Standard deviation of luminance distribution affects lightness and pupillary response.
Kanari, Kei; Kaneko, Hirohiko
2014-12-01
We examined whether the standard deviation (SD) of luminance distribution serves as information of illumination. We measured the lightness of a patch presented in the center of a scrambled-dot pattern while manipulating the SD of the luminance distribution. Results showed that lightness decreased as the SD of the surround stimulus increased. We also measured pupil diameter while viewing a similar stimulus. The pupil diameter decreased as the SD of luminance distribution of the stimuli increased. We confirmed that these results were not obtained because of the increase of the highest luminance in the stimulus. Furthermore, results of field measurements revealed a correlation between the SD of luminance distribution and illuminance in natural scenes. These results indicated that the visual system refers to the SD of the luminance distribution in the visual stimulus to estimate the scene illumination.
Higher-order associative processing in Hermissenda suggests multiple sites of neuronal modulation.
Rogers, R F; Matzel, L D
1996-01-01
Two important features of modern accounts of associative learning are (1) the capacity for contextual stimuli to serve as a signal for an unconditioned stimulus (US) and (2) the capacity for a previously conditioned (excitatory) stimulus to "block" learning about a redundant stimulus when both stimuli serve as a signal for the same US. Here, we examined the process of blocking, thought by some to reflect a cognitive aspect of classical conditioning, and its underlying mechanisms in the marine mollusc Hermissenda. In two behavioral experiments, a context defined by chemosensory stimuli was made excitatory by presenting unsignalled USs (rotation) in that context. The excitatory context subsequently blocked overt learning about a discrete conditioned stimulus (CS; light) paired with the US in that context. In a third experiment, the excitability of the B photoreceptors in the Hermissenda eye, which typically increases following light-rotation pairings, was examined in behaviorally blocked animals, as well as in animals that had acquired a normal CS-US association or animals that had been exposed to the CS and US unpaired. Both the behaviorally blocked and the "normal" learning groups exhibited increases in neuronal excitability relative to unpaired animals. However, light-induced multiunit activity in pedal nerves was suppressed following normal conditioning but not in blocked or unpaired control animals, suggesting that the expression of blocking is mediated by neuronal modifications not directly reflected in B-cell excitability, possibly within an extensive network of central light-responsive interneurons.
Effects of light on brain and behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brainard, G.C.
1994-12-31
It is obvious that light entering the eye permits the sensory capacity of vision. The human species is highly dependent on visual perception of the environment and consequently, the scientific study of vision and visual mechanisms is a centuries old endeavor. Relatively new discoveries are now leading to an expanded understanding of the role of light entering the eye - in addition to supporting vision, light has various nonvisual biological effects. Over the past thirty years, animal studies have shown that environmental light is the primary stimulus for regulating circadian rhythms, seasonal cycles, and neuroendocrine responses. As with all photobiologicalmore » phenomena, the wavelength, intensity, timing and duration of a light stimulus is important in determining its regulatory influence on the circadian and neuroendocrine systems. Initially, the effects of light on rhythms and hormones were observed only in sub-human species. Research over the past decade, however, has confirmed that light entering the eyes of humans is a potent stimulus for controlling physiological rhythms. The aim of this paper is to examine three specific nonvisual responses in humans which are mediated by light entering the eye: light-induced melatonin suppression, light therapy for winter depression, and enhancement of nighttime performance. This will serve as a brief introduction to the growing database which demonstrates how light stimuli can influence physiology, mood and behavior in humans. Such information greatly expands our understanding of the human eye and will ultimately change our use of light in the human environment.« less
Effects of light on brain and behavior
NASA Technical Reports Server (NTRS)
Brainard, George C.
1994-01-01
It is obvious that light entering the eye permits the sensory capacity of vision. The human species is highly dependent on visual perception of the environment and consequently, the scientific study of vision and visual mechanisms is a centuries old endeavor. Relatively new discoveries are now leading to an expanded understanding of the role of light entering the eye in addition to supporting vision, light has various nonvisual biological effects. Over the past thirty years, animal studies have shown that environmental light is the primary stimulus for regulating circadian rhythms, seasonal cycles, and neuroendocrine responses. As with all photobiological phenomena, the wavelength, intensity, timing and duration of a light stimulus is important in determining its regulatory influence on the circadian and neuroendocrine systems. Initially, the effects of light on rhythms and hormones were observed only in sub-human species. Research over the past decade, however, has confirmed that light entering the eyes of humans is a potent stimulus for controlling physiological rhythms. The aim of this paper is to examine three specific nonvisual responses in humans which are mediated by light entering the eye: light-induced melatonin suppression, light therapy for winter depression, and enhancement of nighttime performance. This will serve as a brief introduction to the growing database which demonstrates how light stimuli can influence physiology, mood and behavior in humans. Such information greatly expands our understanding of the human eye and will ultimately change our use of light in the human environment.
Unit Price and Choice in a Token-Reinforcement Context
ERIC Educational Resources Information Center
Foster, Theresa A.; Hackenberg, Timothy D.
2004-01-01
Pigeons were exposed to multiple and concurrent second-order schedules of token reinforcement, with stimulus lights serving as token reinforcers. Tokens were produced and exchanged for food according to various fixed-ratio schedules, yielding equal and unequal unit prices (responses per unit food delivery). On one schedule (termed the "standard…
Second-Order Schedules of Token Reinforcement with Pigeons: Implications for Unit Price
ERIC Educational Resources Information Center
Bullock, Christopher E.; Hackenberg, Timothy D.
2006-01-01
Four pigeons were exposed to second-order schedules of token reinforcement, with stimulus lights serving as token reinforcers. Tokens were earned according to a fixed-ratio (token-production) schedule, with the opportunity to exchange tokens for food (exchange period) occurring after a fixed number had been produced (exchange-production ratio).…
Reinforcer Accumulation in a Token-Reinforcement Context with Pigeons
ERIC Educational Resources Information Center
Yankelevitz, Rachelle L.; Bullock, Christopher E.; Hackenberg, Timothy D.
2008-01-01
Four pigeons were exposed to a token-reinforcement procedure with stimulus lights serving as tokens. Responses on one key (the token-production key) produced tokens that could be exchanged for food during an exchange period. Exchange periods could be produced by satisfying a ratio requirement on a second key (the exchange-production key). The…
Kawakami, I; Shiraishi, S; Tsuda, M
2002-09-01
Ascidians are lower chordates and their simple tadpole-like larvae share a basic body plan with vertebrates. Newly hatched larvae show no response to a stimulus of light. 4 h after hatching, the larvae were induced to swim upon a step-down of light and stop swimming upon a step-up of light. At weaker intensity of light, the larvae show the same response to a stimulus after presentation of repeated stimuli. When intensity of actinic light was increased, the larvae show sensitization and habituation of the swimming response to a stimulus after repeated stimuli of step-down and step-up of the light. Between 2 h 20 min and 3 h 40 min after hatching the larvae did not show any response to the first stimulus, but after several repeatedstimuli they show swimming response to a step-down of light. A repeated series of stimulus cause sensitization. Between 4 h and 7 h after hatching, the larvae show photoresponse to the first stimulus, but after several repetition of the stimuli, the larvae could not stop swimming to a stimulus of a step-up of the actinic light. A repeated series of stimulus cause greaterhabituation. Both sensitization and habituation depend upon intensity ofactinic light.
Optimizing the temporal dynamics of light to human perception.
Rieiro, Hector; Martinez-Conde, Susana; Danielson, Andrew P; Pardo-Vazquez, Jose L; Srivastava, Nishit; Macknik, Stephen L
2012-11-27
No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer's "inherent expertise bias," a type of experimental bias in which the observer's life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50-100 ms, and we conclude that the Broca-Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch's law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision-although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system's temporal response function will result in significant power savings.
NASA Technical Reports Server (NTRS)
Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.
2000-01-01
A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.
Prediction of truly random future events using analysis of prestimulus electroencephalographic data
NASA Astrophysics Data System (ADS)
Baumgart, Stephen L.; Franklin, Michael S.; Jimbo, Hiroumi K.; Su, Sharon J.; Schooler, Jonathan
2017-05-01
Our hypothesis is that pre-stimulus physiological data can be used to predict truly random events tied to perceptual stimuli (e.g., lights and sounds). Our experiment presents light and sound stimuli to a passive human subject while recording electrocortical potentials using a 32-channel Electroencephalography (EEG) system. For every trial a quantum random number generator (qRNG) chooses from three possible selections with equal probability: a light stimulus, a sound stimulus, and no stimulus. Time epochs are defined preceding and post-ceding each stimulus for which mean average potentials were computed across all trials for the three possible stimulus types. Data from three regions of the brain are examined. In all three regions mean potential for light stimuli was generally enhanced relative to baseline during the period starting approximately 2 seconds before the stimulus. For sound stimuli, mean potential decreased relative to baseline during the period starting approximately 2 seconds before the stimulus. These changes from baseline may indicated the presence of evoked potentials arising from the stimulus. A P200 peak was observed in data recorded from frontal electrodes. The P200 is a well-known potential arising from the brain's processing of visual stimuli and its presence represents a replication of a known neurological phenomenon.
Lee, Kyung J.; Park, Seong-Beom; Lee, Inah
2014-01-01
Learning theories categorize learning systems into elemental and contextual systems, the former being processed by non-hippocampal regions and the latter being processed in the hippocampus. A set of complex stimuli such as a visual background is often considered a contextual stimulus and simple sensory stimuli such as pure tone and light are considered elemental stimuli. However, this elemental-contextual categorization scheme has only been tested in limited behavioral paradigms and it is largely unknown whether it can be generalized across different learning situations. By requiring rats to respond differently to a common object in association with various types of sensory cues including contextual and elemental stimuli, we tested whether different types of elemental and contextual sensory stimuli depended on the hippocampus to different degrees. In most rats, a surrounding visual background and a tactile stimulus served as contextual (hippocampal dependent) and elemental (non-hippocampal dependent) stimuli, respectively. However, simple tone and light stimuli frequently used as elemental cues in traditional experiments required the hippocampus to varying degrees among rats. Specifically, one group of rats showed a normal contextual bias when both contextual and elemental cues were present. These rats effectively switched to using elemental cues when the hippocampus was inactivated. The other group showed a strong contextual bias (and hippocampal dependence) because these rats were not able to use elemental cues when the hippocampus was unavailable. It is possible that the latter group of rats might have interpreted the elemental cues (light and tone) as background stimuli and depended more on the hippocampus in associating the cues with choice responses. Although exact mechanisms underlying these individual variances are unclear, our findings recommend a caution for adopting a simple sensory stimulus as a non-hippocampal sensory cue only based on the literature. PMID:24982624
Goel, Namni
2006-09-01
A musically enhanced bird song stimulus presented in the early subjective night phase delays human circadian rhythms. This study determined the phase-shifting effects of the same stimulus in the early subjective day. Eleven subjects (ages 18-63 yr; mean +/- SD: 28.0 +/- 16.6 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h musically enhanced bird song or control stimulus from 0600 to 0800 on the second and third mornings while awake. The 4-day sessions employing either the stimulus or control were counterbalanced. Core body temperature (CBT) was collected throughout the study, and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Dim light melatonin onset and CBT minimum circadian phase before and after stimulus or control presentation was assessed. The musically enhanced bird song stimulus produced significantly larger phase advances of the circadian melatonin (mean +/- SD: 0.87 +/- 0.36 vs. 0.24 +/- 0.22 h) and CBT (1.08 +/- 0.50 vs. 0.43 +/- 0.37 h) rhythms than the control. The stimulus also decreased fatigue and total mood disturbance, suggesting arousing effects. This study shows that a musically enhanced bird song stimulus presented during the early subjective day phase advances circadian rhythms. However, it remains unclear whether the phase shifts are due directly to effects of the stimulus on the clock or are arousal- or dim light-mediated effects. This nonphotic stimulus mediates circadian resynchronization in either the phase advance or delay direction.
Piront, M L; Schmidt, R
1988-02-23
Ependymins are acidic glycoprotein constituents of goldfish brain cytoplasm and extracellular fluid which are known to participate in biochemical reactions of long-term memory formation. In earlier experiments, anti-ependymin antisera were found to cause amnesia when injected into goldfish brain ventricles after the acquisition of a vestibulomotoric training task. To investigate whether they also inhibit memory consolidation after other learning events the anti-ependymin antisera were injected after an active shock-avoidance learning paradigm, as follows: goldfish were trained in a shuttle-box to cross a barrier in order to avoid electric shocks (unconditioned stimulus) applied shortly after a light signal (conditioned stimulus). Anti-ependymin antisera blocked retention of the learned avoidance when injected 0.5, 4.5 or 24 h after acquisition of the new behavior. They had no effect, however, when injected 72 h after learning. Apparently, long-term memory was already consolidated at this point. Antisera injected 0.5 or 72 h prior to training, also did not influence learning or memory. Thirteen percent of the goldfish fled the light stimulus spontaneously. These fish therefore did not experience the unconditioned stimulus and thus were unable to learn the task. When they were treated with the anti-ependymin antisera and tested 3 days later, the spontaneous escape reaction was not affected (active control group). The ability of anti-ependymin antisera to inhibit memory consolidation and their efficacy after administration at specific time intervals are very similar for the active shock-avoidance learning and for the vestibulomotoric training. We conclude that ependymins are not task-specific, but serve a general function in biochemical reactions essential for long-term memory formation.
Responses of the circadian system of rats to conditioned and unconditioned stimuli.
de Groot, M H; Rusak, B
2000-08-01
The circadian systems of rodents respond to light pulses presented during the subjective night with phase shifts and altered cellular activity in the suprachiasmatic nuclei (SCN), including expression of immediate-early genes (IEGs) such as c-fos. A recent study showed that a nonphotic stimulus (an air disturbance generated by a fan) that does not normally induce the expression of c-fos-like immunoreactivity in the SCN of rats can be made to do so after being paired repeatedly with a light pulse in a Pavlovian conditioning paradigm. Furthermore, after conditioning (but not after noncontingent exposure to these stimuli), the fan also induced phase shifts in activity and body temperature rhythms comparable to those produced by light. The authors performed three experiments designed to replicate and extend these findings in rats. In experiment 1, rats were tested for conditioning effects of repeated pairings of a light pulse with a neutral air disturbance under a full photoperiod. In experiment 2, a modified conditioning paradigm was used in which a skeleton photoperiod served as both the entraining zeitgeber and the unconditioned stimulus. Animals in the paired and unpaired training conditions were exposed to both the light pulse and the air disturbance, but the air disturbance signaled the onset of light in the paired condition only. Phase shifts of wheel-running activity rhythms and gene expression in the SCN, intergeniculate leaflet, and paraventricular nucleus of the thalamus were assessed in animals following either of the training conditions or the control procedures. Experiment 3 assessed whether the air disturbance could entrain the circadian activity rhythms of rats with or without previous pairing with light in a classical conditioning paradigm. No evidence for classical conditioning, nor for unconditioned effects of the air disturbance on the circadian system, was found in these studies.
Wilkinson, Jamie L.; Li, Chia; Bevins, Rick A.
2010-01-01
Bupropion can serve as a discriminative stimulus (SD) in an operant drug discrimination task, and a variety of stimulants substitute for the bupropion SD. There are no reports, however, of bupropion functioning as a Pavlovian occasion setter (i.e., feature positive modulator). The present experiment seeks to fill this gap in the literature by training bupropion in rats as a feature positive modulator that disambiguates when a light will be paired with sucrose. Specifically, on bupropion (10 mg/kg IP) sessions, offset of 15-sec cue lights were followed by brief delivery of liquid sucrose; saline sessions were similar except no sucrose was available. Rats readily acquired the discrimination with more conditioned responding to the light on bupropion sessions. Bupropion is approved for use as a smoking cessation aid, and more recently has drawn attention as a potential pharmacotherapy for cocaine and methamphetamine abuse. Accordingly, after discrimination training we tested the ability of cocaine (1 to 10 mg/kg), methamphetamine (0.1 to 1 mg/kg), and nicotine (0.00625 to 0.2 mg/kg) to substitute for the bupropion feature. Nicotine (0.05 mg/kg) and methamphetamine (0.3 mg/kg) substituted fully for bupropion; cocaine did not substitute. These results extend previous research on shared stimulus properties between bupropion and other stimulants to a Pavlovian occasion setting function. Further, this is the first report of nicotine and methamphetamine substitution for bupropion. The overlap in stimulus properties might explain the effectiveness of bupropion as a smoking cessation aid and highlight the possible utility of bupropion for treatment of stimulant use disorder. PMID:19076926
Leong, Ta-Yan; Briggs, Winslow R.
1982-01-01
The diphenyl ether acifluorfen enhances the blue light-induced absorbance change in Triton X100-solubilized crude membrane preparations from etiolated oat (Avena sativa L. cv. Lodi) coleoptiles. Enhancement of the spectral change is correlated with a change in rate of dark reoxidation of a b-type cytochrome. Similar, although smaller, enhancement was obtained with oxyfluorfen, nitrofen, and bifenox. Light-minus-dark difference spectra in the presence and absence of acifluorfen, and the dithionite-reduced-minus oxidized difference spectrum indicate that acifluorfen is acting specifically at a blue light-sensitive cytochrome-flavin complex. Sodium azide, a flavin inhibitor, decreases the light-induced absorbance change significantly, but does not affect the dark reoxidation of the cytochrome. Hence, it is acting on the light reaction, suggesting that the photoreceptor itself is a flavin. Acifluorfen sensitizes phototropism in dark-grown oat seedlings such that the first positive response occurs with blue light fluences as little as one-third of those required to elicit the same response in seedlings grown in the absence of the herbicide. Both this increase in sensitivity to light and the enhancement of the light-induced cytochrome reduction vary with the applied acifluorfen concentration in a similar manner. The herbicide is without effect either on elongation or on the geotropic response of dark-grown oat seedlings, indicating that acifluorfen is acting specifically close to, or at the photoreceptor end of, the stimulus-response chain. It seems likely that the flavin-cytochrome complex serves to transduce the light signal into curvature in phototropism in oats, with the flavin moiety itself serving as the photoreceptor. PMID:16662593
Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation
Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si
2018-01-01
Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural encoding. We believe that our study shed lights on the mechanism underlying the efficient neural information processing via adaptation. PMID:29636675
Short nights reduce light-induced circadian phase delays in humans.
Burgess, Helen J; Eastman, Charmane I
2006-01-01
Short sleep episodes are common in modern society. We recently demonstrated that short nights reduce phase advances to light. Here we show that short nights also reduce phase delays to light. Two weeks of 6-hour sleep episodes in the dark (short nights) and 2 weeks of long 9-hour sleep episodes (long nights) in counterbalanced order, separated by 7 days. Following each series of nights, there was a dim-light phase assessment to assess baseline phase. Three days later, subjects were exposed to a phase-delaying light stimulus for 2 days, followed by a final phase assessment. Subjects slept at home in dark bedrooms but came to the laboratory for the phase assessments and light stimulus. Seven young healthy subjects. The 3.5-hour light stimulus was four 30-minute pulses of bright light (-5000 lux) separated by 30-minute intervals of room light. The stimulus began 2.5 hours after each subject's dim-light melatonin onset, followed by a 6- or 9-hour sleep episode. On the second night, the bright light and sleep episode began 1 hour later. The dim-light melatonin onset and dimlight melatonin offset phase delayed 1.4 and 0.7 hours less in the short nights, respectively (both p < or = .015). These results indicate for the first time that short nights can reduce circadian phase delays, that long nights can increase phase delays to light, or both. People who curtail their sleep may inadvertently reduce their circadian responsiveness to evening light.
LeSage, Mark G; Burroughs, Danielle; Dufek, Matthew; Keyler, Daniel E; Pentel, Paul R
2004-11-01
The objective of the present study was to determine the relative efficacy of nicotine priming and nicotine-paired stimuli in reinstating extinguished NSA in rats. The relative efficacy of different stimulus conditions in reinstating NSA was also determined. Rats were trained to self-administer nicotine (0.03 mg/kg/inf) under an FR 5 schedule. Onset of a light above the active lever was correlated with nicotine availability, while offset of the light was paired with each nicotine infusion. In Experiment 1, saline extinction was arranged in the presence of these light stimuli. After extinction criteria were met, the effects of priming doses of nicotine (0.01, 0.03. and 0.06 mg/kg/inf, i.v.) on active lever pressing were determined. In Experiment 2, extinction of NSA was arranged in the absence of the light stimuli. After extinction criteria were met, reinstatement sessions were arranged involving either (1) a priming infusion of nicotine (0.03 mg/kg), (2) presentation of the same light stimuli as during NSA training, (3) constant illumination of the cue light, or (4) a combination of a nicotine priming infusion with one of the stimulus-light conditions. In Experiment 1, nicotine generally failed to reinstate NSA at any priming dose. In Experiment 2, both stimulus conditions reinstated NSA, with the stimulus condition identical to training producing a greater effect. Nicotine priming alone failed to significantly reinstate NSA. Nicotine priming combined with either stimulus condition was no more effective than each stimulus condition alone in reinstating NSA. These findings suggest that nicotine-paired cues are more effective than nicotine alone in reinstating extinguished NSA and are consistent with other studies showing that nicotine-paired stimuli play an important role in the reacquisition of NSA.
Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus
NASA Astrophysics Data System (ADS)
Deng, Zishan; Gao, Yuan; Li, Ting
2018-02-01
As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.
Bushnell, M C; Weiss, S J
1977-03-01
In Experiments I and II, rats were trained to respond on one lever during light and another during tone. The absence of tone and light controlled response cessation. In the multiple schedule of Experiment I, all reinforcements were received for responding in tone or light; in the chain schedule of Experiment II, all reinforcements were received in no tone + no light for not responding. Experiment I subjects, for which tone and light were associated with response and reinforcement increase, responded significantly more to tone-plus-light than to tone or light alone (additive summation). Experiment II subjects, for which tone and light were associated with response increase and reinforcement decrease, responded comparably to tone, light, and tone + light. Thus, additive summation was observed when stimulus-response and stimulus-reinforcer associations in tone and light were both positive, but not when they were conflicting. All subjects in both experiments responded predominantly on the light-correlated lever during tone + light, even when light intensity was reduced in testing. Furthermore, when a light was presented to a subject engaged in tone-associated responding, all subjects immediately switched the locus of responding to the light-correlated lever. No change in locus occurred when a tone was presented to a subject engaged in light-associated responding, irrespective of the stimulus-reinforcer association conditioned to tone. The light-lever preference in tone + light indicates that the heightened responding observed in Experiment I was not the summation of tone-associated behavior with light-associated behavior. Rather, it appears to be the result of a facilitation of one operant (light-associated responding) by the reinforcement-associated cue for the other.
A phase response curve to single bright light pulses in human subjects
NASA Technical Reports Server (NTRS)
Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.
2003-01-01
The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.
High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina
Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng
2010-01-01
A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743
The integration of habits maintained by food and water reinforcement through stimulus compounding.
Weiss, S J; Schindler, C W; Eason, R
1988-01-01
In Experiment 1, a light and a tone were correlated independently with water reinforcement of bar pressing by rats. With different naive subjects in Experiment 2, one of these stimuli was correlated with food and the other with water reinforcement (counterbalanced). In both experiments the absence of tone and light signaled extinction. Tests of stimulus-reinforcer independence in Experiment 2 indicated that tone and light controlled behavior whose rate was specifically affected by deprivation state. In the stimulus-compounding tests of both experiments, response rates were higher to tone-plus-light than to tone or light presented alone (additive summation). This is the first report of additive summation produced through compounding stimuli paired with different reinforcers. The results are discussed in the context of the effects of incentive motivation on operant performance. PMID:3193056
Auditory and visual localization accuracy in young children and adults.
Martin, Karen; Johnstone, Patti; Hedrick, Mark
2015-06-01
This study aimed to measure and compare sound and light source localization ability in young children and adults who have normal hearing and normal/corrected vision in order to determine the extent to which age, type of stimuli, and stimulus order affects sound localization accuracy. Two experiments were conducted. The first involved a group of adults only. The second involved a group of 30 children aged 3 to 5 years. Testing occurred in a sound-treated booth containing a semi-circular array of 15 loudspeakers set at 10° intervals from -70° to 70° azimuth. Each loudspeaker had a tiny light bulb and a small picture fastened underneath. Seven of the loudspeakers were used to randomly test sound and light source identification. The sound stimulus was the word "baseball". The light stimulus was a flashing of a light bulb triggered by the digital signal of the word "baseball". Each participant was asked to face 0° azimuth, and identify the location of the test stimulus upon presentation. Adults used a computer mouse to click on an icon; children responded by verbally naming or walking toward the picture underneath the corresponding loudspeaker or light. A mixed experimental design using repeated measures was used to determine the effect of age and stimulus type on localization accuracy in children and adults. A mixed experimental design was used to compare the effect of stimulus order (light first/last) and varying or fixed intensity sound on localization accuracy in children and adults. Localization accuracy was significantly better for light stimuli than sound stimuli for children and adults. Children, compared to adults, showed significantly greater localization errors for audition. Three-year-old children had significantly greater sound localization errors compared to 4- and 5-year olds. Adults performed better on the sound localization task when the light localization task occurred first. Young children can understand and attend to localization tasks, but show poorer localization accuracy than adults in sound localization. This may be a reflection of differences in sensory modality development and/or central processes in young children, compared to adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Arvanitogiannis, A; Amir, S
1999-12-01
The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning.
Behavioural responses of krill and cod to artificial light in laboratory experiments
Løkkeborg, S.; Humborstad, O-B.
2018-01-01
Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod. PMID:29370231
Behavioural responses of krill and cod to artificial light in laboratory experiments.
Utne-Palm, A C; Breen, M; Løkkeborg, S; Humborstad, O-B
2018-01-01
Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill's (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425-750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.
Phase response of the Arabidopsis thaliana circadian clock to light pulses of different wavelengths.
Ohara, Takayuki; Fukuda, Hirokazu; Tokuda, Isao T
2015-04-01
Light is known as one of the most powerful environmental time cues for the circadian system. The quality of light is characterized by its intensity and wavelength. We examined how the phase response of Arabidopsis thaliana depends on the wavelength of the stimulus light and the type of light perturbation. Using transgenic A. thaliana expressing a luciferase gene, we monitored the rhythm of the bioluminescence signal. We stimulated the plants under constant red light using 3 light perturbation treatments: (1) increasing the red light intensity, (2) turning on a blue light while turning off the red light, and (3) turning on a blue light while keeping the red light on. To examine the phase response properties, we generated a phase transition curve (PTC), which plots the phase after the perturbation as a function of the phase before the perturbation. To evaluate the effect of the 3 light perturbation treatments, we simulated PTCs using a mathematical model of the plant circadian clock and fitted the simulated PTCs to the experimentally measured PTCs. Among the 3 treatments, perturbation (3) provided the strongest stimulus. The results indicate that the color of the stimulus light and the type of pulse administration affect the phase response in a complex manner. Moreover, the results suggest the involvement of interaction between red and blue light signaling pathways in resetting of the plant circadian clock. © 2015 The Author(s).
Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad
2017-10-01
The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.
How pigeons discriminate the relative frequency of events.
Keen, R; Machado, A
1999-09-01
This study examined how pigeons discriminate the relative frequencies of events when the events occur serially. In a discrete-trials procedure, 6 pigeons were shown one light nf times and then another nl times. Next, they received food for choosing the light that had occurred the least number of times during the sample. At issue were (a) how the discrimination was related to two variables, the difference between the frequencies of the two lights, D = nf - nl, and the total number of lights in the sample, T = nf + nl; and (b) whether a simple mathematical model of the discrimination process could account for the data. In contrast with models that assume that pigeons count the stimulus lights, engage in mental arithmetic on numerons, or remember the number of stimuli, the present model assumed only that the influence of a sample stimulus on choice increases linearly when the stimulus is presented, but decays exponentially when the stimulus is absent. The results showed that, overall, the pigeons discriminated the relative frequencies well. Their accuracy always increased with the absolute value of the difference D and, for D > 0, it decreased with T. Performance also showed clear recency, primacy, and contextual effects. The model accounted well for the major trends in the data.
Molecular Mechanisms of Circadian Regulation During Spaceflight
NASA Technical Reports Server (NTRS)
Zanello, S. B.; Boyle, R.
2012-01-01
The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight.
Central Cannabinoid Receptors Modulate Acquisition of Eyeblink Conditioning
ERIC Educational Resources Information Center
Steinmetz, Adam B.; Freeman, John H.
2010-01-01
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…
NASA Astrophysics Data System (ADS)
Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka
2017-02-01
Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.
Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans.
He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin
2015-03-01
Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Ninety-six healthy volunteers (44 males) aged 18-28 y. Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conditioned stimulus re-exposure during SWS promoted fear memory extinction without altering sleep profiles. © 2015 Associated Professional Sleep Societies, LLC.
Park, Jason C.; McAnany, J. Jason
2015-01-01
This study determined if the pupillary light reflex (PLR) driven by brief stimulus presentations can be accounted for by the product of stimulus luminance and area (i.e., corneal flux density, CFD) under conditions biased toward the rod, cone, and melanopsin pathways. Five visually normal subjects participated in the study. Stimuli consisted of 1-s short- and long-wavelength flashes that spanned a large range of luminance and angular subtense. The stimuli were presented in the central visual field in the dark (rod and melanopsin conditions) and against a rod-suppressing short-wavelength background (cone condition). Rod- and cone-mediated PLRs were measured at the maximum constriction after stimulus onset whereas the melanopsin-mediated PLR was measured 5–7 s after stimulus offset. The rod- and melanopsin-mediated PLRs were well accounted for by CFD, such that doubling the stimulus luminance had the same effect on the PLR as doubling the stimulus area. Melanopsin-mediated PLRs were elicited only by short-wavelength, large (>16°) stimuli with luminance greater than 10 cd/m2, but when present, the melanopsin-mediated PLR was well accounted for by CFD. In contrast, CFD could not account for the cone-mediated PLR because the PLR was approximately independent of stimulus size but strongly dependent on stimulus luminance. These findings highlight important differences in how stimulus luminance and size combine to govern the PLR elicited by brief flashes under rod-, cone-, and melanopsin-mediated conditions. PMID:25788707
Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L
2017-12-20
An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.
Disruption of Circadian Rhythms by Light During Day and Night.
Figueiro, Mariana G
2017-06-01
This study aims to discuss possible reasons why research to date has not forged direct links between light at night, acute melatonin suppression or circadian disruption, and risks for disease. Data suggest that irregular light-dark patterns or light exposures at the wrong circadian time can lead to circadian disruption and disease risks. However, there remains an urgent need to: (1) specify light stimulus in terms of circadian rather than visual response; (2) when translating research from animals to humans, consider species-specific spectral and absolute sensitivities to light; (3) relate the characteristics of photometric measurement of light at night to the operational characteristics of the circadian system; and (4) examine how humans may be experiencing too little daytime light, not just too much light at night. To understand the health effects of light-induced circadian disruption, we need to measure and control light stimulus during the day and at night.
Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J.; Sonny, Damien; Dempster, Tim
2013-01-01
Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331±364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices. PMID:23691087
Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J; Sonny, Damien; Dempster, Tim
2013-01-01
Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium. PMID:23104115
School Districts' Expenditure Responses to Federal Stimulus Funds
ERIC Educational Resources Information Center
Bourdeaux, Carolyn; Warner, Nicholas
2015-01-01
Between 2009 and 2011, school districts across the country received federal stimulus funds to shore up their budgets during the recession. The hope was that this support would serve as bridge funding during the recession, and that jurisdictions would then replace the federal funds as state and local tax bases grew stronger. However, the research…
Effect of Conditioned Stimulus Exposure during Slow Wave Sleep on Fear Memory Extinction in Humans
He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin
2015-01-01
Study Objectives: Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. Design: The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Participants: Ninety-six healthy volunteers (44 males) aged 18–28 y. Measurements and Results: Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conclusions: Conditioned stimulus re-exposure during slow wave sleep promoted fear memory extinction without altering sleep profiles. Citation: He J, Sun HQ, Li SX, Zhang WH, Shi J, Ai SZ, Li Y, Li XJ, Tang XD, Lu L. Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. SLEEP 2015;38(3):423–431. PMID:25348121
On the nature of directed behavior to drug-associated light cues in rhesus monkeys (Macaca mulatta).
Reilly, Mark P; Berndt, Sonja I; Woods, James H
2016-11-01
The present study investigated the role of drug-paired stimuli in controlling the behavior of rhesus monkeys. Systematic observations were made with nine monkeys who had a history of drug self-administration; they had been lever pressing to produce intravenous infusions of various drugs. These observations revealed that the stimulus light co-occurring with drug infusion produced robust and cue-directed behavior such as orienting, touching and biting. Experiment 1 showed that this light-directed behavior would occur in naïve monkeys exposed to a Pavlovian pairing procedure. Four monkeys were given response-independent injections of cocaine. In two monkeys, a red light preceded cocaine injections by 5 s, and a green light co-occurred with the 5-s cocaine injections. In the other two monkeys, the light presentations and cocaine injections occurred independently. Light-directed behavior occurred in all four monkeys within the first couple of trials and at high levels but decreased across sessions. The cocaine-paired stimulus maintained behavior longer and at higher levels than the uncorrelated stimuli. Furthermore, light-directed behavior was not maintained when cocaine was replaced with saline. Light-directed behavior did not occur in the absence of the lights. When these monkeys were subsequently trained to lever press for cocaine, light-directed behavior increased to levels higher than previously observed. Behavior directed towards drug-paired stimuli is robust, reliable and multiply determined; the mechanisms underlying this activity likely include Pavlovian conditioning, stimulus novelty, habituation and operant conditioning.
Liow, Chi Hao; Lu, Xin; Tan, Chuan Fu; Chan, Kwok Hoe; Zeng, Kaiyang; Li, Shuzhou; Ho, Ghim Wei
2018-02-01
Surface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self-regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite-difference time-domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic-piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic-piezotronic technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nelson, D E; Takahashi, J S
1991-01-01
1. Light-induced phase shifts of the circadian rhythm of wheel-running activity were used to measure the photic sensitivity of a circadian pacemaker and the visual pathway that conveys light information to it in the golden hamster (Mesocricetus auratus). The sensitivity to stimulus irradiance and duration was assessed by measuring the magnitude of phase-shift responses to photic stimuli of different irradiance and duration. The visual sensitivity was also measured at three different phases of the circadian rhythm. 2. The stimulus-response curves measured at different circadian phases suggest that the maximum phase-shift is the only aspect of visual responsivity to change as a function of the circadian day. The half-saturation constants (sigma) for the stimulus-response curves are not significantly different over the three circadian phases tested. The photic sensitivity to irradiance (1/sigma) appears to remain constant over the circadian day. 3. The hamster circadian pacemaker and the photoreceptive system that subserves it are more sensitive to the irradiance of longer-duration stimuli than to irradiance of briefer stimuli. The system is maximally sensitive to the irradiance of stimuli of 300 s and longer in duration. A quantitative model is presented to explain the changes that occur in the stimulus-response curves as a function of photic stimulus duration. 4. The threshold for photic stimulation of the hamster circadian pacemaker is also quite high. The threshold irradiance (the minimum irradiance necessary to induce statistically significant responses) is approximately 10(11) photons cm-2 s-1 for optimal stimulus durations. This threshold is equivalent to a luminance at the cornea of 0.1 cd m-2. 5. We also measured the sensitivity of this visual pathway to the total number of photons in a stimulus. This system is maximally sensitive to photons in stimuli between 30 and 3600 s in duration. The maximum quantum efficiency of photic integration occurs in 300 s stimuli. 6. These results suggest that the visual pathways that convey light information to the mammalian circadian pacemaker possess several unique characteristics. These pathways are relatively insensitive to light irradiance and also integrate light inputs over relatively long durations. This visual system, therefore, possesses an optimal sensitivity of 'tuning' to total photons delivered in stimuli of several minutes in duration. Together these characteristics may make this visual system unresponsive to environmental 'noise' that would interfere with the entrainment of circadian rhythms to light-dark cycles. PMID:1895235
ERIC Educational Resources Information Center
Chylinski, Mathew
2010-01-01
An unconditioned stimulus in the form of "participation money" serves to keep track of students' comments during class discussions and extrinsically to reinforce their class participation behaviors. Using a longitudinal experiment to investigate the effect of the participation money stimulus on several education outcomes, the author finds that the…
Galland, Paul
2002-09-01
The quantitative relation between gravitropism and phototropism was analyzed for light-grown coleoptiles of Avena sativa (L.). With respect to gravitropism the coleoptiles obeyed the sine law. To study the interaction between light and gravity, coleoptiles were inclined at variable angles and irradiated for 7 h with unilateral blue light (466 nm) impinging at right angles relative to the axis of the coleoptile. The phototropic stimulus was applied from the side opposite to the direction of gravitropic bending. The fluence rate that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle. To achieve balance, a linear increase in the gravitropic stimulus required compensation by an exponential increase in the counteracting phototropic stimulus. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law for phototropism described in this work.
