuli that were presented in the right and left visual fields, allowing for first access by the LH and RH, respectively. The results showed global-RH and local-LH advantages for both stimulus types, but the global lateralization effect was larger for linguistic stimuli. Furthermore, this pattern of results was found to be robust, as it was observed regardless of two other task manipulations. We conclude that the instantiation and direction of global and local lateralization is not stimulus-specific. However, the magnitude of global,-but not local-, lateralization is dependent on stimulus type. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    NASA Astrophysics Data System (ADS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-06-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  16. β1-Adrenoceptor in the Central Amygdala Is Required for Unconditioned Stimulus-Induced Drug Memory Reconsolidation

    PubMed Central

    Zhu, Huiwen; Zhou, Yiming; Liu, Zhiyuan; Chen, Xi; Li, Yanqing; Liu, Xing; Ma, Lan

    2018-01-01

    Abstract Background Drug memories become labile and reconsolidated after retrieval by presentation of environmental cues (conditioned stimulus) or drugs (unconditioned stimulus). Whether conditioned stimulus and unconditioned stimulus retrieval trigger different memory reconsolidation processes is not clear. Methods Protein synthesis inhibitor or β-adrenergic receptor (β-AR) antagonist was systemically administrated or intra-central amygdala infused immediately after cocaine reexposure in cocaine-conditioned place preference or self-administration mice models. β-ARs were selectively knocked out in the central amygdala to further confirm the role of β-adrenergic receptor in cocaine reexposure-induced memory reconsolidation of cocaine-conditioned place preference. Results Cocaine reexposure triggered de novo protein synthesis dependent memory reconsolidation of cocaine-conditioned place preference. Cocaine-priming-induced reinstatement was also impaired with post cocaine retrieval manipulation, in contrast to the relapse behavior with post context retrieval manipulation. Cocaine retrieval, but not context retrieval, induced central amygdala activation. Protein synthesis inhibitor or β1-adrenergic receptor antagonist infused in the central amygdala after cocaine retrieval, but not context retrieval, inhibited memory reconsolidation and reinstatement. β1-adrenergic receptor knockout in the central amygdala suppressed cocaine retrieval-triggered memory reconsolidation and reinstatement of cocaine conditioned place preference. β1-adrenergic receptor antagonism after cocaine retrieval also impaired reconsolidation and reinstatement of cocaine self-administration. Conclusions Cocaine reward memory triggered by unconditioned stimulus retrieval is distinct from conditioned stimulus retrieval. Unconditioned stimulus retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. Post unconditioned stimulus retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction. Significance Statement It is well known that drug memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS and US retrieval trigger different memory reconsolidation processes is unknown. In this study, we found that US retrieval, but not CS retrieval, triggered memory reconsolidation of cocaine-conditioned place preference dependent on β1-AR and de novo protein synthesis in the central amygdala. Furthermore, cocaine priming-induced reinstatement was impaired with post US retrieval manipulation in contrast to the relapse behavior with post CS retrieval manipulation. In cocaine self-administration, β1-AR antagonism after US retrieval also impaired reconsolidation and reinstatement. Our study indicates that reconsolidation of cocaine reward memory triggered by US retrieval is distinct from CS retrieval. US retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. PMID:29216351

  17. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps

    PubMed Central

    Ransom, Christopher B; Ransom, Bruce R; Sontheimer, Harald

    2000-01-01

    We measured activity-dependent changes in [K+]o with K+-selective microelectrodes in adult rat optic nerve, a CNS white matter tract, to investigate the factors responsible for post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o followed a double-exponential time course with an initial, fast time constant, τfast, of 0.9 ± 0.2 s (mean ±s.d.) and a later, slow time constant, τslow, of 4.2 ± 1 s following a 1 s, 100 Hz stimulus. τfast, but not τslow, decreased with increasing activity-dependent rises in [K+]o. τslow, but not τfast, increased with increasing stimulus duration.Post-stimulus recovery of [K+]o was temperature sensitive. The apparent temperature coefficients (Q10, 27–37°C) for the fast and slow components following a 1 s, 100 Hz stimulus were 1.7 and 2.6, respectively.Post-stimulus recovery of [K+]o was sensitive to Na+ pump inhibition with 50 μM strophanthidin. Following a 1 s, 100 Hz stimulus, 50 μM strophanthidin increased τfast and τslow by 81 and 464%, respectively. Strophanthidin reduced the temperature sensitivity of post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o was minimally affected by the K+ channel blocker Ba2+ (0.2 mm). Following a 10 s, 100 Hz stimulus, 0.2 mm Ba2+ increased τfast and τslow by 24 and 18%, respectively.Stimulated increases in [K+]o were followed by undershoots of [K+]o. Post-stimulus undershoot amplitude increased with stimulus duration but was independent of the peak preceding [K+]o increase.These observations imply that two distinct processes contribute to post-stimulus recovery of [K+]o in central white matter. The results are compatible with a model of K+ removal that attributes the fast, initial phase of K+ removal to K+ uptake by glial Na+ pumps and the slower, sustained decline to K+ uptake via axonal Na+ pumps. PMID:10713967

  18. Pondering the Pulvinar.

    PubMed

    Lakatos, Peter; O'Connell, Monica N; Barczak, Annamaria

    2016-01-06

    While the function of the pulvinar remains one of the least explored among the thalamic nuclei despite occupying the most thalamic volume in primates, it has long been suspected to play a crucial role in attentive stimulus processing. In this issue of Neuron, Zhou et al. (2016) use simultaneous pulvinar-visual cortex recordings and pulvinar inactivation to provide evidence that the pulvinar is essential for intact stimulus processing, maintenance of neuronal oscillatory dynamics, and mediating the effects of attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Deconstructing continuous flash suppression

    PubMed Central

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular “Mondrian” CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS. PMID:22408039

  20. Deconstructing continuous flash suppression.

    PubMed

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  1. Eliminating Inhibition of Return by Changing Salient Non-spatial Attributes in a Complex Environment

    PubMed Central

    Hu, Frank K; Samuel, Arthur G.; Chan, Agnes S.

    2010-01-01

    Inhibition of Return (IOR) occurs when a target is preceded by an irrelevant stimulus (cue) at the same location: Target detection is slowed, relative to uncued locations. In the present study, we used relatively complex displays to examine the effect of repetition of nonspatial attributes. For both color and shape, attribute repetition produced a robust inhibitory effect that followed a time course similar to that for location-based IOR. However, the effect only occurred when the target shared both the feature (i.e., color or shape) and location with the cue; this constraint implicates a primary role for location. The data are consistent with the idea that the system integrates consecutive stimuli into a single object file when attributes repeat, hindering detection of the second stimulus. The results are also consistent with an interpretation of IOR as a form of habituation, with greater habituation occurring with increasing featural overlap of a repeated stimulus. Critically, both of these interpretations bring the IOR effect within more general approaches to attention and perception, rather than requiring a specialized process with a limited function. In this view, there is no process specifically designed to inhibit return, suggesting that “IOR” may be the wrong framing of inhibitory repetition effects. Instead, we suggest that repetition of stimulus properties can interfere with the ability to focus attention on the aspects of a complex display that are needed to detect the occurrence of the target stimulus; this is a failure of activation, not an inhibition of processing. PMID:21171801