Haddock, Steven H. D.; Dunn, Casey W.
2015-01-01
ABSTRACT Although proteins in the green fluorescent protein family (GFPs) have been discovered in a wide array of taxa, their ecological functions in these organisms remain unclear. Many hypothesized roles are related to modifying bioluminescence spectra or modulating the light regime for algal symbionts, but these do not explain the presence of GFPs in animals that are non-luminous and non-symbiotic. Other hypothesized functions are unrelated to the visual signals themselves, including stress responses and antioxidant roles, but these cannot explain the localization of fluorescence in particular structures on the animals. Here we tested the hypothesis that fluorescence might serve to attract prey. In laboratory experiments, the predator was the hydromedusa Olindias formosus (previously known as O. formosa), which has fluorescent and pigmented patches on the tips of its tentacles. The prey, juvenile rockfishes in the genus Sebastes, were significantly more attracted (P<1×10−5) to the medusa's tentacles under lighting conditions where fluorescence was excited and tentacle tips were visible above the background. The fish did not respond significantly when treatments did not include fluorescent structures or took place under yellow or white lights, which did not generate fluorescence visible above the ambient light. Furthermore, underwater observations of the behavior of fishes when presented with a brightly illuminated point showed a strong attraction to this visual stimulus. In situ observations also provided evidence for fluorescent lures as supernormal stimuli in several other marine animals, including the siphonophore Rhizophysa eysenhardti. Our results support the idea that fluorescent structures can serve as prey attractants, thus providing a potential function for GFPs and other fluorescent proteins in a diverse range of organisms. PMID:26231627
Control of preference in children by conditioned positive reinforcement.
Favell, J E; Favell, J E
1972-07-01
A preference measure was employed with children to evaluate the conditioned positive reinforcing function of a stimulus that preceded reinforcement. A match-to-sample procedure was arranged in which subjects could respond to either the form or color dimension of a compound sample stimulus. Intermittent token reinforcement was provided equally for color and form matches. Two stimuli were employed (Stimulus A and Stimulus B), each consisting of a distinctive tone and colored light. One of these stimuli (the paired stimulus) preceded each token delivery, and the other did not (nonpaired stimulus). The paired stimulus was dependent upon each response to one match dimension, and the nonpaired stimulus followed each response to the other dimension. Three of the five subjects responded primarily to the dimension that was followed by the paired stimulus. This effect was obtained regardless of which stimulus (A or B) was paired and on which match dimension (color or form) the paired stimulus was dependent. These results were unaltered by discontinuing the nonpaired stimulus. The other two subjects demonstrated consistent preferences for the form dimension and Stimulus A, respectively.
Attention and generalization during a conditional discrimination.
Reynolds, G S; Limpo, A J
1969-11-01
A conditional discrimination was established and analyzed, using four pigeons. The discrimination was among four compound stimuli projected on the response key-a white circle or triangle on a red or green background-during two conditions of illumination in the chamber, no illumination or flashing illumination. The two lighting conditions indicated whether the stimuli on the key containing triangles or those containing red would be the occasion for reinforcement. After the discrimination formed, generalization to intermediate and extreme values of the conditional stimulus and the attention of the birds to separate aspects of the stimulus on the key under each of the conditional stimuli were studied. All subjects generalized across values of the conditional stimulus, the lighting of the chamber. But subjects differed in the manner in which they treated the compound stimuli: two tended to attend to one or the other aspect of the stimulus on the key depending on the conditional stimulus, and two offered no evidence of such selective attention. Thus, the differential control of responding by the conditional stimuli cannot be attributed to a shift in attention between the figure and ground aspects of the compound stimuli.
Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław
2006-06-01
Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article.
Stimulus generalization, discrimination learning, and peak shift in horses.
Dougherty, D M; Lewis, P
1991-01-01
Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms. PMID:1940765
2010-01-01
The present paper reflects a work in progress toward a definition of circadian light, one that should be informed by the thoughtful, century-old evolution of our present definition of light as a stimulus for the human visual system. This work in progress is based upon the functional relationship between optical radiation and its effects on nocturnal melatonin suppression, in large part because the basic data are available in the literature. Discussed here are the fundamental differences between responses by the visual and circadian systems to optical radiation. Brief reviews of photometry, colorimetry, and brightness perception are presented as a foundation for the discussion of circadian light. Finally, circadian light (CLA) and circadian stimulus (CS) calculation procedures based on a published mathematical model of human circadian phototransduction are presented with an example. PMID:20377841
Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex
NASA Astrophysics Data System (ADS)
Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.
2018-03-01
We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.
Decoding stimulus features in primate somatosensory cortex during perceptual categorization
Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo
2015-01-01
Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711
Post-illumination Pupil Response in Subjects without Ocular Disease
Kankipati, Laxmikanth; Girkin, Christopher A.; Gamlin, Paul D.
2010-01-01
Purpose. A sustained pupilloconstriction is often observed after the cessation of a bright visual stimulus. This post-illumination pupil response (PIPR) is produced by the intrinsically photosensitive retinal ganglion cells (ipRGCs). The present study was designed to examine the characteristics of the PIPR in a normal population without ocular disease. Methods. Thirty-seven subjects (mean age, 48.6 years) were tested by presenting a 60°, 10-second light stimulus (13 log quanta/cm2/s retinal irradiance) and recording pupillary responses for 50 seconds after light cessation. The light stimuli (470 [blue] and 623 [red] nm) were presented by an optical system to one eye after dilation, while the consensual pupil response of the fellow, undilated eye was recorded by infrared pupillometry. Results. A positive PIPR was seen in all subjects tested. The population average of the PIPR for 470-nm light was 1.5 mm (SEM 0.10, P < 0.05) and the net PIPR (blue PIPR minus red PIPR) was 1.4 mm (SEM 0.09, P < 0.0001). The net PIPR correlated positively with baseline pupil diameter (P < 0.05), but not significantly with age, race, or sex (P > 0.05) in the test population. Conclusions. All normal subjects displayed a significant PIPR for a 10-second, 470-nm light stimulus, but not a 623-nm stimulus, which is consistent with the proposed melanopsin-mediated response. In most normal individuals, the amplitude of the PIPR was substantial. This test has the potential to be used as a tool in evaluating subjects with inner retinal dysfunction or melanopsin-related disorders. PMID:20007832
Standardized Full-Field Electroretinography in the Green Monkey (Chlorocebus sabaeus)
Bouskila, Joseph; Javadi, Pasha; Palmour, Roberta M.; Bouchard, Jean-François; Ptito, Maurice
2014-01-01
Abstract Full-field electroretinography is an objective measure of retinal function, serving as an important diagnostic clinical tool in ophthalmology for evaluating the integrity of the retina. Given the similarity between the anatomy and physiology of the human and Green Monkey eyes, this species has increasingly become a favorable non-human primate model for assessing ocular defects in humans. To test this model, we obtained full-field electroretinographic recordings (ERG) and normal values for standard responses required by the International Society for Clinical Electrophysiology of Vision (ISCEV). Photopic and scotopic ERG recordings were obtained by full-field stimulation over a range of 6 log units of intensity in dark-adapted or light-adapted eyes of adult Green Monkeys (Chlorocebus sabaeus). Intensity, duration, and interval of light stimuli were varied separately. Reproducible values of amplitude and latency were obtained for the a- and b-waves, under well-controlled adaptation and stimulus conditions; the i-wave was also easily identifiable and separated from the a-b-wave complex in the photopic ERG. The recordings obtained in the healthy Green Monkey matched very well with those in humans and other non-human primate species (Macaca mulatta and Macaca fascicularis). These results validate the Green Monkey as an excellent non-human primate model, with potential to serve for testing retinal function following various manipulations such as visual deprivation or drug evaluation. PMID:25360686
DOT National Transportation Integrated Search
1972-03-01
Thirty-nine human subjects were exposed to reptitive backscatter light stimulation (off a white wall or fog) from a Grimes capacitance discharge airplane anticollision light flashing at 1.27 Hertz. Both tonic (light stimulus absent) and phasic (light...
Influence of double stimulation on sound-localization behavior in barn owls.
Kettler, Lutz; Wagner, Hermann
2014-12-01
Barn owls do not immediately approach a source after they hear a sound, but wait for a second sound before they strike. This represents a gain in striking behavior by avoiding responses to random incidents. However, the first stimulus is also expected to change the threshold for perceiving the subsequent second sound, thus possibly introducing some costs. We mimicked this situation in a behavioral double-stimulus paradigm utilizing saccadic head turns of owls. The first stimulus served as an adapter, was presented in frontal space, and did not elicit a head turn. The second stimulus, emitted from a peripheral source, elicited the head turn. The time interval between both stimuli was varied. Data obtained with double stimulation were compared with data collected with a single stimulus from the same positions as the second stimulus in the double-stimulus paradigm. Sound-localization performance was quantified by the response latency, accuracy, and precision of the head turns. Response latency was increased with double stimuli, while accuracy and precision were decreased. The effect depended on the inter-stimulus interval. These results suggest that waiting for a second stimulus may indeed impose costs on sound localization by adaptation and this reduces the gain obtained by waiting for a second stimulus.
A stimulus-control account of regulated drug intake in rats.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2008-02-01
Patterns of drug self-administration are often highly regular, with a consistent pause after each self-injection. This pausing might occur because the animal has learned that additional injections are not reinforcing once the drug effect has reached a certain level, possibly due to the reinforcement system reaching full capacity. Thus, interoceptive effects of the drug might function as a discriminative stimulus, signaling when additional drug will be reinforcing and when it will not. This hypothetical stimulus control aspect of drug self-administration was emulated using a schedule of food reinforcement. Rats' nose-poke responses produced food only when a cue light was present. No drug was administered at any time. However, the state of the light stimulus was determined by calculating what the whole-body drug level would have been if each response in the session had produced a drug injection. The light was only presented while this virtual drug level was below a specific threshold. A range of doses of cocaine and remifentanil were emulated using parameters based on previous self-administration experiments. Response patterns were highly regular, dose-dependent, and remarkably similar to actual drug self-administration. This similarity suggests that the emulation schedule may provide a reasonable model of the contingencies inherent in drug reinforcement. Thus, these results support a stimulus control account of regulated drug intake in which rats learn to discriminate when the level of drug effect has fallen to a point where another self-injection will be reinforcing.
Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.
Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen
2014-08-06
Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.
Meck, W H
1984-01-01
Both the presentation of unbalanced stimulus probabilities and the insertion of a predictive cue prior to the signal on each trial apparently induces a strong bias to use a particular stimulus modality in order to select a temporal criterion and response rule. This attentional bias toward one modality is apparently independent of the modality of the stimulus being timed and is strongly influenced by stimulus probabilities or prior warning cues. These techniques may be useful to control trial-by-trial sequential effects that influence a subject's perceptual and response biases when signals from more than one modality are used in duration discrimination tasks. Cross-procedural generality of the effects of attentional bias was observed. An asymmetrical modality effect on the latency to begin timing was observed with both the temporal bisection and the peak procedure. The latency to begin timing light signals, but not the latency to begin timing sound signals, was increased when the signal modality was unexpected. This asymmetrical effect was explained with the assumption that sound signals close the mode switch automatically, but that light signals close the mode switch only if attention is directed to the light. The time required to switch attention is reflected in a reduction of the number of pulses from the pacemaker that enter the accumulator. One positive aspect of this work is the demonstration that procedures similar to those used to study human cognition can be used with animal subjects with similar results. Perhaps these similarities will stimulate animal research on the physiological basis of various cognitive capacities. Animal subjects would be preferred for such physiological experimentation if it were established that they possessed some of the cognitive processes described by investigators of human information processing. One of the negative aspects of this work is that only one combination of modalities was used and variables such as stimulus intensity, stimulus probability, and range of signal durations have not been adequately investigated at present. Future work might test additional combinations of modalities and vary stimulus intensity and stimulus probability within a signal detection theory (SDT) framework to determine the effects of these variables on attentional bias.
See, R E; Grimm, J W; Kruzich, P J; Rustay, N
1999-11-01
Previous studies have demonstrated that conditioned stimuli can increase responding on a drug-associated lever after extinction from drug self-administration. The present study investigated singular stimuli (tone or light) or a compound stimulus (tone + light) for their ability to increase extinguished responding following chronic cocaine self-administration. Rats self-administered cocaine for 2 weeks on a fixed ratio (FR1) schedule of reinforcement, in which lever responding resulted in varied presentation of a tone, light, or tone + light combination. The rats were then exposed to 1 week of daily extinction sessions. Presentation of the tone + light on day 8 of extinction in the absence of cocaine reinforcement resulted in a significant increase in responding, while either stimulus component alone was much weaker or failed to produce any changes from extinction rates of responding. In addition, changing the duration of the single elements of the compound did not affect the magnitude of increased responding to the compound. Following three final extinction sessions, robust lever responding for cocaine infusions on day 12 of extinction was seen across all groups. These findings suggest that compound stimuli may be critical to fully activate drug-seeking behavior in conditions of craving and relapse following prolonged extinction.
Guy, Elizabeth Glenn; Fletcher, Paul J
2014-06-01
Nicotine enhances approach toward and operant responding for conditioned stimuli (CSs), but the effect of exposure during different phases of Pavlovian incentive learning on these measures remains to be determined. These studies examined the effects of administering nicotine early, late or throughout Pavlovian conditioning trials on discriminated approach behavior, nicotine-enhanced responding for conditioned reinforcement, extinction, and the reinstatement of responding for conditioned reinforcement. We also tested the effect of nicotine on approach to a lever-CS in a Pavlovian autoshaping procedure and for this CS to serve as a conditioned reinforcer. Thirsty rats were exposed to 13 conditioning sessions where a light/tone CS was paired with the delivery of water. Nicotine was administered either prior to the first or last seven sessions, or throughout the entire conditioning procedure. Responding for conditioned reinforcement, extinction, and the reinstatement of responding by the stimulus and nicotine were compared across exposure groups. Separately, the effects of nicotine on conditioned approach toward a lever-CS during autoshaping, and responding for that CS as a conditioned reinforcer, were examined. Nicotine exposure was necessary for nicotine-enhanced responding for conditioned reinforcement and the ability for nicotine and the stimulus to additively reinstate responding on the reinforced lever. Nicotine increased contacts with a lever-CS during autoshaping, and removal of nicotine abolished this effect. Prior nicotine exposure was necessary for nicotine-enhanced responding reinforced by the lever. Enhancements in the motivating properties of CSs by nicotine occur independently from duration and timing effects of nicotine exposure during conditioning.
Hormonal Regulation of Extinction: Implication for Mechanisms of Gender Difference in PTSD
2009-09-01
role of gonadal hormones in the regulation of Pavlovian fear conditioning and its extinction. Pavlovian fear conditioning and its extinction serve...learning in Pavlovian fear conditioning involves training with the presentation of an innocuous stimulus (the conditioned stimulus – CS) that is associated...GD, Schlinger BA, Fanselow MS (1998) Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant- path long-term
Light-induced suppression of endogenous circadian amplitude in humans
NASA Technical Reports Server (NTRS)
Jewett, Megan; Czeisler, Charles A.; Kronauer, Richard E.
1991-01-01
A recent demonstration that the phase of the human circadian pacemaker could be inverted using an unconventional three-cycle stimulus has led to an investigation of whether critically timed exposure to a more moderate stimulus could drive that oscillator toward its singularity, a phaseless position at which the amplitude of circadian oscillation is zero. It is reported here that exposure of humans to fewer cycles of bright light, centered around the time at which the human circadian pacemaker is most sensitive to light-induced phase shifts, can markedly attenuate endogenous cicadian amplitude. In some cases this results in an apparent loss of rhythmicity, as expected to occur in the region of singularity.
Top-down modulation: Bridging selective attention and working memory
Gazzaley, Adam; Nobre, Anna C.
2012-01-01
Selective attention, the ability to focus our cognitive resources on information relevant to our goals, influences working memory (WM) performance. Indeed, attention and working memory are increasingly viewed as overlapping constructs. Here, we review recent evidence from human neurophysiological studies demonstrating that top-down modulation serves as a common neural mechanism underlying these two cognitive operations. The core features include activity modulation in stimulus-selective sensory cortices with concurrent engagement of prefrontal and parietal control regions that function as sources of top-down signals. Notably, top-down modulation is engaged during both stimulus-present and stimulus-absent stages of WM tasks, i.e., expectation of an ensuing stimulus to be remembered, selection and encoding of stimuli, maintenance of relevant information in mind and memory retrieval. PMID:22209601
Sjöstrand, F S
2002-01-01
Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.
Delevoye-Turrell, Yvonne Nathalie; Bobineau, Claudie
2012-01-01
Mindfulness-Based Stress Reduction meditation (MBSR) may offer optimal performance through heightened attention for increased body consciousness. To test this hypothesis, MBSR effects were assessed on the simple task of lifting an object. A dual task paradigm was included to assess the opposite effect of a limited amount of attention on motor consciousness. In a stimulus-based condition, the subjects’ task was to lift an object that was hefted with weights. In an intentional-based condition, subjects were required to lift a light object while imagining that the object was virtually heavier and thus, adjust their grip voluntarily. The degree of motor consciousness was evaluated by calculating correlation factors for each participant between the grip force level used during the lift trial (“lift the object”) and that used during its associated reproduce trial (“without lifting, indicate the force you think you used in the previous trial”). Under dual task condition, motor consciousness decreased for intention- and stimulus-based actions, revealing the importance of top-down attention for building the motor representation that guides action planning. For MBSR-experts, heightened attention provided stronger levels of motor consciousness; this was true for both intention and stimulus-based actions. For controls, heightened attention decreased the capacity to reproduce force levels, suggesting that voluntary top-down attention interfered with the automatic bottom-up emergence of body sensations. Our results provide strong arguments for involvement of two types of attention for the emergence of motor consciousness. Bottom-up attention would serve as an amplifier of motor-sensory afferences; top-down attention would help transfer the motor-sensory content from a preconscious to a conscious state of processing. MBSR would be a specific state for which both types of attention are optimally combined to provide experts with total experiences of their body in movement. PMID:22973242
Vollrath-Smith, Fiori R.; Shin, Rick
2011-01-01
Rationale Noncontingent administration of amphetamine into the ventral striatum or systemic nicotine increases responses rewarded by inconsequential visual stimuli. When these drugs are contingently administered, rats learn to self-administer them. We recently found that rats self-administer the GABAB receptor agonist baclofen into the median (MR) or dorsal (DR) raphe nuclei. Objectives We examined whether noncontingent administration of baclofen into the MR or DR increases rats’ investigatory behavior rewarded by a flash of light. Results Contingent presentations of a flash of light slightly increased lever presses. Whereas noncontingent administration of baclofen into the MR or DR did not reliably increase lever presses in the absence of visual stimulus reward, the same manipulation markedly increased lever presses rewarded by the visual stimulus. Heightened locomotor activity induced by intraperitoneal injections of amphetamine (3 mg/kg) failed to concur with increased lever pressing for the visual stimulus. These results indicate that the observed enhancement of visual stimulus seeking is distinct from an enhancement of general locomotor activity. Visual stimulus seeking decreased when baclofen was co-administered with the GABAB receptor antagonist, SCH 50911, confirming the involvement of local GABAB receptors. Seeking for visual stimulus also abated when baclofen administration was preceded by intraperitoneal injections of the dopamine antagonist, SCH 23390 (0.025 mg/kg), suggesting enhanced visual stimulus seeking depends on intact dopamine signals. Conclusions Baclofen administration into the MR or DR increased investigatory behavior induced by visual stimuli. Stimulation of GABAB receptors in the MR and DR appears to disinhibit the motivational process involving stimulus–approach responses. PMID:21904820
NASA Technical Reports Server (NTRS)
Jewett, M. E.; Rimmer, D. W.; Duffy, J. F.; Klerman, E. B.; Kronauer, R. E.; Czeisler, C. A.
1997-01-01
Fifty-six resetting trials were conducted across the subjective day in 43 young men using a three-cycle bright-light (approximately 10,000 lx). The phase-response curve (PRC) to these trials was assessed for the presence of a "dead zone" of photic insensitivity and was compared with another three-cycle PRC that had used a background of approximately 150 lx. To assess possible transients after the light stimulus, the trials were divided into 43 steady-state trials, which occurred after several baseline days, and 13 consecutive trials, which occurred immediately after a previous resetting trial. We found that 1) bright light induces phase shifts throughout subjective day with no apparent dead zone; 2) there is no evidence of transients in constant routine assessments of the fitted temperature minimum 1-2 days after completion of the resetting stimulus; and 3) the timing of background room light modulates the resetting response to bright light. These data indicate that the human circadian pacemaker is sensitive to light at virtually all circadian phases, implying that the entire 24-h pattern of light exposure contributes to entrainment.
Protein synthesis in geostimulated root caps
NASA Technical Reports Server (NTRS)
Feldman, L. J.
1982-01-01
A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.
Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light
NASA Technical Reports Server (NTRS)
Boivin, D. B.; Czeisler, C. A.
1998-01-01
The present study was designed to investigate whether a weak photic stimulus can reset the endogenous circadian rhythms of plasma melatonin and plasma cortisol in human subjects. A stimulus consisting of three cycles of 5 h exposures to ordinary room light (approximately 180 lux), centered 1.5 h after the endogenous temperature nadir, significantly phase-advanced the plasma melatonin rhythm in eight healthy young men compared with the phase delays observed in eight control subjects who underwent the same protocol but were exposed to darkness (p < or = 0.003). After light-induced phase advances, the circadian rhythms of plasma melatonin and plasma cortisol maintained stable temporal relationships with the endogenous core body temperature cycle, consistent with the conclusion that exposure to ordinary indoor room light had shifted a master circadian pacemaker.
Alterations to multisensory and unisensory integration by stimulus competition
Rowland, Benjamin A.; Stanford, Terrence R.; Stein, Barry E.
2011-01-01
In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations. PMID:21957224
Alterations to multisensory and unisensory integration by stimulus competition.
Pluta, Scott R; Rowland, Benjamin A; Stanford, Terrence R; Stein, Barry E
2011-12-01
In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations.
Huh, Young Eun; Vosgerau, Joachim; Morewedge, Carey K
2016-06-01
When people cannot get what they want, they often satisfy their desire by consuming a substitute. Substitutes can originate from within the taxonomic category of the desired stimulus (i.e., within-category substitutes) or from a different taxonomic category that serves the same basic goal (i.e., cross-category substitutes). Both a store-brand chocolate (within-category substitute) and a granola bar (cross-category substitute), for example, can serve as substitutes for gourmet chocolate. Here, we found that people believe that within-category substitutes, which are more similar to desired stimuli, will more effectively satisfy their cravings than will cross-category substitutes (Experiments 1, 2a, and 2b). However, because within-category substitutes are more similar than cross-category substitutes to desired stimuli, they are more likely to evoke an unanticipated negative contrast effect. As a result, unless substitutes are equivalent in quality to the desired stimulus, cross-category substitutes more effectively satisfy cravings for the desired stimulus (Experiments 3 and 4). © The Author(s) 2016.
ERIC Educational Resources Information Center
Kehoe, E. James; White, Natasha E.
2004-01-01
Rabbits were given reinforced training of the nictitating membrane (NM) response using separate conditioned stimuli (CSs), which were a tone, light, and/or tactile vibration. Then, two CSs were compounded and given further pairings with the unconditioned stimulus (US). Evidence of both overexpectation and summation effects appeared. That is,…
A Unique Role of Endogenous Visual-Spatial Attention in Rapid Processing of Multiple Targets
ERIC Educational Resources Information Center
Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru
2011-01-01
Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions).…
Requirements and Guidelines for Dental Hygiene Education Programs.
ERIC Educational Resources Information Center
American Dental Association, Chicago, IL. Council on Dental Education.
The purpose of this report is to serve as a guide for dental hygiene education program development, and to serve as a stimulus for improving established programs. The first section of the report discusses the function of the Council on Dental Education and the trends in hygiene program development. In section II the requirements for an accredited…
Lightweight Helmet For Eye/Balance Studies
NASA Technical Reports Server (NTRS)
Mcstravick, M. Catherine; Proctor, David R.; Wood, Scott J.
1988-01-01
Lightweight helmet serves as mounting platform for stimulus and sensor modules in experiments on role of vestibulo-ocular reflex in motion sickness and space-adaptation syndrome. Fitted liner and five inflatable air bladders stabilize helmet with respect to subject's head. Personal bite board attached to chin-bar assembly makes hard palate in subject's mouth serve as final position reference for helmet.
Visual stimulus presentation using fiber optics in the MRI scanner.
Huang, Ruey-Song; Sereno, Martin I
2008-03-30
Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.
Trigeminal induced arousals during human sleep.
Heiser, Clemens; Baja, Jan; Lenz, Franziska; Sommer, J Ulrich; Hörmann, Karl; Herr, Raphael M; Stuck, Boris A
2015-05-01
Arousals caused by external stimuli during human sleep have been studied for most of the sensorial systems. It could be shown that a pure nasal trigeminal stimulus leads to arousals during sleep. The frequency of arousals increases dependent on the stimulus concentration. The aim of the study was to evaluate the influence of different stimulus durations on arousal frequency during different sleep stages. Ten young healthy volunteers with 20 nights of polysomnography were included in the study. Pure trigeminal stimulation with both different concentrations of CO2 (0, 10, 20, 40% v/v) and different stimulus durations (1, 3, 5, and 10 s) were applied during different sleep stages to the volunteers using an olfactometer. The application was performed during different sleep stages (light sleep, deep sleep, REM sleep). The number of arousals increased with rising stimulus duration and stimulus concentration during each sleep stage. Trigeminal stimuli during sleep led to arousals in dose- and time-dependent manner.
Lamb, R J; Ginsburg, Brett C; Schindler, Charles W
2016-12-01
Motivational increases due to exposure to alcohol-paired Conditioned Stimuli (CS) are central to some accounts of alcoholism. However, few studies isolate a stimulus's function as a CS from its other potential functions. Pavlovian-Instrumental-Transfer (PIT) procedures isolate a stimulus's function as a CS from its other functions. Though there are several relevant studies using PIT, knowledge gaps exist. Particularly, it is not clear that an alcohol-paired CS will increase alcohol seeking compared to the same stimulus in a Truly-Random-Control group, nor whether such increases are specific to alcohol seeking. To address these knowledge gaps in Experiment 1, rats responded for ethanol (0.1 ml 8% w/v) under an RI 30-sec schedule, then the lever was removed and half the rats had ethanol delivered during occasional 120-sec light presentations, while the remainder had ethanol and the light presented under independent RT schedules. Later the lever was returned and the light was presented during responding in extinction (PIT test). Following this test, levers were again removed and the light was presented without ethanol (light extinction), following again by a PIT test. Responding in the two groups during light presentations did not differ in either PIT test. Experiment 2 repeated Experiment 1 using food instead of ethanol. In Experiment 2, responding during light presentations increased in the paired group. In Experiment 3, rats were trained on a concurrent FR schedule of food and ethanol delivery. Ethanol was delivered following 5 responses and the response requirement for food adjusted so that similar numbers of food and ethanol deliveries were obtained. Subsequently, rats underwent conditioning, control and testing procedures identical to those in Experiment 1. In Experiment 3, the ethanol-paired CS increased ethanol-responding, but not food-responding. These results are most easily interpreted as changes in responding resulting from CS-elicited behavior rather than motivational changes. This interpretation is more compatible with some descriptions of the role of an alcohol-paired CS in alcoholism than others. Copyright © 2016 Elsevier Inc. All rights reserved.
Biological Implications of Artificial Illumination.
ERIC Educational Resources Information Center
Wurtman, Richard J.
1968-01-01
Environmental lighting exerts profound biologic effects on humans and other mammals, in addition to providing the visual stimulus. Light acts on the skin to stimulate the synthesis of Vitamin D. It also acts, through the eyes, to control several glands and many metabolic processes. Light, or its absence, "induces" certain biologic functions. Light…
Enhanced appetitive conditioning following repeated pretreatment with d-amphetamine.
Harmer, C J; Phillips, G D
1998-07-01
The behavioural response to psychomotor stimulants is augmented with repeated exposure to these drugs. Enhanced stimulated dopamine overflow within the nucleus accumbens and amygdala has been found to accompany this behavioural sensitization. In the present experiment, rats received 2 mg/kg d-amphetamine or 1 ml/kg physiological saline once per day for 5 days. Five days later, a behavioural assay confirmed that prior repeated d-amphetamine treatment markedly enhanced the locomotor activating effects of a d-amphetamine (0.5 mg/kg, i.p.) challenge. Training on a Pavlovian conditioning task began six days subsequently. In Stage 1, a stimulus (light or tone, S-) was presented negatively correlated with a sucrose reward. In Stage 2, presentation of the alternative counterbalanced stimulus (light or tone, S+) was paired with the availability of a 10% sucrose solution. There were no differences between the two groups in their response to the the S- stimulus. However, sensitized animals showed a selective enhancement in the acquisition of conditioned responding to S+, relative to vehicle-injected controls. No differences in behaviour were recorded during the prestimulus periods, nor during presentations of sucrose. Levels of activity within the operant chamber extraneous to alcove approach were also similar in both groups of animals. The conditioned instrumental efficacy of S+, relative to S- was assessed in Stage 3, in which stimulus availability was made contingent on a novel lever-pressing response. Both groups showed a similar preference for the S+ over the S- stimulus. Hence, rats sensitized by prior repeated d-amphetamine showed enhanced appetitive Pavlovian conditioning, without subsequent effect on conditioned reward efficacy. These data are discussed in light of possible changes in mesoamygdaloid dopamine functioning.
Second-order schedules: discrimination of components1
Squires, Nancy; Norborg, James; Fantino, Edmund
1975-01-01
Pigeons were exposed to a series of second-order schedules in which the completion of a fixed number of fixed-interval components produced food. In Experiment 1, brief (2 sec) stimulus presentations occurred as each fixed-interval component was completed. During the brief-stimulus presentation terminating the last fixed-interval component, a response was required on a second key, the brief-stimulus key, to produce food. Responses on the brief-stimulus key before the last brief-stimulus presentation had no scheduled consequences, but served as a measure of the extent to which the final component was discriminated from preceding components. Whether there were one, two, four, or eight fixed-interval components, responses on the brief-stimulus key occurred during virtually every brief-stimulus presentation. In Experiment 2, an attempt was made to punish unnecessary responses on the brief-stimulus key, i.e., responses on the brief-stimulus key that occurred before the last component. None of the pigeons learned to withhold these responses, even though they produced a 15-sec timeout and loss of primary reinforcement. In Experiment 3, different key colors were associated with each component of a second-order schedule (a chain schedule). In contrast to Experiment 1, brief-stimulus key responses were confined to the last component. It was concluded that pigeons do not discriminate well between components of second-order schedules unless a unique exteroceptive cue is provided for each component. The relative discriminability of the components may account for the observed differences in initial-component response rates between comparable brief-stimulus, tandem, and chain schedules. PMID:16811868
Evaluation of an organic light-emitting diode display for precise visual stimulation.
Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji
2013-06-11
A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception.
2012-01-01
Background The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. Methods Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0–10 s after light termination) and late (10–30 s after light termination). Lens transmission was measured with an ocular fluorometer. Results The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p = 0.02, p = 0.0014, respectively) for the blue light stimulus condition only. The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions. Lens transmission decreased linearly with age (p < 0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p = 0.02). Conclusions Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age. PMID:22471313
Stimulus factors in motion perception and spatial orientation
NASA Technical Reports Server (NTRS)
Post, R. B.; Johnson, C. A.
1984-01-01
The Malcolm horizon utilizes a large projected light stimulus Peripheral Vision Horizon Device (PVHD) as an attitude indicator in order to achieve a more compelling sense of roll than is obtained with smaller devices. The basic principle is that the larger stimulus is more similar to visibility of a real horizon during roll, and does not require fixation and attention to the degree that smaller displays do. Successful implementation of such a device requires adjustment of the parameters of the visual stimulus so that its effects on motion perception and spatial orientation are optimized. With this purpose in mind, the effects of relevant image variables on the perception of object motion, self motion and spatial orientation are reviewed.
Heat produced by the dark-adapted bullfrog retina in response to light pulses.
Tasaki, I; Nakaye, T
1986-08-01
By using a pyroelectric detector constructed with a polyvinylidene fluoride film, a rapid rise in the temperature of the dark-adapted bullfrog retina induced by light was demonstrated. In the bullfrog retina, as in the squid retina examined previously, the heat generated in response to a brief light pulse was found to be far greater than the amount produced by conversion of the entire radiant energy of the stimulus into heat. The thermal responses consist of the heat generated by the photoreceptor and the postsynaptic elements in the retina, preceded by a small signal reflecting conversion of a portion of the radiant energy of the stimulus into heat. The dependence of the thermal responses on the light intensity, on the wavelength and on a variety of physical and chemical agents was examined. The exothermic process underlying the production of heat by the photoreceptor was found to precede the electrophysiological response of the retina.
Generalization of a tactile stimulus in horses.
Dougherty, D M; Lewis, P
1993-01-01
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses. PMID:8315368
Generalization of a tactile stimulus in horses.
Dougherty, D M; Lewis, P
1993-05-01
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses.
Viski, Sandor; Orgovan, David; Szabo, Katalin; Rosengarten, Bernhard; Csiba, Laszlo; Olah, Laszlo
2016-04-15
Neuroimaging studies proved that Braille reading resulted in visual cortex activation in blind people, however, very few data are available about the measure of flow increase in these subjects. Therefore, we investigated the flow response in the posterior cerebral artery (PCA) of eleven early blind and ten sighted subjects induced by reading Braille and print, respectively. Two experimental protocols were used in both groups: PCA flow velocity during reading was compared to the resting phase and "NLC" phase (volunteers "read" non-lexical characters; e.g. .,-.:,-.:...,). The use of these experimental protocols allowed to investigate separately the effect of "light stimulus+print reading" versus "print reading alone" in sighted, and "hand/finger movement+Braille reading" versus "Braille reading alone" in blind subjects. The flow response in the PCA evoked by "Braille reading alone" in blind (10.5±4.5%) and "print reading alone" in sighted subjects (8.1±3.5%) was similar. The flow increase induced by "hand/finger movement+Braille reading" and by "Braille reading alone" did not differ in blind people, however, "light stimulus+print reading" in sighted subjects caused higher PCA flow increase (25.9±6.9%) than "print reading alone" (8.1±3.5%). The similar PCA flow response induced by Braille and print reading alone suggested a similar degree of occipital cortex activation in blind and sighted subjects. In sighted people, the 3-times higher flow velocity increase induced by "light stimulus+print reading" compared with "print reading alone" indicated that 2/3 of PCA flow increase during reading was due to the light stimulus and only 1/3 of flow response was caused by reading alone. Copyright © 2016 Elsevier B.V. All rights reserved.
Lipin, Mikhail Y; Vigh, Jozsef
2018-05-01
Inhibition mediated by horizontal and amacrine cells in the outer and inner retina, respectively, are fundamental components of visual processing. Here, our purpose was to determine how these different inhibitory processes affect glutamate release from ON bipolar cells when the retina is stimulated with full-field light of various intensities. Light-evoked membrane potential changes (ΔV m ) were recorded directly from axon terminals of intact bipolar cells receiving mixed rod and cone inputs (Mbs) in slices of dark-adapted goldfish retina. Inner and outer retinal inhibition to Mbs was blocked with bath applied picrotoxin (PTX) and NBQX, respectively. Then, control and pharmacologically modified light responses were injected into axotomized Mb terminals as command potentials to induce voltage-gated Ca 2+ influx (Q Ca ) and consequent glutamate release. Stimulus-evoked glutamate release was quantified by the increase in membrane capacitance (ΔC m ). Increasing depolarization of Mb terminals upon removal of inner and outer retinal inhibition enhanced the ΔV m /Q Ca ratio equally at a given light intensity and inhibition did not alter the overall relation between Q Ca and ΔC m . However, relative to control, light responses recorded in the presence of PTX and PTX + NBQX increased ΔC m unevenly across different stimulus intensities: at dim stimulus intensities predominantly the inner retinal GABAergic inhibition controlled release from Mbs, whereas the inner and outer retinal inhibition affected release equally in response to bright stimuli. Furthermore, our results suggest that non-linear relationship between Q Ca and glutamate release can influence the efficacy of inner and outer retinal inhibitory pathways to mediate Mb output at different light intensities. © 2018 Wiley Periodicals, Inc.
Effects of a Blacklight Visual Field on Eye-Contact Training of Spastic Cerebral Palsied Children.