  2. The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict.

    PubMed

    Donohue, Sarah E; Todisco, Alexandra E; Woldorff, Marty G

    2013-04-01

    Neuroimaging work on multisensory conflict suggests that the relevant modality receives enhanced processing in the face of incongruency. However, the degree of stimulus processing in the irrelevant modality and the temporal cascade of the attentional modulations in either the relevant or irrelevant modalities are unknown. Here, we employed an audiovisual conflict paradigm with a sensory probe in the task-irrelevant modality (vision) to gauge the attentional allocation to that modality. ERPs were recorded as participants attended to and discriminated spoken auditory letters while ignoring simultaneous bilateral visual letter stimuli that were either fully congruent, fully incongruent, or partially incongruent (one side incongruent, one congruent) with the auditory stimulation. Half of the audiovisual letter stimuli were followed 500-700 msec later by a bilateral visual probe stimulus. As expected, ERPs to the audiovisual stimuli showed an incongruency ERP effect (fully incongruent versus fully congruent) of an enhanced, centrally distributed, negative-polarity wave starting ∼250 msec. More critically here, the sensory ERP components to the visual probes were larger when they followed fully incongruent versus fully congruent multisensory stimuli, with these enhancements greatest on fully incongruent trials with the slowest RTs. In addition, on the slowest-response partially incongruent trials, the P2 sensory component to the visual probes was larger contralateral to the preceding incongruent visual stimulus. These data suggest that, in response to conflicting multisensory stimulus input, the initial cognitive effect is a capture of attention by the incongruent irrelevant-modality input, pulling neural processing resources toward that modality, resulting in rapid enhancement, rather than rapid suppression, of that input.

  3. Auditory habituation to simple tones: reduced evidence for habituation in children compared to adults

    PubMed Central

    Muenssinger, Jana; Stingl, Krunoslav T.; Matuz, Tamara; Binder, Gerhard; Ehehalt, Stefan; Preissl, Hubert

    2013-01-01

    Habituation—the response decrement to repetitively presented stimulation—is a basic cognitive capability and suited to investigate development and integrity of the human brain. To evaluate the developmental process of auditory habituation, the current study used magnetoencephalography (MEG) to investigate auditory habituation, dishabituation and stimulus specificity in children and adults and compared the results between age groups. Twenty-nine children (Mage = 9.69 years, SD ± 0.47) and 14 adults (Mage = 29.29 years, SD ± 3.47) participated in the study and passively listened to a habituation paradigm consisting of 100 trains of tones which were composed of five 500 Hz tones, one 750 Hz tone (dishabituator) and another two 500 Hz tones, respectively while focusing their attention on a silent movie. Adults showed the expected habituation and stimulus specificity within-trains while no response decrement was found between trains. Sensory adaptation or fatigue as a source for response decrement in adults is unlikely due to the strong reaction to the dishabituator (stimulus specificity) and strong mismatch negativity (MMN) responses. However, in children neither habituation nor dishabituation or stimulus specificity could be found within-trains, response decrement was found across trains. It can be speculated that the differences between children and adults are linked to differences in stimulus processing due to attentional processes. This study shows developmental differences in task-related brain activation and discusses the possible influence of broader concepts such as attention, which should be taken into account when comparing performance in an identical task between age groups. PMID:23882207

  4. Stimulus Value Signals in Ventromedial PFC Reflect the Integration of Attribute Value Signals Computed in Fusiform Gyrus and Posterior Superior Temporal Gyrus

    PubMed Central

    Lim, Seung-Lark; O'Doherty, John P.

    2013-01-01

    We often have to make choices among multiattribute stimuli (e.g., a food that differs on its taste and health). Behavioral data suggest that choices are made by computing the value of the different attributes and then integrating them into an overall stimulus value signal. However, it is not known whether this theory describes the way the brain computes the stimulus value signals, or how the underlying computations might be implemented. We investigated these questions using a human fMRI task in which individuals had to evaluate T-shirts that varied in their visual esthetic (e.g., color) and semantic (e.g., meaning of logo printed in T-shirt) components. We found that activity in the fusiform gyrus, an area associated with the processing of visual features, correlated with the value of the visual esthetic attributes, but not with the value of the semantic attributes. In contrast, activity in posterior superior temporal gyrus, an area associated with the processing of semantic meaning, exhibited the opposite pattern. Furthermore, both areas exhibited functional connectivity with an area of ventromedial prefrontal cortex that reflects the computation of overall stimulus values at the time of decision. The results provide supporting evidence for the hypothesis that some attribute values are computed in cortical areas specialized in the processing of such features, and that those attribute-specific values are then passed to the vmPFC to be integrated into an overall stimulus value signal to guide the decision. PMID:23678116

  5. Stimulus value signals in ventromedial PFC reflect the integration of attribute value signals computed in fusiform gyrus and posterior superior temporal gyrus.

    PubMed

    Lim, Seung-Lark; O'Doherty, John P; Rangel, Antonio

    2013-05-15

    We often have to make choices among multiattribute stimuli (e.g., a food that differs on its taste and health). Behavioral data suggest that choices are made by computing the value of the different attributes and then integrating them into an overall stimulus value signal. However, it is not known whether this theory describes the way the brain computes the stimulus value signals, or how the underlying computations might be implemented. We investigated these questions using a human fMRI task in which individuals had to evaluate T-shirts that varied in their visual esthetic (e.g., color) and semantic (e.g., meaning of logo printed in T-shirt) components. We found that activity in the fusiform gyrus, an area associated with the processing of visual features, correlated with the value of the visual esthetic attributes, but not with the value of the semantic attributes. In contrast, activity in posterior superior temporal gyrus, an area associated with the processing of semantic meaning, exhibited the opposite pattern. Furthermore, both areas exhibited functional connectivity with an area of ventromedial prefrontal cortex that reflects the computation of overall stimulus values at the time of decision. The results provide supporting evidence for the hypothesis that some attribute values are computed in cortical areas specialized in the processing of such features, and that those attribute-specific values are then passed to the vmPFC to be integrated into an overall stimulus value signal to guide the decision.

  6. Information processing. [in human performance

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Flach, John M.

    1988-01-01

    Theoretical models of sensory-information processing by the human brain are reviewed from a human-factors perspective, with a focus on their implications for aircraft and avionics design. The topics addressed include perception (signal detection and selection), linguistic factors in perception (context provision, logical reversals, absence of cues, and order reversals), mental models, and working and long-term memory. Particular attention is given to decision-making problems such as situation assessment, decision formulation, decision quality, selection of action, the speed-accuracy tradeoff, stimulus-response compatibility, stimulus sequencing, dual-task performance, task difficulty and structure, and factors affecting multiple task performance (processing modalities, codes, and stages).

  7. Dissociating Stimulus-Set and Response-Set in the Context of Task-Set Switching

    ERIC Educational Resources Information Center

    Kieffaber, Paul D.; Kruschke, John K.; Cho, Raymond Y.; Walker, Philip M.; Hetrick, William P.

    2013-01-01

    The primary aim of the present research was to determine how "stimulus-set" and "response-set" components of task-set contribute to switch costs and conflict processing. Three experiments are described wherein participants completed an explicitly cued task-switching procedure. Experiment 1 established that task switches requiring a reconfiguration…

  8. Linear Stimulus-Invariant Processing and Spectrotemporal Reverse Correlation in Primary Auditory Cortex

    DTIC Science & Technology

    2003-01-01

    stability. The ectosylvian gyrus, which includes the primary auditory cortex, was exposed by craniotomy and the dura was reflected. The contralateral... awake monkey. Journal Revista de Acustica, 33:84–87985–06–8. Victor, J. and Knight, B. (1979). Nonlinear analysis with an arbitrary stimulus ensemble

  9. Mechanisms Supporting Superior Source Memory for Familiar Items: A Multi-Voxel Pattern Analysis Study

    ERIC Educational Resources Information Center

    Poppenk, Jordan; Norman, Kenneth A.

    2012-01-01

    Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting…

  10. The Keyword Method and Children's Vocabulary Learning: An Interaction with Vocabulary Knowledge.

    ERIC Educational Resources Information Center

    McGivern, Julie E.; Levin, Joel R.

    A study explored a potential aptitude-by-treatment interaction associated with the keyword method of vocabulary acquisition. This method is a two-stage mnemonic process whereby an unfamiliar term is first transformed into a familiar concrete stimulus and then a thematic relationship is created between the transformed stimulus and the information…

  11. Inverse Target- and Cue-Priming Effects of Masked Stimuli

    ERIC Educational Resources Information Center

    Mattler, Uwe

    2007-01-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses…

  12. A Developmental Perspective of Divergent Movement Ability in Early Young Children

    ERIC Educational Resources Information Center

    Zachopoulou, Evridiki; Makri, Anastasia

    2005-01-01

    Movement responses to a stimulus could be either quantitative or qualitative, or could also be the answer to a pre-established problem. This process activates both divergent thinking and critical thinking. Divergent movement ability generates both quantitative and qualitative movement responses to a stimulus. The aim of this study was to examine…

  13. INTEGRATION OF STIMULUS CUES BY NORMAL AND MENTALLY RETARDED CHILDREN. FINAL REPORT.

    ERIC Educational Resources Information Center

    ELAM, CLAUDE B.

    TWO EXPERIMENTS WERE CONDUCTED IN ORDER TO OBTAIN A MATHEMATICAL DESCRIPTION OF THE PERCEPTUAL PROCESS BY WHICH NORMAL AND MENTALLY RETARDED SUBJECTS SYNTHESIZE STIMULUS CUES IN PERCEPTUAL IDENTIFICATION. THE INITIAL STUDY EMPLOYED 50 COLLEGE STUDENTS, 34 GRADE SCHOOL STUDENTS, AND 24 MENTALLY RETARDED CHILDREN (AGES 9-16) AS SUBJECTS. THE…

  14. When congruence breeds preference: the influence of selective attention processes on evaluative conditioning.

    PubMed

    Blask, Katarina; Walther, Eva; Frings, Christian

    2017-09-01

    We investigated in two experiments whether selective attention processes modulate evaluative conditioning (EC). Based on the fact that the typical stimuli in an EC paradigm involve an affect-laden unconditioned stimulus (US) and a neutral conditioned stimulus (CS), we started from the assumption that learning might depend in part upon selective attention to the US. Attention to the US was manipulated by including a variant of the Eriksen flanker task in the EC paradigm. Similarly to the original Flanker paradigm, we implemented a target-distracter logic by introducing the CS as the task-relevant stimulus (i.e. the target) to which the participants had to respond and the US as a task-irrelevant distracter. Experiment 1 showed that CS-US congruence modulated EC if the CS had to be selected against the US. Specifically, EC was more pronounced for congruent CS-US pairs as compared to incongruent CS-US pairs. Experiment 2 disentangled CS-US congruence and CS-US compatibility and suggested that it is indeed CS-US stimulus congruence rather than CS-US response compatibility that modulates EC.

  15. The Price of Fame: The Impact of Stimulus Familiarity on Proactive Interference Resolution

    PubMed Central

    Prabhakaran, Ranjani; Thompson-Schill, Sharon L.

    2013-01-01

    Interference from previously learned information, known as proactive interference (PI), limits our memory retrieval abilities. Previous studies of PI resolution have focused on the role of short-term familiarity, or recency, in causing PI. In the present study, we investigated the impact of long-term stimulus familiarity on PI resolution processes. In two behavioral experiments and one event-related fMRI experiment, long-term familiarity was manipulated through the use of famous and nonfamous stimuli, and short-term familiarity was manipulated through the use of recent and nonrecent probe items in an item recognition task. The right middle frontal gyrus demonstrated greater sensitivity to famous stimuli, suggesting that long-term stimulus familiarity plays a role in influencing PI resolution processes. Further examination of the effect of long-term stimulus familiarity on PI resolution revealed a larger behavioral interference effect for famous stimuli, but only under speeded response conditions. Thus, models of memory retrieval—and of the cognitive control mechanisms that guide retrieval processes—should consider the impact of and interactions among sources of familiarity on multiple time scales. PMID:20429858

  16. Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry

    PubMed Central

    Jaworska, Katarzyna; Lages, Martin

    2014-01-01

    Binocular rivalry (BR) and motion-induced blindness (MIB) are two phenomena of visual awareness where perception alternates between multiple states despite constant retinal input. Both phenomena have been extensively studied, but the underlying processing remains unclear. It has been suggested that BR and MIB involve the same neural mechanism, but how the two phenomena compete for visual awareness in the same stimulus has not been systematically investigated. Here we introduce BR in a dichoptic stimulus display that can also elicit MIB and examine fluctuations of visual awareness over the course of each trial. Exploiting this paradigm we manipulated stimulus characteristics that are known to influence MIB and BR. In two experiments we found that effects on multistable percepts were incompatible with the idea of a common oscillator. The results suggest instead that local and global stimulus attributes can affect the dynamics of each percept differently. We conclude that the two phenomena of visual awareness share basic temporal characteristics but are most likely influenced by processing at different stages within the visual system. PMID:25240063

  17. Mechanisms supporting superior source memory for familiar items: A multi-voxel pattern analysis study

    PubMed Central

    Poppenk, Jordan; Norman, Kenneth A.

    2012-01-01

    Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants’ source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within- and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. PMID:22820636

  18. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    PubMed

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  19. Dissociating verbal and nonverbal audiovisual object processing.

    PubMed

    Hocking, Julia; Price, Cathy J

    2009-02-01

    This fMRI study investigates how audiovisual integration differs for verbal stimuli that can be matched at a phonological level and nonverbal stimuli that can be matched at a semantic level. Subjects were presented simultaneously with one visual and one auditory stimulus and were instructed to decide whether these stimuli referred to the same object or not. Verbal stimuli were simultaneously presented spoken and written object names, and nonverbal stimuli were photographs of objects simultaneously presented with naturally occurring object sounds. Stimulus differences were controlled by including two further conditions that paired photographs of objects with spoken words and object sounds with written words. Verbal matching, relative to all other conditions, increased activation in a region of the left superior temporal sulcus that has previously been associated with phonological processing. Nonverbal matching, relative to all other conditions, increased activation in a right fusiform region that has previously been associated with structural and conceptual object processing. Thus, we demonstrate how brain activation for audiovisual integration depends on the verbal content of the stimuli, even when stimulus and task processing differences are controlled.