ERIC Educational Resources Information Center
Poland, D. J.; Doebler, L, K.
1980-01-01
Four subjects, aged six to seven, identified as visually impaired, were given training in making eye contact with a stimulus under both white and black light visual field. All subjects performed better under the black light condition, even overcoming the expected practice effect when white light training followed black light training. (Author/SJL)
Interactions between gravitropism and phototropism in plants
NASA Technical Reports Server (NTRS)
Correll, Melanie J.; Kiss, John Z.
2002-01-01
To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.
Interactions between gravitropism and phototropism in plants.
Correll, Melanie J; Kiss, John Z
2002-06-01
To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.
Task frequency influences stimulus-driven effects on task selection during voluntary task switching.
Arrington, Catherine M; Reiman, Kaitlin M
2015-08-01
Task selection during voluntary task switching involves both top-down (goal-directed) and bottom-up (stimulus-driven) mechanisms. The factors that shift the balance between these two mechanisms are not well characterized. In the present research, we studied the role that task frequency plays in determining the extent of stimulus-driven task selection. In two experiments, we used the basic paradigm adapted from Arrington (Memory & Cognition, 38, 991-997, 2008), in which the effect of stimulus availability serves as a marker of stimulus-driven task selection. A number and letter appeared on each trial with varying stimulus onset asynchronies, and participants performed either a consonant/vowel or an even/odd judgment. In Experiment 1, participants were instructed as to the relative frequency with which each task was to be performed (i.e., 50/50, 60/40, or 75/25) and were further instructed to make their transitions between tasks unpredictable. In Experiment 2, participants were given no instructions about how to select tasks, resulting in naturally occurring variation in task frequency. With both instructed (Exp. 1) and naturally occurring (Exp. 2) relative task frequencies, the less frequently performed task showed a greater effect of stimulus availability on task selection, suggestive of a larger influence of stimulus-driven mechanisms during task performance for the less frequent task. When goal-directed mechanisms of task choice are engaged less frequently, the relative influence of the stimulus environment increases.
Alkozei, Anna; Smith, Ryan; Killgore, William D S
2016-03-11
Blue wavelength light has been used as an effective treatment for some types of mood disorders and circadian rhythm related sleep problems. We hypothesized that acute exposure to blue wavelength light would directly affect the functioning of neurocircuity implicated in emotion regulation (i.e., ventromedial prefrontal cortex, amygdala, insula, and anterior cingulate cortex [ACC]) during 'certain' and 'uncertain' anticipation of negative and positive stimuli. Thirty-five healthy adults were randomized to receive a thirty-minute exposure to either blue (active) or amber (placebo) light, immediately followed by an emotional anticipation task during functional magnetic resonance imaging (fMRI). In contrast to placebo, participants in the blue light group showed significantly reduced activation within the rostral ACC during 'uncertain' anticipation (i.e., uncertainty regarding whether a positive or negative stimulus would be shown) in comparison to 'certain' anticipation of a positive stimulus. These findings may be explicable in terms of interactions between blue light exposure and the influence of specific neuromodulators on ACC-mediated decision-making mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sleep deprivation and time-on-task performance decrement in the rat psychomotor vigilance task.
Oonk, Marcella; Davis, Christopher J; Krueger, James M; Wisor, Jonathan P; Van Dongen, Hans P A
2015-03-01
The rat psychomotor vigilance task (rPVT) was developed as a rodent analog of the human psychomotor vigilance task (hPVT). We examined whether rPVT performance displays time-on-task effects similar to those observed on the hPVT. The rPVT requires rats to respond to a randomly presented light stimulus to obtain a water reward. Rats were water deprived for 22 h prior to each 30-min rPVT session to motivate performance. We analyzed rPVT performance over time on task and as a function of the response-stimulus interval, at baseline and after sleep deprivation. The study was conducted in an academic research vivarium. Male Long-Evans rats were trained to respond to a 0.5 sec stimulus light within 3 sec of stimulus onset. Complete data were available for n = 20 rats. Rats performed the rPVT for 30 min at baseline and after 24 h total sleep deprivation by gentle handling. Compared to baseline, sleep deprived rats displayed increased performance lapses and premature responses, similar to hPVT lapses of attention and false starts. However, in contrast to hPVT performance, the time-on-task performance decrement was not significantly enhanced by sleep deprivation. Moreover, following sleep deprivation, rPVT response times were not consistently increased after short response-stimulus intervals. The rPVT manifests similarities to the hPVT in global performance outcomes, but not in post-sleep deprivation effects of time on task and response-stimulus interval. © 2015 Associated Professional Sleep Societies, LLC.
ERIC Educational Resources Information Center
Panlilio, Leigh V.; Weiss, Stanley J.
2005-01-01
In earlier studies with rats, the effectiveness of the auditory element of a tone--light discriminative stimulus was enhanced when the conditioned incentive value of the compound was negative rather than positive. The present experiment systematically replicated these results in pigeons trained to press a treadle in the presence of a tone--light…
Absolute judgment for one- and two-dimensional stimuli embedded in Gaussian noise
NASA Technical Reports Server (NTRS)
Kvalseth, T. O.
1977-01-01
This study examines the effect on human performance of adding Gaussian noise or disturbance to the stimuli in absolute judgment tasks involving both one- and two-dimensional stimuli. For each selected stimulus value (both an X-value and a Y-value were generated in the two-dimensional case), 10 values (or 10 pairs of values in the two-dimensional case) were generated from a zero-mean Gaussian variate, added to the selected stimulus value and then served as the coordinate values for the 10 points that were displayed sequentially on a CRT. The results show that human performance, in terms of the information transmitted and rms error as functions of stimulus uncertainty, was significantly reduced as the noise variance increased.
The interoceptive Pavlovian stimulus effects of caffeine
Murray, Jennifer E.; Li, Chia; Palmatier, Matthew I.
2007-01-01
The present research sought to test whether caffeine functioned as a Pavlovian cue in two ways—as a positive drug feature or as a conditional stimulus (CS). As a positive feature (Experiment 1), brief light presentations were followed by sucrose only on sessions in which caffeine (10 mg/kg) was administered. On intermixed saline sessions, light presentations were not followed by sucrose. The light came to control robust goal-tracking (i.e., conditioned responding) only in caffeine sessions. Thus, caffeine disambiguates when the light was paired with sucrose. Decreasing the dose of caffeine decreased the conditioned responding evoked by the light (ED50=4.16 mg/kg). Neither nicotine nor amphetamine substituted for the caffeine feature. As a CS, caffeine (10 or 30 mg/kg, Experiments 2a and 2b, respectively) signaled intermittent access to sucrose—no light presentations. No sucrose or lights were presented on intermixed saline sessions. The caffeine CS, regardless of training dose, acquired the ability to evoke only a weak goal-tracking CR. The nature of this dissociation between caffeine as a drug feature versus a CS is discussed within the context of past research finding a similar dissociation with amphetamine and chlordiazepoxide, but not with nicotine. PMID:17477964
Nanoscale theranostics for physical stimulus-responsive cancer therapies.
Chen, Qian; Ke, Hengte; Dai, Zhifei; Liu, Zhuang
2015-12-01
Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Buhusi, Catalin V.; Lamoureux, Jeffrey A.; Meck, Warren H.
2008-01-01
The effects of prenatal choline availability on contextual processing in a 30-s peak-interval (PI) procedure with gaps (1, 5, 10, and 15 s) were assessed in adult male rats. Neither supplementation nor deprivation of prenatal choline affected baseline timing performance in the PI procedure. However, prenatal choline availability significantly altered the contextual processing of gaps inserted into the to-be-timed signal (light on). Choline-supplemented rats displayed a high degree of context sensitivity as indicated by clock resetting when presented with a gap in the signal (light off). In contrast, choline-deficient rats showed no such effect and stopped their clocks during the gap. Control rats exhibited an intermediate level of contextual processing in between stop and full reset. When switched to a reversed gap condition in which rats timed the absence of the light and the presence of the light served as a gap, all groups reset their clocks following a gap. Furthermore, when filling the intertrial interval (ITI) with a distinctive stimulus (e.g., sound), both choline-supplemented and control rats rightward shifted their PI functions less on trials with gaps than choline-deficient rats, indicating greater contextual sensitivity and reduced clock resetting under these conditions. Overall, these data support the view that prenatal choline availability affects the sensitivity to the context in which gaps are inserted in the to-be-timed signal, thereby influencing whether rats run, stop, or reset their clocks. PMID:18778696
ERIC Educational Resources Information Center
Knight, Marcia S.; Rosenblatt, Laurence
1983-01-01
Fourteen severely multiply handicapped children with rubella syndrome, six to 16 years of age, were examined with the PLAYTEST system, an operant test procedure using sound and light as stimuli and reinforcers. (Author/MC)
Applications of Light-Responsive Systems for Cancer Theranostics.
Chen, Hongzhong; Zhao, Yanli
2018-06-27
Achieving controlled and targeted delivery of chemotherapeutic drugs and other therapeutic agents to tumor sites is challenging. Among many stimulus strategies, light as a mode of action shows various advantages such as high spatiotemporal selectivity, minimal invasiveness and easy operation. Thus, drug delivery systems (DDSs) have been designed with the incorporation of various functionalities responsive to light as an exogenous stimulus. Early development has focused on guiding chemotherapeutic drugs to designated location, followed by the utilization of UV irradiation for controlled drug release. Because of the disadvantages of UV light such as phototoxicity and limited tissue penetration depth, scientists have moved the research focus onto developing nanoparticle systems responsive to light in the visible region (400-700 nm), aiming to reduce the phototoxicity. In order to enhance the tissue penetration depth, near-infrared light triggered DDSs become increasingly important. In addition, light-based advanced systems for fluorescent and photoacoustic imaging, as well as photodynamic and photothermal therapy have also been reported. Herein, we highlight some of recent developments by applying light-responsive systems in cancer theranostics, including light activated drug release, photodynamic and photothermal therapy, and bioimaging techniques such as fluorescent and photoacoustic imaging. Future prospect of light-mediated cancer treatment is discussed at the end of the review. This Spotlights on Applications article aims to provide up-to-date information about the rapidly developing field of light-based cancer theranostics.
Sensory integration of a light touch reference in human standing balance.
Assländer, Lorenz; Smith, Craig P; Reynolds, Raymond F
2018-01-01
In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.
Sensory integration of a light touch reference in human standing balance
Smith, Craig P.; Reynolds, Raymond F.
2018-01-01
In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252
A study of the impact of a simple stimulus on a receiver's imagination in mediated communication.
Ambe, Mioko; Kamada, Mikio; Ono, Masumi; Shibata, Toyohiko
2005-10-01
Mediated communication involves a form of intimate partnership where, as in the case of face-to-face intimate relationships, parties have a strong desire to exchange emotion and ensure a connection by way of receiving and responding to personal messages. So, in mediated communication, although partners have an effective means of conveying a connection, they still are in need of an equally effective means of conveying emotional state; they need a so-called "emotion-related channel." A desire to develop an efficient means of conveying emotion in mediated communication has driven this study. A study was carried out to determine the effects of a simple stimulus on one's imagination when subjects considered the simple stimulus to be a message from an intimate partner. Twenty-one subjects were first subjected to a simple pattern stimulus. They then experienced the same stimulus as a message received from an intimate partner in mediated communication. They subsequently answered questionnaires on their impressions of the stimulus, the emotional states of their imagined partners, and their own emotional states. A statistical analysis was then carried out. From a close examination of the findings, some interesting points were discovered. One important finding is that from the simple stimulus, subjects were able to imagine not only an intimate partner but also the emotional state of that partner. This and other findings lend support to the notion that a simple stimulus could serve as an emotion-related channel, in mediated communication.
α -Ethyltryptamine (α-ET) As A Discriminative Stimulus in Rats†
Glennon, Richard A.; Bondareva, Tatiana; Young, Richard
2007-01-01
α-Ethyltryptamine (etryptamine, α-ET) is a drug of abuse that first appeared on the clandestine market in the mid 1980s. Its pharmacological actions are poorly understood. In this investigation, it is reported for the first time that α-ET serves as a training drug in drug discrimination studies. Male Sprague-Dawley rats were trained to discriminate (30-min pretreatment time) 2.5 mg/kg of α-ET (ED50 = 1.3 mg/kg) from saline vehicle using a standard two-lever operant paradigm and a VI-15s schedule of reinforcement for appetitive reward. Once established, the α-ET stimulus was shown to have an onset to action of 30 min and a duration of effect of at least 4 hours. In tests of stimulus generalization (substitution), the α-ET stimulus generalized to S(−)α-ET (ED50 = 1.6 mg/kg) and R(+)α-ET (ED50 = 1.3 mg/kg). Tests of stimulus generalization were also conducted with prototypical phenylisopropylamines: (+)amphetamine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM), and N-methyl-1-(4-methoxyphenyl)-2-aminopropane (PMMA). The α-ET stimulus generalized to DOM (ED50 = 0.4 mg/kg) and PMMA (ED50 = 0.7 mg/kg), but only partially generalized (ca. 40% maximal drug-appropriate responding) to (+)amphetamine. The results suggest that α-ET produces a complex stimulus. PMID:17112572
Nickel, Moritz M; May, Elisabeth S; Tiemann, Laura; Postorino, Martina; Ta Dinh, Son; Ploner, Markus
2017-11-01
Pain serves the protection of the body by translating noxious stimulus information into a subjective percept and protective responses. Such protective responses rely on autonomic responses that allocate energy resources to protective functions. However, the precise relationship between objective stimulus intensity, subjective pain intensity, autonomic responses, and brain activity is not fully clear yet. Here, we addressed this question by continuously recording pain ratings, skin conductance, heart rate, and electroencephalography during tonic noxious heat stimulation of the hand in 39 healthy human subjects. The results confirmed that pain intensity dissociates from stimulus intensity during 10 minutes of noxious stimulation. Furthermore, skin conductance measures were significantly related to stimulus intensity but not to pain intensity. Correspondingly, skin conductance measures were significantly related to alpha and beta oscillations in contralateral sensorimotor cortex, which have been shown to encode stimulus intensity rather than pain intensity. No significant relationships were found between heart rate and stimulus intensity or pain intensity. The findings were consistent for stimulation of the left and the right hands. These results suggest that sympathetic autonomic responses to noxious stimuli in part directly result from nociceptive rather than from perceptual processes. Beyond, these observations support concepts of pain and emotions in which sensory, motor, and autonomic components are partially independent processes that together shape emotional and painful experiences.
Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure
Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.
2016-01-01
The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307
Sleep Deprivation and Time-on-Task Performance Decrement in the Rat Psychomotor Vigilance Task
Oonk, Marcella; Davis, Christopher J.; Krueger, James M.; Wisor, Jonathan P.; Van Dongen, Hans P.A.
2015-01-01
Study Objectives: The rat psychomotor vigilance task (rPVT) was developed as a rodent analog of the human psychomotor vigilance task (hPVT). We examined whether rPVT performance displays time-on-task effects similar to those observed on the hPVT. Design: The rPVT requires rats to respond to a randomly presented light stimulus to obtain a water reward. Rats were water deprived for 22 h prior to each 30-min rPVT session to motivate performance. We analyzed rPVT performance over time on task and as a function of the response-stimulus interval, at baseline and after sleep deprivation. Setting: The study was conducted in an academic research vivarium. Participants: Male Long-Evans rats were trained to respond to a 0.5 sec stimulus light within 3 sec of stimulus onset. Complete data were available for n = 20 rats. Interventions: Rats performed the rPVT for 30 min at baseline and after 24 h total sleep deprivation by gentle handling. Measurements and Results: Compared to baseline, sleep deprived rats displayed increased performance lapses and premature responses, similar to hPVT lapses of attention and false starts. However, in contrast to hPVT performance, the time-on-task performance decrement was not significantly enhanced by sleep deprivation. Moreover, following sleep deprivation, rPVT response times were not consistently increased after short response-stimulus intervals. Conclusions: The rat psychomotor vigilance task manifests similarities to the human psychomotor vigilance task in global performance outcomes, but not in post-sleep deprivation effects of time on task and response-stimulus interval. Citation: Oonk M, Davis CJ, Krueger JM, Wisor JP, Van Dongen HPA. Sleep deprivation and time-on-task performance decrement in the rat psychomotor vigilance task. SLEEP 2015;38(3):445–451. PMID:25515099
Habituation contributes to the decline in wheel running within wheel-running reinforcement periods.
Belke, Terry W; McLaughlin, Ryan J
2005-02-28
Habituation appears to play a role in the decline in wheel running within an interval. Aoyama and McSweeney [Aoyama, K., McSweeney, F.K., 2001. Habituation contributes to within-session changes in free wheel running. J. Exp. Anal. Behav. 76, 289-302] showed that when a novel stimulus was presented during a 30-min interval, wheel-running rates following the stimulus increased to levels approximating those earlier in the interval. The present study sought to assess the role of habituation in the decline in running that occurs over a briefer interval. In two experiments, rats responded on fixed-interval 30-s schedules for the opportunity to run for 45 s. Forty reinforcers were completed in each session. In the first experiment, the brake and chamber lights were repeatedly activated and inactivated after 25 s of a reinforcement interval had elapsed to assess the effect on running within the remaining 20 s. Presentations of the brake/light stimulus occurred during nine randomly determined reinforcement intervals in a session. In the second experiment, a 110 dB tone was emitted after 25 s of the reinforcement interval. In both experiments, presentation of the stimulus produced an immediate decline in running that dissipated over sessions. No increase in running following the stimulus was observed in the first experiment until the stimulus-induced decline dissipated. In the second experiment, increases in running were observed following the tone in the first session as well as when data were averaged over several sessions. In general, the results concur with the assertion that habituation plays a role in the decline in wheel running that occurs within both long and short intervals. (c) 2004 Elsevier B.V. All rights reserved.
Moving Stimuli Facilitate Synchronization But Not Temporal Perception
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap. PMID:27909419
Moving Stimuli Facilitate Synchronization But Not Temporal Perception.
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.
Stimulus and response conflict processing during perceptual decision making.
Wendelken, Carter; Ditterich, Jochen; Bunge, Silvia A; Carter, Cameron S
2009-12-01
Encoding and dealing with conflicting information is essential for successful decision making in a complex environment. In the present fMRI study, stimulus conflict and response conflict are contrasted in the context of a perceptual decision-making dot-motion discrimination task. Stimulus conflict was manipulated by varying dot-motion coherence along task-relevant and task-irrelevant dimensions. Response conflict was manipulated by varying whether or not competing stimulus dimensions provided evidence for the same or different responses. The right inferior frontal gyrus was involved specifically in the resolution of stimulus conflict, whereas the dorsal anterior cingulate cortex was shown to be sensitive to response conflict. Additionally, two regions that have been linked to perceptual decision making with dot-motion stimuli in monkey physiology studies were differentially engaged by stimulus conflict and response conflict. The middle temporal area, previously linked to processing of motion, was strongly affected by the presence of stimulus conflict. On the other hand, the superior parietal lobe, previously associated with accumulation of evidence for a response, was affected by the presence of response conflict. These results shed light on the neural mechanisms that support decision making in the presence of conflict, a cognitive operation fundamental to both basic survival and high-level cognition.
Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter
2017-01-01
Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.
Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M.; Born, Jan
2018-01-01
Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word “baby” (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented “standard” stimulus, whereas another unfamiliar voice served as the “unfamiliar deviant” stimulus, and the voice of the infant’s mother served as the “familiar deviant.” Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother’s voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300–400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200–300 ms post-stimulus interval. Overall results confirm a differential MMR response to unfamiliar and familiar deviants in 3-month-olds, with the earlier negative MMR to unfamiliar deviants likely reflecting change detection based on comparison processes in short-term memory, and the later positive MMR to familiar deviants reflecting subsequent long-term memory-based processing of stimulus relevance. PMID:29441032
Zinke, Katharina; Thöne, Leonie; Bolinger, Elaina M; Born, Jan
2018-01-01
Auditory event-related potentials (ERPs) have been successfully used in adults as well as in newborns to discriminate recall of longer-term and shorter-term memories. Specifically the Mismatch Response (MMR) to deviant stimuli of an oddball paradigm is larger if the deviant stimuli are highly familiar (i.e., retrieved from long-term memory) than if they are unfamiliar, representing an immediate change to the standard stimuli kept in short-term memory. Here, we aimed to extend previous findings indicating a differential MMR to familiar and unfamiliar deviants in newborns (Beauchemin et al., 2011), to 3-month-old infants who are starting to interact more with their social surroundings supposedly based on forming more (social) long-term representations. Using a voice discrimination paradigm, each infant was repeatedly presented with the word "baby" (400 ms, interstimulus interval: 600 ms, 10 min overall duration) pronounced by three different female speakers. One voice that was unfamiliar to the infants served as the frequently presented "standard" stimulus, whereas another unfamiliar voice served as the "unfamiliar deviant" stimulus, and the voice of the infant's mother served as the "familiar deviant." Data collection was successful for 31 infants (mean age = 100 days). The MMR was determined by the difference between the ERP to standard stimuli and the ERP to the unfamiliar and familiar deviant, respectively. The MMR to the familiar deviant (mother's voice) was larger, i.e., more positive, than that to the unfamiliar deviant between 100 and 400 ms post-stimulus over the frontal and central cortex. However, a genuine MMR differentiating, as a positive deflection, between ERPs to familiar deviants and standard stimuli was only found in the 300-400 ms interval. On the other hand, a genuine MMR differentiating, as a negative deflection, between ERPs to unfamiliar deviants from ERPs to standard stimuli was revealed for the 200-300 ms post-stimulus interval. Overall results confirm a differential MMR response to unfamiliar and familiar deviants in 3-month-olds, with the earlier negative MMR to unfamiliar deviants likely reflecting change detection based on comparison processes in short-term memory, and the later positive MMR to familiar deviants reflecting subsequent long-term memory-based processing of stimulus relevance.
Impact of stimulus uncanniness on speeded response
Takahashi, Kohske; Fukuda, Haruaki; Samejima, Kazuyuki; Watanabe, Katsumi; Ueda, Kazuhiro
2015-01-01
In the uncanny valley phenomenon, the causes of the feeling of uncanniness as well as the impact of the uncanniness on behavioral performances still remain open. The present study investigated the behavioral effects of stimulus uncanniness, particularly with respect to speeded response. Pictures of fish were used as visual stimuli. Participants engaged in direction discrimination, spatial cueing, and dot-probe tasks. The results showed that pictures rated as strongly uncanny delayed speeded response in the discrimination of the direction of the fish. In the cueing experiment, where a fish served as a task-irrelevant and unpredictable cue for a peripheral target, we again observed that the detection of a target was slowed when the cue was an uncanny fish. Conversely, the dot-probe task suggested that uncanny fish, unlike threatening stimulus, did not capture visual spatial attention. These results suggested that stimulus uncanniness resulted in the delayed response, and importantly this modulation was not mediated by the feelings of threat. PMID:26052297
Decoding the auditory brain with canonical component analysis.
de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund
2018-05-15
The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Investigating the mechanisms of visually-evoked tactile sensations.
McKenzie, Kirsten J; Lloyd, Donna M; Brown, Richard J; Plummer, Faye; Poliakoff, Ellen
2012-01-01
When attempting to detect a near-threshold signal, participants often incorrectly report the presence of a signal, particularly when a stimulus in a different modality is presented. Here we investigated the effect of prior experience of bimodal visuotactile stimuli on the rate of falsely reported touches in the presence of a light. In Experiment 1, participants made more false alarms in light-present than light-absent trials, despite having no experience of the experimental visuotactile pairing. This suggests that light-evoked false alarms are a consequence of an existing association, rather than one learned during the experiment. In Experiment 2, we sought to manipulate the strength of the association through prior training, using supra-threshold tactile stimuli that were given a high or low association with the light. Both groups still exhibited an increased number of false alarms during light-present trials, however, the low association group made significantly fewer false alarms across conditions, and there was no corresponding group difference in the number of tactile stimuli correctly identified. Thus, while training did not affect the boosting of the tactile signal by the visual stimulus, the low association training affected perceptual decision-making more generally, leading to a lower number of illusory touch reports, independent of the light. Copyright © 2011 Elsevier B.V. All rights reserved.
New perspectives on the auditory cortex: learning and memory.
Weinberger, Norman M
2015-01-01
Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.
The Magic Ear: Another Approach to Automated Classroom Control.
ERIC Educational Resources Information Center
George, James R., III; And Others
"Excessive" noise outburst behavior of 24 second graders was effectively controlled under automated stimulus conditions. A voice operated relay transmitted signals to an automated combination light display and outburst time/total running time meters; under 2 conditions, the light display functioned first as a primary, then as a secondary…
Immediate extinction promotes the return of fear.
Merz, Christian J; Hamacher-Dang, Tanja C; Wolf, Oliver T
2016-05-01
Accumulating evidence indicates that immediate extinction is less effective than delayed extinction in attenuating the return of fear. This line of fear conditioning research impacts the proposed onset of psychological interventions after threatening situations. In the present study, forty healthy men were investigated in a differential fear conditioning paradigm with fear acquisition in context A, extinction in context B, followed by retrieval testing in both contexts 24h later to test fear renewal. Differently coloured lights served as conditioned stimuli (CS): two CS (CS+) were paired with an electrical stimulation that served as unconditioned stimulus, the third CS was never paired (CS-). Extinction took place immediately after fear acquisition or 24h later. One CS+ was extinguished whereas the second CS+ remained unextinguished to control for different time intervals between fear acquisition and retrieval testing. Immediate extinction led to larger skin conductance responses during fear retrieval to both the extinguished and unextinguished CS relative to the CS-, indicating a stronger return of fear compared to delayed extinction. Taken together, immediate extinction is less potent than delayed extinction and is associated with a stronger renewal effect. Thus, the time-point of psychological interventions relative to the offset of threatening situations needs to be carefully considered to prevent relapses. Copyright © 2016 Elsevier Inc. All rights reserved.
A scale-invariant internal representation of time.
Shankar, Karthik H; Howard, Marc W
2012-01-01
We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.
Cortical sources of visual evoked potentials during consciousness of executive processes.
Babiloni, Claudio; Vecchio, Fabrizio; Iacoboni, Marco; Buffo, Paola; Eusebi, Fabrizio; Rossini, Paolo Maria
2009-03-01
What is the timing of cortical activation related to consciousness of visuo-spatial executive functions? Electroencephalographic data (128 channels) were recorded in 13 adults. Cue stimulus briefly appeared on right or left (equal probability) monitor side for a period, inducing about 50% of recognitions. It was then masked and followed (2 s) by a central visual go stimulus. Left (right) mouse button had to be clicked after right (left) cue stimulus. This "inverted" response indexed executive processes. Afterward, subjects said "seen" if they had detected the cue stimulus or "not seen" when it was missed. Sources of event-related potentials (ERPs) were estimated by LORETA software. The inverted responses were about 95% in seen trials and about 60% in not seen trials. Cue stimulus evoked frontal-parietooccipital potentials, having the same peak latencies in the seen and not seen data. Maximal difference in amplitude of the seen and not seen ERPs was detected at about +300-ms post-stimulus (P3). P3 sources were higher in amplitude in the seen than not seen trials in dorsolateral prefrontal, premotor and parietooccipital areas. This was true in dorsolateral prefrontal and premotor cortex even when percentage of the inverted responses and reaction time were paired in the seen and not seen trials. These results suggest that, in normal subjects, the primary consciousness enhances the efficacy of visuo-spatial executive processes and is sub-served by a late (100- to 400-ms post-stimulus) enhancement of the neural synchronization in frontal areas.
Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.
2018-01-01
It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860
Objective and automated measurement of dynamic vision functions
NASA Technical Reports Server (NTRS)
Flom, M. C.; Adams, A. J.
1976-01-01
A phoria stimulus array and electro-oculographic (EOG) arrangements for measuring motor and sensory responses of subjects subjected to stress or drug conditions are described, along with experimental procedures. Heterophoria (as oculomotor function) and glare recovery time (time required for photochemical and neural recovery after exposure to a flash stimulus) are measured, in research aimed at developing automated objective measurement of dynamic vision functions. Onset of involuntary optokinetic nystagmus in subjects attempting to track moving stripes (while viewing through head-mounted binocular eyepieces) after exposure to glare serves as an objective measure of glare recovery time.
Electrophysiological evidence for phenomenal consciousness.
Revonsuo, Antti; Koivisto, Mika
2010-09-01
Abstract Recent evidence from event-related brain potentials (ERPs) lends support to two central theses in Lamme's theory. The earliest ERP correlate of visual consciousness appears over posterior visual cortex around 100-200 ms after stimulus onset. Its scalp topography and time window are consistent with recurrent processing in the visual cortex. This electrophysiological correlate of visual consciousness is mostly independent of later ERPs reflecting selective attention and working memory functions. Overall, the ERP evidence supports the view that phenomenal consciousness of a visual stimulus emerges earlier than access consciousness, and that attention and awareness are served by distinct neural processes.
A novel signal acquisition platform of human cardiovascular information with noninvasive method
NASA Astrophysics Data System (ADS)
Chen, Longcong; Cai, Shaoxi; Li, Bo; Jiang, Qifeng; Ke, Ming; Zhao, Yi; Chen, Sijia; Zou, Misha
2017-05-01
Cardiovascular diseases (CVDs) are considered the major cause of death worldwide, so more researchers pay more and more attention to the development of a non-invasive method to obtain as much cardiovascular information (CVI) as possible for early screening and diagnosing. It is known that considerable brain information could be probed by a variety of stimuli (such as video, light, and sound). Therefore, it is quite possible that much more CVI could be extracted via giving the human body some special interrelated stimulus. Based on this hypothesis, we designed a novel signal platform to acquire more CVI with a special stimulus, which is to give a gradual decrease and a different settable constant pressure to six air belts placed on two-side brachia, wrists, and ankles, respectively. During the stimulating process, the platform is able to collect 24-channel dynamic signals related with CVI synchronously. Moreover, to improve the measurement accuracy of signal acquisition, a high precision reference chip and a software correction are adopted in this platform. Additionally, we have also shown some collection instances and analysis results in this paper for its reliability. The results suggest that our platform can not only be applied on study in a deep-going way of relationship between collected signals and CVDs but can also serve as the basic tool for developing a new noninvasive cardiovascular function detection instrument and system that can be used both at home and in the hospital.
Emotional sentience and the nature of phenomenal experience.
Kauffman, Katherine Peil
2015-12-01
When phenomenal experience is examined through the lens of physics, several conundrums come to light including: Specificity of mind-body interactions, feelings of free will in a deterministic universe, and the relativity of subjective perception. The new biology of "emotion" can shed direct light upon these issues, via a broadened categorical definition that includes both affective feelings and their coupled (yet often subconscious) hedonic motivations. In this new view, evaluative (good/bad) feelings that trigger approach/avoid behaviors emerged with life itself, a crude stimulus-response information loop between organism and its environment, a semiotic signaling system embodying the first crude form of "mind". Emotion serves the ancient function of sensory-motor self-regulation and affords organisms - at every level of complexity - an active, adaptive, role in evolution. A careful examination of the biophysics involved in emotional "self-regulatory" signaling, however, acknowledges constituents that are incompatible with classical physics. This requires a further investigation, proposed herein, of the fundamental nature of "the self" as the subjective observer central to the measurement process in quantum mechanics, and ultimately as an active, unified, self-awareness with a centrally creative role in "self-organizing" processes and physical forces of the classical world. In this deeper investigation, a new phenomenological dualism is proposed: The flow of complex human experience is instantiated by both a classically embodied mind and a deeper form of quantum consciousness that is inherent in the universe itself, implying much deeper - more Whiteheadian - interpretations of the "self-regulatory" and "self-relevant" nature of emotional stimulus. A broad stroke, speculative, intuitive sketch of this new territory is then set forth, loosely mapped to several theoretical models of consciousness, potentially relevant mathematical devices and pertinent philosophical themes, in an attempt to acknowledge the myriad questions - and limitations - implicit in the quest to understand "sentience" in any ontologically pansentient universe. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Smith, J. D.; Todd, P.; Staehelin, L. A.
1997-01-01
Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.
A Quantitative Theory of Human Color Choices
Komarova, Natalia L.; Jameson, Kimberly A.
2013-01-01
The system for colorimetry adopted by the Commission Internationale de l’Eclairage (CIE) in 1931, along with its subsequent improvements, represents a family of light mixture models that has served well for many decades for stimulus specification and reproduction when highly controlled color standards are important. Still, with regard to color appearance many perceptual and cognitive factors are known to contribute to color similarity, and, in general, to all cognitive judgments of color. Using experimentally obtained odd-one-out triad similarity judgments from 52 observers, we demonstrate that CIE-based models can explain a good portion (but not all) of the color similarity data. Color difference quantified by CIELAB ΔE explained behavior at levels of 81% (across all colors), 79% (across red colors), and 66% (across blue colors). We show that the unexplained variation cannot be ascribed to inter- or intra-individual variations among the observers, and points to the presence of additional factors shared by the majority of responders. Based on this, we create a quantitative model of a lexicographic semiorder type, which shows how different perceptual and cognitive influences can trade-off when making color similarity judgments. We show that by incorporating additional influences related to categorical and lightness and saturation factors, the model explains more of the triad similarity behavior, namely, 91% (all colors), 90% (reds), and 87% (blues). We conclude that distance in a CIE model is but the first of several layers in a hierarchy of higher-order cognitive influences that shape color triad choices. We further discuss additional mitigating influences outside the scope of CIE modeling, which can be incorporated in this framework, including well-known influences from language, stimulus set effects, and color preference bias. We also discuss universal and cultural aspects of the model as well as non-uniformity of the color space with respect to different cultural biases. PMID:23409103
A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.
Luo, An; Sullivan, Thomas J
2010-04-01
We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. Single-channel EEG is recorded using a low-noise dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor proves to be more convenient, comfortable and cost effective. A hardware system was built that displays four LED light panels flashing at different frequencies and synchronizes with EEG acquisition. The visual stimuli have been carefully designed such that potential risk to photosensitive people is minimized. We describe a novel stimulus-locked inter-trace correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus onsets. We studied how the performance of the algorithm is affected by different selection of parameters. Using the SLIC method, the average light detection rate is 75.8% with very low error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a traditional frequency-domain-based method, the SLIC method is more robust (resulting in less annoyance to the users) and is also suitable for irregular stimulus patterns.
Duration comparison: relative stimulus differences stimulus age, and stimulus predictiveness.
Stubbs, D A; Dreyfus, L R; Fetterman, J G; Boynton, D M; Locklin, N; Smith, L D
1994-01-01
Under a psychophysical trials procedure, pigeons were presented with a red light of one duration followed by a green light of a second duration. Eight geometrically spaced base durations were paired with one of four shorter and four longer durations as the alternate member of a duration pair, with different pairs randomly intermixed. One choice was reinforced if red had lasted longer than green, and a second choice was reinforced if green had lasted longer. Performance was compared when all the base durations and their pair members were included (entire-range condition) or when only the four longest base durations and their comparison durations (restricted-range condition) were used. Discrimination sensitivity decreased for longer duration pairs under both conditions, supporting a memory-based account. Sensitivity was lower under the restricted-range condition. Under both conditions, a bias to report "green as longer" increased as the second green duration increased. Bias changed as a matching function of the green-duration predictiveness of the correct choice. The results are related to a quantitative model of timing and remembering proposed by Staddon. PMID:8064211
Creating stimuli for the study of biological-motion perception.
Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan
2002-08-01
In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).
Perception of biological motion from size-invariant body representations.
Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E
2015-01-01
The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
The associative relation underlying autoshaping in the pigeon1
Woodruff, Guy; Williams, D. R.
1976-01-01
Fifteen pigeons were exposed to either response-independent or response-dependent schedules of water reinforcement, whereby water was injected directly into the unrestrained pigeons' mandibles. Key-contact responses were released by a lighted key correlated with water, but not by a lighted key uncorrelated with water. A negative response-reinforcer contingency suppressed autoshaped key-contact responses, resulting in responding directed away from the lighted key. In all pigeons, water injected directly into the mandibles elicited a consummatory fixed-action pattern of “mumbling” and swallowing. The lighted key correlated with water released a broader set of both appetitive and consummatory responses: approach to the lighted key, “bowing”, “rooting”, “mumbling”, and swallowing. Key-contact responses were “rooting” and “mumbling” motions of the beak on the surface of the key. Views of autoshaping based on stimulus substitution or stimulus surrogation do not fully explain the origin of autoshaped responses not previously elicited by the reinforcer. The present findings are consonant with views of conditioning that emphasize the large degree of biological pre-organization in conditioned response patterns, and the importance of associative factors in the control of such patterns. PMID:16811924
We are evaluating methods to screen/prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative model for detecting neurotoxic effects. Our behavioral testing paradigm simultaneously tests individual larval zebrafish under sequential light and...