  20. Coincidence timing of a soccer pass: effects of stimulus velocity and movement distance.

    PubMed

    Williams, L R

    2000-08-01

    The effect of stimulus velocity and movement extent on coincidence timing and spatial accuracy of a soccer pass was investigated. A Bassin anticipation timer provided light stimulus velocities of 1.79 or 2.68 m/sec. (designated as "Low" and "High", respectively), and subjects were required to kick a stationary soccer ball so that it struck a target in coincidence with the arrival of the light stimulus at the end of the runway. Two kick types were used. The "Short" condition began with the subject 70 cm from the ball and required a single forward step with the nonkicking leg before making the kick. The "Long" condition began 140 cm from the ball and required two steps before the kick. Twenty male subjects were given 16 trials under each of the four combinations of stimulus velocity and kick type. The expectation that the faster stimulus velocity would be associated with lower coincidence timing scores for both absolute error (AE) and variable error (VE) and with late responding for constant error (CEO) was upheld with the exception that for the Long Kick-High Velocity condition, AE was highest. The index of preprogramming (IP) was used to test the hypothesis that a two-stage control process would characterise coincidence anticipation performance involving whole-body movements. Results showed that the preparatory phase of responding produced zero-order IPs signifying reliance on feedback control. Also, while the striking phase produced high IP and suggested reliance on preprogrammed control, the possibility that the High Velocity conditions may have limited the responses was recognised. As a consequence, the role of open-loop processes remained equivocal. The findings are, however, in agreement with the view that the sensorimotor and movement-execution phases of responding require a process that is characterised by adaptability to regulatory features of the environment via closed loop mechanisms involving perception-action coupling.

  1. Beyond a mask and against the bottleneck: retroactive dual-task interference during working memory consolidation of a masked visual target.

    PubMed

    Nieuwenstein, Mark; Wyble, Brad

    2014-06-01

    While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result, estimates of the time course of working memory consolidation differ more than an order of magnitude. Here, we contrasted these opposing views by examining if and for how long the processing of a masked display of visual stimuli can be disturbed by a trailing 2-alternative forced choice task (2-AFC; a color discrimination task or a visual or auditory parity judgment task). The results showed that the presence of the 2-AFC task produced a pronounced retroactive interference effect that dissipated across stimulus onset asynchronies of 250-1,000 ms, indicating that the processing elicited by the 2-AFC task interfered with the gradual consolidation of the earlier shown stimuli. Furthermore, this interference effect occurred regardless of whether the to-be-remembered stimuli comprised a string of letters or an unfamiliar complex visual shape, and it occurred regardless of whether these stimuli were masked. Conversely, the interference effect was reduced when the memory load for the 1st task was reduced, or when the 2nd task was a color detection task that did not require decision making. Taken together, these findings show that the formation of a durable and consciously accessible working memory trace for a briefly shown visual stimulus can be disturbed by a trailing 2-AFC task for up to several hundred milliseconds after the stimulus has been masked. By implication, the current findings challenge the common view that working memory consolidation involves an immutable central processing bottleneck, and they also make clear that consolidation does not stop when a stimulus is masked. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Self-face Captures, Holds, and Biases Attention.

    PubMed

    Wójcik, Michał J; Nowicka, Maria M; Kotlewska, Ilona; Nowicka, Anna

    2017-01-01

    The implicit self-recognition process may take place already in the pre-attentive stages of perception. After a silent stimulus has captured attention, it is passed on to the attentive stage where it can affect decision making and responding. Numerous studies show that the presence of self-referential information affects almost every cognitive level. These effects may share a common and fundamental basis in an attentional mechanism, conceptualized as attentional bias: the exaggerated deployment of attentional resources to a salient stimulus. A gold standard in attentional bias research is the dot-probe paradigm. In this task, a prominent stimulus (cue) and a neutral stimulus are presented in different spatial locations, followed by the presentation of a target. In the current study we aimed at investigating whether the self-face captures, holds and biases attention when presented as a task-irrelevant stimulus. In two dot-probe experiments coupled with the event-related potential (ERP) technique we analyzed the following relevant ERPs components: N2pc and SPCN which reflect attentional shifts and the maintenance of attention, respectively. An inter-stimulus interval separating face-cues and probes (800 ms) was introduced only in the first experiment. In line with our predictions, in Experiment 1 the self-face elicited the N2pc and the SPCN component. In Experiment 2 in addition to N2pc, an attentional bias was observed. Our results indicate that unintentional self-face processing disables the top-down control setting to filter out distractors, thus leading to the engagement of attentional resources and visual short-term memory.

  3. Temporal Dependency and the Structure of Early Looking.

    PubMed

    Messinger, Daniel S; Mattson, Whitney I; Todd, James Torrence; Gangi, Devon N; Myers, Nicholas D; Bahrick, Lorraine E

    2017-01-01

    Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking.

  4. Temporal Dependency and the Structure of Early Looking

    PubMed Central

    Messinger, Daniel S.; Mattson, Whitney I.; Todd, James Torrence; Gangi, Devon N.; Myers, Nicholas D.; Bahrick, Lorraine E.

    2017-01-01

    Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking. PMID:28076362

  5. Contralateral cortical organisation of information in visual short-term memory: evidence from lateralized brain activity during retrieval.

    PubMed

    Fortier-Gauthier, Ulysse; Moffat, Nicolas; Dell'Acqua, Roberto; McDonald, John J; Jolicœur, Pierre

    2012-07-01

    We studied brain activity during retention and retrieval phases of two visual short-term memory (VSTM) experiments. Experiment 1 used a balanced memory array, with one color stimulus in each hemifield, followed by a retention interval and a central probe, at the fixation point that designated the target stimulus in memory about which to make a determination of orientation. Retrieval of information from VSTM was associated with an event-related lateralization (ERL) with a contralateral negativity relative to the visual field from which the probed stimulus was originally encoded, suggesting a lateralized organization of VSTM. The scalp distribution of the retrieval ERL was more anterior than what is usually associated with simple maintenance activity, which is consistent with the involvement of different brain structures for these distinct visual memory mechanisms. Experiment 2 was like Experiment 1, but used an unbalanced memory array consisting of one lateral color stimulus in a hemifield and one color stimulus on the vertical mid-line. This design enabled us to separate lateralized activity related to target retrieval from distractor processing. Target retrieval was found to generate a negative-going ERL at electrode sites found in Experiment 1, and suggested representations were retrieved from anterior cortical structures. Distractor processing elicited a positive-going ERL at posterior electrodes sites, which could be indicative of a return to baseline of retention activity for the discarded memory of the now-irrelevant stimulus, or an active inhibition mechanism mediating distractor suppression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    PubMed Central

    Balaguer-Ballester, Emili; Clark, Nicholas R.; Coath, Martin; Krumbholz, Katrin; Denham, Susan L.

    2009-01-01

    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing. PMID:19266015

  7. Simulating multiprimary LCDs on standard tri-stimulus LC displays

    NASA Astrophysics Data System (ADS)

    Lebowsky, Fritz; Vonneilich, Katrin; Bonse, Thomas

    2008-01-01

    Large-scale, direct view TV screens, in particular those based on liquid crystal technology, are beginning to use subpixel structures with more than three subpixels to implement a multi-primary display with up to six primaries. Since their input color space is likely to remain tri-stimulus RGB we first focus on some fundamental constraints. Among them, we elaborate simplified gamut mapping architectures as well as color filter geometry, transparency, and chromaticity coordinates in color space. Based on a 'display centric' RGB color space tetrahedrization combined with linear interpolation we describe a simulation framework which enables optimization for up to 7 primaries. We evaluated the performance through mapping the multi-primary design back onto a RGB LC display gamut without building a prototype multi-primary display. As long as we kept the RGB equivalent output signal within the display gamut we could analyze all desirable multi-primary configurations with regard to colorimetric variance and visually perceived quality. Not only does our simulation tool enable us to verify a novel concept it also demonstrates how carefully one needs to design a multiprimary display for LCD TV applications.

  8. Sensitivity of vergence responses of 5- to 10-week-old human infants

    PubMed Central

    Seemiller, Eric S.; Wang, Jingyun; Candy, T. Rowan

    2016-01-01

    Infants have been shown to make vergence eye movements by 1 month of age to stimulation with prisms or targets moving in depth. However, little is currently understood about the threshold sensitivity of the maturing visual system to such stimulation. In this study, 5- to 10-week-old human infants and adults viewed a target moving in depth as a triangle wave of three amplitudes (1.0, 0.5, and 0.25 meter angles). Their horizontal eye position and the refractive state of both eyes were measured simultaneously. The vergence responses of the infants and adults varied at the same frequency as the stimulus at the three tested modulation amplitudes. For a typical infant of this age, the smallest amplitude is equivalent to an interocular change of approximately 2° of retinal disparity, from nearest to farthest points. The infants' accommodation responses only modulated reliably to the largest stimulus, while adults responded to all three amplitudes. Although the accommodative system appears relatively insensitive, the sensitivity of the vergence responses suggests that subtle cues are available to drive vergence in the second month after birth. PMID:26891827

  9. The role of the right superior temporal gyrus in stimulus-centered spatial processing.

    PubMed

    Shah-Basak, Priyanka P; Chen, Peii; Caulfield, Kevin; Medina, Jared; Hamilton, Roy H

    2018-05-01

    Although emerging neuropsychological evidence supports the involvement of temporal areas, and in particular the right superior temporal gyrus (STG), in allocentric neglect deficits, the role of STG in healthy spatial processing remains elusive. While several functional brain imaging studies have demonstrated involvement of the STG in tasks involving explicit stimulus-centered judgments, prior rTMS studies targeting the right STG did not find the expected neglect-like rightward bias in size judgments using the conventional landmark task. The objective of the current study was to investigate whether disruption of the right STG using inhibitory repetitive transcranial magnetic stimulation (rTMS) could impact stimulus-centered, allocentric spatial processing in healthy individuals. A lateralized version of the landmark task was developed to accentuate the dissociation between viewer-centered and stimulus-centered reference frames. We predicted that inhibiting activity in the right STG would decrease accuracy because of induced rightward bias centered on the line stimulus irrespective of its viewer-centered or egocentric locations. Eleven healthy, right-handed adults underwent the lateralized landmark task. After viewing each stimulus, participants had to judge whether the line was bisected, or whether the left (left-long trials) or the right segment (right-long trials) of the line was longer. Participants repeated the task before (pre-rTMS) and after (post-rTMS) receiving 20 min of 1 Hz rTMS over the right STG, the right supramarginal gyrus (SMG), and the vertex (a control site) during three separate visits. Linear mixed models for binomial data were generated with either accuracy or judgment errors as dependent variables, to compare 1) performance across trial types (bisection, non-bisection), and 2) pre- vs. post-rTMS performance between the vertex and the STG and the vertex and the SMG. Line eccentricity (z = 4.31, p < 0.0001) and line bisection (z = 5.49, p < 0.0001) were significant predictors of accuracy. In the models comparing the effects of rTMS, a significant two-way interaction with STG (z = -3.09, p = 0.002) revealed a decrease in accuracy of 9.5% and an increase in errors of the right-long type by 10.7% on bisection trials, in both left and right viewer-centered locations. No significant changes in leftward errors were found. These findings suggested an induced stimulus-centered rightward bias in our participants after STG stimulation. Notably, accuracy or errors were not influenced by SMG stimulation compared to vertex. In line with our predictions, the findings provide compelling evidence for right STG's involvement in healthy stimulus-centered spatial processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Read-out of emotional information from iconic memory: the longevity of threatening stimuli.

    PubMed

    Kuhbandner, Christof; Spitzer, Bernhard; Pekrun, Reinhard

    2011-05-01

    Previous research has shown that emotional stimuli are more likely than neutral stimuli to be selected by attention, indicating that the processing of emotional information is prioritized. In this study, we examined whether the emotional significance of stimuli influences visual processing already at the level of transient storage of incoming information in iconic memory, before attentional selection takes place. We used a typical iconic memory task in which the delay of a poststimulus cue, indicating which of several visual stimuli has to be reported, was varied. Performance decreased rapidly with increasing cue delay, reflecting the fast decay of information stored in iconic memory. However, although neutral stimulus information and emotional stimulus information were initially equally likely to enter iconic memory, the subsequent decay of the initially stored information was slowed for threatening stimuli, a result indicating that fear-relevant information has prolonged availability for read-out from iconic memory. This finding provides the first evidence that emotional significance already facilitates stimulus processing at the stage of iconic memory.

  11. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band.

    PubMed

    Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.

  12. Inseparability of Go and Stop in Inhibitory Control: Go Stimulus Discriminability Affects Stopping Behavior.

    PubMed

    Ma, Ning; Yu, Angela J

    2016-01-01

    Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.

  13. Low-level sensory plasticity during task-irrelevant perceptual learning: Evidence from conventional and double training procedures

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen; Seitz, Aaron R.

    2009-01-01

    Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are controversial, since such learning may also be attributed to plasticity in later stages of sensory processing or in readout from sensory to decision stages, or to changes in high-level central processing. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show direction-selective learning for the designated contrast polarity that does not transfer to the opposite contrast polarity. This polarity specificity was replicated in a double training procedure in which subjects were additionally exposed to the opposite polarity. Taken together, these results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells. Finally, a theoretical explanation is provided to understand the data. PMID:19800358

  14. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study

    PubMed Central

    Capotosto, Paolo; Corbetta, Maurizio; Romani, Gian Luca; Babiloni, Claudio

    2013-01-01

    Transcranial magnetic stimulation (TMS) interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and electroencephalographic (EEG) rhythmic correlates of endogenous spatial orienting prior to visual target presentation (Capotosto et al. 2009; 2011). Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven re-orienting or the ability to efficiently process unattended stimuli, i.e. stimuli outside the current focus of attention. Healthy subjects (N=24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 milliseconds (ms) simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 ms (P3) post-target. The P3 significantly decreased for unattended targets, and significantly increased for attended targets after right IPS-rTMS as compared to Sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of subjects. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with post-decision processes that are part of stimulus-driven re-orienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven re-orienting processes in human vision. PMID:22905824

  15. Strategic allocation of attention reduces temporally predictable stimulus conflict

    PubMed Central

    Appelbaum, L. Gregory; Boehler, Carsten N.; Won, Robert; Davis, Lauren; Woldorff, Marty G.

    2013-01-01

    Humans are able to continuously monitor environmental situations and adjust their behavioral strategies to optimize performance. Here we investigate the behavioral and brain adjustments that occur when conflicting stimulus elements are, or are not, temporally predictable. Event-related potentials (ERPs) were collected while manual-response variants of the Stroop task were performed in which the stimulus onset asynchronies (SOAs) between the relevant-color and irrelevant-word stimulus components were either randomly intermixed, or held constant, within each experimental run. Results indicated that the size of both the neural and behavioral effects of stimulus incongruency varied with the temporal arrangement of the stimulus components, such that the random-SOA arrangements produced the greatest incongruency effects at the earliest irrelevant-first SOA (−200 ms) and the constant-SOA arrangements produced the greatest effects with simultaneous presentation. These differences in conflict processing were accompanied by rapid (~150 ms) modulations of the sensory ERPs to the irrelevant distracter components when they occurred consistently first. These effects suggest that individuals are able to strategically allocate attention in time to mitigate the influence of a temporally predictable distracter. As these adjustments are instantiated by the subjects without instruction, they reveal a form of rapid strategic learning for dealing with temporally predictable stimulus incongruency. PMID:22360623