The U.S. Environmental Protection Agency is screening large numbers of chemicals using 6 day old zebrafish (Danio rerio). We use a behavioral testing paradigm that simultaneously tests individual zebrafish under both light and dark conditions in a 96-well plate using a video tr...
Yao, Xin-Cheng; Li, Yi-Chao
2013-01-01
Retinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues. IOS imaging is based on near infrared (NIR) light detection of stimulus-evoked transient change of inherent optical characteristics of the cells. With no requirement for exogenous biomarkers, IOS imaging is totally noninvasive for functional mapping of stimulus-evoked spatiotemporal dynamics of the photoreceptors and inner retinal neurons. PMID:22688714
Weiss, Stanley J; Kearns, David N
2016-04-01
The present experiment investigated the extent to which the A+/AB- conditioned inhibition procedure could counteract an excitatory drug-related conditioning history. In two groups of rats, a light stimulus was established as a signal for the absence of cocaine. For the History group, the light had previously been a discriminative stimulus (S) that occasioned cocaine self-administration and could thus be classified as a cocaine excitor. In comparison, the No-History group first encountered the light during conditioned inhibition training. During conditioned inhibition training, both groups self-administered cocaine during tone as well as during click Ss, whereas drug seeking was eliminated in click-plus-light, wherein cocaine was not available (A+/AB-). Drug seeking was essentially eliminated in both groups. Nevertheless, on a summation test the light reduced cocaine seeking occasioned by the tone S by 95% in the No-History group, but by less than 50% in the History group. This summation test result showed that the effects of a drug-related history persisted even after the light was converted into an effective conditioned inhibitor on the training baseline through the powerful A+/AB- procedure. Future research should seek procedures that produce even stronger conditioned inhibition that eliminates such residual 'silent' drug excitation, the 'ghost in the addict'.
Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter
2017-01-01
Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations. PMID:29326579
Trueman, Rebecca C; Brooks, Simon P; Dunnett, Stephen B
2005-04-30
Within a broader programme developing murine models of Huntington's disease (HD), we have sought to develop a test of implicit learning for the mouse. Mice were trained in a novel serial visual discrimination task in the '9-hole box' operant test apparatus, followed by retesting after either bilateral quinolinic acid striatal lesions or sham lesions. In the task, each trial involves two sequential responses: an initial light stimulus is presented randomly in one of five holes, to which a nose-poke response results in the first light being extinguished and a second light is illuminated in a different hole. Response to the second light results in food reward, followed by a brief interval before the next trial. When the first light was in one of three of the five holes, the location of the second light was unpredictable in any of the remaining four holes; by contrast, if the first light occurred in one of the other two of the five holes, then the location of the second light was entirely predictable, being the hole two steps to the left or to the right, respectively. Reaction times and accuracy of responding were recorded to both stimuli. The mice learned the task with a degree of accuracy, and they demonstrated clear implicit learning, as measured by increased accuracy and reduced latency to respond to the presentation of the predictable stimulus. Striatal lesions disrupted performance, reducing accuracy for both the first and second stimuli and increasing response latencies for the second stimuli. The decrease in accuracy by the lesioned animals was accompanied by increases in perseverative nose-poking and inappropriate magazine entries throughout the trials, but the lesioned mice still showed a similar benefit (albeit, against a lower baseline of performance) from the implicit knowledge provided on predictable trials. The data validates the task as a sensitive probe for determining implicit learning deficits in the mouse, and suggests that the consequences of striatal lesions, while disrupting performance of skilled stimulus-response habits, are not selective to the process underlying implicit learning.
Dong, Shan; Jacob, Tim J C
2016-03-15
Bright light therapy has been shown to have a positive impact on seasonal affective disorder (SAD), depression and anxiety. Smell has also has been shown to have effects on mood, stress, anxiety and depression. The objective of this study was to investigate the effect of the combination of light and smell in a non-adaptive cycle. Human subjects were given smell (lemon, lavender or peppermint) and light stimuli in a triangular wave (60scycle) for 15min. Blood pressure and heart rate were monitored before and after each session for 5 consecutive days and a Profile of Mood States (POMS) test was administered before and after the sensory stimulation on days 1, 3 and 5. The light-smell stimulus lowered blood pressure, both systolic and diastolic, and reduced heart rate for all odours compared to control. Of the two sensory stimuli, the odour stimulus contributed most to this effect. The different aromas in the light-smell combinations could be distinguished by their different effects on the mood factors with lemon inducing the greatest mood changes in Dejection-Depression, Anger-Hostility, Tension-Anxiety. In conclusion, combined light and smell stimulation was effective in lowering blood pressure, reducing heart rate and improving mood. The combination was more effective than either smell or light stimuli alone, suggesting that a light-smell combination would be a more robust and efficacious alternative treatment for depression, anxiety and stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Retrospective revaluation and its neural circuit in rats.
San-Galli, Aurore; Marchand, Alain R; Decorte, Laurence; Di Scala, Georges
2011-10-01
Contingency learning is essential for establishing predictive or causal judgements. Retrospective revaluation captures essential aspects of the updating of this knowledge, according to new experience. In the present study, retrospective revaluation and its neural substrate was investigated in a rat conditioned magazine approach. One element of a previously food-reinforced Tone-Light compound stimulus was either further reinforced (inflation) or extinguished (extinction). These treatments affected the predictive value of the alternate stimulus (target), but only when the target was a weakly salient stimulus such as a Light, and the inflation/extinction procedure concerned the more salient element, that is the Tone. As the predictive value of the Light was decreased in comparison with a relevant control group, this revaluation was interpreted as backward blocking, and not unovershadowing. This observation challenges retrospective revaluation models focused on acquisition and prediction error detection, and is better accounted for by retrieval-based associative theories such as the comparator model (Miller and Matzel) [5]. Immunohistochemical detection of the Fos protein after the test phase revealed activation of the orbitofrontal and infralimbic cortices as well as nucleus accumbens core and shell, in rats that exhibited retrospective revaluation. Our results suggest that rats integrate successive experiences at the retrieval stage of retrospective revaluation, and that prefronto-accumbal interactions are involved in this function. Copyright © 2011 Elsevier B.V. All rights reserved.
Identification of a brain center whose activity discriminates a choice behavior in zebrafish
Lau, Billy Y. B.; Mathur, Priya; Gould, Georgianna G.; Guo, Su
2011-01-01
The ability to make choices and carry out appropriate actions is critical for individual survival and well-being. Choice behaviors, from hard-wired to experience-dependent, have been observed across the animal kingdom. Although differential engagement of sensory neuronal pathways is a known mechanism, neurobiological substrates in the brain that underlie choice making downstream of sensory perception are not well understood. Here, we report a behavioral paradigm in zebrafish in which a half-light/half-dark visual image evokes an innate choice behavior, light avoidance. Neuronal activity mapping using the immediate early gene c-fos reveals the engagement of distinct brain regions, including the medial zone of the dorsal telencephalic region (Dm) and the dorsal nucleus of the ventral telencephalic area (Vd), the teleost anatomical homologs of the mammalian amygdala and striatum, respectively. In animals that were subjected to the identical sensory stimulus but displayed little or no avoidance, strikingly, the Dm and Vd were not engaged, despite similar levels of activation in the brain nuclei involved in visual processing. Based on these findings and previous connectivity data, we propose a neural circuitry model in which the Dm serves as a brain center, the activity of which predicates this choice behavior in zebrafish. PMID:21262817
Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex.
Sale, Martin V; Nydam, Abbey S; Mattingley, Jason B
2017-03-01
Plasticity can be induced in human cortex using paired associative stimulation (PAS), which repeatedly and predictably pairs a peripheral electrical stimulus with transcranial magnetic stimulation (TMS) to the contralateral motor region. Many studies have reported small or inconsistent effects of PAS. Given that uncertain stimuli can promote learning, the predictable nature of the stimulation in conventional PAS paradigms might serve to attenuate plasticity induction. Here, we introduced stimulus uncertainty into the PAS paradigm to investigate if it can boost plasticity induction. Across two experimental sessions, participants (n = 28) received a modified PAS paradigm consisting of a random combination of 90 paired stimuli and 90 unpaired (TMS-only) stimuli. Prior to each of these stimuli, participants also received an auditory cue which either reliably predicted whether the upcoming stimulus was paired or unpaired (no uncertainty condition) or did not predict the upcoming stimulus (maximum uncertainty condition). Motor evoked potentials (MEPs) evoked from abductor pollicis brevis (APB) muscle quantified cortical excitability before and after PAS. MEP amplitude increased significantly 15 min following PAS in the maximum uncertainty condition. There was no reliable change in MEP amplitude in the no uncertainty condition, nor between post-PAS MEP amplitudes across the two conditions. These results suggest that stimulus uncertainty may provide a novel means to enhance plasticity induction with the PAS paradigm in human motor cortex. To provide further support to the notion that stimulus uncertainty and prediction error promote plasticity, future studies should further explore the time course of these changes, and investigate what aspects of stimulus uncertainty are critical in boosting plasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geurden, I; Aramendi, M; Zambonino-Infante, J; Panserat, S
2007-06-01
Based on the concept of nutritional programming in higher vertebrates, we tested whether an acute hyperglucidic stimulus during early life could induce a long-lasting effect on carbohydrate utilization in carnivorous rainbow trout. The trout were fed a hyperglucidic diet (60% dextrin) at two early stages of development: either at first feeding (3 days, stimulus 1) or after yolk absorption (5 days, stimulus 2). Before and after the hyperglucidic stimulus, they received a commercial diet until juvenile stage (>10 g). Fish that did not experience the hyperglucidic stimuli served as controls. The short- and long-term effects of the stimuli were evaluated by measuring the expression of five key genes involved in carbohydrate utilization: alpha-amylase, maltase (digestion), sodium-dependent glucose cotransporter (SGLT1; intestinal glucose transport), and glucokinase and glucose-6-phosphatase, involved in the utilization and production of glucose, respectively. The hyperglucidic diet rapidly increased expressions of maltase, alpha-amylase, and glucokinase in stimulus 1 fish and only of maltase in stimulus 2 fish, probably because of a lower plasticity at this later stage of development. In the final challenge test with juveniles fed a 25% dextrin diet, both digestive enzymes were upregulated in fish that had experienced the hyperglucidic stimulus at first feeding, confirming the possibility of modification of some long-term physiological functions in rainbow trout. In contrast, no persistent molecular adaptations were found for the genes involved in glucose transport or metabolism. In addition, growth and postprandial glycemia were unaffected by the stimuli. In summary, our data show that a short hyperglucidic stimulus during early trout life may permanently influence carbohydrate digestion.
Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.
Wee, A S; Jiles, K; Brennan, R
2001-01-01
Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.
Coincidence timing of a soccer pass: effects of stimulus velocity and movement distance.
Williams, L R
2000-08-01
The effect of stimulus velocity and movement extent on coincidence timing and spatial accuracy of a soccer pass was investigated. A Bassin anticipation timer provided light stimulus velocities of 1.79 or 2.68 m/sec. (designated as "Low" and "High", respectively), and subjects were required to kick a stationary soccer ball so that it struck a target in coincidence with the arrival of the light stimulus at the end of the runway. Two kick types were used. The "Short" condition began with the subject 70 cm from the ball and required a single forward step with the nonkicking leg before making the kick. The "Long" condition began 140 cm from the ball and required two steps before the kick. Twenty male subjects were given 16 trials under each of the four combinations of stimulus velocity and kick type. The expectation that the faster stimulus velocity would be associated with lower coincidence timing scores for both absolute error (AE) and variable error (VE) and with late responding for constant error (CEO) was upheld with the exception that for the Long Kick-High Velocity condition, AE was highest. The index of preprogramming (IP) was used to test the hypothesis that a two-stage control process would characterise coincidence anticipation performance involving whole-body movements. Results showed that the preparatory phase of responding produced zero-order IPs signifying reliance on feedback control. Also, while the striking phase produced high IP and suggested reliance on preprogrammed control, the possibility that the High Velocity conditions may have limited the responses was recognised. As a consequence, the role of open-loop processes remained equivocal. The findings are, however, in agreement with the view that the sensorimotor and movement-execution phases of responding require a process that is characterised by adaptability to regulatory features of the environment via closed loop mechanisms involving perception-action coupling.
Nonlinear decoding of a complex movie from the mammalian retina
Deny, Stéphane; Martius, Georg
2018-01-01
Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. PMID:29746463
Baker, Lewis J; Levin, Daniel T
2016-12-01
Levin and Banaji (Journal of Experimental Psychology: General, 135, 501-512, 2006) reported a lightness illusion in which participants appeared to perceive Black faces to be darker than White faces, even though the faces were matched for overall brightness and contrast. Recently, this finding was challenged by Firestone and Scholl (Psychonomic Bulletin and Review, 2014), who argued that the nominal illusion remained even when the faces were blurred so as to make their race undetectable, and concluded that uncontrolled perceptual differences between the stimulus faces drove at least some observations of the original distortion effect. In this paper we report that measures of race perception used by Firestone and Scholl were insufficiently sensitive. We demonstrate that a forced choice race-identification task not only reveals that participants could detect the race of the blurred faces but also that participants' lightness judgments often aligned with their assignment of race.
The role of meaning in contextual cueing: evidence from chess expertise.
Brockmole, James R; Hambrick, David Z; Windisch, David J; Henderson, John M
2008-01-01
In contextual cueing, the position of a search target is learned over repeated exposures to a visual display. The strength of this effect varies across stimulus types. For example, real-world scene contexts give rise to larger search benefits than contexts composed of letters or shapes. We investigated whether such differences in learning can be at least partially explained by the degree of semantic meaning associated with a context independently of the nature of the visual information available (which also varies across stimulus types). Chess boards served as the learning context as their meaningfulness depends on the observer's knowledge of the game. In Experiment 1, boards depicted actual game play, and search benefits for repeated boards were 4 times greater for experts than for novices. In Experiment 2, search benefits among experts were halved when less meaningful randomly generated boards were used. Thus, stimulus meaningfulness independently contributes to learning context-target associations.
Effect of set size, age, and mode of stimulus presentation on information-processing speed.
NASA Technical Reports Server (NTRS)
Norton, J. C.
1972-01-01
First, second, and third grade pupils served as subjects in an experiment designed to show the effect of age, mode of stimulus presentation, and information value on recognition time. Stimuli were presented in picture and printed word form and in groups of 2, 4, and 8. The results of the study indicate that first graders are slower than second and third graders who are nearly equal. There is a gross shift in reaction time as a function of mode of stimulus presentation with increase in age. The first graders take much longer to identify words than pictures, while the reverse is true of the older groups. With regard to set size, a slope appears in the pictures condition in the older groups, while for first graders, a large slope occurs in the words condition and only a much smaller one for pictures.
Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Madeshwaran, Thiagarajan; Hiep, Tran Tuan; Kandasamy, Umadevi; Oh, Kyung Taek; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2018-02-01
The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
Reilly, Steve; Grutzmacher, Richard P.
2002-07-31
The present experiments were designed to determine if repeated presentations of an empty sipper tube (the conditioned stimulus or CS) with the response-independent delivery of a sucrose solution (the unconditioned stimulus or US) from a second spout results in the development of Pavlovian conditioned responding. In Experiment 1, rats in the experimental condition received paired CS-US presentations whereas subjects in the control condition were exposed to random presentations of CS and US. In Experiment 2, an additional control condition (CS alone) was included and, to encourage generalized responding between the US and CS, the CS tube was filled with water for all groups. The results of both experiments indicate that the CS-directed responding in the paired CS-US condition was Pavlovian in nature. Thus, the present procedure serves as an autoshaping task in which conditioned licking is generated.
ERIC Educational Resources Information Center
Tallman, Benjamin A.; Altmaier, Elizabeth; Garcia, Carla
2007-01-01
Being diagnosed with and treated for cancer is a traumatic experience. Many cancer patients undergoing treatment manifest psychological distress and physical impairment. But this experience may also serve as a stimulus for positive growth. A growing body of literature addresses the possibility of positive growth through difficult events, a concept…
Constructing Arguments with 3-D Printed Models
ERIC Educational Resources Information Center
McConnell, William; Dickerson, Daniel
2017-01-01
In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…
ERIC Educational Resources Information Center
Parton, David A.; Priefert, Maria J.
1975-01-01
This study examines the possibility that the relational stimulus arising from being imitated serves a reinforcing function. A total of 48 preschool children performed a task in which some neutral stimuli were repeatedly associated either with an adult's matching the subject's behavior or the adult's mismatching the subject's behavior. (Author/GO)
ERIC Educational Resources Information Center
Frymier, Jack R.
1969-01-01
"We often become so obsessed with rationality in the schools that we forget it is necessary to teach young people positive ways to behave toward their fellowman. This can best be accomplished by creating a positive image which will serve as a stimulus "to help young people learn to love. (Author/AP)
Jud, Corinne; Schmutz, Isabelle; Hampp, Gabriele; Oster, Henrik
2005-01-01
Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions. PMID:16136228
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.
Karimi, Mahdi; Ghasemi, Amir; Sahandi Zangabad, Parham; Rahighi, Reza; Moosavi Basri, S Masoud; Mirshekari, H; Amiri, M; Shafaei Pishabad, Z; Aslani, A; Bozorgomid, M; Ghosh, D; Beyzavi, A; Vaseghi, A; Aref, A R; Haghani, L; Bahrami, S; Hamblin, Michael R
2016-03-07
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Stimulus-evoked outer segment changes in rod photoreceptors
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-06-01
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Stimulus-evoked outer segment changes in rod photoreceptors
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-01-01
Abstract. Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation. PMID:27334933
A genetic dissection of the photophobic response of Paramecium tetraurelia.
Hinrichsen, Robert; Peters, Christian
2013-05-01
Paramecium tetraurelia displayed two behavioral responses upon the initiation of a light stimulus at 7 x 10(4) lux. The cells exhibited a photophobic response in the form of behavioral avoiding reactions, followed by an increase in forward swimming velocity that was significantly higher than prior to the light stimulus activation. It was determined that an intensity of approximately 6.5 x 10(3) lux was required to initiate a moderate avoidance behavioral response. Following the avoiding response, a gradual increase in speed occurred as the intensity increased, indicating that increased swimming speeds are dependent on the light intensity. Two mutants, pawnA and Dancer, were utilized since they affect known Ca(2+)-currents of the cell. The use of pawnA cells, which lack voltage-dependent Ca(2+) channel activity, showed that the two responses to light could be genetically separated, in that the cells showed no avoiding reactions, but did increase their swimming speed. The Dancer cells, which display exaggerated Ca(2+) channel activity, exhibited similar initial avoiding responses as the wild type cells, however did not increase their swimming speed as the intensity of the light was increased. This phenotype as replicated in wildtype cells that had been placed in 25 μM 8-Br-cGMP. These data demonstrate that the photophobic light response of Paramecium tetraurelia can be genetically dissected as a means of elucidating the molecular mechanisms of the light response. Copyright © 2013 Elsevier GmbH. All rights reserved.
Schindler, Charles W.; Cogan, Elizabeth S.; Thorndike, Eric B.; Panlilio, Leigh V.
2011-01-01
In general, faster infusions of cocaine are more likely to support behavior related to abuse than are slower infusions. However, some studies of cocaine self-administration in rats have failed to support this finding, possibly because the effect was masked by other factors. One such factor may be the pairing of a stimulus with the infusion, a procedure that is known to facilitate acquisition of drug self-administration. We compared fast and slow infusions by allowing groups of rats to acquire cocaine self-administration at a dose of 1 mg/kg/infusion, delivered over different durations (1.8 or 100 sec). Two groups were trained with either short or long infusions paired with a visual stimulus change (lights off), and two other groups were trained with short or long durations but with no stimulus change. Both groups trained with a paired stimulus acquired cocaine self-administration. With no stimulus change, the rats trained with the 1.8-sec infusion acquired cocaine self-administration at a rate comparable to the two groups that were trained with a paired stimulus. However, most rats in the group trained with the 100-sec infusion that was not accompanied by a stimulus change failed to acquire cocaine self-administration. The stimulus itself did not support responding. These results indicate that infusing a given dose of cocaine over a longer duration reduces its ability to support self-administration, but drug-paired stimuli can partially mask this effect by enhancing the effectiveness of slow infusions. PMID:21600912
Schindler, Charles W; Cogan, Elizabeth S; Thorndike, Eric B; Panlilio, Leigh V
2011-09-01
In general, faster infusions of cocaine are more likely to support behavior related to abuse than are slower infusions. However, some studies of cocaine self-administration in rats have failed to support this finding, possibly because the effect was masked by other factors. One such factor may be the pairing of a stimulus with the infusion, a procedure that is known to facilitate acquisition of drug self-administration. We compared fast and slow infusions by allowing groups of rats to acquire cocaine self-administration at a dose of 1mg/kg/infusion, delivered over different durations (1.8 or 100 s). Two groups were trained with either short or long infusions paired with a visual stimulus change (lights off), and two other groups were trained with short or long durations but with no stimulus change. Both groups trained with a paired stimulus acquired cocaine self-administration. With no stimulus change, the rats trained with the 1.8-s infusion acquired cocaine self-administration at a rate comparable to the two groups that were trained with a paired stimulus. However, most rats in the group trained with the 100-s infusion that was not accompanied by a stimulus change failed to acquire cocaine self-administration. The stimulus itself did not support responding. These results indicate that infusing a given dose of cocaine over a longer duration reduces its ability to support self-administration, but drug-paired stimuli can partially mask this effect by enhancing the effectiveness of slow infusions. Published by Elsevier Inc.
Zivcevska, Marija; Lei, Shaobo; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F
2018-03-01
To develop an objective psychophysical method to quantify light-induced visual discomfort, and to measure the effects of viewing condition and stimulus wavelength. Eleven visually normal subjects participated in the study. Their pupils were dilated (2.5% phenylephrine) before the experiment. A Ganzfeld system presented either red (1.5, 19.1, 38.2, 57.3, 76.3, 152.7, 305.3 cd/m2) or blue (1.4, 7.1, 14.3, 28.6, 42.9, 57.1, 71.4 cd/m2) randomized light intensities (1 s each) in four blocks. Constant white-light stimuli (3 cd/m2, 4 s duration) were interleaved with the chromatic trials. Participants reported each stimulus as either "uncomfortably bright" or "not uncomfortably bright." The experiment was done binocularly and monocularly in separate sessions, and the order of color/viewing condition sequence was randomized across participants. The proportion of "uncomfortable" responses was used to generate individual psychometric functions, from which 50% discomfort thresholds were calculated. Light-induced discomfort was higher under blue compared with red light stimulation, both during binocular (t(10) = 3.58, P < 0.01) and monocular viewing (t(10) = 3.15, P = 0.01). There was also a significant difference in discomfort between viewing conditions, with binocular viewing inducing more discomfort than monocular viewing for blue (P < 0.001), but not for red light stimulation. The light-induced discomfort characteristics reported here are consistent with features of the melanopsin-containing intrinsically photosensitive retinal ganglion cell light irradiance pathway, which may mediate photophobia, a prominent feature in many clinical disorders. This is the first psychometric assessment designed around melanopsin spectral properties that can be customized further to assess photophobia in different clinical populations.
Bolin, B. Levi; Singleton, Destiny L.; Akins, Chana K.
2014-01-01
Pavlovian drug discrimination (DD) procedures demonstrate that interoceptive drug stimuli may come to control behavior by informing the status of conditional relationships between stimuli and outcomes. This technique may provide insight into processes that contribute to drug-seeking, relapse, and other maladaptive behaviors associated with drug abuse. The purpose of the current research was to establish a model of Pavlovian DD in male Japanese quail. A Pavlovian conditioning procedure was used such that 3.0 mg/kg methamphetamine served as a feature positive stimulus for brief periods of visual access to a female quail and approach behavior was measured. After acquisition training, generalization tests were conducted with cocaine, nicotine, and haloperidol under extinction conditions. SCH 23390 was used to investigate the involvement of the dopamine D1 receptor subtype in the methamphetamine discriminative stimulus. Results showed that cocaine fully substituted for methamphetamine but nicotine only partially substituted for methamphetamine in quail. Haloperidol dose-dependently decreased approach behavior. Pretreatment with SCH 23390 modestly attenuated the methamphetamine discrimination suggesting that the D1 receptor subtype may be involved in the discriminative stimulus effects of methamphetamine. The findings are discussed in relation to drug abuse and associated negative health consequences. PMID:24965811
Kanev, Jacob; Koutsou, Achilleas; Christodoulou, Chris; Obermayer, Klaus
2016-10-01
In this letter, we propose a definition of the operational mode of a neuron, that is, whether a neuron integrates over its input or detects coincidences. We complete the range of possible operational modes by a new mode we call gap detection, which means that a neuron responds to gaps in its stimulus. We propose a measure consisting of two scalar values, both ranging from -1 to +1: the neural drive, which indicates whether its stimulus excites the neuron, serves as background noise, or inhibits it; the neural mode, which indicates whether the neuron's response is the result of integration over its input, of coincidence detection, or of gap detection; with all three modes possible for all neural drive values. This is a pure spike-based measure and can be applied to measure the influence of either all or subset of a neuron's stimulus. We derive the measure by decomposing the reverse correlation, test it in several artificial and biological settings, and compare it to other measures, finding little or no correlation between them. We relate the results of the measure to neural parameters and investigate the effect of time delay during spike generation. Our results suggest that a neuron can use several different modes simultaneously on different subsets of its stimulus to enable it to respond to its stimulus in a complex manner.
Conditional discriminations, symmetry, and semantic priming.
Vaidya, Manish; Hudgins, Caleb D; Ortu, Daniele
2015-09-01
Psychologists interested in the study of symbolic behavior have found that people are faster at reporting that two words are related to one another than they are in reporting that two words are not related - an effect called semantic priming. This phenomenon has largely been documented in the context of natural languages using real words as stimuli. The current study asked whether laboratory-generated stimulus-stimulus relations established between arbitrary geometrical shapes would also show the semantic priming effect. Participants learned six conditional relations using a one-to-many training structure (A1-B1, A1-C1, A1-D1, A2-B2, A2-C2, A2-D2) and demonstrated, via accurate performance on tests of derived symmetry, that the trained stimulus functions had become reversible. In a lexical decision task, subjects also demonstrated a priming effect as they displayed faster reaction times to target stimuli when the prime and target came from the same trained or derived conditional relations, compared to the condition in which the prime and target came from different trained or derived conditional relations. These data suggest that laboratory-generated equivalence relations may serve as useful analogues of symbolic behavior. However, the fact that conditional relations training and symmetry alone were sufficient to produce the effect suggests that semantic priming like effects may be the byproduct of simpler stimulus-stimulus relations. Copyright © 2015 Elsevier B.V. All rights reserved.
Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type
NASA Astrophysics Data System (ADS)
Im, Maesoon; Werginz, Paul; Fried, Shelley I.
2018-06-01
Objective. To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. Approach. We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. Main results. We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. Significance. The stimulation rates preferred by subjects during clinical trials are similar to the rates that maximize the ON/OFF response ratio in in vitro testing (Im and Fried 2016a J. Neural Eng. 13 025002). Here, we determine the stimulus duration that produces the strongest bias towards ON responses and speculate that it will further enhance clinical effectiveness.
Age-Related Differences in Transfer Costs: Evidence From Go/Nogo Tasks
Vallesi, Antonino; Hasher, Lynn; Stuss, Donald T.
2012-01-01
To assess whether age-related differences in suppressing nontarget material impact subsequent performance, the authors initially asked younger and older adults to perform a go/nogo task with colored letters used as conflicting go/nogo stimuli and 2 colored numbers as low-conflict nogo stimuli. Next, participants performed another go/nogo task. A previous number was reused as a nogo stimulus and the other as a go stimulus, with new numbers serving as a baseline. In a 1st block of trials, younger adults showed slower responses to previous nogo/now-go numbers than to new go numbers, an effect not shown by older adults. Alternative accounts of these differential transfer costs are discussed. PMID:20718536
PHOTOTROPISM OF GERMINATING MYCELIA OF SOME PARASITIC FUNGI
uredinales on young wheat plants; Distribution and significance of the phototropism of germinating mycelia -- confirmation of older data, examination of...eight additional uredinales, probable meaning of negative phototropism for the occurrence of infection; Analysis of the stimulus physiology of the...reaction -- the minimum effective illumination intensity, the effective special region, inversion of the phototropic reaction in liquid paraffin, the negative light- growth reaction, the light-sensitive zone.
Effects of set-size and selective spatial attention on motion processing.
Dobkins, K R; Bosworth, R G
2001-05-01
In order to investigate the effects of divided attention and selective spatial attention on motion processing, we obtained direction-of-motion thresholds using a stochastic motion display under various attentional manipulations and stimulus durations (100-600 ms). To investigate divided attention, we compared motion thresholds obtained when a single motion stimulus was presented in the visual field (set-size=1) to those obtained when the motion stimulus was presented amongst three confusable noise distractors (set-size=4). The magnitude of the observed detriment in performance with an increase in set-size from 1 to 4 could be accounted for by a simple decision model based on signal detection theory, which assumes that attentional resources are not limited in capacity. To investigate selective attention, we compared motion thresholds obtained when a valid pre-cue alerted the subject to the location of the to-be-presented motion stimulus to those obtained when no pre-cue was provided. As expected, the effect of pre-cueing was large when the visual field contained noise distractors, an effect we attribute to "noise reduction" (i.e. the pre-cue allows subjects to exclude irrelevant distractors that would otherwise impair performance). In the single motion stimulus display, we found a significant benefit of pre-cueing only at short durations (< or =150 ms), a result that can potentially be explained by a "time-to-orient" hypothesis (i.e. the pre-cue improves performance by eliminating the time it takes to orient attention to a peripheral stimulus at its onset, thereby increasing the time spent processing the stimulus). Thus, our results suggest that the visual motion system can analyze several stimuli simultaneously without limitations on sensory processing per se, and that spatial pre-cueing serves to reduce the effects of distractors and perhaps increase the effective processing time of the stimulus.
A novel function for the pineal organ in the control of swim depth in the Atlantic halibut larva
NASA Astrophysics Data System (ADS)
Novales Flamarique, Iñigo
2002-02-01
The pineal organ of vertebrates is a photo-sensitive structure that conveys photoperiod information to the brain. This information influences circadian rhythm and related metabolic processes such as thermoregulation, hatching time, body growth, and the timing of reproduction. This study demonstrates extra-ocular light responses that control swim depth in the larva of the Atlantic halibut, Hyppoglosus hyppoglosus. Young larvae without a functional eye (<29 days) swim upwards after an average delay of 5 s following the onset of a downwelling light stimulus, but sink downwards a few seconds later. Older larvae (>=29 days), which possess a functional eye, swim immediately downwards (microsecond delay) following the onset of the light stimulus, but proceed to swim upwards several seconds later. These two response patterns are thus opposite in polarity and have different time kinetics. Because the pineal organ of the Atlantic halibut develops during the embryonic stage, and because it is the only centre in the brain that expresses functional visual pigments (opsins) at early larval stages, it is the only photosensory organ capable of generating the extra-ocular responses observed.
Effects of Music Listening on Cortisol Levels and Propofol Consumption during Spinal Anesthesia
Koelsch, Stefan; Fuermetz, Julian; Sack, Ulrich; Bauer, Katrin; Hohenadel, Maximilian; Wiegel, Martin; Kaisers, Udo X.; Heinke, Wolfgang
2011-01-01
Background: This study explores effects of instrumental music on the hormonal system (as indicated by serum cortisol and adrenocorticotropic hormone), the immune system (as indicated by immunoglobulin A) and sedative drug requirements during surgery (elective total hip joint replacement under spinal anesthesia with light sedation). This is the first study investigating this issue with a double-blind design using instrumental music. Methodology/Principal Findings: Patients (n = 40) were randomly assigned either to a music group (listening to instrumental music), or to a control group (listening to a non-musical placebo stimulus). Both groups listened to the auditory stimulus about 2 h before, and during the entire intra-operative period (during the intra-operative light sedation, subjects were able to respond lethargically to verbal commands). Results indicate that, during surgery, patients of the music group had a lower propofol consumption, and lower cortisol levels, compared to the control group. Conclusion/Significance: Our data show that listening to music during surgery under regional anesthesia has effects on cortisol levels (reflecting stress-reducing effects) and reduces sedative requirements to reach light sedation. PMID:21716581
Healy, Katherine; Labrique, Alain B; Miranda, J Jaime; Gilman, Robert H; Danz, David; Davila-Roman, Victor G; Huicho, Luis; León-Velarde, Fabiola; Checkley, William
2016-09-01
Healy, Katherine, Alain B. Labrique, J. Jaime Miranda, Robert H. Gilman, David Danz, Victor G. Davila-Roman, Luis Huicho, Fabiola León-Velarde, and William Checkley. Dark adaptation at high altitude: an unexpected pupillary response to chronic hypoxia in Andean highlanders. High Alt Med Biol. 17:208-213, 2016.-Chronic mountain sickness is a maladaptive response to high altitude (>2500 m above sea level) and is characterized by excessive erythrocytosis and hypoxemia resulting from long-term hypobaric hypoxia. There is no known early predictor of chronic mountain sickness and the diagnosis is based on the presence of excessive erythrocytosis and clinical features. Impaired dark adaptation, or an inability to visually adjust from high- to low-light settings, occurs in response to mild hypoxia and may serve as an early predictor of hypoxemia and chronic mountain sickness. We aimed to evaluate the association between pupillary response assessed by dark adaptometry and daytime hypoxemia in resident Andean highlanders aged ≥35 years living in Puno, Peru. Oxyhemoglobin saturation (SpO 2 ) was recorded using a handheld pulse oximeter. Dark adaptation was quantitatively assessed as the magnitude of pupillary contraction to light stimuli of varying intensities (-2.9 to 0.1 log-cd/m 2 ) using a portable dark adaptometer. Individual- and stimulus-specific multilevel analyses were conducted using mixed-effect models to elicit the relationship between SpO 2 and pupillary responsiveness. Among 93 participants, mean age was 54.9 ± 11.0 years, 48% were male, 44% were night blind, and mean SpO 2 was 89.3% ± 3.4%. The magnitude of pupillary contraction was greater with lower SpO 2 (p < 0.01), and this dose relationship remained significant in multiple variable analyses (p = 0.047). Pupillary responsiveness to light stimuli under dark-adapted conditions was exaggerated with hypoxemia and may serve as an early predictor of chronic mountain sickness. This unexpected association is potentially explained as an excessive and unregulated sympathetic response to hypoxemia at altitude.
Arrabito, G R; McFadden, S M; Crabtree, R B
2001-07-01
Auditory speech thresholds were measured in this study. Subjects were required to discriminate a female voice recording of three-digit numbers in the presence of diotic speech babble. The voice stimulus was spatialized at 11 static azimuth positions on the horizontal plane using three different head-related transfer functions (HRTFs) measured on individuals who did not participate in this study. The diotic presentation of the voice stimulus served as the control condition. The results showed that two of the HRTFS performed similarly and had significantly lower auditory speech thresholds than the third HRTF. All three HRTFs yielded significantly lower auditory speech thresholds compared with the diotic presentation of the voice stimulus, with the largest difference at 60 degrees azimuth. The practical implications of these results suggest that lower headphone levels of the communication system in military aircraft can be achieved without sacrificing intelligibility, thereby lessening the risk of hearing loss.
Comparing topography-based verbal behavior with stimulus selection-based verbal behavior
Sundberg, Carl T.; Sundberg, Mark L.
1990-01-01
Michael (1985) distinguished between two types of verbal behavior: topography-based and stimulus selection-based verbal behavior. The current research was designed to empirically examine these two types of verbal behavior while addressing the frequently debated question, Which augmentative communication system should be used with the nonverbal developmentally disabled person? Four mentally retarded adults served as subjects. Each subject was taught to tact an object by either pointing to its corresponding symbol (selection-based verbal behavior), or making the corresponding sign (topography-based verbal behavior). They were then taught an intraverbal relation, and were tested for the emergence of stimulus equivalence relations. The results showed that signed responses were acquired more readily than pointing responses as measured by the acquisition of tacts and intraverbals, and the formation of equivalence classes. These results support Michael's (1985) analysis, and have important implications for the design of language intervention programs for the developmentally disabled. ImagesFig. 1Fig. 2 PMID:22477602
Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole
2015-01-01
Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.
Open-source products for a lighting experiment device.
Gildea, Kevin M; Milburn, Nelda
2014-12-01
The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.
A negative effector of blue light-induced and gravitropic bending in Arabidopsis.