  16. Alertness and cognitive control: Testing the early onset hypothesis.

    PubMed

    Schneider, Darryl W

    2018-05-01

    Previous research has revealed a peculiar interaction between alertness and cognitive control in selective-attention tasks: Congruency effects are larger on alert trials (on which an alerting cue is presented briefly in advance of the imperative stimulus) than on no-alert trials, despite shorter response times (RTs) on alert trials. One explanation for this finding is the early onset hypothesis, which is based on the assumptions that increased alertness shortens stimulus-encoding time and that cognitive control involves gradually focusing attention during a trial. The author tested the hypothesis in 3 experiments by manipulating alertness and stimulus quality (which were intended to shorten and lengthen stimulus-encoding time, respectively) in an arrow-based flanker task involving congruent and incongruent stimuli. Replicating past findings, the alerting manipulation led to shorter RTs but larger congruency effects on alert trials than on no-alert trials. The stimulus-quality manipulation led to longer RTs and larger congruency effects for degraded stimuli than for intact stimuli. These results provide mixed support for the early onset hypothesis, but the author discusses how data and theory might be reconciled if stimulus quality affects stimulus-encoding time and the rate of evidence accumulation in the decision process. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics

    PubMed Central

    Orme, Elizabeth; Brown, Louise A.; Riby, Leigh M.

    2017-01-01

    In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400–800 ms) and late posterior negativity (LPN; 500–900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively ‘pure’ and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively. PMID:28725203

  18. Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics.

    PubMed

    Orme, Elizabeth; Brown, Louise A; Riby, Leigh M

    2017-01-01

    In this study, we examined electrophysiological indices of episodic remembering whilst participants recalled novel shapes, with and without semantic content, within a visual working memory paradigm. The components of interest were the parietal episodic (PE; 400-800 ms) and late posterior negativity (LPN; 500-900 ms), as these have previously been identified as reliable markers of recollection and post-retrieval monitoring, respectively. Fifteen young adults completed a visual matrix patterns task, assessing memory for low and high semantic visual representations. Matrices with either low semantic or high semantic content (containing familiar visual forms) were briefly presented to participants for study (1500 ms), followed by a retention interval (6000 ms) and finally a same/different recognition phase. The event-related potentials of interest were tracked from the onset of the recognition test stimuli. Analyses revealed equivalent amplitude for the earlier PE effect for the processing of both low and high semantic stimulus types. However, the LPN was more negative-going for the processing of the low semantic stimuli. These data are discussed in terms of relatively 'pure' and complete retrieval of high semantic items, where support can readily be recruited from semantic memory. However, for the low semantic items additional executive resources, as indexed by the LPN, are recruited when memory monitoring and uncertainty exist in order to recall previously studied items more effectively.

  19. Consolidation of an extinction memory depends on the unconditioned stimulus magnitude previously experienced during training.

    PubMed

    Stollhoff, Nicola; Eisenhardt, Dorothea

    2009-07-29

    Here, we examine the role of the magnitude of the unconditioned stimulus (US) during classical conditioning in consolidation processes after memory retrieval. We varied the US durations during training and we test the impact of these variations on consolidation after memory retrieval with one or two conditioned stimulus-only trials. We found that the consolidation of an extinction memory depends on US duration during training and ruled out the possibility that this effect is attributable to differences in satiation after conditioning. We conclude that consolidation of an extinction memory is triggered only when the duration of the US reaches a critical threshold. This demonstrates that memory consolidation cannot be regarded as an isolated process depending solely on training conditions. Instead, it depends on the animal's previous experience as well.

  20. Elaborated contextual framing is necessary for action-based attitude acquisition.

    PubMed

    Laham, Simon M; Kashima, Yoshihisa; Dix, Jennifer; Wheeler, Melissa; Levis, Bianca

    2014-01-01

    Although arm flexion and extension have been implicated as conditioners of attitudes, recent work casts some doubt on the nature and strength of the coupling of these muscle contractions and stimulus evaluation. We propose that the elaborated contextual framing of flexion and extension actions is necessary for attitude acquisition. Results showed that when flexion and extension were disambiguated via elaborated contextual cues (i.e., framed as collect and discard within a foraging context), neutral stimuli processed under flexion were liked more than neutral stimuli processed under extension. However, when unelaborated framing was used (e.g., mere stimulus zooming effects), stimulus evaluation did not differ as a function of muscle contractions. These results suggest that neither arm contractions per se nor unelaborated framings are sufficient for action-based attitude acquisition, but that elaborated framings are necessary.

  1. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The right look for the job: decoding cognitive processes involved in the task from spatial eye-movement patterns.

    PubMed

    Król, Magdalena Ewa; Król, Michał

    2018-02-20

    The aim of the study was not only to demonstrate whether eye-movement-based task decoding was possible but also to investigate whether eye-movement patterns can be used to identify cognitive processes behind the tasks. We compared eye-movement patterns elicited under different task conditions, with tasks differing systematically with regard to the types of cognitive processes involved in solving them. We used four tasks, differing along two dimensions: spatial (global vs. local) processing (Navon, Cognit Psychol, 9(3):353-383 1977) and semantic (deep vs. shallow) processing (Craik and Lockhart, J Verbal Learn Verbal Behav, 11(6):671-684 1972). We used eye-movement patterns obtained from two time periods: fixation cross preceding the target stimulus and the target stimulus. We found significant effects of both spatial and semantic processing, but in case of the latter, the effect might be an artefact of insufficient task control. We found above chance task classification accuracy for both time periods: 51.4% for the period of stimulus presentation and 34.8% for the period of fixation cross presentation. Therefore, we show that task can be to some extent decoded from the preparatory eye-movements before the stimulus is displayed. This suggests that anticipatory eye-movements reflect the visual scanning strategy employed for the task at hand. Finally, this study also demonstrates that decoding is possible even from very scant eye-movement data similar to Coco and Keller, J Vis 14(3):11-11 (2014). This means that task decoding is not limited to tasks that naturally take longer to perform and yield multi-second eye-movement recordings.

  3. Stimulus driver for epilepsy seizure suppression with adaptive loading impedance

    NASA Astrophysics Data System (ADS)

    Ker, Ming-Dou; Lin, Chun-Yu; Chen, Wei-Ling

    2011-10-01

    A stimulus driver circuit for a micro-stimulator used in an implantable device is presented in this paper. For epileptic seizure control, the target of the driver was to output 30 µA stimulus currents when the electrode impedance varied between 20 and 200 kΩ. The driver, which consisted of the output stage, control block and adaptor, was integrated in a single chip. The averaged power consumption of the stimulus driver was 0.24-0.56 mW at 800 Hz stimulation rate. Fabricated in a 0.35 µm 3.3 V/24 V CMOS process and applied to a closed-loop epileptic seizure monitoring and controlling system, the proposed design has been successfully verified in the experimental results of Long-Evans rats with epileptic seizures.