Knauer, Torsten; Dümmer, Michaela; Landgraf, Frank; Forreiter, Christoph
2011-05-01
Although sessile, plants are able to grow toward or away from an environmental stimulus. Important examples are stem or leaf orientation of higher plants in response to the direction of the incident light. The responsible photoreceptors belong to the phototropin photoreceptor family. Although the mode of phototropin action is quite well understood, much less is known of how the light signal is transformed into a bending response. Several lines of evidence indicate that a lateral auxin gradient is responsible for asymmetric cell elongation along the light gradient within the stem. However, some of the molecular key players leading to this asymmetric auxin distribution are, as yet, unidentified. Previously, it was shown that phototropin gets autophosphorylated upon illumination and binds to a scaffold protein termed NPH3 (for nonphototropic hypocotyl 3). Using a yeast three-hybrid approach with phototropin and NPH3 as a bait complex, we isolated a protein, termed EHB1 (for enhanced bending 1), with a so far unknown function, which binds to this binary complex. This novel interacting factor negatively affects hypocotyl bending under blue light conditions in Arabidopsis (Arabidopsis thaliana) and thus seems to be an important component regulating phototropism. Interestingly, it could be shown that the gravitropic response was also affected. Thus, it cannot be ruled out that this protein might also have a more general role in auxin-mediated bending toward an environmental stimulus.
Auditory-visual stimulus pairing enhances perceptual learning in a songbird.
Hultsch; Schleuss; Todt
1999-07-01
In many oscine birds, song learning is affected by social variables, for example the behaviour of a tutor. This implies that both auditory and visual perceptual systems should be involved in the acquisition process. To examine whether and how particular visual stimuli can affect song acquisition, we tested the impact of a tutoring design in which the presentation of auditory stimuli (i.e. species-specific master songs) was paired with a well-defined nonauditory stimulus (i.e. stroboscope light flashes: Strobe regime). The subjects were male hand-reared nightingales, Luscinia megarhynchos. For controls, males were exposed to tutoring without a light stimulus (Control regime). The males' singing recorded 9 months later showed that the Strobe regime had enhanced the acquisition of song patterns. During this treatment birds had acquired more songs than during the Control regime; the observed increase in repertoire size was from 20 to 30% in most cases. Furthermore, the copy quality of imitations acquired during the Strobe regime was better than that of imitations developed from the Control regime, and this was due to a significant increase in the number of 'perfect' song copies. We conclude that these effects were mediated by an intrinsic component (e.g. attention or arousal) which specifically responded to the Strobe regime. Our findings also show that mechanisms of song learning are well prepared to process information from cross-modal perception. Thus, more detailed enquiries into stimulus complexes that are usually referred to as social variables are promising. Copyright 1999 The Association for the Study of Animal Behaviour.
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems
Karimi, Mahdi; Ghasemi, Amir; Zangabad, Parham Sahandi; Rahighi, Reza; Moosavi Basri, S. Masoud; Mirshekari, H.; Amiri, M.; Pishabad, Z. Shafaei; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, Michael R.
2016-01-01
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive “smart” MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications. PMID:26776487
Fiesta, Matthew P; Eagleman, David M
2008-09-15
As the frequency of a flickering light is increased, the perception of flicker is replaced by the perception of steady light at what is known as the critical flicker fusion threshold (CFFT). This threshold provides a useful measure of the brain's information processing speed, and has been used in medicine for over a century both for diagnostic and drug efficacy studies. However, the hardware for presenting the stimulus has not advanced to take advantage of computers, largely because the refresh rates of typical monitors are too slow to provide fine-grained changes in the alternation rate of a visual stimulus. For example, a cathode ray tube (CRT) computer monitor running at 100Hz will render a new frame every 10 ms, thus restricting the period of a flickering stimulus to multiples of 20 ms. These multiples provide a temporal resolution far too low to make precise threshold measurements, since typical CFFT values are in the neighborhood of 35 ms. We describe here a simple and novel technique to enable alternating images at several closely-spaced periods on a standard monitor. The key to our technique is to programmatically control the video card to dynamically reset the refresh rate of the monitor. Different refresh rates allow slightly different frame durations; this can be leveraged to vastly increase the resolution of stimulus presentation times. This simple technique opens new inroads for experiments on computers that require more finely-spaced temporal resolution than a monitor at a single, fixed refresh rate can allow.
Integration time for the perception of depth from motion parallax.
Nawrot, Mark; Stroyan, Keith
2012-04-15
The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mechanosensing and signaltransduction in tendrils
NASA Astrophysics Data System (ADS)
Engelberth, Jürgen
2003-10-01
The perception of thigmic stimuli is a widespread phenomenon among plants with decisive meaning for the ability to survive. Beside a general sensitivity for mechanical stimuli many plants have evolved specialized organs with highly developed mechanisms to perceive and transduce the applied forces. Tendrils of Bryonia dioica and Pisum sativum have been chosen to study the effects of mechanical stimulation on plant physiology. Both types of tendrils, although exhibiting different morphology, respond to such a stimulus with a rapid coiling response to the dorsal side of the organ within minutes. The actual perception of the stimulus is most likely coupled to the cytoskeleton serving as the mediator between the physical stimulus and the biochemical response. Drugs affecting the status of the cytoskeleton were used to get more insights into this specific process. The results indicate that microtubuli (MT) play the most important role in the perception of thigmic stimuli in tendrils. Colchicine-mediated disruption of MT lead to total inhibition of the response to the thigmic stimulus in tendrils of Pisum and to a reduced response in Bryonia. Alamethicin, an ionophore that can mimic action potentials in membranes, was able to bypass this inhibition suggesting a direct involvement of MT in depolarization of the membranes. Auxin, however, which is also supposed to be involved in the regulation of the coiling response, failed to bypass colchicine-dependent inhibition. Vinblastine, another microtubule depolimerizing agent, did induce tendril coiling in Pisum without further stimulation. Application of taxol and other MT-stabilizing drugs as well as disruption of the actin network did not affect the coiling response of tendrils. In Pisum indole-3-acetic acid (IAA) is induced after mechanical stimulation during the coiling response, but not jasmonic acid. A further consequence of mechanical stimulation is the induction of an oxidative burst and an increase in soluble sugar. A model is presented integrating these results and might serve as a common basis for the understanding of the perception of mechanical stimuli.
Drug discrimination studies with ibogaine.
Helsley, S; Rabin, R A; Winter, J C
2001-01-01
The results of the studies described here support the hypothesis that ibogaine produces its effects via selective interactions with multiple receptors. It appears that 5-HT2A, 5-HT2C, and sigma 2 receptors are involved in mediating the stimulus effects of ibogaine. In addition, opiate receptors may also be involved. In contrast, sigma 1, PCP/MK-801, 5-HT3, and 5-HT1A receptors do not appear to play a major role. Ibogaine's hallucinogenic effects may be explained by its interactions with 5-HT2A and 5-HT2C receptors, while its putative antiaddictive properties may result from its interactions with sigma 2 and opiate receptors. Alternatively, the possibility that ibogaine's hallucinogenic properties underlie its antiaddictive effects, as previously suggested (34), would support a role for 5-HT2 receptors in mediating the reported therapeutic effects of ibogaine. Certainly many questions remain regarding ibogaine's mechanism of action. Although drug discrimination will be useful for answering some of those questions, the true potential of this technique is realized whin it is combined with other techniques. The next few years promise to be fruitful with respect to our understanding of this agent. Reasons supporting this belief include advances in the study of sigma receptors, interest in ibogaine's effects on second messenger systems, and the development of ibogaine congeners such as 18-methoxycoronaridine (35). In conclusion, the aforementioned studies should serve to guide further endeavors. Pertinent questions have been generated: What is the role of sigma receptors in the effects of ibogaine, especially with regard to addiction? How does ibogaine affect opiate neurotransmission? What effects, if any, do the Harmala alkaloids have on addiction phenomena? What is the mechanism of action of harmaline? Can 10-hydroxyibogamine serve as a discriminative stimulus and, if so, what receptor interactions mediate its stimulus effects? Does the ibogaine-trained stimulus generalize to novel agents, including 18-methoxycoronaridine?
Connor, David A; Kutlu, Munir G; Gould, Thomas J
2017-07-01
Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.
Turbomachine monitoring system and method
Delvaux, John McConnell
2016-02-23
In an embodiment, a system includes a turbomachine having a first turbomachine component including a first mechanoluminescent material. The first turbomachine component is configured to produce a first light emission upon exposure to a mechanical stimulus sufficient to cause mechanoluminescence by the first mechanoluminescent material. The system also includes a turbomachine monitoring system configured to monitor the structural health of the first component based on detection of the first light emission.
Cobb, C S; Williamson, R
1998-08-01
The innervation and responses to light of the cephalopod epistellar body were investigated in preparations isolated from the stellate ganglia of the lesser or northern octopus, Eledone cirrhosa. Extracellular generator potentials in response to flashes of light were recorded from these photosensitive vesicles, with the amplitude of the response being found to be dependent upon the intensity of the flash and the level of ambient illumination. Intracellular recordings from photoreceptor cells of the epistellar body showed that they had resting potentials of about -49 +/- 7 mV (mean +/- SD, n = 43) and were depolarized by flashes of white, but not red (>650 nm) light. The evoked depolarization consisted of a transient component, followed by a steady plateau in which the amplitude of the depolarization was well correlated with the log of the stimulus intensity. The evoked depolarizations induced action potentials in the photoreceptor cells, with the frequency of firing being well correlated with the stimulus intensity. The morphologies of individual photoreceptor cells were visualized by intracellular injections of the fluorescent dye Lucifer yellow, and the path of the epistellar nerve across the stellate ganglion, into the pallial nerve, toward the brain was traced using the lipophilic dye Di-I. This pathway was confirmed physiologically by recording light-evoked responses from the cut end of the pallial nerve.
Adaptation to changes in higher-order stimulus statistics in the salamander retina.
Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen
2014-01-01
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.
ERIC Educational Resources Information Center
Kangas, Brian D.; Branch, Marc N.
2012-01-01
The effects of cocaine were examined under a titrating-delay matching-to-sample procedure. In this procedure, the delay between sample stimulus offset and comparison stimuli onset adjusts as a function of the subject's performance. Specifically, matches increase the delay and mismatches decrease the delay. Titrated delay values served as the…
Anticipatory Emotions in Decision Tasks: Covert Markers of Value or Attentional Processes?
ERIC Educational Resources Information Center
Davis, Tyler; Love, Bradley C.; Maddox, W. Todd
2009-01-01
Anticipatory emotions precede behavioral outcomes and provide a means to infer interactions between emotional and cognitive processes. A number of theories hold that anticipatory emotions serve as inputs to the decision process and code the value or risk associated with a stimulus. We argue that current data do not unequivocally support this…
ERIC Educational Resources Information Center
Kim, Dongbeom; Pare, Denis; Nair, Satish S.
2013-01-01
The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…
Brief flight to a familiar enclosure in response to a conditional stimulus in rats.
de Oca, Beatrice M; Minor, Thomas R; Fanselow, Michael S
2007-04-01
The authors observed brief, directed movement to a familiar enclosure in rats to determine whether this behavior is part of a rat's defensive repertoire when exposed to a conditional-fear stimulus. In Experiment 1, upon exposure to the compound conditional-fear stimulus of tone and light, only rats that received paired presentations of the conditional stimuli and shock fled into a small, familiar enclosure where they then froze. Rats that had received unpaired presentations did not enter the enclosure in significant amounts when later tested. In Experiment 2, the authors observed rats' freezing and use of either a familiar or an unfamiliar enclosure when tested with a conditional-fear stimulus. Rats tested with a familiar enclosure entered it more quickly than did rats without prior exposure to the enclosure. Freezing was greatest when both training and testing environments were similar with respect to access to the enclosure. The results of these 2 experiments support the idea that brief, directed flight in rats is a component of the postencounter stage of predatory imminence (M. S. Fanselow & L. S. Lester, 1988) and is compatible with freezing.
Forrest, Charlotte L D; Monsell, Stephen; McLaren, Ian P L
2014-07-01
Task-cuing experiments are usually intended to explore control of task set. But when small stimulus sets are used, they plausibly afford learning of the response associated with a combination of cue and stimulus, without reference to tasks. In 3 experiments we presented the typical trials of a task-cuing experiment: a cue (colored shape) followed, after a short or long interval, by a digit to which 1 of 2 responses was required. In a tasks condition, participants were (as usual) directed to interpret the cue as an instruction to perform either an odd/even or a high/low classification task. In a cue + stimulus → response (CSR) condition, to induce learning of mappings between cue-stimulus compound and response, participants were, in Experiment 1, given standard task instructions and additionally encouraged to learn the CSR mappings; in Experiment 2, informed of all the CSR mappings and asked to learn them, without standard task instructions; in Experiment 3, required to learn the mappings by trial and error. The effects of a task switch, response congruence, preparation, and transfer to a new set of stimuli differed substantially between the conditions in ways indicative of classification according to task rules in the tasks condition, and retrieval of responses specific to stimulus-cue combinations in the CSR conditions. Qualitative features of the latter could be captured by an associative learning network. Hence associatively based compound retrieval can serve as the basis for performance with a small stimulus set. But when organization by tasks is apparent, control via task set selection is the natural and efficient strategy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.
Wutz, Andreas; Muschter, Evelyn; van Koningsbruggen, Martijn G; Weisz, Nathan; Melcher, David
2016-07-11
When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds
Miller-Sims, Vanessa C.
2014-01-01
Like humans, songbirds learn vocal sounds from “tutors” during a sensitive period of development. Vocal learning in songbirds therefore provides a powerful model system for investigating neural mechanisms by which memories of learned vocal sounds are stored. This study examined whether NCM (caudo-medial nidopallium), a region of higher level auditory cortex in songbirds, serves as a locus where a neural memory of tutor sounds is acquired during early stages of vocal learning. NCM neurons respond well to complex auditory stimuli, and evoked activity in many NCM neurons habituates such that the response to a stimulus that is heard repeatedly decreases to approximately one-half its original level (stimulus-specific adaptation). The rate of neural habituation serves as an index of familiarity, being low for familiar sounds, but high for novel sounds. We found that response strength across different song stimuli was higher in NCM neurons of adult zebra finches than in juveniles, and that only adult NCM responded selectively to tutor song. The rate of habituation across both tutor song and novel conspecific songs was lower in adult than in juvenile NCM, indicating higher familiarity and a more persistent response to song stimuli in adults. In juvenile birds that have memorized tutor vocal sounds, neural habituation was higher for tutor song than for a familiar conspecific song. This unexpected result suggests that the response to tutor song in NCM at this age may be subject to top-down influences that maintain the tutor song as a salient stimulus, despite its high level of familiarity. PMID:24694936
Dual Functions of Perirhinal Cortex in Fear Conditioning
Kent, Brianne A.; Brown, Thomas H.
2012-01-01
The present review examines the role of perirhinal cortex (PRC) in Pavlovian fear conditioning. The focus is on rats, partly because so much is known, behaviorally and neurobiologically, about fear conditioning in these animals. In addition, the neuroanatomy and neurophysiology of rat PRC have been described in considerable detail at the cellular and systems levels. The evidence suggests that PRC can serve at least two types of mnemonic functions in Pavlovian fear conditioning. The first function, termed "stimulus unitization," refers to the ability to treat two or more separate items or stimulus elements as a single entity. Supporting evidence for this perceptual function comes from studies of context conditioning as well as delay conditioning to discontinuous auditory cues. In a delay paradigm, the conditional stimulus (CS) and unconditional stimulus (US) overlap temporally and co-terminate. The second PRC function entails a type of "transient memory." Supporting evidence comes from studies of trace cue conditioning, where there is a temporal gap or trace interval between the CS offset and the US onset. For learning to occur, there must be a transient CS representation during the trace interval. We advance a novel neurophysiological mechanism for this transient representation. These two hypothesized functions of PRC are consistent with inferences based on non-aversive forms of learning. PMID:22903623
Heidegger, Tonio; Wibral, Michael; Altmann, Christian F.; Lutzenberger, Werner
2008-01-01
Oscillatory activity in human electro- or magnetoencephalogram has been related to cortical stimulus representations and their modulation by cognitive processes. Whereas previous work has focused on gamma-band activity (GBA) during attention or maintenance of representations, there is little evidence for GBA reflecting individual stimulus representations. The present study aimed at identifying stimulus-specific GBA components during auditory spatial short-term memory. A total of 28 adults were assigned to 1 of 2 groups who were presented with only right- or left-lateralized sounds, respectively. In each group, 2 sample stimuli were used which differed in their lateralization angles (15° or 45°) with respect to the midsagittal plane. Statistical probability mapping served to identify spectral amplitude differences between 15° versus 45° stimuli. Distinct GBA components were found for each sample stimulus in different sensors over parieto-occipital cortex contralateral to the side of stimulation peaking during the middle 200–300 ms of the delay phase. The differentiation between “preferred” and “nonpreferred” stimuli during the final 100 ms of the delay phase correlated with task performance. These findings suggest that the observed GBA components reflect the activity of distinct networks tuned to spatial sound features which contribute to the maintenance of task-relevant information in short-term memory. PMID:18252742
Dynamic resetting of the human circadian pacemaker by intermittent bright light
NASA Technical Reports Server (NTRS)
Rimmer, D. W.; Boivin, D. B.; Shanahan, T. L.; Kronauer, R. E.; Duffy, J. F.; Czeisler, C. A.
2000-01-01
In humans, experimental studies of circadian resetting typically have been limited to lengthy episodes of exposure to continuous bright light. To evaluate the time course of the human endogenous circadian pacemaker's resetting response to brief episodes of intermittent bright light, we studied 16 subjects assigned to one of two intermittent lighting conditions in which the subjects were presented with intermittent episodes of bright-light exposure at 25- or 90-min intervals. The effective duration of bright-light exposure was 31% or 63% compared with a continuous 5-h bright-light stimulus. Exposure to intermittent bright light elicited almost as great a resetting response compared with 5 h of continuous bright light. We conclude that exposure to intermittent bright light produces robust phase shifts of the endogenous circadian pacemaker. Furthermore, these results demonstrate that humans, like other species, exhibit an enhanced sensitivity to the initial minutes of bright-light exposure.
Polston, J.E.; Rubbinaccio, H.Y.; Morra, J.T.; Sell, E.M.; Glick, S.D.
2011-01-01
Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection (“Four” by Miles Davis) played repeatedly for ninety minutes. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drug while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. PMID:21145911
Rey-Mermet, Alodie; Gade, Miriam
2016-10-01
It is assumed that we recruit cognitive control (i.e., attentional adjustment and/or inhibition) to resolve 2 conflicts at a time, such as driving toward a red traffic light and taking care of a near-by ambulance car. A few studies have addressed this issue by combining a Simon task (that required responding with left or right key-press to a stimulus presented on the left or right side of the screen) with either a Stroop task (that required identifying the color of color words) or a Flanker task (that required identifying the target character among flankers). In most studies, the results revealed no interaction between the conflict tasks. However, these studies include a small stimulus set, and participants might have learned the stimulus-response mappings for each stimulus. Thus, it is possible that participants have more relied on episodic memory than on cognitive control to perform the task. In 5 experiments, we combined the 3 tasks pairwise, and we increased the stimulus set size to circumvent episodic memory contributions. The results revealed an interaction between the conflict tasks: Irrespective of task combination, the congruency effect of 1 task was smaller when the stimulus was incongruent for the other task. This suggests that when 2 conflicts are presented concurrently, the control processes induced by 1 conflict source can affect the control processes induced by the other conflict source. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.
von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H
2016-10-26
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance
Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.
2016-01-01
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189
Evaluation of OLED and edge-lit LED lighting panels
NASA Astrophysics Data System (ADS)
Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul
2016-09-01
Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.
Yoshiike, Takuya; Honma, Motoyasu; Yamada, Naoto; Kim, Yoshiharu; Kuriyama, Kenichi
2018-06-18
Bright light (BL) not only regulates human emotion and circadian physiology but can also directly modulate emotional memories. Impaired fear extinction and enhanced fear acquisition and consolidation are hallmarks of fear-circuitry disorders; thus, we tested whether BL facilitates fear extinction and inhibits fear acquisition. We randomly exposed 29 healthy humans to high- (9000 lx) or low-intensity light (<500 lx) for 15 min, near the nadir of the phase response to light, in a single-blind manner. Simultaneously with the light exposure, subjects performed fear extinction training and second fear acquisition, where a visual conditioned stimulus (CS), previously paired with an electric shock unconditioned stimulus (US), was presented without the US, while another CS was newly paired with the US. Conditioned responses (CRs) and changes in prefrontal cortex (PFC) activity were determined during encoding and delayed recall sessions. BL-exposed subjects exhibited lower extinction-related PFC activity and marginally higher acquisition-related PFC activity during light exposure than subjects exposed to control light. Twenty-four hours later, BL reduced CRs to both the extinguished and non-extinguished CSs with marginally lower extinction-related PFC activation, suggesting that BL enhanced fear extinction, while suppressing fear acquisition. Further, BL sustained tolerance to fear re-conditioning. Our results demonstrate that a single and brief BL exposure, synchronized with fear extinction and acquisition, instantaneously influences prefrontal hemodynamic responses and alleviates fear expression after 24 h. Although the specificity of BL effects deems further investigation, our findings indicate the clinical relevance of adjunctive BL intervention in exposure-based cognitive-behavioral therapy for fear-circuitry disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi
2014-11-07
The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σmore » increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.« less
ERIC Educational Resources Information Center
Henry, Sue Ellen; Breyfogle, M. Lynn
2006-01-01
This article problemetizes the contemporary view of reciprocity and offers a philosophical foundation for an enriched view based on Dewey's critique of early stimulus-response theory in psychology and his view of democracy. We situate the argument for reconsidering the provider/recipient model of service learning in the context of a collaboration…
ERIC Educational Resources Information Center
Walters, Glenn D.; Diamond, Pamela M.; Magaletta, Philip R.; Geyer, Matthew D.; Duncan, Scott A.
2007-01-01
The Antisocial Features (ANT) scale of the Personality Assessment Inventory (PAI) was subjected to taxometric analysis in a group of 2,135 federal prison inmates. Scores on the three ANT subscales--Antisocial Behaviors (ANT-A), Egocentricity (ANT-E), and Stimulus Seeking (ANT-S)--served as indicators in this study and were evaluated using the…
Building a 21st Century U.S. Education System
ERIC Educational Resources Information Center
Wehling, Bob, Ed.
2007-01-01
This book is intended to serve as a stimulus for discussion of what is needed to provide all American children with a world-class education opportunity and to make education a top priority in every state and the country as a whole. A range of contributors offer a diverse number of possible solutions to the current educational crisis in American…
Lens-and-Detector Array for Spectrometer
NASA Technical Reports Server (NTRS)
Oberheuser, J.
1985-01-01
Supporting structure alines lenses and serves as light baffle. Lenses and infrared detectors mounted together in cavities in electroformed plate. Plate and cavities maintain optical alinement while serving as light baffle and aperture stop.
Spatial Light Modulator Would Serve As Electronic Iris
NASA Technical Reports Server (NTRS)
Gutow, David A.
1991-01-01
In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.
Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.
DENNISON, D S
1961-09-01
A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.
Dinsmoor, J A; Mueller, K L; Martin, L T; Bowe, C A
1982-01-01
Pigeons were exposed to stimuli correlated with the presence or absence of a variable-interval 60-second schedule of reinforcement only while they depressed a crossbar or "perch." In the first experiment, the stimuli were different tilts of a line displayed on the key. When the difference in brightness between the line and the background (salience) was maximal, seven of eight birds acquired the discrimination, but when the difference was reduced by 50%, only one succeeded. In the second experiment, wavelength of chamber illumination served as the relevant dimension. Neither experiment showed a large effect attributable to the magnitude of the difference (disparity) between the positive and the negative stimulus. Individual differences in time spent observing were positively correlated with level of discrimination in the presence of the stimuli. All birds produced the positive stimulus for a greater proportion of the available time than they did the negative stimulus. This may be the mechanism that provides selective reinforcement of observing. Finally, the formation of a discrimination was analyzed in terms of changes in the proportion of time spent in contact with the discriminative stimuli. PMID:7175427
Selective attention to visual compound stimuli in squirrel monkeys (Saimiri sciureus).
Ploog, Bertram O
2011-05-01
Five squirrel monkeys served under a simultaneous discrimination paradigm with visual compound stimuli that allowed measurement of excitatory and inhibitory control exerted by individual stimulus components (form and luminance/"color"), which could not be presented in isolation (i.e., form could not be presented without color). After performance exceeded a criterion of 75% correct during training, unreinforced test trials with stimuli comprising recombined training stimulus components were interspersed while the overall reinforcement rate remained constant for training and testing. The training-testing series was then repeated with reversed reinforcement contingencies. The findings were that color acquired greater excitatory control than form under the original condition, that no such difference was found for the reversal condition or for inhibitory control under either condition, and that overall inhibitory control was less pronounced than excitatory control. The remarkably accurate performance throughout suggested that a forced 4-s delay between the stimulus presentation and the opportunity to respond was effective in reducing "impulsive" responding, which has implications for suppressing impulsive responding in children with autism and with attention deficit disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model
Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P.; Terrace, Herbert S.
2015-01-01
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort’s success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models. PMID:26407227
Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model.
Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P; Terrace, Herbert S
2015-01-01
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort's success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models.
Spectrally And Temporally Resolved Low-Light Level Video Microscopy
NASA Astrophysics Data System (ADS)
Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus
1989-12-01
The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.
Nanomaterial-Enabled Neural Stimulation
Wang, Yongchen; Guo, Liang
2016-01-01
Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938
Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina
NASA Technical Reports Server (NTRS)
Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.
1983-01-01
Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.
The effects of dorsal bundle lesions on serial and trace conditioning.
Tsaltas, E; Preston, G C; Gray, J A
1983-12-01
The performance of rats with neurotoxic lesions of the dorsal ascending noradrenergic bundle (DB) was compared with that of sham-operated control animals under two behavioural conditions. Animals with DB lesions were slower than controls to acquire a classically-conditioned emotional response (conditioned suppression) with a trace interval interposed between the clicker conditioned stimulus (CS) and the shock reinforcer. However, if the latter half of the trace interval was filled by a second stimulus, a light, the DB-lesioned animals acquired conditioned suppression to the clicker faster than did controls under the same conditions. These results are discussed in terms of the attentional theory of DB function.
Stimulation of hair cells with ultraviolet light
NASA Astrophysics Data System (ADS)
Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.
2018-05-01
Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.
Effect of eccentricity and light level on the timing of light adaptation mechanisms.
Barrionuevo, Pablo A; Matesanz, Beatriz M; Gloriani, Alejandro H; Arranz, Isabel; Issolio, Luis; Mar, Santiago; Aparicio, Juan A
2018-04-01
We explored the complexity of the light adaptation process, assessing adaptation recovery (Ar) at different eccentricities and light levels. Luminance thresholds were obtained with transient background fields at mesopic and photopic light levels for temporal retinal eccentricities (0°-15°) with test/background stimulus size of 0.5°/1° using a staircase procedure in a two-channel Maxwellian view optical system. Ar was obtained in comparison with steady data [Vis. Res.125, 12 (2016)VISRAM0042-698910.1016/j.visres.2016.04.008]. Light level proportionally affects Ar only at fovea. Photopic extrafoveal thresholds were one log unit higher for transient conditions. Adaptation was equally fast at low light levels for different retinal locations with variations mainly affected by noise. These results evidence different timing in the mechanisms of adaptation involved.
Cornwell, Brian R.; Mueller, Sven C.; Kaplan, Raphael; Grillon, Christian; Ernst, Monique
2012-01-01
Anxiety is typically considered an impediment to cognition. We propose anxiety-related impairments in cognitive-behavioral performance are the consequences of enhanced stimulus-driven attention. Accordingly, reflexive, habitual behaviors that rely on stimulus-driven mechanisms should be facilitated in an anxious state, while novel, flexible behaviors that compete with the former should be impaired. To test these predictions, healthy adults (N=17) performed a mixed-saccade task, which pits habitual actions (pro-saccades) against atypical ones (anti-saccades), under anxiety-inducing threat of shock and safe conditions. Whole-head magnetoencephalography (MEG) captured oscillatory responses in the preparatory interval preceding target onset and saccade execution. Results showed threat-induced anxiety differentially impacted response times based on the type of saccade initiated, slowing anti-saccades but facilitating erroneous pro-saccades on anti-saccade trials. MEG source analyses revealed that successful suppression of reflexive pro-saccades and correct initiation of anti-saccades during threat was marked by increased theta power in right ventrolateral prefrontal cortical and midbrain regions (superior colliculi) implicated in stimulus-driven attention. Theta activity may delay stimulus-driven processes to enable generation of an anti-saccade. Moreover, compared to safety, threat reduced beta desynchronization in inferior parietal cortices during anti-saccade preparation but increased it during pro-saccade preparation. Differential effects in inferior parietal cortices indicate a greater readiness to execute anti-saccades during safety and to execute pro-saccades during threat. These findings suggest that, in an anxiety state, reduced cognitive-behavioral flexibility may stem from enhanced stimulus-driven attention, which may serve the adaptive function of optimizing threat detection. PMID:22289426
Temporal Dependency and the Structure of Early Looking.
Messinger, Daniel S; Mattson, Whitney I; Todd, James Torrence; Gangi, Devon N; Myers, Nicholas D; Bahrick, Lorraine E
2017-01-01
Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking.
Temporal Dependency and the Structure of Early Looking
Messinger, Daniel S.; Mattson, Whitney I.; Todd, James Torrence; Gangi, Devon N.; Myers, Nicholas D.; Bahrick, Lorraine E.
2017-01-01
Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking. PMID:28076362
Attention to Perceive, to Learn, and to Respond.
Hall, Geoffrey; Rodríguez, Gabriel
2017-06-07
Mackintosh and his collaborators (e.g., McLaren, Kaye, & Mackintosh, 1989) put forward an account of perceptual learning effects based, in part, on learned changes in stimulus salience. In the workshop held to mark Mackintosh's retirement, and published as a special issue of this journal, Hall (2003) discussed Mackintosh's theory, and proposed his own alternative account. We now want to take the story forward in the light of findings and theoretical perspectives that have emerged since then. Specifically, we will argue that neither Mackintosh nor Hall was correct in his account of the principles that govern how changes in salience occur. Both supposed (in different ways) that such changes depend on the way in which the stimulus (or stimulus element) is predicted by another event. In contrast, theories of attentional learning (Mackintosh, 1975, Pearce & Hall, 1980) have stressed the notion that changes in the properties of a stimulus might depend on the way in which it predicts its consequences. These theories have been concerned with attention-for-learning (associability). We now consider how the general principle they both employ might be relevant to the other forms of attention (for perception and for performance) that are, we will argue, critical for the perceptual learning effect.
Large Strain Transparent Magneto-Active Polymer Nanocomposites
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)
2016-01-01
A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.
Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval
ERIC Educational Resources Information Center
Schneider, Darryl W.; Logan, Gordon D.
2009-01-01
How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…
Cellular Trojan horse based polymer nanoreactors with light-sensitive activity.
Baumann, Patric; Spulber, Mariana; Dinu, Ionel Adrian; Palivan, Cornelia G
2014-08-07
Stimulus-sensitive systems at the nanoscale represent ideal candidates for improving therapeutic and diagnostic approaches by producing rapid responses to the presence of specific molecules or conditions either by changing properties or by acting "on demand". Here we introduce an optimized light-sensitive nanoreactor based on encapsulation of a photosensitizer inside polymer vesicles to serve as an efficient source of reactive oxygen species (ROS) "on demand". Two types of amphiphilic block copolymers, poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline), PMOXA-PDMS-PMOXA, and poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone), PNVP-PDMS-PNVP, were used to encapsulate Rose Bengal-bovine serum albumin (RB-BSA) inside the cavity of vesicles. The difference of copolymers molecular properties (hydrophobic to hydrophilic ratio, different chemical nature of the hydrophilic block) influenced the encapsulation ability, and uptake by cells, allowing therefore a selection of the most efficient polymer system. Nanoreactors were optimized in terms of (i) size, (ii) stability, and (iii) encapsulation efficiency based on a combination of light scattering, TEM, and UV-vis spectroscopy. By illumination, encapsulated RB-BSA conjugates generated in situ ROS, which diffused through the polymer membrane to the environment of the vesicles, as proved by electron spin resonance spectroscopy (ESR). Optimum illumination conditions were obtained based on the effect of the illumination time on the amount of ROS produced in situ by the encapsulated RB-BSA conjugates. ROS diffusion monitored by ESR was dependent on the molecular weight of copolymer that influences the thickness of the polymer membrane. Upon uptake into HeLa cells our nontoxic nanoreactors acted as a Trojan horse: they produced illumination-controlled ROS in sufficient amounts to induce cell death under photodynamic therapy (PDT) conditions. Straightforward production, stability, and Trojan horse activity inside cells support our light-sensitive nanoreactors for medical applications which require ROS to be generated with precise time and space control.
Auditory temporal-order processing of vowel sequences by young and elderly listeners1
Fogerty, Daniel; Humes, Larry E.; Kewley-Port, Diane
2010-01-01
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18–31 years) and older (N=151; 60–88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners’ SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age. PMID:20370033
Auditory temporal-order processing of vowel sequences by young and elderly listeners.
Fogerty, Daniel; Humes, Larry E; Kewley-Port, Diane
2010-04-01
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18-31 years) and older (N=151; 60-88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners' SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age.
Oscillatory encoding of visual stimulus familiarity.
Kissinger, Samuel T; Pak, Alexandr; Tang, Yu; Masmanidis, Sotiris C; Chubykin, Alexander A
2018-06-18
Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials (VEPs) and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the muscarinic acetylcholine receptors (mAChRs) for their induction and expression. Finally, ongoing visually evoked theta (4-6 Hz) oscillations boost the VEP amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs. Significance Statement. Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning. Copyright © 2018 the authors.
1993-04-01
suggesting it occurs in later visual motion processing (long-range or second-order system). STIMULUS PERCEPT L" FLASH DURATION FLASH DURATION (a) TIME ( b ...TIME Figure 2. Gamma motion. (a) A light of fixed spatial extent is illuminated then extim- guished. ( b ) The percept is of a light expanding and then...while smaller, type- B cells provide input to its parvocellular subdivision. From here the magnocellular pathway progresses up through visual cortex area V
Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery.
Choi, Hyung Woo; Kim, Jihoon; Kim, Jinhwan; Kim, Yonghwi; Song, Hyun Beom; Kim, Jeong Hun; Kim, Kimoon; Kim, Won Jong
2016-04-26
We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.
Ruthenium and osmium complexes that bear functional azolate chelates for dye-sensitized solar cells.
Chi, Yun; Wu, Kuan-Lin; Wei, Tzu-Chien
2015-05-01
The preparation of sensitizers for dye-sensitized solar cells (DSSCs) represents an active area of research for both sustainability and renewable energy. Both Ru(II) and Os(II) metal sensitizers offer unique photophysical and electrochemical properties that arise from the intrinsic electronic properties, that is, the higher propensity to form the lower-energy metal-to-ligand charge-transfer (MLCT) transition, and their capability to support chelates with multiple carboxy groups, which serve as a bridge to the metal oxide and enable efficient injection of the photoelectron. Here we present an overview of the synthesis and testing of these metal sensitizers that bear functional azolate chelates (both pyrazolate and triazolate), which are capable of modifying the metal sensitizers in a systematic and beneficial manner. Basic principles of the molecular designs, the structural relationship to the photophysical and electrochemical properties, and performances of the as-fabricated DSSCs are highlighted. The success in the breakthrough of the synthetic protocols and potential applications might provide strong stimulus for the future development of technologies such as DSSCs, organic light-emitting diodes, solar water splitting, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light regulation of the growth response in corn root gravitropism
NASA Technical Reports Server (NTRS)
Kelly, M. O.; Leopold, A. C.
1992-01-01
Roots of Merit variety corn (Zea mays L.) require red light for orthogravitropic curvature. Experiments were undertaken to identify the step in the pathway from gravity perception to asymmetric growth on which light may act. Red light was effective in inducing gravitropism whether it was supplied concomitant with or as long as 30 minutes after the gravity stimulus (GS). The presentation time was the same whether the GS was supplied in red light or in darkness. Red light given before the GS slightly enhanced the rate of curvature but had little effect on the lag time or on the final curvature. This enhancement was expanded by a delay between the red light pulse and the GS. These results indicate that gravity perception and at least the initial transduction steps proceed in the dark. Light may regulate the final growth (motor) phase of gravitropism. The time required for full expression of the light enhancement of curvature is consistent with its involvement in some light-stimulated biosynthetic event.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2007-04-01
According to a recent account of addiction, dopaminergic effects of drugs like cocaine mimic the neuronal signal that occurs when a natural reward has a larger value than expected. Consequently, the drug's expected reward value increases with each administration, leading to an over-selection of drug-seeking behavior. One prediction of this hypothesis is that the blocking effect, a cornerstone of contemporary learning theory, should not occur with drug reinforcers. To test this prediction, two groups of rats were trained to self-administer cocaine with a nose-poking response. For 5 sessions, a tone was paired with each self-administered injection (blocking group), or no stimulus was paired with injection (non-blocking group). Then, in both groups, the tone and a light were both paired with each injection for 5 sessions. In subsequent testing, the light functioned as a conditioned reinforcer for a new response (lever-pressing) in the non-blocking group, but not the blocking group. Thus, contrary to prediction, pre-training with the tone blocked conditioning to the light. Although these results fail to support a potentially powerful explanation of addiction, they are consistent with the fact that most conditioning and learning phenomena that occur with non-drug reinforcers can also be demonstrated with drug reinforcers.
Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex
Hrvatin, Sinisa; Hochbaum, Daniel R.; Nagy, M. Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M.; Sabatini, Bernardo L.; Greenberg, Michael E.
2017-01-01
Activity-dependent transcriptional responses shape cortical function. However, we lack a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes that occur across cell types in mouse visual cortex following exposure to light. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal cells demonstrated clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are likely critical for cortical function and may be sites of de-regulation in developmental brain disorders. PMID:29230054
The facing bias in biological motion perception: structure, kinematics, and body parts.
Schouten, Ben; Troje, Nikolaus F; Verfaillie, Karl
2011-01-01
Depth-ambiguous point-light walkers (PLWs) elicit a facing bias: Observers perceive a PLW as facing toward them more often than as facing away (Vanrie,Dekeyser, & Verfaillie, Perception, 33, 547-560, 2004). While the facing bias correlates with the PLW's perceived gender (Brooks et al., Current Biology, 18, R728-R729, 2008; Schouten, Troje, Brooks, van der Zwan, & Verfaillie, Attention, Perception, & Psychophysics, 72,1256-1260, 2010), it remains unclear whether the change in perceived in-depth orientation is caused by a change in perceived gender. In Experiment 1, we show that structural and kinematic stimulus properties that lead to the same changes in perceived gender elicit opposite changes in perceived in-depth orientation, indicating that the relation between perceived gender and in-depth orientation is not causal. The results of Experiments 2 and 3 further suggest that the perceived in-depth orientation of PLWs is strongly affected by locally acting stimulus properties. The facing bias seems to be induced by stimulus properties in the lower part of the PLW.
Photopic transduction implicated in human circadian entrainment
NASA Technical Reports Server (NTRS)
Zeitzer, J. M.; Kronauer, R. E.; Czeisler, C. A.
1997-01-01
Despite the preeminence of light as the synchronizer of the circadian timing system, the phototransductive machinery in mammals which transmits photic information from the retina to the hypothalamic circadian pacemaker remains largely undefined. To determine the class of photopigments which this phototransductive system uses, we exposed a group (n = 7) of human subjects to red light below the sensitivity threshold of a scotopic (i.e. rhodopsin/rod-based) system, yet of sufficient strength to activate a photopic (i.e. cone-based) system. Exposure to this light stimulus was sufficient to reset significantly the human circadian pacemaker, indicating that the cone pigments which mediate color vision can also mediate circadian vision.
Berro, Laís F; Andersen, Monica L; Tufik, Sergio; Howell, Leonard L
2016-04-01
The objective of this study was to investigate nighttime activity of nonhuman primates during extinction and cue- and drug-primed reinstatement of methamphetamine self-administration. Adult rhesus monkeys (Macaca mulatta; n = 5) self-administered methamphetamine (0.01 mg/kg/injection, i.v.) under a fixed-ratio 20 schedule of reinforcement. Saline infusions were then substituted for methamphetamine and stimulus light (drug-conditioned stimulus presented during drug self-administration) withheld until subjects reached extinction criteria. Drug- and cue-induced reinstatement effects were evaluated after i.v. noncontingent priming injections of methamphetamine (0.03, 0.1, or 0.3 mg/kg). Activity-based sleep measures were evaluated with Actiwatch monitors a week before (baseline nighttime activity parameters) and throughout the protocol. Although methamphetamine self-administration did not significantly affect nighttime activity compared to baseline, sleeplike parameters were improved during extinction compared to self-administration maintenance. Priming injection of 0.1 mg/kg methamphetamine, but not 0.03 or 0.3 mg/kg, induced significant reinstatement effects. These behavioral responses were accompanied by nighttime outcomes, with increased sleep fragmentation and decreased sleep efficiency in the night following 0.1 mg/kg methamphetamine-induced reinstatement. In the absence of both drug and drug-paired cues (extinction conditions), nighttime activity decreased compared to self-administration maintenance. Additionally, effective reinstatement conditions impaired sleeplike measures. Our data indicate that the reintroduction of the stimulus light as a drug-paired cue increased nighttime activity. (c) 2016 APA, all rights reserved).
Force transformation in spider strain sensors: white light interferometry
Schaber, Clemens F.; Gorb, Stanislav N.; Barth, Friedrich G.
2012-01-01
Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strain sensors in the spider exoskeleton. Two compound or ‘lyriform’ organs consisting of arrays of closely neighbouring, roughly parallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle, which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organ HS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was as small as 1.4 nm and hardly more than 30 nm, depending on the slit in the array. The corresponding stimulus forces were as small as 0.01 mN. The linearity of the loading curve seems reasonable considering the sensor's relatively narrow biological intensity range of operation. The slits' mechanical sensitivity (slit compression/force) ranged from 106 down to 13 nm mN−1, and gradually decreased with decreasing slit length. (ii) Remarkably, in the vibration-sensitive lyriform organ HS-10 on the metatarsus, the loading curve was exponential. The organ is thus adapted to the detection of a wide range of vibration amplitudes, as they are found under natural conditions. The mechanical sensitivities of the two slits examined in this organ in detail differed roughly threefold (522 and 195 nm mN−1) in the biologically most relevant range, again reflecting stimulus range fractionation among the slits composing the array. PMID:22031733
Peter L. Weaver
2001-01-01
A 50 % basal area reduction in Puerto Rico’s colorado forest had little immediate impact on diameter at breast height growth for most residual stems. A slight positive response was evident for several species after 5 to 30 yrs. Instead, thinning served as a major stimulus for a massive ingrowth of two common colorado forest tree species important to the...
Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses
NASA Astrophysics Data System (ADS)
Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng
2017-02-01
It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.
Cornwell, Brian R; Mueller, Sven C; Kaplan, Raphael; Grillon, Christian; Ernst, Monique
2012-04-01
Anxiety is typically considered an impediment to cognition. We propose anxiety-related impairments in cognitive-behavioral performance are the consequences of enhanced stimulus-driven attention. Accordingly, reflexive, habitual behaviors that rely on stimulus-driven mechanisms should be facilitated in an anxious state, while novel, flexible behaviors that compete with the former should be impaired. To test these predictions, healthy adults (N=17) performed a mixed-saccade task, which pits habitual actions (pro-saccades) against atypical ones (anti-saccades), under anxiety-inducing threat of shock and safe conditions. Whole-head magnetoencephalography (MEG) captured oscillatory responses in the preparatory interval preceding target onset and saccade execution. Results showed threat-induced anxiety differentially impacted response times based on the type of saccade initiated, slowing anti-saccades but facilitating erroneous pro-saccades on anti-saccade trials. MEG source analyses revealed that successful suppression of reflexive pro-saccades and correct initiation of anti-saccades during threat was marked by increased theta power in right ventrolateral prefrontal cortical and midbrain regions (superior colliculi) implicated in stimulus-driven attention. Theta activity may delay stimulus-driven processes to enable generation of an anti-saccade. Moreover, compared to safety, threat reduced beta desynchronization in inferior parietal cortices during anti-saccade preparation but increased it during pro-saccade preparation. Differential effects in inferior parietal cortices indicate a greater readiness to execute anti-saccades during safety and to execute pro-saccades during threat. These findings suggest that, in an anxiety state, reduced cognitive-behavioral flexibility may stem from enhanced stimulus-driven attention, which may serve the adaptive function of optimizing threat detection. Published by Elsevier Inc.
Tsaltas, E; Schugens, M M; Gray, J A
1989-01-01
The aim of the experiment was to determine whether the dorsal noradrenergic bundle (DB) plays a role in conditioning to context. Rats received either bilateral lesions of the DB by local injection of 6-hydroxydopamine, vehicle injections only, or sham operations. All animals were then trained to barpress for food on a variable interval (VI) schedule. Two 5-min intrusion periods were superimposed on the VI baseline during each session. An 'envelope' stimulus (flashing light) was on throughout each intrusion period. In addition, embedded in the two intrusion periods of each session, there occurred 8 presentations of a 'punctate' conditioned stimulus (CS) (a 15-s clicker), and 8 presentations of a 0.5-s footshock. Within each surgical condition rats were randomly allocated to one of three conditioning groups, receiving 100%, 50% or 0% temporal association between CS and shock. Conditioning to the punctate CS and to the context provided by the envelope stimulus was assessed by the degree of suppression of the barpress response relative to the VI baseline. Responding was most suppressed in the punctate CS in the 100 and 50% conditions, and most suppressed in the envelope stimulus in the 0% condition. DB lesions released response suppression to the punctate CS, had no effect on suppression to the envelope stimulus, and reduced sensitivity to CS-shock probability as measured by response suppression during the punctate CS. These results confirm previous reports that DB lesions alleviate response suppression to shock-associated cues, identify some of the parameters that affect this phenomenon, but fail to support a role for the DB in contextual conditioning.
Stimulus-driven attentional capture by subliminal onset cues.
Schoeberl, Tobias; Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich
2015-04-01
In two experiments, we tested whether subliminal abrupt onset cues capture attention in a stimulus-driven way. An onset cue was presented 16 ms prior to the stimulus display that consisted of clearly visible color targets. The onset cue was presented either at the same side as the target (the valid cue condition) or on the opposite side of the target (the invalid cue condition). Because the onset cue was presented 16 ms before other placeholders were presented, the cue was subliminal to the participant. To ensure that this subliminal cue captured attention in a stimulus-driven way, the cue's features did not match the top-down attentional control settings of the participants: (1) The color of the cue was always different than the color of the non-singleton targets ensuring that a top-down set for a specific color or for a singleton would not match the cue, and (2) colored targets and distractors had the same objective luminance (measured by the colorimeter) and subjective lightness (measured by flicker photometry), preventing a match between the top-down set for target and cue contrast. Even though a match between the cues and top-down settings was prevented, in both experiments, the cues captured attention, with faster response times in valid than invalid cue conditions (Experiments 1 and 2) and faster response times in valid than the neutral conditions (Experiment 2). The results support the conclusion that subliminal cues capture attention in a stimulus-driven way.
Place avoidance learning and memory in a jumping spider.
Peckmezian, Tina; Taylor, Phillip W
2017-03-01
Using a conditioned passive place avoidance paradigm, we investigated the relative importance of three experimental parameters on learning and memory in a salticid, Servaea incana. Spiders encountered an aversive electric shock stimulus paired with one side of a two-sided arena. Our three parameters were the ecological relevance of the visual stimulus, the time interval between trials and the time interval before test. We paired electric shock with either a black or white visual stimulus, as prior studies in our laboratory have demonstrated that S. incana prefer dark 'safe' regions to light ones. We additionally evaluated the influence of two temporal features (time interval between trials and time interval before test) on learning and memory. Spiders exposed to the shock stimulus learned to associate shock with the visual background cue, but the extent to which they did so was dependent on which visual stimulus was present and the time interval between trials. Spiders trained with a long interval between trials (24 h) maintained performance throughout training, whereas spiders trained with a short interval (10 min) maintained performance only when the safe side was black. When the safe side was white, performance worsened steadily over time. There was no difference between spiders tested after a short (10 min) or long (24 h) interval before test. These results suggest that the ecological relevance of the stimuli used and the duration of the interval between trials can influence learning and memory in jumping spiders.
Optical Power Source Derived from Engine Combustion Chambers
NASA Technical Reports Server (NTRS)
Baumbick, Robert J. (Inventor)
1999-01-01
An optical power source is disclosed that collects the spectra of the light emissions created in a combustion chamber to provide its optical output signals that serve the needs of optical networks. The light spectra is collected by a collection ring serving as an optical waveguide.
Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome.
Rogers, Tiffany D; Anacker, Allison M J; Kerr, Travis M; Forsberg, C Gunnar; Wang, Jing; Zhang, Bing; Veenstra-VanderWeele, Jeremy
2017-01-01
People with fragile X syndrome (FXS) often have deficits in social behavior, and a substantial portion meet criteria for autism spectrum disorder. Though the genetic cause of FXS is known to be due to the silencing of FMR1 , and the Fmr1 null mouse model representing this lesion has been extensively studied, the contributions of this gene and its protein product, FMRP, to social behavior are not well understood. Fmr1 null mice and wildtype littermates were exposed to a social or non-social stimulus. In one experiment, subjects were assessed for expression of the inducible transcription factor c-Fos in response to the stimulus, to detect brain regions with social-specific activity. In a separate experiment, tissue was taken from those brain regions showing differential activity, and RNA sequencing was performed. Immunohistochemistry revealed a significantly greater number of c-Fos-positive cells in the lateral amygdala and medial amygdala in the brains of mice exposed to a social stimulus, compared to a non-social stimulus. In the prelimbic cortex, there was no significant effect of social stimulus; although the number of c-Fos-positive cells was lower in the social condition compared to the non-social condition, and negatively correlated with c-Fos in the amygdala. RNA sequencing revealed differentially expressed genes enriched for molecules known to interact with FMRP and also for autism-related genes identified in the Simons Foundation Autism Research Initiative gene database. Ingenuity Pathway Analysis detected enrichment of differentially expressed genes in networks and pathways related to neuronal development, intracellular signaling, and inflammatory response. Using the Fmr1 null mouse model of fragile X syndrome, we have identified brain regions, gene networks, and molecular pathways responsive to a social stimulus. These findings, and future experiments following up on the role of specific gene networks, may shed light on the neural mechanisms underlying dysregulated social behaviors in fragile X syndrome and more broadly.
Gravitropism in cut flower stalks of snapdragon
NASA Astrophysics Data System (ADS)
Philosoph-Hadas, S.; Friedman, H.; Meir, S.; Berkovitz-SimanTov, R.; Rosenberger, I.; Halevy, A. H.; Kaufman, P. B.; Balk, P.; Woltering, E. J.
The negative gravitropic response of cut flower stalks is a complex multistep process that requires the participation of various cellular components acting in succession or in parallel. The process was particularly characterized in snapdragon (Antirrhinum majus L.) spikes with regard to (1) gravity stimulus perception associated with amyloplast reorientation; (2) stimulus transduction mediated through differential changes in the level, action and related genes of auxin and ethylene and their possible interaction; (3) stimulus response associated with differential growth leading to stalk curvature; (4) involvement of cytosolic calcium and actin cytoskeleton. Results show that the gravity-induced amyloplast reorientation, differential over-expression of two early auxin responsive genes and asymmetrical distribution of free IAA are early events in the bending process. These precede the asymmetrical ethylene production and differential stem growth, which was derived from initial shrinkage of the upper stem side and a subsequent elongation of the lower stem side. Results obtained with various calcium- and cytoskeleton-related agents indicate that cytosolic calcium and actin filaments may play essential roles in gravitropism-related processes of cut flower stalks. Therefore, modulators of these two physiological mediators may serve as means for controlling any undesired gravitropic bending.
Separate and combined effects of gabapentin and Δ9-THC in humans discriminating Δ9-THC
Lile, Joshua A.; Wesley, Michael J.; Kelly, Thomas H.; Hays, Lon R.
2015-01-01
The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating Δ9-THC using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral Δ9-THC from placebo and then received gabapentin (600 and 1200 mg), Δ9-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ9-THC served as a discriminative stimulus, produced positive subjective effects, elevated heart rate and impaired psychomotor performance. Both doses of gabapentin substituted for the Δ9-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of Δ9-THC when administered alone. When administered concurrently, gabapentin shifted the discriminative-stimulus effects of Δ9-THC leftward/upward, and combinations of Δ9-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to Δ9-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids. PMID:26313650
Crone, Damien L; Bode, Stefan; Murawski, Carsten; Laham, Simon M
2018-01-01
A major obstacle for the design of rigorous, reproducible studies in moral psychology is the lack of suitable stimulus sets. Here, we present the Socio-Moral Image Database (SMID), the largest standardized moral stimulus set assembled to date, containing 2,941 freely available photographic images, representing a wide range of morally (and affectively) positive, negative and neutral content. The SMID was validated with over 820,525 individual judgments from 2,716 participants, with normative ratings currently available for all images on affective valence and arousal, moral wrongness, and relevance to each of the five moral values posited by Moral Foundations Theory. We present a thorough analysis of the SMID regarding (1) inter-rater consensus, (2) rating precision, and (3) breadth and variability of moral content. Additionally, we provide recommendations for use aimed at efficient study design and reproducibility, and outline planned extensions to the database. We anticipate that the SMID will serve as a useful resource for psychological, neuroscientific and computational (e.g., natural language processing or computer vision) investigations of social, moral and affective processes. The SMID images, along with associated normative data and additional resources are available at https://osf.io/2rqad/.
Oken, M M; Peterson, P K; Wilkinson, B J
1981-01-01
To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.
Ruhl, Tim; Zeymer, Malou; von der Emde, Gerhard
2017-02-01
It has been shown that zebrafish fear learning proceeds in the same way as reported for rodents. However, in zebrafish fear learning it is possible to substitute the use of electric shocks as unconditioned stimulus and utilize the inborn fear responses to the alarm substance Schreckstoff, instead. The skin extract Schreckstoff elicits typical fear reactions such as preferred bottom dwelling, swimming in a tighter shoal, erratic movements and freezing. This natural fear behavior can be transferred from Schreckstoff to any other sensory stimulus by associative conditioning (fear learning). We presented Schreckstoff simultaneously with a red light stimulus and tested the effectiveness of fear learning during memory retrieval. The two brain regions known to be relevant for learning in zebrafish are the medial and the lateral pallium of the dorsal telencephalon, both containing rich expressions of the endocannabinoid receptor CB1. To test the influence of the zebrafish endocannabinoid system on fear acquisition learning, an experimental group of ten fish was pretreated with the CB1 receptor agonist THC (Δ 9 -tetrahydrocannabinol; 100nM for 1h). We found that CB1 activation significantly inhibited acquisition of fear learning, possibly by impairing stimulus encoding processes in pallial areas. This was supported by analyzes of c-Fos expression in the brains of experimental animals. Schreckstoff exposure during fear acquisition learning and memory retrieval during red light presentation increased the number of labelled cells in pallial structures, but in no other brain region investigated (e.g. striatum, thalamus, and habenula). THC administration before fear conditioning significantly decreased c-Fos expression in these structures to a level similar to the control group without Schreckstoff experience, suggesting that Schreckstoff induced fear learning requires brain circuits restricted mainly to pallial regions of the dorsal telencephalon. Copyright © 2016 Elsevier Inc. All rights reserved.
A Neo-Piagetian Analysis of Communication Performance in Young Children.
ERIC Educational Resources Information Center
Foorman, Barbara R.
This exploratory study was conducted to interpret age and individual differences in 48 kindergarteners' and second graders' performance on a referential communication task in light of the Pascual-Leone Theory of Constructive Operations, a neo-Piagetian theory of cognitive development. Stimulus materials were black and white photographs of dogs,…
The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals using 6 day old zebrafish (Danio rerio) as an alternative test model for detecting neurotoxic chemicals. We use a behavioral testing paradigm that simultaneously tes...
Abscisic acid (ABA) receptors: light at the end of the tunnel
USDA-ARS?s Scientific Manuscript database
The plant hormone abscisic acid (ABA) plays a role in several aspects of plant growth and development. Understanding how this hormonal stimulus is sensed and transduced turned out to be one of the major tasks in the field of plant signaling. A series of recent papers proposed several different prote...
Optical Control of Living Cells Electrical Activity by Conjugated Polymers.
Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa
2016-01-28
Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported protocol is of general validity and can be straightforwardly extended to other biological preparations.
Field, Matt; Caren, Rhiane; Fernie, Gordon; De Houwer, Jan
2011-12-01
Several recent studies suggest that alcohol-related cues elicit automatic approach tendencies in heavy drinkers. A variety of tasks have been used to demonstrate these effects, including Relevant Stimulus-Response Compatibility (R-SRC) tasks and variants of Simon tasks. Previous work with normative stimuli suggests that the R-SRC task may be more sensitive than Simon tasks because the activation of approach tendencies may depend on encoding of the stimuli as alcohol-related, which occurs in the R-SRC task but not in Simon tasks. Our aim was to directly compare these tasks for the first time in the context of alcohol use. We administered alcohol versions of an R-SRC task and a Simon task to 62 social drinkers, who were designated as heavy or light drinkers based on a median split of their weekly alcohol consumption. Results indicated that, compared to light drinkers, heavy drinkers were faster to approach, rather than avoid, alcohol-related pictures in the R-SRC task but not in the Simon task. Theoretical implications and methodological issues are discussed.
A simple handheld pupillometer for chromatic Flicker studies
NASA Astrophysics Data System (ADS)
Bernabei, M.; Tinarelli, R.; Peretto, L.; Rovati, L.
2014-02-01
A portable pupillometer has been developed which is capable of performing accurate measurements of the pupil diameter during chromatic flicker stimulations. The handheld measuring system records the near-infrared image of the pupil at the rate of 25 fps and simultaneously stimulates the eye using a diffused flicker light generated by light emitting diodes (LEDs). Intensity, frequency and chromatic coordinates of the stimulus can be easily adjusted using a user-friendly graphical interface. Thanks to a chromatic monitoring of the stimulus close to the plane of the eye, photopically matched conditions can be easily achieved. The pupil diameter/area can be measured during flickering stimuli that are generated with frequency in a range of 0.1-20 Hz. The electronic unit, properly connected to the personal computer through a USB port, drives the optical unit, which can be easily held in a hand. The software interface controlling the system was developed in LabVIEW. This paper describes the instrument optical setup, front-end electronics and data processing. Moreover preliminary results obtained on a voluntary are reported.
Dimensionality of visual complexity in computer graphics scenes
NASA Astrophysics Data System (ADS)
Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce
2008-02-01
How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.
How glitter relates to gold: similarity-dependent reward prediction errors in the human striatum.
Kahnt, Thorsten; Park, Soyoung Q; Burke, Christopher J; Tobler, Philippe N
2012-11-14
Optimal choices benefit from previous learning. However, it is not clear how previously learned stimuli influence behavior to novel but similar stimuli. One possibility is to generalize based on the similarity between learned and current stimuli. Here, we use neuroscientific methods and a novel computational model to inform the question of how stimulus generalization is implemented in the human brain. Behavioral responses during an intradimensional discrimination task showed similarity-dependent generalization. Moreover, a peak shift occurred, i.e., the peak of the behavioral generalization gradient was displaced from the rewarded conditioned stimulus in the direction away from the unrewarded conditioned stimulus. To account for the behavioral responses, we designed a similarity-based reinforcement learning model wherein prediction errors generalize across similar stimuli and update their value. We show that this model predicts a similarity-dependent neural generalization gradient in the striatum as well as changes in responding during extinction. Moreover, across subjects, the width of generalization was negatively correlated with functional connectivity between the striatum and the hippocampus. This result suggests that hippocampus-striatal connections contribute to stimulus-specific value updating by controlling the width of generalization. In summary, our results shed light onto the neurobiology of a fundamental, similarity-dependent learning principle that allows learning the value of stimuli that have never been encountered.
Suboptimal choice in rats: incentive salience attribution promotes maladaptive decision-making
Chow, Jonathan J; Smith, Aaron P; Wilson, A George; Zentall, Thomas R; Beckmann, Joshua S
2016-01-01
Stimuli that are more predictive of subsequent reward also function as better conditioned reinforcers. Moreover, stimuli attributed with incentive salience function as more robust conditioned reinforcers. Some theories have suggested that conditioned reinforcement plays an important role in promoting suboptimal choice behavior, like gambling. The present experiments examined how different stimuli, those attributed with incentive salience versus those without, can function in tandem with stimulus-reward predictive utility to promote maladaptive decision-making in rats. One group of rats had lights associated with goal-tracking as the reward-predictive stimuli and another had levers associated with sign-tracking as the reward-predictive stimuli. All rats were first trained on a choice procedure in which the expected value across both alternatives was equivalent but differed in their stimulus-reward predictive utility. Next, the expected value across both alternatives was systematically changed so that the alternative with greater stimulus-reward predictive utility was suboptimal in regard to primary reinforcement. The results demonstrate that in order to obtain suboptimal choice behavior, incentive salience alongside strong stimulus-reward predictive utility may be necessary; thus, maladaptive decision-making can be driven more by the value attributed to stimuli imbued with incentive salience that reliably predict a reward rather than the reward itself. PMID:27993692
Suboptimal choice in rats: Incentive salience attribution promotes maladaptive decision-making.
Chow, Jonathan J; Smith, Aaron P; Wilson, A George; Zentall, Thomas R; Beckmann, Joshua S
2017-03-01
Stimuli that are more predictive of subsequent reward also function as better conditioned reinforcers. Moreover, stimuli attributed with incentive salience function as more robust conditioned reinforcers. Some theories have suggested that conditioned reinforcement plays an important role in promoting suboptimal choice behavior, like gambling. The present experiments examined how different stimuli, those attributed with incentive salience versus those without, can function in tandem with stimulus-reward predictive utility to promote maladaptive decision-making in rats. One group of rats had lights associated with goal-tracking as the reward-predictive stimuli and another had levers associated with sign-tracking as the reward-predictive stimuli. All rats were first trained on a choice procedure in which the expected value across both alternatives was equivalent but differed in their stimulus-reward predictive utility. Next, the expected value across both alternatives was systematically changed so that the alternative with greater stimulus-reward predictive utility was suboptimal in regard to primary reinforcement. The results demonstrate that in order to obtain suboptimal choice behavior, incentive salience alongside strong stimulus-reward predictive utility may be necessary; thus, maladaptive decision-making can be driven more by the value attributed to stimuli imbued with incentive salience that reliably predict a reward rather than the reward itself. Copyright © 2016 Elsevier B.V. All rights reserved.
In vivo observation of transient photoreceptor movement correlated with oblique light stimulation
NASA Astrophysics Data System (ADS)
Lu, Yiming; Liu, Changgeng; Yao, Xincheng
2018-02-01
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.
The contribution of cationic conductances to the potential of rod photoreceptors.
Moriondo, Andrea; Rispoli, Giorgio
2010-05-01
The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.
Behavioural evidence for distinct mechanisms related to global and biological motion perception.
Miller, Louisa; Agnew, Hannah C; Pilz, Karin S
2018-01-01
The perception of human motion is a vital ability in our daily lives. Human movement recognition is often studied using point-light stimuli in which dots represent the joints of a moving person. Depending on task and stimulus, the local motion of the single dots, and the global form of the stimulus can be used to discriminate point-light stimuli. Previous studies often measured motion coherence for global motion perception and contrasted it with performance in biological motion perception to assess whether difficulties in biological motion processing are related to more general difficulties with motion processing. However, it is so far unknown as to how performance in global motion tasks relates to the ability to use local motion or global form to discriminate point-light stimuli. Here, we investigated this relationship in more detail. In Experiment 1, we measured participants' ability to discriminate the facing direction of point-light stimuli that contained primarily local motion, global form, or both. In Experiment 2, we embedded point-light stimuli in noise to assess whether previously found relationships in task performance are related to the ability to detect signal in noise. In both experiments, we also assessed motion coherence thresholds from random-dot kinematograms. We found relationships between performances for the different biological motion stimuli, but performance for global and biological motion perception was unrelated. These results are in accordance with previous neuroimaging studies that highlighted distinct areas for global and biological motion perception in the dorsal pathway, and indicate that results regarding the relationship between global motion perception and biological motion perception need to be interpreted with caution. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Attention Modulates Spatio-temporal Grouping
Aydın, Murat; Herzog, Michael H.; Öğmen, Haluk
2011-01-01
Dynamic stimuli are ubiquitous in natural viewing conditions implying that grouping operations need to operate, not only in space, but also jointly in space and time. Moreover, in natural viewing, attention plays an important role in controlling how resources are allocated. We investigated how attention interacts with spatiotemporal perceptual grouping by using a bistable stimulus, called the Ternus-Pikler display. Ternus-Pikler displays can give rise to two different motion percepts, called Element Motion (EM) and Group Motion (GM), the former dominating at short Inter-Stimulus Intervals (ISIs) and the latter at long ISIs. Our results indicate that GM grouping requires more attentional resources than EM grouping. Different theoretical accounts of perceptual grouping and attention are discussed and evaluated in the light of the current results. PMID:21266181
Music's use for anesthesia and analgesia.
Matsota, Paraskevi; Christodoulopoulou, Theodora; Smyrnioti, Maria Eleni; Pandazi, Ageliki; Kanellopoulos, Ilias; Koursoumi, Evgenia; Karamanis, Periandros; Kostopanagiotou, Georgia
2013-04-01
This review article provides an overview of published data regarding the involvement of music in anesthesia practice. Music is an important topic for research in different fields of anesthesiology. The use of music preoperatively is aimed at reducing anxiety, stress, and fear. However, the effect of music on perception of pain intraoperatively is controversial, according to studies of both adults and children undergoing various surgical procedures under general and/or regional anesthesia. In postoperative pain management, postanesthesia care, and neonatal intensive care, music can be a complementary method for reducing pain, anxiety, and stress. Music is a mild anxiolytic, but it is relatively ineffective when a pain stimulus is severe. However, music is inexpensive, easily administered, and free of adverse effects, and as such, can serve as complementary method for treating perioperative stress and for acute and chronic pain management, even though music's effectiveness depends on each individual patient's disposition and severity of pain stimulus.
Behavioral momentum theory: equations and applications.
Nevin, John A; Shahan, Timothy A
2011-01-01
Behavioral momentum theory provides a quantitative account of how reinforcers experienced within a discriminative stimulus context govern the persistence of behavior that occurs in that context. The theory suggests that all reinforcers obtained in the presence of a discriminative stimulus increase resistance to change, regardless of whether those reinforcers are contingent on the target behavior, are noncontingent, or are even contingent on an alternative behavior. In this paper, we describe the equations that constitute the theory and address their application to issues of particular importance in applied settings. The theory provides a framework within which to consider the effects of interventions such as extinction, noncontingent reinforcement, differential reinforcement of alternative behavior, and other phenomena (e.g., resurgence). Finally, the theory predicts some counterintuitive and potentially counterproductive effects of alternative reinforcement, and can serve as an integrative guide for intervention when its terms are identified with the relevant conditions of applied settings.
Retrospective Revaluation: The Phenomenon and Its Theoretical Implications
Miller, Ralph R.; Witnauer, James E.
2015-01-01
Retrospective revaluation refers to an increase (or decrease) in responding to conditioned stimulus (CS X) as a result of decreasing (or increasing) the associative strength of another CS (A) with respect to the unconditioned stimulus (i.e., A-US) that was previously trained in compound with the target CS (e.g., AX−US or just AX). We discuss the conditions under which retrospective revaluation phenomena are most apt to be observed and their implications for various models of learning that are able to account for retrospective revaluation (e.g., Dickinson and Burke, 1996; Miller and Matzel, 1988; Van Hamme and Wasserman, 1994). Although retroactive revaluation is relatively parameter specific, it is seen to be a reliable phenomenon observed across many tasks and species. As it is not anticipated by many conventional models of learning (e.g., Rescorla and Wagner, 1972), it serves as a critical benchmark for evaluating traditional and newer models. PMID:26342855
ERIC Educational Resources Information Center
Laasonen, Marja; Virsu, Veijo; Oinonen, Suvi; Sandbacka, Mirja; Salakari, Anita; Service, Elisabet
2012-01-01
We investigated whether poor short-term memory (STM) in developmental dyslexia affects the processing of sensory stimulus sequences in addition to phonological material. STM for brief binary non-verbal stimuli (light flashes, tone bursts, finger touches, and their crossmodal combinations) was studied in 20 Finnish adults with dyslexia and 24…
Assessment of Murine Retinal Function by Electroretinography
Benchorin, Gillie; Calton, Melissa A.; Beaulieu, Marielle O.; Vollrath, Douglas
2017-01-01
The electroretinogram (ERG) is a sensitive and noninvasive method for testing retinal function. In this protocol, we describe a method for performing ERGs in mice. Contact lenses on the mouse cornea measure the electrical response to a light stimulus of photoreceptors and downstream retinal cells, and the collected data are analyzed to evaluate retinal function. PMID:29177186
The Influence of Color and Illumination on the Interpretation of Emotions.
ERIC Educational Resources Information Center
Kohn, Imre Ransome
Research is presented that is derived from the hypothesis that a person's interpretation of emotional stimulus is affected by the painted hue and the light intensity of the visual environment. The reported experiment proved in part a null hypothesis; it was suggested that, within the considered variables of the experiment, either a person's…
Fundus-controlled two-color dark adaptometry with the Microperimeter MP1.
Bowl, Wadim; Stieger, Knut; Lorenz, Birgit
2015-06-01
The aim of this study was to provide fundus-controlled two-color adaptometry with an existing device. A quick and easy approach extends the application possibilities of a commercial fundus-controlled perimeter. An external filter holder was placed in front the objective lens of the MP1 (Nidek, Italy) and fitted with filters to modify background, stimulus intensity, and color. Prior to dark adaptometry, the subject's visual sensitivity profile was measured for red and blue stimuli to determine whether rods or cones or both mediated the absolute threshold. After light adaptation, 20 healthy subjects were investigated with a pattern covering six spots at the posterior pole of the retina up to 45 min of dark adaptation. Thresholds were determined using a 200 ms red Goldmann IV and a blue Goldmann II stimulus. The pre-test sensitivity showed a typical distribution of values along the meridian, with high peripheral light increment sensitivity (LIS) and low central LIS for rods and the reverse for cones. After bleach, threshold recovery had a classic biphasic shape. The absolute threshold was reached after approximately 10 min for the red and 15 min for the blue stimulus. Two-color fundus-controlled adaptometry with a commercial MP1 without internal changes to the device provides a quick and easy examination of rod and cone function during dark adaptation at defined retinal loci of the posterior pole. This innovative method will be helpful to measure rod vs. cone function at known loci of the posterior pole in early stages of retinal degenerations.
Plant acoustics: in the search of a sound mechanism for sound signaling in plants.
Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong
2016-08-01
Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers
NASA Technical Reports Server (NTRS)
Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley
2012-01-01
A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.
EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.
Cohen, Michael X; Ridderinkhof, K Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.
2018-01-01
Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release. PMID:29756029
Is colour modulation an independent factor in human visual photosensitivity?
Parra, Jaime; Lopes da Silva, Fernando H; Stroink, Hans; Kalitzin, Stiliyan
2007-06-01
Considering that the role of colour in photosensitive epilepsy (PSE) remains unclear, we designed a study to determine the potential of different colours, colour combinations and white light to trigger photoparoxysmal responses (PPRs) under stringent controlled conditions. After assessing their photosensitivity to stroboscopic white light and black and white patterns, we studied 43 consecutive PSE patients (mean age 19 years, 34 women), using a specially designed colour stimulator. Stimuli included: pulse trains between 10 and 30 Hz of white light and of all primary colours, and also isoluminant alternating time-sequences of colours. Illuminance was kept constant at 100 lux. A progressive stepwise increase of the modulation-depth (MD) of the stimuli was used to determine PPRs threshold. Whereas all the 43 patients were found to be sensitive during the stroboscopic and pattern protocol, only 25 showed PPRs (Waltz's score >2) at least in one session when studied with the colour stimulator. Coloured stimuli elicited PPRs in all these patients, whereas white light did so only in 17 patients. Of the primary colours, red elicited more PPRs (54 in 22 patients) and at a lower MD (max Z-score 0.93 at 10 Hz). Of the alternating sequences, the red-blue was the most provocative stimulus, especially below 30 Hz (100% of patients, max Z-score: 1.65 at 15 Hz). Blue-green was the least provocative stimulus, since it elicited only seven PPRs in seven (28%) patients (max Z-score 0.44 at 10 Hz). Sensitivity to alternating colours was not correlated to sensitivity to individual colours. We conclude that colour sensitivity follows two different mechanisms: one, dependent on colour modulation, plays a role at lower frequencies (<30 Hz). Another, dependent on single-colour light intensity modulation correlates to white light sensitivity and is activated at higher frequencies. Our results suggest that the prescription of spectacles with coloured lenses, tailored to the patient, can be an effective preventative measure against visually induced seizures.