  4. Different target-discrimination times can be followed by the same saccade-initiation timing in different stimulus conditions during visual searches

    PubMed Central

    Tanaka, Tomohiro; Nishida, Satoshi

    2015-01-01

    The neuronal processes that underlie visual searches can be divided into two stages: target discrimination and saccade preparation/generation. This predicts that the length of time of the prediscrimination stage varies according to the search difficulty across different stimulus conditions, whereas the length of the latter postdiscrimination stage is stimulus invariant. However, recent studies have suggested that the length of the postdiscrimination interval changes with different stimulus conditions. To address whether and how the visual stimulus affects determination of the postdiscrimination interval, we recorded single-neuron activity in the lateral intraparietal area (LIP) when monkeys (Macaca fuscata) performed a color-singleton search involving four stimulus conditions that differed regarding luminance (Bright vs. Dim) and target-distractor color similarity (Easy vs. Difficult). We specifically focused on comparing activities between the Bright-Difficult and Dim-Easy conditions, in which the visual stimuli were considerably different, but the mean reaction times were indistinguishable. This allowed us to examine the neuronal activity when the difference in the degree of search speed between different stimulus conditions was minimal. We found that not only prediscrimination but also postdiscrimination intervals varied across stimulus conditions: the postdiscrimination interval was longer in the Dim-Easy condition than in the Bright-Difficult condition. Further analysis revealed that the postdiscrimination interval might vary with stimulus luminance. A computer simulation using an accumulation-to-threshold model suggested that the luminance-related difference in visual response strength at discrimination time could be the cause of different postdiscrimination intervals. PMID:25995344

  5. Dynamics of the near response under natural viewing conditions with an open-view sensor

    PubMed Central

    Chirre, Emmanuel; Prieto, Pedro; Artal, Pablo

    2015-01-01

    We have studied the temporal dynamics of the near response (accommodation, convergence and pupil constriction) in healthy subjects when accommodation was performed under natural binocular and monocular viewing conditions. A binocular open-view multi-sensor based on an invisible infrared Hartmann-Shack sensor was used for non-invasive measurements of both eyes simultaneously in real time at 25Hz. Response times for each process under different conditions were measured. The accommodative responses for binocular vision were faster than for monocular conditions. When one eye was blocked, accommodation and convergence were triggered simultaneously and synchronized, despite the fact that no retinal disparity was available. We found that upon the onset of the near target, the unblocked eye rapidly changes its line of sight to fix it on the stimulus while the blocked eye moves in the same direction, producing the equivalent to a saccade, but then converges to the (blocked) target in synchrony with accommodation. This open-view instrument could be further used for additional experiments with other tasks and conditions. PMID:26504666

  6. Representation of time interval entrained by periodic stimuli in the visual thalamus of pigeons

    PubMed Central

    Wang, Shu-Rong

    2017-01-01

    Animals use the temporal information from previously experienced periodic events to instruct their future behaviors. The retina and cortex are involved in such behavior, but it remains largely unknown how the thalamus, transferring visual information from the retina to the cortex, processes the periodic temporal patterns. Here we report that the luminance cells in the nucleus dorsolateralis anterior thalami (DLA) of pigeons exhibited oscillatory activities in a temporal pattern identical to the rhythmic luminance changes of repetitive light/dark (LD) stimuli with durations in the seconds-to-minutes range. Particularly, after LD stimulation, the DLA cells retained the entrained oscillatory activities with an interval closely matching the duration of the LD cycle. Furthermore, the post-stimulus oscillatory activities of the DLA cells were sustained without feedback inputs from the pallium (equivalent to the mammalian cortex). Our study suggests that the experience-dependent representation of time interval in the brain might not be confined to the pallial/cortical level, but may occur as early as at the thalamic level. PMID:29284554

  7. Ionic polymer metal composites with nanoporous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2010-04-01

    Ionic Polymer Metal Composites (IPMCs) are soft electroactive polymer materials that bend in response to the voltage stimulus (1 - 4 V). They can be used as actuators or sensors. In this paper, we introduce two new highly-porous carbon materials for assembling high specific area electrodes for IPMC actuators and compare their electromechanical performance with recently reported IPMCs based on RuO2 electrodes. We synthesize ionic liquid (Emi-Tf) actuators with either Carbide-Derived Carbon (CDC) (derived from TiC) or coconut shell based activated carbon electrodes. The carbon electrodes are applied onto ionic liquid-swollen Nafion membranes using the direct assembly process. Our results show that actuators assembled with CDC electrodes have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to >2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also revealed significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.

  8. Categorical information influences conscious perception: An interaction between object-substitution masking and repetition blindness.

    PubMed

    Goodhew, Stephanie C; Greenwood, John A; Edwards, Mark

    2016-05-01

    The visual system is constantly bombarded with dynamic input. In this context, the creation of enduring object representations presents a particular challenge. We used object-substitution masking (OSM) as a tool to probe these processes. In particular, we examined the effect of target-like stimulus repetitions on OSM. In visual crowding, the presentation of a physically identical stimulus to the target reduces crowding and improves target perception, whereas in spatial repetition blindness, the presentation of a stimulus that belongs to the same category (type) as the target impairs perception. Across two experiments, we found an interaction between spatial repetition blindness and OSM, such that repeating a same-type stimulus as the target increased masking magnitude relative to presentation of a different-type stimulus. These results are discussed in the context of the formation of object files. Moreover, the fact that the inducer only had to belong to the same "type" as the target in order to exacerbate masking, without necessarily being physically identical to the target, has important implications for our understanding of OSM per se. That is, our results show the target is processed to a categorical level in OSM despite effective masking and, strikingly, demonstrate that this category-level content directly influences whether or not the target is perceived, not just performance on another task (as in priming).

  9. On the functional significance of retrieval mode: Task switching disrupts the recollection of conceptual stimulus information from episodic memory.

    PubMed

    Küper, Kristina

    2018-01-01

    Episodic memory retrieval is assumed to be associated with the tonic cognitive state of retrieval mode. Despite extensive research into the neurophysiological correlates of retrieval mode, as of yet, relatively little is known about its functional significance. The present event-related potential (ERP) study was aimed at examining the impact of retrieval mode on the specificity of memory content retrieved in the course of familiarity and recollection processes. In two experiments, participants performed a recognition memory inclusion task in which they had to distinguish identically repeated and re-colored versions of study items from new items. In Experiment 1, participants had to alternate between the episodic memory task and a semantic task requiring a natural/artificial decision. In Experiment 2, the two tasks were instead performed in separate blocks. ERPs locked to the preparatory cues in the test phases indicated that participants did not establish retrieval mode on switch trials in Experiment 1. In the absence of retrieval mode, neither type of studied item elicited ERP correlates of familiarity-based retrieval (FN400). Recollection-related late positive complex (LPC) old/new effects emerged only for identically repeated but not for conceptually identical but perceptually changed versions of study items. With blocked retrieval in Experiment 2, both types of old items instead elicited equivalent FN400 and LPC old/new effects. The LPC data indicate that retrieval mode may play an important role in the successful recollection of conceptual stimulus information. The FN400 results additionally suggest that task switching may have a detrimental effect on familiarity-based memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Extremely Selective Attention: Eye-Tracking Studies of the Dynamic Allocation of Attention to Stimulus Features in Categorization

    ERIC Educational Resources Information Center

    Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip

    2009-01-01

    Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…

  11. Continuous Flash Suppression: Stimulus Fractionation rather than Integration.

    PubMed

    Moors, Pieter; Hesselmann, Guido; Wagemans, Johan; van Ee, Raymond

    2017-10-01

    Recent studies using continuous flash suppression suggest that invisible stimuli are processed as integrated, semantic entities. We challenge the viability of this account, given recent findings on the neural basis of interocular suppression and replication failures of high-profile CFS studies. We conclude that CFS reveals stimulus fractionation in visual cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Top-down guidance in visual search for facial expressions.