2009-09-14
support of this project in arranging diver schedules so they could serve as study participants. The authors also wish to thank staff at Mimosa Acoustics...however, has now been implemented in a commercial unit, the Mimosa Acoustics SFOAE system. SFOAEs potentially provide more frequency-specific...Medical Research Laboratory, Massachusetts Eye and Ear Infirmary, and Mimosa Acoustics, Inc. (Lapsley Miller, Boege, Marshall, Shera, and Jeng, 2004
3-D Displays Perceptual Research and Applications to Military Systems
1982-09-30
physical button on the corresponding face of the response cube as fast as possible, while minimizing errors. Each observer served for six sessions...orientation, and this resulted in the fast flat reaction time function. The Rotat±nal Strategy: As can be seen from Figure 3, the 24 stimulus cube...instead of the TOP key, these two responses should show the fast , flat response time functions associated with use of the spatial strategy, whereas the
On pictures and stuff: image quality and material appearance
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2014-02-01
Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.
Light Trapping with Silicon Light Funnel Arrays
Nissan, Yuval; Gabay, Tamir; Shalev, Gil
2018-01-01
Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685
Emotionally negative pictures increase attention to a subsequent auditory stimulus.
Tartar, Jaime L; de Almeida, Kristen; McIntosh, Roger C; Rosselli, Monica; Nash, Allan J
2012-01-01
Emotionally negative stimuli serve as a mechanism of biological preparedness to enhance attention. We hypothesized that emotionally negative stimuli would also serve as motivational priming to increase attention resources for subsequent stimuli. To that end, we tested 11 participants in a dual sensory modality task, wherein emotionally negative pictures were contrasted with emotionally neutral pictures and each picture was followed 600 ms later by a tone in an auditory oddball paradigm. Each trial began with a picture displayed for 200 ms; half of the trials began with an emotionally negative picture and half of the trials began with an emotionally neutral picture; 600 ms following picture presentation, the participants heard either an oddball tone or a standard tone. At the end of each trial (picture followed by tone), the participants categorized, with a button press, the picture and tone combination. As expected, and consistent with previous studies, we found an enhanced visual late positive potential (latency range=300-700 ms) to the negative picture stimuli. We further found that compared to neutral pictures, negative pictures resulted in early attention and orienting effects to subsequent tones (measured through an enhanced N1 and N2) and sustained attention effects only to the subsequent oddball tones (measured through late processing negativity, latency range=400-700 ms). Number pad responses to both the picture and tone category showed the shortest response latencies and greatest percentage of correct picture-tone categorization on the negative picture followed by oddball tone trials. Consistent with previous work on natural selective attention, our results support the idea that emotional stimuli can alter attention resource allocation. This finding has broad implications for human attention and performance as it specifically shows the conditions in which an emotionally negative stimulus can result in extended stimulus evaluation. Copyright © 2011 Elsevier B.V. All rights reserved.
Cue-induced reinstatement of ethanol seeking in Sardinian alcohol-preferring rats.
Maccioni, Paola; Orrú, Alessandro; Korkosz, Agnieszka; Gessa, Gian Luigi; Carai, Mauro A M; Colombo, Giancarlo; Bienkowski, Przemyslaw
2007-02-01
The purpose of the present study was to characterize cue-induced reinstatement of ethanol seeking in selectively bred Sardinian alcohol-preferring (sP) rats trained to lever press for ethanol in 30-min self-administration sessions. Four responses on an "active" lever led to presentation of 0.1 ml of 15% (vol/vol) ethanol by a liquid dipper and concurrent activation of a set of discrete light and auditory cues. In a 70-min extinction/reinstatement session, responding was first extinguished for 60 min. Subsequently, different stimuli were delivered in a noncontingent manner and reinstatement of nonreinforced responding was assessed. Fifteen presentations of the ethanol-predictive stimulus complex, including the dipper cup containing 5 or 15% ethanol, potently reinstated responding on the previously active lever. The magnitude of reinstatement increased with the number of stimulus presentations and concentration of ethanol presented by the dipper cup. Fifteen presentations of the ethanol-predictive stimulus complex, including the dipper cup filled with water (0% ethanol), did not produce any reinstatement. These results indicate that (1) noncontingent presentations of the ethanol-predictive stimulus complex may reinstate ethanol seeking in sP rats and (2) the orosensory properties of ethanol may play an important role in reinstatement of ethanol seeking in sP rats. The latter finding concurs with clinical observations that odor and taste of alcoholic beverages elicit immediate craving responses in abstinent alcoholics.
Jarriault, David; Gadenne, Christophe; Rospars, Jean-Pierre; Anton, Sylvia
2009-04-01
To find a mating partner, moths rely on pheromone communication. Released in very low amounts, female sex pheromones are used by males to identify and localize females. Depending on the physiological state (i.e. age, reproductive state), the olfactory system of the males of the noctuid moth Agrotis ipsilon is 'switched on or off'. To understand the neural basis of this behavioural plasticity, we performed a detailed characterization of the qualitative, quantitative and temporal aspects of pheromone coding in the primary centre of integration of pheromonal information, the macroglomerular complex (MGC) of the antennal lobe. MGC neurons were intracellularly recorded and stained in sexually mature virgin males. When stimulating antennae of males with the three main components of the female pheromone blend, most of the neurons showed a biphasic excitatory-inhibitory response. Although they showed different preferences, 80% of the neurons responded at least to the main pheromone component (Z-7-dodecenyl acetate). Six stained neurons responding to this component had their dendrites in the largest MGC glomerulus. Changes in the stimulus intensity and duration affected the excitatory phase but not the inhibitory phase properties. The stimulus intensity was shown to be encoded in the firing frequency, the number of spikes and the latency of the excitatory phase, whereas the stimulus duration only changed its duration. We conclude that the inhibitory input provided by local interneurons following the excitatory phase might not contribute directly to the encoding of stimulus characteristics. The data presented will serve as a basis for comparison with those of immature and mated males.
Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.
Gottschalk, Caroline; Fischer, Rico
2017-03-01
Different contexts with high versus low conflict frequencies require a specific attentional control involvement, i.e., strong attentional control for high conflict contexts and less attentional control for low conflict contexts. While it is assumed that the corresponding control set can be activated upon stimulus presentation at the respective context (e.g., upper versus lower location), the actual features that trigger control set activation are to date not described. Here, we ask whether the perceptual priming of the location context by an abrupt onset of irrelevant stimuli is sufficient in activating the context-specific attentional control set. For example, the mere onset of a stimulus might disambiguate the relevant location context and thus, serve as a low-level perceptual trigger mechanism that activates the context-specific attentional control set. In Experiment 1 and 2, the onsets of task-relevant and task-irrelevant (distracter) stimuli were manipulated at each context location to compete for triggering the activation of the appropriate control set. In Experiment 3, a prior training session enabled distracter stimuli to establish contextual control associations of their own before entering the test session. Results consistently showed that the mere onset of a task-irrelevant stimulus (with or without a context-control association) is not sufficient to activate the context-associated attentional control set by disambiguating the relevant context location. Instead, we argue that the identification of the relevant stimulus at the respective context is a precondition to trigger the activation of the context-associated attentional control set.
Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation
Kent, Alexander R.; Grill, Warren M.
2012-01-01
Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894
Early event related fields during visually evoked pain anticipation.
Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G
2016-03-01
Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention
Bekisz, Marek; Bogdan, Wojciech; Ghazaryan, Anaida; Waleszczyk, Wioletta J.; Kublik, Ewa; Wróbel, Andrzej
2016-01-01
Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation. PMID:26730705
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Are judgments a form of data clustering? Reexamining contrast effects with the k-means algorithm.
Boillaud, Eric; Molina, Guylaine
2015-04-01
A number of theories have been proposed to explain in precise mathematical terms how statistical parameters and sequential properties of stimulus distributions affect category ratings. Various contextual factors such as the mean, the midrange, and the median of the stimuli; the stimulus range; the percentile rank of each stimulus; and the order of appearance have been assumed to influence judgmental contrast. A data clustering reinterpretation of judgmental relativity is offered wherein the influence of the initial choice of centroids on judgmental contrast involves 2 combined frequency and consistency tendencies. Accounts of the k-means algorithm are provided, showing good agreement with effects observed on multiple distribution shapes and with a variety of interaction effects relating to the number of stimuli, the number of response categories, and the method of skewing. Experiment 1 demonstrates that centroid initialization accounts for contrast effects obtained with stretched distributions. Experiment 2 demonstrates that the iterative convergence inherent to the k-means algorithm accounts for the contrast reduction observed across repeated blocks of trials. The concept of within-cluster variance minimization is discussed, as is the applicability of a backward k-means calculation method for inferring, from empirical data, the values of the centroids that would serve as a representation of the judgmental context. (c) 2015 APA, all rights reserved.
Pelletier, Cathy A; Steele, Catriona M
2014-02-01
This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled Magnitude Scale ratings of taste intensity were collected for deionized water; carbonated water; 2.7% w/v citric acid; and diluted ethanol. These stimuli were swallowed, with measurement of tongue-palate pressures and submental sEMG. Path analysis differentiated stimulus, genetic taste status, age, and perceived taste intensity effects on swallowing. Signal amplitude during effortful saliva swallowing served as a covariate representing participant strength. Significant differences (p < .05) in taste intensity were seen across liquids: citric acid > ethanol > carbonated water > water. Supertasters perceived greater taste intensity than did nontasters. Lingua-palatal pressure and sEMG amplitudes were correlated with the strength covariate. Anterior palate pressures and sEMG amplitudes were significantly higher for the citric acid stimulus. Perceived taste intensity was a significant mediator of stimulus differences. These data provide confirmatory evidence that high-intensity sour stimuli do influence swallowing behaviors. In addition, taste genetics influence the perception of taste intensity for stimuli with chemesthetic properties, which modulates behavioral responses.
Bode, Stefan; Murawski, Carsten; Laham, Simon M.
2018-01-01
A major obstacle for the design of rigorous, reproducible studies in moral psychology is the lack of suitable stimulus sets. Here, we present the Socio-Moral Image Database (SMID), the largest standardized moral stimulus set assembled to date, containing 2,941 freely available photographic images, representing a wide range of morally (and affectively) positive, negative and neutral content. The SMID was validated with over 820,525 individual judgments from 2,716 participants, with normative ratings currently available for all images on affective valence and arousal, moral wrongness, and relevance to each of the five moral values posited by Moral Foundations Theory. We present a thorough analysis of the SMID regarding (1) inter-rater consensus, (2) rating precision, and (3) breadth and variability of moral content. Additionally, we provide recommendations for use aimed at efficient study design and reproducibility, and outline planned extensions to the database. We anticipate that the SMID will serve as a useful resource for psychological, neuroscientific and computational (e.g., natural language processing or computer vision) investigations of social, moral and affective processes. The SMID images, along with associated normative data and additional resources are available at https://osf.io/2rqad/. PMID:29364985
Modeling depth from motion parallax with the motion/pursuit ratio
Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith
2014-01-01
The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926
Wright, Beverly A.; Baese-Berk, Melissa M.; Marrone, Nicole; Bradlow, Ann R.
2015-01-01
Language acquisition typically involves periods when the learner speaks and listens to the new language, and others when the learner is exposed to the language without consciously speaking or listening to it. Adaptation to variants of a native language occurs under similar conditions. Here, speech learning by adults was assessed following a training regimen that mimicked this common situation of language immersion without continuous active language processing. Experiment 1 focused on the acquisition of a novel phonetic category along the voice-onset-time continuum, while Experiment 2 focused on adaptation to foreign-accented speech. The critical training regimens of each experiment involved alternation between periods of practice with the task of phonetic classification (Experiment 1) or sentence recognition (Experiment 2) and periods of stimulus exposure without practice. These practice and exposure periods yielded little to no improvement separately, but alternation between them generated as much or more improvement as did practicing during every period. Practice appears to serve as a catalyst that enables stimulus exposures encountered both during and outside of the practice periods to contribute to quite distinct cases of speech learning. It follows that practice-plus-exposure combinations may tap a general learning mechanism that facilitates language acquisition and speech processing. PMID:26328708
Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.
Keitel, Christian; Thut, Gregor; Gross, Joachim
2017-02-01
Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Short-term memory in olfactory network dynamics
NASA Astrophysics Data System (ADS)
Stopfer, Mark; Laurent, Gilles
1999-12-01
Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.
Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang
2013-01-01
Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971
[LED LIGHTING AS A FACTOR FOR THE STIMULATION OF THE HORMONE SYSTEM].
Deynego, V N; Kaptsov, V A
2015-01-01
There are considered questions of non-visual effects of blue LED light sources on hormonal systems (cortisol, glucose, insulin) providing the high human performance. In modern conditions hygiene strategy for child and adolescent health strategy was shown to be replaced by a strategy of light stimulation of the hormonal profile. There was performed a systematic analysis of the axis "light stimulus-hypothalamus-pituitary-adrenals-cortisol-glucose-insulin". The elevation of the content of cortisol leads to the increase of the glucose level in the blood and the stimulation of the production of insulin, which can, like excessive consumption of food, give rise to irreversible decline in the number of insulin receptors on the cell surface, and thus--to a steady reduction in the ability of cells to utilize glucose, i.e. to type 2 diabetes or its aggravation.
A computational model of pupil dilation
NASA Astrophysics Data System (ADS)
Johansson, Birger; Balkenius, Christian
2018-01-01
We present a system-level connectionist model of pupil control that includes brain regions believed to influence the size of the pupil. It includes parts of the sympathetic and parasympathetic nervous system together with the hypothalamus, amygdala, locus coeruleus, and cerebellum. Computer simulations show that the model is able to reproduce a number of important aspects of how the pupil reacts to different stimuli: (1) It reproduces the characteristic shape and latency of the light-reflex. (2) It elicits pupil dilation as a response to novel stimuli. (3) It produces pupil dilation when shown emotionally charged stimuli, and can be trained to respond to initially neutral stimuli through classical conditioning. (4) The model can learn to expect light changes for particular stimuli, such as images of the sun, and produces a "light-response" to such stimuli even when there is no change in light intensity. (5) It also reproduces the fear-inhibited light reflex effect where reactions to light increase is weaker after presentation of a conditioned stimulus that predicts punishment.
Circadian system of mice integrates brief light stimuli.
Van Den Pol, A N; Cao, V; Heller, H C
1998-08-01
Light is the primary sensory stimulus that synchronizes or entrains the internal circadian rhythms of animals to the solar day. In mammals photic entrainment of the circadian pacemaker residing in the suprachiasmatic nuclei is due to the fact that light at certain times of day can phase shift the pacemaker. In this study we show that the circadian system of mice can integrate extremely brief, repeated photic stimuli to produce large phase shifts. A train of 2-ms light pulses delivered as one pulse every 5 or 60 s, with a total light duration of 120 ms, can cause phase shifts of several hours that endure for weeks. Single 2-ms pulses of light were ineffective. Thus these data reveal a property of the mammalian circadian clock: it can integrate and store latent sensory information in such a way that a series of extremely brief photic stimuli, each too small to cause a phase shift individually, together can cause a large and long-lasting change in behavior.
The role of preliminary magazine training in acquisition of the autoshaped key peck1
Davol, G. H.; Steinhauer, G. D.; Lee, A.
1977-01-01
A series of experiments tested the hypothesis that initial key pecks in the autoshaping procedure are generalized pecks at the illuminated grain hopper. Experiment I found that autoshaping readily occurred when the chamber was continuously illuminated by a house-light. In Experiment II, pigeons given magazine training and autoshaping with an unlighted grain hopper failed to autoshape in 200 trials. Acquisition of autoshaped key pecking was retarded in Experiment III when stimulus control by the magazine light was reduced. In the fourth study, pigeons were given magazine training with either a red or white magazine light and then given autoshaping with concurrently presented red and white keys. For all pigeons in this experiment, the first key peck occurred on the key of the same color as that pigeon's magazine light. The results of these experiments were interpreted as supporting an account of autoshaping that identifies initial key pecks as arising due to generalization of pecking at the lighted grain hopper to pecking at the lighted key. PMID:16812027
Stimulus Control: The Sought or Unsought Influence of the Objects We Tend to
ERIC Educational Resources Information Center
Morsella, Ezequiel; Larson, Lindsay R. L.; Zarolia, Pareezad; Bargh, John A.
2011-01-01
Does the mere presence of the things we have tended to influence our actions systematically, in ways that escape our awareness? For example, while entering a tool shed, does perceiving objects that we once tended to (e.g., tools, musical instruments) influence how we then execute a simple action (e.g., flicking the shed's light switch)? Ancient…
ERIC Educational Resources Information Center
Halverson, Hunter E.; Freeman, John H.
2010-01-01
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases.…
Henze, Miriam J; Labhart, Thomas
2007-09-01
Field crickets (Gryllus campestris L.) are able to detect the orientation of the electric vector (e-vector) of linearly polarized light. They presumably use this sense to exploit the celestial polarization pattern for course control or navigation. Polarization vision in crickets can be tested by eliciting a spontaneous polarotactic response. Previously, wide and 100% polarized stimuli were employed to induce this behavior. However, field crickets live on meadows where the observation of the sky is strongly limited by surrounding vegetation. Moreover, degrees of polarization (d) in the natural sky are much lower than 100%. We have therefore investigated thresholds for the behavioral response to polarized light under conditions mimicking those experienced by the insects in the field. We show that crickets are able to rely on polarized stimuli of just 1 degrees diameter. We also provide evidence that they exploit polarization down to an (average) polarization level of less than 7%, irrespective of whether the stimulus is homogeneous, such as under haze, or patched, such as a sky spotted by clouds. Our data demonstrate that crickets can rely on skylight polarization even under unfavorable celestial conditions, emphasizing the significance of polarized skylight orientation for insects.
Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.
2014-01-01
Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784
A real-time detector system for precise timing of audiovisual stimuli.
Henelius, Andreas; Jagadeesan, Sharman; Huotilainen, Minna
2012-01-01
The successful recording of neurophysiologic signals, such as event-related potentials (ERPs) or event-related magnetic fields (ERFs), relies on precise information of stimulus presentation times. We have developed an accurate and flexible audiovisual sensor solution operating in real-time for on-line use in both auditory and visual ERP and ERF paradigms. The sensor functions independently of the used audio or video stimulus presentation tools or signal acquisition system. The sensor solution consists of two independent sensors; one for sound and one for light. The microcontroller-based audio sensor incorporates a novel approach to the detection of natural sounds such as multipart audio stimuli, using an adjustable dead time. This aids in producing exact markers for complex auditory stimuli and reduces the number of false detections. The analog photosensor circuit detects changes in light intensity on the screen and produces a marker for changes exceeding a threshold. The microcontroller software for the audio sensor is free and open source, allowing other researchers to customise the sensor for use in specific auditory ERP/ERF paradigms. The hardware schematics and software for the audiovisual sensor are freely available from the webpage of the authors' lab.
Factors associated with over-serving at drinking establishments.
Buvik, Kristin; Rossow, Ingeborg
2015-04-01
To address characteristics of drinking establishments, bartenders and patrons that may affect the likelihood of over-serving. A systematic examination of 425 purchase attempts with pseudo-intoxicated patrons enacting scripts that, according to the law, should lead to the denial of alcohol sales. Drinking establishments in the three largest cities in Norway (Trondheim, Bergen and Oslo) were visited by male and female actors aged 20-30 years on weekend nights, with a total of 425 purchase items. Over-serving was recorded when the pseudo-intoxicated patron was served alcohol. Characteristics of the drinking establishment, the bartender and the pseudo-intoxicated patron were recorded systematically. Pseudo-intoxicated patrons were served in 347 of 425 purchase attempts (82%). In bivariate analyses, the over-serving rate increased with venue characteristics, music/noise level and intoxication level among patrons. These factors were intercorrelated and correlated with poor lighting. The over-serving rate was also higher when the pseudo-intoxicated patron was female and when the purchase attempt occurred after midnight. In multi-variate analyses, two factors increased the likelihood of over-serving significantly: a high problematic bar indicator score (poor lighting, high music/noise level and high intoxication level among patrons) [adjusted odds ratio (OR) = 3.5, 95% confidence interval (CI) = 1.9, 6.4] and female gender of pseudo-intoxicated patrons (adjusted OR = 2.6, 95% CI = 1.4, 4.7). The rate of over-serving was 95% when both risk factors were present and 67% when both factors were absent. In urban settings in Norway, it is likely that over-serving occurs frequently, and is increased by the risk factors of poor lighting, loud music and high intoxication level among patrons. © 2015 Society for the Study of Addiction.
European starlings unriddle the ambiguous-cue problem
Vasconcelos, Marco; Monteiro, Tiago
2014-01-01
The ambiguous-cue problem is deceptively simple. It involves two concurrently trained simultaneous discriminations (known as PA and NA trials), but only three stimuli. Stimulus A is common to both discriminations, but serves as non-reinforced stimulus (S-) on PA trials and as reinforced stimulus (S+) on NA trials. Typically, animals’ accuracy is lower on PA trials—the ambiguous-cue effect. We conducted two experiments with European starlings (Sturnus vulgaris) using Urcuioli and Michalek’s (2007, Psychon B Rev 14, 658–662) experimental manipulations as a springboard to test the predictions of two of the most important theoretical accounts of the effect: the interfering cue hypothesis and value transfer theory. Both experiments included two groups of birds, one trained with a regular ambiguous-cue problem (Group Continuous) and another trained with partial reinforcement on PA trials (Group PA-Partial). The experiments differed only in the number of sessions (18 vs. 36) and daily trials (360 vs. 60). As previously observed, we found faster acquisition on NA trials than on PA trials in both experiments, but by the end of training PA performance was surprisingly high, such that no ambiguous-cue effect was present in Group Continuous of either experiment. The effect was still present in both PA-Partial groups, but to a smaller degree than expected. These findings are inconsistent with the literature, in particular with the results of Urcuioli and Michalek (2007) with pigeons, and question the aforementioned theoretical accounts as complete explanations of the ambiguous-cue effect. In our view, to achieve such high levels of accuracy on PA trials, starlings must have attended to configural (i.e., contextual) cues, thus differentiating stimulus A when presented on PA trials from stimulus A when presented on NA trials. A post hoc simulation of a reinforcement-based configural model supported our assertion. PMID:25206346
Neuronal Correlates of Cross-Modal Transfer in the Cerebellum and Pontine Nuclei
Campolattaro, Matthew M.; Kashef, Alireza; Lee, Inah; Freeman, John H.
2011-01-01
Cross-modal transfer occurs when learning established with a stimulus from one sensory modality facilitates subsequent learning with a new stimulus from a different sensory modality. The current study examined neuronal correlates of cross-modal transfer of Pavlovian eyeblink conditioning in rats. Neuronal activity was recorded from tetrodes within the anterior interpositus nucleus (IPN) of the cerebellum and basilar pontine nucleus (PN) during different phases of training. After stimulus pre-exposure and unpaired training sessions with a tone conditioned stimulus (CS), light CS, and periorbital stimulation unconditioned stimulus (US), rats received associative training with one of the CSs and the US (CS1-US). Training then continued on the same day with the other CS to assess cross-modal transfer (CS2-US). The final training session included associative training with both CSs on separate trials to establish stronger cross-modal transfer (CS1/CS2). Neurons in the IPN and PN showed primarily unimodal responses during pre-training sessions. Learning-related facilitation of activity correlated with the conditioned response (CR) developed in the IPN and PN during CS1-US training. Subsequent CS2-US training resulted in acquisition of CRs and learning-related neuronal activity in the IPN but substantially less little learning-related activity in the PN. Additional CS1/CS2 training increased CRs and learning-related activity in the IPN and PN during CS2-US trials. The findings suggest that cross-modal neuronal plasticity in the PN is driven by excitatory feedback from the IPN to the PN. Interacting plasticity mechanisms in the IPN and PN may underlie behavioral cross-modal transfer in eyeblink conditioning. PMID:21411647
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Srinivasan, Geetha; Kim, Jun Hee; von Gersdorff, Henrique
2008-04-01
Synaptic strength is determined by release probability and the size of the readily releasable pool of docked vesicles. Here we describe the effects of blocking myosin light chain kinase (MLCK), a cytoskeletal regulatory protein thought to be involved in myosin-mediated vesicle transport, on synaptic transmission at the mouse calyx of Held synapse. Application of three different MLCK inhibitors increased the amplitude of the early excitatory postsynaptic currents (EPSCs) in a stimulus train, without affecting the late steady-state EPSCs. A presynaptic locus of action for MLCK inhibitors was confirmed by an increase in the frequency of miniature EPSCs that left their average amplitude unchanged. MLCK inhibition did not affect presynaptic Ca(2+) currents or action potential waveform. Moreover, Ca(2+) imaging experiments showed that [Ca(2+)](i) transients elicited by 100-Hz stimulus trains were not altered by MLCK inhibition. Studies using high-frequency stimulus trains indicated that MLCK inhibitors increase vesicle pool size, but do not significantly alter release probability. Accordingly, when AMPA-receptor desensitization was minimized, EPSC paired-pulse ratios were unaltered by MLCK inhibition, suggesting that release probability remains unaltered. MLCK inhibition potentiated EPSCs even when presynaptic Ca(2+) buffering was greatly enhanced by treating slices with EGTA-AM. In addition, MLCK inhibition did not affect the rate of recovery from short-term depression. Finally, developmental studies revealed that EPSC potentiation by MLCK inhibition starts at postnatal day 5 (P5) and remains strong during synaptic maturation up to P18. Overall, our data suggest that MLCK plays a crucial role in determining the size of the pool of synaptic vesicles that undergo fast release at a CNS synapse.
Moldavan, Mykhaylo G.
2010-01-01
The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity–dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT–SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca2+ channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation. PMID:20220078
Impaired Perception of Biological Motion in Parkinson’s Disease
Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice
2016-01-01
Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (p<.001, Cohen’s d=1.22), regardless of stimulus gait type or speed, with a less substantial deficit in object motion perception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927
[Therapy options for blind microphthalmos and clinical anophthalmos].
Schittkowski, M P
2012-11-01
Children suffering from congenital anophthalmos (absence of eyes) or blind microphthalmos (eyes too small without light perception) show significant smaller eyelids, conjunctival sacs and orbital volume due to the lack of intrauterine growth stimulus. Highly hydrophilic osmotic expanders allow prostheses to be fitted in the first year of life to compensate for the volume deficit and the substantial aesthetic disadvantages and to stimulate lid development.
The Special Status of Actions in Causal Reasoning in Rats
ERIC Educational Resources Information Center
Leising, Kenneth J.; Wong, Jared; Waldmann, Michael R.; Blaisdell, Aaron P.
2008-01-01
A. P. Blaisdell, K. Sawa, K. J. Leising, and M. R. Waldmann (2006) reported evidence for causal reasoning in rats. After learning through Pavlovian observation that Event A (a light) was a common cause of Events X (an auditory stimulus) and F (food), rats predicted F in the test phase when they observed Event X as a cue but not when they generated…
Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys.
Tsunoda, Kazushige; Hanazono, Gen; Inomata, Koichi; Kazato, Yoko; Suzuki, Wataru; Tanifuji, Manabu
2009-07-01
Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.
Theoretical approaches to lightness and perception.
Gilchrist, Alan
2015-01-01
Theories of lightness, like theories of perception in general, can be categorized as high-level, low-level, and mid-level. However, I will argue that in practice there are only two categories: one-stage mid-level theories, and two-stage low-high theories. Low-level theories usually include a high-level component and high-level theories include a low-level component, the distinction being mainly one of emphasis. Two-stage theories are the modern incarnation of the persistent sensation/perception dichotomy according to which an early experience of raw sensations, faithful to the proximal stimulus, is followed by a process of cognitive interpretation, typically based on past experience. Like phlogiston or the ether, raw sensations seem like they must exist, but there is no clear evidence for them. Proximal stimulus matches are postperceptual, not read off an early sensory stage. Visual angle matches are achieved by a cognitive process of flattening the visual world. Likewise, brightness (luminance) matches depend on a cognitive process of flattening the illumination. Brightness is not the input to lightness; brightness is slower than lightness. Evidence for an early (< 200 ms) mosaic stage is shaky. As for cognitive influences on perception, the many claims tend to fall apart upon close inspection of the evidence. Much of the evidence for the current revival of the 'new look' is probably better explained by (1) a natural desire of (some) subjects to please the experimenter, and (2) the ease of intuiting an experimental hypothesis. High-level theories of lightness are overkill. The visual system does not need to know the amount of illumination, merely which surfaces share the same illumination. This leaves mid-level theories derived from the gestalt school. Here the debate seems to revolve around layer models and framework models. Layer models fit our visual experience of a pattern of illumination projected onto a pattern of reflectance, while framework models provide a better account of illusions and failures of constancy. Evidence for and against these approaches is reviewed.
ERIC Educational Resources Information Center
Murphy, Peter
1997-01-01
Details the dramatic changes in school lighting. Describes how lighting will be more closely integrated into the "smart" school building of tomorrow and how lighting systems will evolve with schools as technology changes. Claims that direct/indirect lighting systems will serve computer users as well as reduce energy and maintenance costs. (RJM)
Le Chatelier's Principle in Sensation and Perception: Fractal-Like Enfolding at Different Scales
Norwich, Kenneth H.
2010-01-01
Le Chatelier's principle asserts that a disturbance, when applied to a resting system may drive the system away from its equilibrium state, but will invoke a countervailing influence that will counteract the effect of the disturbance. When applied to the field of sensation and perception, a generalized stimulus will displace the system from equilibrium, and a generalized adaptation process will serve as the countervailing influence tending to reduce the impact of the stimulus. The principle applies at all levels, from the behavioral to the neural, the larger enfolding the smaller in fractal-like form. Le Chatelier's principle, so applied, leads to the unification of many concepts in sensory science. Ideas as diverse as sensory adaptation, reflex arcs, and simple deductive logic can be brought under the umbrella of a single orienting principle. Beyond unification, this principle allows us to approach many questions in pathophysiology from a different perspective. For example, we find new direction toward the reduction of phantom-limb pain and possibly of vertigo. PMID:21423359
Emergent Verbal Behavior and Analogy: Skinnerian and Linguistic Approaches
Matos, Maria Amelia; de Lourdes Passos, Maria
2010-01-01
The production of verbal operants not previously taught is an important aspect of language productivity. For Skinner, new mands, tacts, and autoclitics result from the recombination of verbal operants. The relation between these mands, tacts, and autoclitics is what linguists call analogy, a grammatical pattern that serves as a foundation on which a speaker might emit new linguistic forms. Analogy appears in linguistics as a regularity principle that characterizes language and has been related to how languages change and also to creativity. The approaches of neogrammarians like Hermann Paul, as well as those of Jespersen and Bloomfield, appear to have influenced Skinner's understanding of verbal creativity. Generalization and stimulus equivalence are behavioral processes related to the generative grammatical behavior described in the analogy model. Linguistic forms and grammatical patterns described in analogy are part of the contingencies of reinforcement that produce generalization and stimulus equivalence. The analysis of verbal behavior needs linguistic analyses of the constituents of linguistic forms and their combination patterns. PMID:22479127
Kopp, Bruno; Wessel, Karl
2010-05-01
In the present study, event-related potentials (ERPs) were recorded to investigate cognitive processes related to the partial transmission of information from stimulus recognition to response preparation. Participants classified two-dimensional visual stimuli with dimensions size and form. One feature combination was designated as the go-target, whereas the other three feature combinations served as no-go distractors. Size discriminability was manipulated across three experimental conditions. N2c and P3a amplitudes were enhanced in response to those distractors that shared the feature from the faster dimension with the target. Moreover, N2c and P3a amplitudes showed a crossover effect: Size distractors evoked more pronounced ERPs under high size discriminability, but form distractors elicited enhanced ERPs under low size discriminability. These results suggest that partial perceptual-motor transmission of information is accompanied by acts of cognitive control and by shifts of attention between the sources of conflicting information. Selection negativity findings imply adaptive allocation of visual feature-based attention across the two stimulus dimensions.
EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing
Cohen, Michael X; Ridderinkhof, K. Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201
Fields, Lanny; Arntzen, Erik; Nartey, Richard K; Eilifsen, Christoffer
2012-03-01
Thirty college students attempted to form three 3-node 5-member equivalence classes under the simultaneous protocol. After concurrent training of AB, BC, CD, and DE relations, all probes used to assess the emergence of symmetrical, transitive, and equivalence relations were presented for two test blocks. When the A-E stimuli were all abstract shapes, none of 10 participants formed classes. When the A, B, D, and E stimuli were abstract shapes and the C stimuli were meaningful pictures, 8 of 10 participants formed classes. This high yield may reflect the expansion of existing classes that consist of the associates of the meaningful stimuli, rather than the formation of the ABCDE classes, per se. When the A-E stimuli were abstract shapes and the C stimuli became S(D)s prior to class formation, 5 out of 10 participants formed classes. Thus, the discriminative functions served by the meaningful stimuli can account for some of the enhancement of class formation produced by the inclusion of a meaningful stimulus as a class member. A sorting task, which provided a secondary measure of class formation, indicated the formation of all three classes when the emergent relations probes indicated the same outcome. In contrast, the sorting test indicated "partial" class formation when the emergent relations test indicated no class formation. Finally, the effects of nodal distance on the relatedness of stimuli in the equivalence classes were not influenced by the functions served by the C stimuli in the equivalence classes.
Effects of a Meaningful, a Discriminative, and a Meaningless Stimulus on Equivalence Class Formation
Fields, Lanny; Arntzen, Erik; Nartey, Richard K; Eilifsen, Christoffer
2012-01-01
Thirty college students attempted to form three 3-node 5-member equivalence classes under the simultaneous protocol. After concurrent training of AB, BC, CD, and DE relations, all probes used to assess the emergence of symmetrical, transitive, and equivalence relations were presented for two test blocks. When the A–E stimuli were all abstract shapes, none of 10 participants formed classes. When the A, B, D, and E stimuli were abstract shapes and the C stimuli were meaningful pictures, 8 of 10 participants formed classes. This high yield may reflect the expansion of existing classes that consist of the associates of the meaningful stimuli, rather than the formation of the ABCDE classes, per se. When the A–E stimuli were abstract shapes and the C stimuli became SDs prior to class formation, 5 out of 10 participants formed classes. Thus, the discriminative functions served by the meaningful stimuli can account for some of the enhancement of class formation produced by the inclusion of a meaningful stimulus as a class member. A sorting task, which provided a secondary measure of class formation, indicated the formation of all three classes when the emergent relations probes indicated the same outcome. In contrast, the sorting test indicated “partial” class formation when the emergent relations test indicated no class formation. Finally, the effects of nodal distance on the relatedness of stimuli in the equivalence classes were not influenced by the functions served by the C stimuli in the equivalence classes. PMID:22389524
Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu
2015-02-15
Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6mg/kg BU224 or 32mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned>80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned>80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT)2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. Copyright © 2015 Elsevier B.V. All rights reserved.
Further data on the effects of subliminal symbiotic stimulation on schizophrenics.
Kaplan, R; Thornton, P; Silverman, L
1985-11-01
This investigation further examined the effects of activating unconscious symbiotic fantasies in schizophrenics. One hundred twenty-eight hospitalized schizophrenic men who qualified as "relatively differentiated" on the Adjective Rating Scale were randomly assigned to four groups. Each group was assessed for pathological thinking, pathological nonverbal behavior, and self-esteem before and after the subliminal exposure of an experimental and control stimulus. The control stimulus for all groups was the message PEOPLE ARE WALKING and the experimental stimuli were the messages MOMMY AND I ARE ONE, MOMMY IS ALWAYS WITH ME, MOMMY FEEDS ME WELL, and I CANNOT HURT MOMMY (one for each group). One half of each group was subliminally exposed to verbal messages only and one half to verbal messages accompanied by congruent pictures. The first stimulus (MOMMY AND I ARE ONE) was intended to activate unconscious symbiotic fantasies that in a number of prior studies reduced pathology in groups of relatively differentiated schizophrenics. The other stimuli were intended to activate reassuring unconscious fantasies about "mommy" that were not specifically symbiosis-related. Only the MOMMY AND I ARE ONE stimulus led to more adaptive behavior and did so on all three dependent variables. This supported the supposition, also borne out in two other studies, that it is specifically symbiosis-related gratifications that are ameliorative for schizophrenics. The above results were considerably stronger for the subgroup that was exposed to a picture accompanying the MOMMY AND I ARE ONE message. This was viewed as probably the result of the pictorial representation serving as a concretization of the more abstract verbal message and as such being more relevant to the relatively primitive mode of thinking in schizophrenia.