    PubMed

    Hahn, Sowon; Gronlund, Scott D

    2007-02-01

    Using a visual search paradigm, we investigated how a top-down goal modified attentional bias for threatening facial expressions. In two experiments, participants searched for a facial expression either based on stimulus characteristics or a top-down goal. In Experiment 1 participants searched for a discrepant facial expression in a homogenous crowd of faces. Consistent with previous research, we obtained a shallower response time (RT) slope when the target face was angry than when it was happy. In Experiment 2, participants searched for a specific type of facial expression (allowing a top-down goal). When the display included a target, we found a shallower RT slope for the angry than for the happy face search. However, when an angry or happy face was present in the display in opposition to the task goal, we obtained equivalent RT slopes, suggesting that the mere presence of an angry face in opposition to the task goal did not support the well-known angry face superiority effect. Furthermore, RT distribution analyses supported the special status of an angry face only when it was combined with the top-down goal. On the basis of these results, we suggest that a threatening facial expression may guide attention as a high-priority stimulus in the absence of a specific goal; however, in the presence of a specific goal, the efficiency of facial expression search is dependent on the combined influence of a top-down goal and the stimulus characteristics.

  13. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    PubMed Central

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state. PMID:28701912

  14. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  15. The Semicircular Canal Microphonic

    NASA Technical Reports Server (NTRS)

    Rabbitt, R. D.; Boyle, R.; Highstein, S. M.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Present experiments were designed to quantify the alternating current (AC) component of the semicircular canal microphonic for angular motion stimulation as a function of stimulus frequency and amplitude. The oyster toadfish, Opsanus tau, was used as the experimental model. Calibrated mechanical indentation of the horizontal canal duct was used as a stimulus to generate hair-cell and afferent responses reproducing those present during head rotation. Sensitivity to polarization of the endolymph DC voltage re: perilymph was also investigated. Modulation of endolymph voltage was recorded using conventional glass electrodes and lock-in amplification over the frequency range 0.2-80 Hz. Access to the endolymph for inserting voltage recording and current passing electrodes was obtained by sectioning the anterior canal at its apex and isolating the cut ends in air. For sinusoidal stimulation below approx.10 Hz, the horizontal semicircular canal AC microphonic was nearly independent of stimulus frequency and equal to approximately 4 microV per micron indent (equivalent to approx. 1 microV per deg/s). A saturating nonlinearity decreasing the microphonic gain was present for stimuli exceeding approx.3 micron indent (approx. 12 deg/s angular velocity). The phase was not sensitive to the saturating nonlinearity. The microphonic exhibited a resonance near 30Hz consistent with basolateral current hair cell resonance observed previously in voltage-clamp records from semicircular canal hair cells. The magnitude and phase of the microphonic exhibited sensitivity to endolymphatic polarization consistent with electro-chemical reversal of hair cell transduction currents.

  16. Sources of interference in item and associative recognition memory.

    PubMed

    Osth, Adam F; Dennis, Simon

    2015-04-01

    A powerful theoretical framework for exploring recognition memory is the global matching framework, in which a cue's memory strength reflects the similarity of the retrieval cues being matched against the contents of memory simultaneously. Contributions at retrieval can be categorized as matches and mismatches to the item and context cues, including the self match (match on item and context), item noise (match on context, mismatch on item), context noise (match on item, mismatch on context), and background noise (mismatch on item and context). We present a model that directly parameterizes the matches and mismatches to the item and context cues, which enables estimation of the magnitude of each interference contribution (item noise, context noise, and background noise). The model was fit within a hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength, list length, list strength, word frequency, study-test delay, and stimulus class in item and associative recognition. Estimates of the model parameters revealed at most a small contribution of item noise that varies by stimulus class, with virtually no item noise for single words and scenes. Despite the unpopularity of background noise in recognition memory models, background noise estimates dominated at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited equivalent levels of context noise and background noise. These parameter estimates suggest that the majority of interference in recognition memory stems from experiences acquired before the learning episode. (c) 2015 APA, all rights reserved).

  17. The influence of stimulus sex and emotional expression on the attentional blink.

    PubMed

    Stebbins, Hilary E; Vanous, Jesse B

    2015-08-01

    Past studies have demonstrated that angry faces used as the first target (T1) in an attentional blink paradigm interfere with processing of a second, neutral target (T2). However, despite research that suggests that the sex and emotional expression of a face are confounded, no study has investigated whether the sex of a stimulus might interact with emotional expression to influence the attentional blink. In the current study, both the sex and emotional expression of a T1 stimulus were manipulated to assess participants' ability to report the presences of a subsequent neutral target. Although the findings revealed limited evidence to support an interaction between sex and emotion, both the sex and emotional expression of the T1 stimulus were found to independently affect reporting of T2. These findings suggest that both emotional expression and stimulus sex are important in the temporal allocation of attentional resources to faces. (c) 2015 APA, all rights reserved).

  18. Perceptual grouping across eccentricity.

    PubMed

    Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan

    2014-10-01

    Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sexual differentiation of pheromone processing: Links to male-typical mating behavior and partner preference

    PubMed Central

    Baum, Michael J.

    2009-01-01

    Phoenix et al. (Phoenix et al., 1959) were the first to propose an essential role of fetal testosterone exposure in the sexual differentiation of the capacity of mammals to display male-typical mating behavior. In one experiment control male and female guinea pigs as well as females given fetal testosterone actually showed equivalent levels of mounting behavior when gonadectomized and given ovarian steroids prior to adult tests with a stimulus female. This finding is discussed in the context of a recent, high-profile paper by Kimchi and co-workers (Kimchi et al., 2007) arguing that female rodents possess the circuits that control the expression of male-typical mating behavior and that their function is normally suppressed in this sex by pheromonal inputs that are processed via the vomeronasal organ (VNO)—accessory olfactory nervous system. In another Phoenix et al. experiment, significantly more mounting behavior was observed in male guinea pigs and in females given fetal testosterone than in control females following adult gonadectomy and treatment with testosterone. Literature is reviewed that attempts to link sex differences in the anatomy and function of the accessory versus the main olfactory projections to the amygdala and hypothalamus to parallel sex differences in courtship behaviors, including sex partner preference, as well as the capacity to display mounting behavior. PMID:19446074

  20. FLIT-MLO and No. 2 fuel oil: Effects of aerosol applications to mallard eggs on hatchability and behavior of ducklings

    USGS Publications Warehouse

    Albers, P.H.; Heinz, G.H.

    1983-01-01

    FLIT-MLO and No. 2 fuel oil are sprayed on wetlands for mosquito control during spring and summer. In one experiment to assess the effects of the spraying on birds, mallard eggs were sprayed with amounts of No. 2 fuel oil equivalent to 2.34, 4.67, or 18.70 liters/ha or FLIT-MLO equivalent to 9.35, 46.75, or 140.25 liters/ha on Day 6 of incubation. In a second experiment, mallard eggs were sprayed with 9.35, 46.75, or 140.25 liters/ha of FLIT-MLO on Days 3, 6, 12, or 18 of incubation. Hatchability of eggs sprayed with the highest treatment level of each substance was significantly lower than that of controls for the first experiment. Hatchability of eggs sprayed with FLIT-MLO in the second experiment was never significantly lower than that of controls. Ducklings from the first experiment, 36-48 hr old, were cold stressed for 1 hr at 8 degrees C and then immediately tested for their ability to respond to a fright stimulus. Ducklings from the group of eggs sprayed with 140.25 liters/ha of FLIT-MLO ran a significantly shorter distance from the fright stimulus than did controls. The effects of the heaviest exposure to FLIT-MLO (140.25 liters/ha) on egg hatchability and behavior of newly hatched young are uncertain because of the contradictory results for hatching success in the two experiments. However, normal applications of FLIT-MLO (9.35-46.75 liters/ha) or No. 2 fuel oil (2.34-4.67 liters/ha) do not appear to pose a threat to the embryos of breeding birds.

Top