Diamantis, Dimitrios A; Ramesova, Sarka; Chatzigiannis, Christos M; Degano, Ilaria; Gerogianni, Paraskevi S; Karadima, Constantina; Perikleous, Sonia; Rekkas, Dimitrios; Gerothanassis, Ioannis P; Galaris, Dimitrios; Mavromoustakos, Thomas; Valsami, Georgia; Sokolova, Romana; Tzakos, Andreas G
2018-06-07
Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry) UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H 2 O 2 -induced DNA damage. Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and oxidation profile is retained in its encapsulated state. Although the protective ability of the quercetin-2HP-β-CD complex against H 2 O 2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. The oxidation profile of a natural product once it is encapsulated in a supramolecular cyclodextrin carrier as also it was discovered that decomplexation can be triggered by a chemical stimulus. Copyright © 2018. Published by Elsevier B.V.
Functional decoupling of melatonin suppression and circadian phase resetting in humans.
Rahman, Shadab A; St Hilaire, Melissa A; Gronfier, Claude; Chang, Anne-Marie; Santhi, Nayantara; Czeisler, Charles A; Klerman, Elizabeth B; Lockley, Steven W
2018-06-01
There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light (∼9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness (∼9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Rhythmic control of endocannabinoids in the rat pineal gland.
Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner
2015-01-01
Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.
Reaction times to weak test lights. [psychophysics biological model
NASA Technical Reports Server (NTRS)
Wandell, B. A.; Ahumada, P.; Welsh, D.
1984-01-01
Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.
Food and conspecific chemical cues modify visual behavior of zebrafish, Danio rerio.
Stephenson, Jessica F; Partridge, Julian C; Whitlock, Kathleen E
2012-06-01
Animals use the different qualities of olfactory and visual sensory information to make decisions. Ethological and electrophysiological evidence suggests that there is cross-modal priming between these sensory systems in fish. We present the first experimental study showing that ecologically relevant chemical mixtures alter visual behavior, using adult male and female zebrafish, Danio rerio. Neutral-density filters were used to attenuate the light reaching the tank to an initial light intensity of 2.3×10(16) photons/s/m2. Fish were exposed to food cue and to alarm cue. The light intensity was then increased by the removal of one layer of filter (nominal absorbance 0.3) every minute until, after 10 minutes, the light level was 15.5×10(16) photons/s/m2. Adult male and female zebrafish responded to a moving visual stimulus at lower light levels if they had been first exposed to food cue, or to conspecific alarm cue. These results suggest the need for more integrative studies of sensory biology.
Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.
Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L
2016-03-01
Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Blue News Update: BODIPY-GTP Binds to the Blue-Light Receptor YtvA While GTP Does Not
Schmieder, Peter
2012-01-01
Light is an important environmental factor for almost all organisms. It is mainly used as an energy source but it is also a key factor for the regulation of multiple cellular functions. Light as the extracellular stimulus is thereby converted into an intracellular signal by photoreceptors that act as signal transducers. The blue-light receptor YtvA, a bacterial counterpart of plant phototropins, is involved in the stress response of Bacillus subtilis. The mechanism behind its activation, however, remains unknown. It was suggested based on fluorescence spectroscopic studies that YtvA function involves GTP binding and that this interaction is altered by absorption of light. We have investigated this interaction by several biophysical methods and show here using fluorescence spectroscopy, ITC titrations, and three NMR spectroscopic assays that while YtvA interacts with BODIPY-GTP as a fluorescent GTP analogue originally used for the detection of GTP binding, it does not bind GTP. PMID:22247770
Dataset of red light induced pupil constriction superimposed on post-illumination pupil response.
Lei, Shaobo; Goltz, Herbert C; Sklar, Jaime C; Wong, Agnes M F
2016-09-01
We collected and analyzed pupil diameter data from of 7 visually normal participants to compare the maximum pupil constriction (MPC) induced by "Red Only" vs. "Blue+Red" visual stimulation conditions. The "Red Only" condition consisted of red light (640±10 nm) stimuli of variable intensity and duration presented to dark-adapted eyes with pupils at resting state. This condition stimulates the cone-driven activity of the intrinsically photosensitive retinal ganglion cells (ipRGC). The "Blue+Red" condition consisted of the same red light stimulus presented during ongoing blue (470±17 nm) light-induced post-illumination pupil response (PIPR), representing the cone-driven ipRGC activity superimposed on the melanopsin-driven intrinsic activity of the ipRGCs ("The Absence of Attenuating Effect of Red light Exposure on Pre-existing Melanopsin-Driven Post-illumination Pupil Response" Lei et al. (2016) [1]). MPC induced by the "Red Only" condition was compared with the MPC induced by the "Blue+Red" condition by multiple paired sample t -tests with Bonferroni correction.
Simpson, Claire; Pinkham, Amy E; Kelsven, Skylar; Sasson, Noah J
2013-12-01
Emotion can be expressed by both the voice and face, and previous work suggests that presentation modality may impact emotion recognition performance in individuals with schizophrenia. We investigated the effect of stimulus modality on emotion recognition accuracy and the potential role of visual attention to faces in emotion recognition abilities. Thirty-one patients who met DSM-IV criteria for schizophrenia (n=8) or schizoaffective disorder (n=23) and 30 non-clinical control individuals participated. Both groups identified emotional expressions in three different conditions: audio only, visual only, combined audiovisual. In the visual only and combined conditions, time spent visually fixating salient features of the face were recorded. Patients were significantly less accurate than controls in emotion recognition during both the audio and visual only conditions but did not differ from controls on the combined condition. Analysis of visual scanning behaviors demonstrated that patients attended less than healthy individuals to the mouth in the visual condition but did not differ in visual attention to salient facial features in the combined condition, which may in part explain the absence of a deficit for patients in this condition. Collectively, these findings demonstrate that patients benefit from multimodal stimulus presentations of emotion and support hypotheses that visual attention to salient facial features may serve as a mechanism for accurate emotion identification. © 2013.
How people explain their own and others’ behavior: a theory of lay causal explanations
Böhm, Gisela; Pfister, Hans-Rüdiger
2015-01-01
A theoretical model is proposed that specifies lay causal theories of behavior; and supporting experimental evidence is presented. The model’s basic assumption is that different types of behavior trigger different hypotheses concerning the types of causes that may have brought about the behavior. Seven categories are distinguished that are assumed to serve as both behavior types and explanation types: goals, dispositions, temporary states such as emotions, intentional actions, outcomes, events, and stimulus attributes. The model specifies inference rules that lay people use when explaining behavior (actions are caused by goals; goals are caused by higher order goals or temporary states; temporary states are caused by dispositions, stimulus attributes, or events; outcomes are caused by actions, temporary states, dispositions, stimulus attributes, or events; events are caused by dispositions or preceding events). Two experiments are reported. Experiment 1 showed that free-response explanations followed the assumed inference rules. Experiment 2 demonstrated that explanations which match the inference rules are generated faster and more frequently than non-matching explanations. Together, the findings support models that incorporate knowledge-based aspects into the process of causal explanation. The results are discussed with respect to their implications for different stages of this process, such as the activation of causal hypotheses and their subsequent selection, as well as with respect to social influences on this process. PMID:25741306
Huma, Zilli; Ireland, Kirsty; Maxwell, David J
2015-03-30
It is now well established that the cerebellum receives input from nociceptors which may serve to adjust motor programmes in response to pain and injury. In this study, we investigated the possibility that spinoreticular neurons (SRT) which project to a pre-cerebellar nucleus, the lateral reticular nucleus (LRt), respond to noxious mechanical stimulation. Seven adult male rats received stereotaxic injections of the b subunit of cholera toxin in the LRt. Following a 5 day interval, animals were anesthetised with urethane and a noxious mechanical stimulus was applied to the right hind paw. Animals were fixed by perfusion 5min following application of the stimulus. Retrogradely labelled SRT neurons of the lumbar spinal cord were examined for immunoreactivity for phosphorylated ERK (pERK) and the neurokinin-1 (NK-1) receptor. Approximately 15% of SRT cells in deep laminae (IV-VII and X) expressed pERK ipsilateral to the site of the stimulus. Around 60% of SRT cells with the NK-1 receptor expressed pERK but 5% of pERK expressing cells were negatively labelled for NK-1. It is concluded that a significant proportion of SRT cells projecting to the LRt respond to noxious mechanical stimuli and that one of the functions of this pathway may be to provide the cerebellum with nociceptive information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Roles of PACAP-containing retinal ganglion cells in circadian timing.
Hannibal, Jens
2006-01-01
The brain's biological clock located in the suprachiasmatic nucleus (SCN) generates circadian rhythms in physiology and behavior. The clock-driven rhythms need daily adjustment (entrainment) to be synchronized with the astronomical day of 24 h. The most important stimulus for entrainment of the clock is the light-dark (LD) cycle. In this review functional elements of the light entrainment pathway will be considered with special focus on the neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP), which is found exclusively in the monosynaptic neuronal pathway mediating light information to the SCN, the retinohypothalamic tract (RHT). The retinal ganglion cells of the RHT are intrinsically photosensitive due to the expression of melanopsin and seem to constitute a non-image forming photosensitive system in the mammalian eye regulating circadian timing, masking behavior, light-regulated melatonin secretion, and the pupillary light reflex. Evidence from in vitro and in vivo studies and studies of mice lacking PACAP and the specific PACAP receptor (PAC1) indicate that PACAP and glutamate are neurotransmitters in the RHT which in a clock and concentration-dependent manner interact during light entrainment of the clock.
Visible light-induced OH radicals in Ga2O3: an EPR study.
Tzitrinovich, Zeev; Lipovsky, Anat; Gedanken, Aharon; Lubart, Rachel
2013-08-21
Reactive oxygen species (ROS) were found to exist in water suspensions of several metal oxide nanoparticles (NPs), such as CuO, TiO2 and ZnO. Visible light irradiation enhanced the capability of TiO2 and ZnO NPs to generate ROS, thus increasing their antibacterial effects. Because of the possible toxic effects on the host tissue it is desired to find nano-metal oxides which do not produce ROS under room light, but only upon a strong external stimulus. Using the technique of electron-spin resonance (ESR) coupled with spin trapping, we examined the ability of Ga2O3 submicron-particle suspensions in water to produce reactive oxygen species with and without visible light irradiation. We found that in contrast to ZnO and TiO2 NPs, no ROS are produced by Ga2O3 under room light. Nevertheless blue light induced hydroxyl radical formation in Ga2O3. This finding might suggest that NPs of Ga2O3 could be used safely for infected skin sterilization.
Springback and diagravitropism in Merit corn roots
NASA Technical Reports Server (NTRS)
Kelly, M. O.; Leopold, A. C.
1992-01-01
Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.
ERIC Educational Resources Information Center
Boyer, Laura G.
1976-01-01
Potential Title VII financial liability, not only for lawyer's fees and court costs, but also for back pay awards, should provide the needed stimulus for union and management to accept altered arbitration as a method of resolving employment discrimination claims. Altered arbitration would be an effective way to limit their financial liability.…
Petrova, Daniela; Henning, G. Bruce; Stockman, Andrew
2013-01-01
Flickering long-wavelength light appears more yellow than steady light of the same average intensity. The hue change is consistent with distortion of the visual signal at some nonlinear site (or sites) that produces temporal components not present in the original stimulus (known as distortion products). We extracted the temporal attenuation characteristics of the early (prenonlinearity) and late (post-nonlinearity) filter stages in the L- and M-cone chromatic pathway by varying the input stimulus to manipulate the distortion products and the measuring of the observers' sensitivity to them. The early, linear, filter stage acts like a band-pass filter peaking at 10–15 Hz with substantial sensitivity losses at both lower and higher frequencies. Its characteristics are consistent with nonlinearity being early in the visual pathway but following surround inhibition. The late stage, in contrast, acts like a low-pass filter with a cutoff frequency around 3 Hz. The response of the early stage speeds up with radiance, but the late stage does not. A plausible site for the nonlinearity, which modelling suggests may be smoothly compressive but with a hard limit at high input levels, is after surround inhibition from the horizontal cells. PMID:23457358
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Werthmann, Britta; Marwan, Wolfgang
2017-11-01
The developmental switch to sporulation in Physarum polycephalum is a phytochrome-mediated far-red light-induced cell fate decision that synchronously encompasses the entire multinucleate plasmodial cell and is associated with extensive reprogramming of the transcriptome. By repeatedly taking samples of single cells after delivery of a light stimulus pulse, we analysed differential gene expression in two mutant strains and in a heterokaryon of the two strains all of which display a different propensity for making the cell fate decision. Multidimensional scaling of the gene expression data revealed individually different single cell trajectories eventually leading to sporulation. Characterization of the trajectories as walks through states of gene expression discretized by hierarchical clustering allowed the reconstruction of Petri nets that model and predict the observed behavior. Structural analyses of the Petri nets indicated stimulus- and genotype-dependence of both, single cell trajectories and of the quasipotential landscape through which these trajectories are taken. The Petri net-based approach to the analysis and decomposition of complex cellular responses and of complex mutant phenotypes may provide a scaffold for the data-driven reconstruction of causal molecular mechanisms that shape the topology of the quasipotential landscape.
Funke, K; Wörgötter, F
1995-01-01
1. The spike interval pattern during the light responses of 155 on- and 81 off-centre cells of the dorsal lateral geniculate nucleus (LGN) was studied in anaesthetized and paralysed cats by the use of a novel analysis. Temporally localized interval distributions were computed from a 100 ms time window, which was shifted along the time axis in 10 ms steps, resulting in a 90% overlap between two adjacent windows. For each step the interval distribution was computed inside the time window with 1 ms resolution, and plotted as a greyscale-coded pixel line orthogonal to the time axis. For visual stimulation, light or dark spots of different size and contrast were presented with different background illumination levels. 2. Two characteristic interval patterns were observed during the sustained response component of the cells. Mainly on-cells (77%) responded with multimodal interval distributions, resulting in elongated 'bands' in the 2-dimensional time window plots. In similar situations, the interval distributions for most (71%) off-cells were rather wide and featureless. In those cases where interval bands (i.e. multimodal interval distributions) were observed for off-cells (14%), they were always much wider than for the on-cells. This difference between the on- and off-cell population was independent of the background illumination and the contrast of the stimulus. Y on-cells also tended to produce wider interval bands than X on-cells. 3. For most stimulation situations the first interval band was centred around 6-9 ms, which has been called the fundamental interval; higher order bands are multiples thereof. The fundamental interval shifted towards larger sizes with decreasing stimulus contrast. Increasing stimulus size, on the other hand, resulted in a redistribution of the intervals into higher order bands, while at the same time the location of the fundamental interval remained largely unaffected. This was interpreted as an effect of the increasing surround inhibition at the geniculate level, by which individual retinal EPSPs were cancelled. A changing level of adaptation can result in a mixed shift/redistribution effect because of the changing stimulus contrast and changing level of tonic inhibition. 4. The occurrence of interval bands is not directly related to the shape of the autocorrelation function, which can be flat, weakly oscillatory or strongly oscillatory, regardless of the interval band pattern. 5. A simple computer model was devised to account for the observed cell behaviour. The model is highly robust against parameter variations.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 15 PMID:7562612
Chromatic induction in space and time.
Coia, Andrew J; Shevell, Steven K
2018-04-01
The color appearance of a light depends on variation in the complete visual field over both space and time. In the spatial domain, a chromatic stimulus within a patterned chromatic surround can appear a different hue than the same stimulus within a uniform surround. In the temporal domain, a stimulus presented as an element of a continuously changing chromaticity can appear a different color compared to the identical stimulus, presented simultaneously but viewed alone. This is the flash-lag effect for color, which has an analog in the domain of motion: a pulsed object seen alone can appear to lag behind an identical pulsed object that is an element of a motion sequence. Studies of the flash-lag effect for motion have considered whether it is mediated by a neural representation for the moving physical stimulus or, alternatively, for the perceived motion. The current study addresses this question for the flash-lag effect for color by testing whether the color flash lag depends on a representation of only the changing chromatic stimulus or, alternatively, its color percept, which can be altered by chromatic induction. baseline measurements for spatial chromatic induction determined the chromaticity of a flashed ring within a uniform surround that matched a flashed ring within a patterned surround. Baseline measurements for the color flash-lag effect determined the chromaticity of a pulsed ring presented alone (within a uniform surround) that matched a pulsed ring presented in a sequence of changing chromaticity over time (also within a uniform surround). Finally, the main experiments combined chromatic induction from a patterned surround and the flash-lag effect, in three conditions: (1) both the changing and pulsed rings were within a patterned chromatic surround; (2) the changing ring was within a patterned surround and the pulsed ring within a uniform surround; and (3) the changing ring was within a uniform surround and the pulsed ring within a patterned surround. the flash-lag measurements for a changing chromaticity were affected by perceptual changes induced by the surrounding chromatic pattern. Thus, the color shifts induced by a chromatic surround are incorporated in the neural representation mediating the flash-lag effect for color.
ELECTRICAL STUDIES ON THE COMPOUND EYE OF LIGIA OCCIDENTALIS DANA (CRUSTACEA: ISOPODA)
Ruck, Philip; Jahn, Theodore L.
1954-01-01
The ERG of the compound eye in freshly collected Ligia occidentalis, in response to high intensity light flashes of ⅛ second or longer duration, begins with a negative on-effect quickly followed by an early positive deflection, rapidly returns to the baseline during illumination, and ends with a positive off-effect. As the stimulus intensity is decreased the early positivity progressively decreases and the rapid return to the baseline is replaced by a slowing decline of the negative on-effect. Responses were recorded with one active electrode subcorneally situated in the illuminated eye, the reference electrode in the dark eye. The dark-adapted eye shows a facilitation of the amplitude and rates of rise and fall of the on-effect to a brief, high intensity light stimulus. This facilitation may persist for more than 2 minutes. Following light adaptation under conditions in which the human eye loses sensitivity by a factor of almost 40,000 the Ligia eye loses sensitivity by a factor of only 3. The flicker fusion frequency of the ERG may be as high as 120/second with a corneal illumination of 15,000 foot-candles. Bleeding an otherwise intact animal very rapidly results in a decline of amplitude, change of wave form, and loss of facilitation in the ERG. When the eye is deganglionated without bleeding the animal the isolated retina responds in the same manner as the intact eye. Histological examination of the Ligia receptor layer showed that each ommatidium contains three different retinula cell types, each of which may be responsible for a different aspect of the ERG. PMID:13174786
The Verriest Lecture: Color lessons from space, time, and motion
Shevell, Steven K.
2012-01-01
The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398
A technique for in vivo measurement of photoreceptor orientation in the chicken retina.
Beresford, J A; Crewther, S G; Crewther, D P
1999-01-01
The aim of the current study was to develop a method for simultaneously assessing central and peripheral photoreceptor alignment in vivo in animal models. The stimulus apparatus consisted of nine light-emitting diodes (LED) positioned 7.5 degrees apart around an arc. The stimulus was viewed through a pinhole imaged into the entrance pupil of the eye using a telecentric lens system. Photodiodes placed over an array of the VERIS imaging system stimulated the electroretinogram. Data were obtained by positioning the pinhole at 0.25-mm intervals across the pupil and recording (Volk Optical, Mentor, OH, USA) at each location. Orientation assessed in normal chickens demonstrates that photoreceptors orientate towards a locus near the centre of the pupil and that there is a systematic change in peak location with eccentricity. This technique provides a valuable method for determining photoreceptor orientation properties in vivo and can be applied to animal models of pathology.
ANALYSES OF RESPONSE–STIMULUS SEQUENCES IN DESCRIPTIVE OBSERVATIONS
Samaha, Andrew L; Vollmer, Timothy R; Borrero, Carrie; Sloman, Kimberly; Pipkin, Claire St. Peter; Bourret, Jason
2009-01-01
Descriptive observations were conducted to record problem behavior displayed by participants and to record antecedents and consequences delivered by caregivers. Next, functional analyses were conducted to identify reinforcers for problem behavior. Then, using data from the descriptive observations, lag-sequential analyses were conducted to examine changes in the probability of environmental events across time in relation to occurrences of problem behavior. The results of the lag-sequential analyses were interpreted in light of the results of functional analyses. Results suggested that events identified as reinforcers in a functional analysis followed behavior in idiosyncratic ways: after a range of delays and frequencies. Thus, it is possible that naturally occurring reinforcement contingencies are arranged in ways different from those typically evaluated in applied research. Further, these complex response–stimulus relations can be represented by lag-sequential analyses. However, limitations to the lag-sequential analysis are evident. PMID:19949537
Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén
2016-01-01
Numerous studies have shown that neuronal responses are modulated by stimulus properties, and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation, and vice versa. The information encoded by multiplicatively-modulated neurons increased with greater population activity, while that of additively-modulated neurons decreased. These effects offset each other, so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a `traffic light' that determines which subset of neurons are most informative. PMID:26924437
The facing bias in biological motion perception: Effects of stimulus gender and observer sex.
Schouten, Ben; Troje, Nikolaus F; Brooks, Anna; van der Zwan, Rick; Verfaillie, Karl
2010-07-01
Under orthographic projection, biological motion point-light walkers offer no cues to the order of the dots in depth: Views from the front and from the back result in the very same stimulus. Yet observers show a bias toward seeing a walker facing the viewer (Vanrie, Dekeyser, & Verfaillie, 2004). Recently, we reported that this facing bias strongly depends on the gender of the walker (Brooks et al., 2008). The goal of the present study was, first, to examine the robustness of the effect by testing a much larger subject sample and, second, to investigate whether the effect depends on observer sex. Despite the fact that we found a significant effect of figure gender, we clearly failed to replicate the strong effect observed in the original study. We did, however, observe a significant interaction between figure gender and observer sex.
Blind Braille readers mislocate tactile stimuli.
Sterr, Annette; Green, Lisa; Elbert, Thomas
2003-05-01
In a previous experiment, we observed that blind Braille readers produce errors when asked to identify on which finger of one hand a light tactile stimulus had occurred. With the present study, we aimed to specify the characteristics of this perceptual error in blind and sighted participants. The experiment confirmed that blind Braille readers mislocalised tactile stimuli more often than sighted controls, and that the localisation errors occurred significantly more often at the right reading hand than at the non-reading hand. Most importantly, we discovered that the reading fingers showed the smallest error frequency, but the highest rate of stimulus attribution. The dissociation of perceiving and locating tactile stimuli in the blind suggests altered tactile information processing. Neuroplasticity, changes in tactile attention mechanisms as well as the idea that blind persons may employ different strategies for tactile exploration and object localisation are discussed as possible explanations for the results obtained.
Foetal airway motor tone in prenatal lung development of the pig.
Sparrow, M P; Warwick, S P; Mitchell, H W
1994-08-01
The terminal airways from embryonic lung in situ or as explants exhibit rhythmic spontaneous contractions. Our objective was to see whether narrowing responses of the airways occurred throughout the bronchial tree in the first trimester foetus and, if so, to characterize them. The bronchial tree was freed of vasculature and parenchyma from the lungs of 20-35 g pig foetuses (44-48 days gestation). The airway lumen was visualized directly with transmitted light, and narrowing was recorded in real time by video-imaging microscopy. From the main stem bronchi to the terminal regions of late generation branches (20-35 microns i.d.) strong bronchoconstrictor responses to micromolar concentrations of acetylcholine (ACh), histamine, substance P and K+ depolarizing solution were seen, whilst inhibition of narrowing with beta-adrenoceptor agonists was evidence of beta-receptors on the smooth muscle. Moreover, strong narrowing responses to electrical field stimulation, which were blocked by atropine, indicated that functional cholinergic nerves were present. A remarkable display of spontaneous narrowing in the airways of many of the bronchial tree preparations caused the movement of lung liquid to and fro. We speculate that the bronchomotor tone and associated spontaneous activity, which move the lung fluid along the airways, serve to maintain an even positive pressure in localized areas of the bronchial tree which is essential to provide the stimulus for continued growth of the lung.
Does architectural lighting contribute to breast cancer?
Figueiro, Mariana G; Rea, Mark S; Bullough, John D
2006-01-01
Objectives There is a growing interest in the role that light plays on nocturnal melatonin production and, perhaps thereby, the incidence of breast cancer in modern societies. The direct causal relationships in this logical chain have not, however, been fully established and the weakest link is an inability to quantitatively specify architectural lighting as a stimulus for the circadian system. The purpose of the present paper is to draw attention to this weakness. Data Sources and Extraction We reviewed the literature on the relationship between melatonin, light at night, and cancer risk in humans and tumor growth in animals. More specifically, we focused on the impact of light on nocturnal melatonin suppression in humans and on the applicability of these data to women in real-life situations. Photometric measurement data from the lighted environment of women at work and at home is also reported. Data Synthesis The literature review and measurement data demonstrate that more quantitative knowledge is needed about circadian light exposures actually experienced by women and girls in modern societies. Conclusion Without such quantitative knowledge, limited insights can be gained about the causal relationship between melatonin and the etiology of breast cancer from epidemiological studies and from parametric studies using animal models. PMID:16901343
Human phase response curve to a 1 h pulse of bright white light
St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W
2012-01-01
The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or <3 lux dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633
Human phase response curve to a 1 h pulse of bright white light.
St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W
2012-07-01
The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a <3 lux dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a <15 lux dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n=18) or <3 lux dim background light (n=18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (<3 lux) before and after the light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the <3 lux dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting.
Altered predictive capability of the brain network EEG model in schizophrenia during cognition.
Gomez-Pilar, Javier; Poza, Jesús; Gómez, Carlos; Northoff, Georg; Lubeiro, Alba; Cea-Cañas, Benjamín B; Molina, Vicente; Hornero, Roberto
2018-05-12
The study of the mechanisms involved in cognition is of paramount importance for the understanding of the neurobiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying functional network for each subject. Finally, pre-stimulus network connections were iteratively modified according to different models of network reorganization. This adjustment was applied by minimizing the prediction error through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly connected during pre-stimulus) for most of the subjects, though the ratio of controls that exhibited this behavior was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct evidence that the changes in phase-based brain network parameters from pre-stimulus to cognitive response in the theta band are closely related to the performance in important cognitive domains. Our findings not only contribute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal substrates in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.
The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs)
Jones, Timothy A.; Jones, Sherri M.; Vijayakumar, Sarath; Brugeaud, Aurore; Bothwell, Marcella; Chabbert, Christian
2013-01-01
Short latency linear vestibular sensory evoked potentials (VsEPs) provide a means to objectively and directly assess the function of gravity receptors in mammals and birds. The importance of this functional measure is illustrated by its use in studies of the genetic basis of vestibular function and disease. Head motion is the stimulus for the VsEP. In the bird, it has been established that neurons mediating the linear VsEP respond collectively to the rate of change in linear acceleration during head movement (i.e. jerk) rather than peak acceleration. The kinematic element of motion responsible for triggering mammalian VsEPs has not been characterized in detail. Here we tested the hypothesis that jerk is the kinematic component of head motion responsible for VsEP characteristics. VsEP amplitudes and latencies changed systematically when peak acceleration level was held constant and jerk level was varied from ~0.9 to 4.6 g/ms. In contrast, responses remained relatively constant when kinematic jerk was held constant and peak acceleration was varied from ~0.9 to 5.5g in mice and ~0.44 to 2.75g in rats. Thus the mammalian VsEP depends on jerk levels and not peak acceleration. We conclude that kinematic jerk is the adequate stimulus for the mammalian VsEP. This sheds light on the behavior of neurons generating the response. The results also provide the basis for standardizing the reporting of stimulus levels, which is key to ensuring that response characteristics reported in the literature by many laboratories can be effectively compared and interpreted. PMID:21664446
Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.
Mauelshagen, J
1993-02-01
1. Sensitization and classical odor conditioning of the proboscis extension reflex were functionally analyzed by repeated intracellular recordings from a single identified neuron (PE1-neuron) in the central bee brain. This neuron belongs to the class of "extrinsic cells" arising from the pedunculus of the mushroom bodies and has extensive arborizations in the median and lateral protocerebrum. The recordings were performed on isolated bee heads. 2. Two different series of physiological experiments were carried out with the use of a similar temporal succession of stimuli as in previous behavioral experiments. In the first series, one group of animals was used for a single conditioning trial [conditioned stimulus (CS), carnation; unconditioned stimulus (US), sucrose solution to the antennae and proboscis), a second group was used for sensitization (sensitizing stimulus, sucrose solution to the antennae and/or proboscis), and the third group served as control (no sucrose stimulation). In the second series, a differential conditioning paradigm (paired odor CS+, carnation; unpaired odor CS-, orange blossom) was applied to test the associative nature of the conditioning effect. 3. The PE1-neuron showed a characteristic burstlike odor response before the training procedures. The treatments resulted in different spike-frequency modulations of this response, which were specific for the nonassociative and associative stimulus paradigms applied. During differential conditioning, there are dynamic up and down modulations of spike frequencies and of the DC potentials underlying the responses to the CS+. Overall, only transient changes in the minute range were observed. 4. The results of the sensitization procedures suggest two qualitatively different US pathways. The comparison between sensitization and one-trial conditioning shows differential effects of nonassociative and associative stimulus paradigms on the response behavior of the PE1-neuron. The results of the differential conditioning procedure reveal that the effect observed for the one-trial conditioning paradigm is of an associative nature and that there might be modulations, which are specific for single and multiple trial conditioning procedures. It is hypothesized that the PE1-neuron is a possible element involved in the short-term acquisition, rather than in the long-term storage, of an associative olfactory memory in the honeybee.
Abnormal Vestibulo-Ocular Reflexes in Autism: A Potential Endophenotype
2014-08-01
among. Saccades and smooth pursuit are complex sensorimotor behaviors that involve several spatially distant brain regions and long- fiber tracts between...time, at a rate of 100 Hz. Visual stimuli were presented as a red laser -light, generated by NKI Pursuit Tracker® laser . The Pursuit Tracker® laser ...the testing equipment by projecting a laser stimulus onto the cylindrical screen and providing a fixed target at + 10º in both the horizontal and
Department of Defense Annual Report to Congress on Defense Acquisition Challenge Program for FY 2006
2007-06-01
Synthetic Instrument Measurement and Stimulus System – Improves aircraft avionics and electronic attack pod testing to expedite repair of critical...integration into CIWS • Navy requirement Cancelled / Not procured Air Force (4 Projects) • Quiet Eyes • On Aircraft (B-2) Laser Additive...System • Met Requirement/Rolled into FY07 Cost Effective Light Aircraft Missile Protect DAC for Army, Navy and Air Force helicopters • Did Not
Nervus terminalis innervation of the goldfish retina and behavioral visual sensitivity.
Davis, R E; Kyle, A; Klinger, P D
1988-08-31
The possibility that axon terminals of the nervus terminalis in the goldfish retina regulate visual sensitivity was examined psychophysically. Fish were classically conditioned to respond in darkness to a diffuse red light conditioned stimulus. Bilateral ablation of the olfactory bulb and telencephalon had no significant effect on response threshold which was measured by a staircase method. Retinopetal nervus terminalis fibres thus appear to play no role in maintaining scotopic photosensitivity.
Lamparter, T; Hughes, J; Hartmann, E
1998-09-01
In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptrll6 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses.
The role of stimulus-specific adaptation in songbird syntax generation
NASA Astrophysics Data System (ADS)
Wittenbach, Jason D.
Sequential behaviors are an important part of the behavioral repertoire of many animals and understanding how neural circuits encode and generate such sequences is a long-standing question in neuroscience. The Bengalese finch is a useful model system for studying variable action sequences. The songs of these birds consist of well-defined vocal elements (syllables) that are strung together to form sequences. The ordering of the syllables within the sequence is variable but not random - it shows complex statistical patterns (syntax). While often thought to be first-order, the syntax of the Bengalese finch song shows a distinct form of history dependence where the probability of repeating a syllable decreases as a function of the number of repetitions that have already occurred. Current models of the Bengalese finch song control circuitry offer no explanation for this repetition adaptation. The Bengalese finch also uses real-time auditory feedback to control the song syntax. Considering these facts, we hypothesize that repetition adaptation in the Bengalese finch syntax may be caused by stimulus-specific adaptation - a wide-spread phenomenon where neural responses to a specific stimulus become weaker with repeated presentations of the same stimulus. We begin by proposing a computational model for the song-control circuit where an auditory feedback signal that undergoes stimulus-specific adaptation helps drive repeated syllables. We show that this model does indeed capture the repetition adaptation observed in Bengalese finch syntax; along the way, we derive a new probabilistic model for repetition adaptation. Key predictions of our model are analyzed in light of experiments performed by collaborators. Next we extend the model in order to predict how the syntax will change as a function of brain temperature. These predictions are compared to experimental results from collaborators where portions of the Bengalese finch song circuit are cooled in awake and behaving birds. Finally we show that repetition adaptation persists even in a simplified dynamical system model when a parameter controlling the repeat probability changes slowly over repetitions.
Rillich, Jan; Stevenson, Paul A.
2017-01-01
Losing a fight (social defeat) induces submissiveness and behavioral depression in many animals, but the mechanisms are unclear. Here we investigate how the social defeat syndrome can be established as a result of experiencing aversive stimuli and the roles of neuromodulators in the process. While biogenic amines and nitric oxide (NO) are associated with reduced aggression in mammals and insects, their specific actions during conflict are unknown. Although the social defeat syndrome normally results from complex interactions, we could induce it in male crickets simply by applying aversive stimuli (AS) in an aggressive context. Aggressive crickets became immediately submissive and behaved like losers after experiencing two brief AS (light wind puffs to the cerci), but only when preceded by a priming stimulus (PS, stroking the antenna with another male antenna). Notably, submissiveness was not induced when the PS preceded the AS by more than 1 min, or when the PS followed the AS, or using a female antenna as the preceding stimulus. These findings suggest that any potentially detrimental stimulus can acquire the attribute of an aversive agonistic signal when experienced in an aggressive context. Crickets, it seems, need only to evaluate their net sensory impact rather than the qualities of a variety of complex agonistic signals. Selective drug treatments revealed that NO, but not serotonin, dopamine or octopamine, is necessary to establish the submissive status following pairing of the priming and aversive stimuli. Moreover, treatment with an NO donor also induced the social defeat syndrome, but only when combined with the PS. This confirms our hypothesis that aversive agonistic experiences accumulated by crickets during fighting invoke social defeat via the action of NO and illustrates that a relatively simple mechanism underlies the seemingly complex social decision to flee. The simple stimulus regime described here for inducing social defeat opens new avenues for investigating the cellular control of subordinate behavior and post-conflict depression. PMID:28381994
Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory
D'Esposito, Mark
2009-01-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe. PMID:18987393
Repetition suppression and reactivation in auditory-verbal short-term recognition memory.
Buchsbaum, Bradley R; D'Esposito, Mark
2009-06-01
The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related "increases" should be observed in the same posterior temporal regions that have been previously associated with "persistent activity" in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory-verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe.
Spatial and temporal variability in response to hybrid electro-optical stimulation
NASA Astrophysics Data System (ADS)
Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco
2012-06-01
Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.
The Reactivation of Motion influences Size Categorization in a Visuo-Haptic Illusion.
Rey, Amandine E; Dabic, Stephanie; Versace, Remy; Navarro, Jordan
2016-09-01
People simulate themselves moving when they view a picture, read a sentence, or simulate a situation that involves motion. The simulation of motion has often been studied in conceptual tasks such as language comprehension. However, most of these studies investigated the direct influence of motion simulation on tasks inducing motion. This article investigates whether a mo- tion induced by the reactivation of a dynamic picture can influence a task that did not require motion processing. In a first phase, a dynamic picture and a static picture were systematically presented with a vibrotactile stimulus (high or low frequency). The second phase of the experiment used a priming paradigm in which a vibrotactile stimulus was presented alone and followed by pictures of objects. Participants had to categorize objects as large or small relative to their typical size (simulated size). Results showed that when the target object was preceded by the vibrotactile stimulus previously associated with the dynamic picture, participants perceived all the objects as larger and categorized them more quickly when the objects were typically "large" and more slowly when the objects were typically "small." In light of embodied cognition theories, this bias in participants' perception is assumed to be caused by an induced forward motion. generated by the reactivated dynamic picture, which affects simulation of the size of the objects.
The absolute threshold of cone vision
Koeing, Darran; Hofer, Heidi
2013-01-01
We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115
Does bimodal stimulus presentation increase ERP components usable in BCIs?
NASA Astrophysics Data System (ADS)
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats
NASA Astrophysics Data System (ADS)
Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.
2011-03-01
Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.
Srey, Chandra S; Maddux, Jean-Marie N; Chaudhri, Nadia
2015-01-01
Environmental stimuli that are reliably paired with alcohol may acquire incentive salience, a property that can operate in the use and abuse of alcohol. Here we investigated the incentive salience of Pavlovian alcohol cues using a preclinical animal model. Male, Long-Evans rats (Harlan) with unrestricted access to food and water were acclimated to drinking 15% ethanol (v/v) in their home-cages. Rats then received Pavlovian autoshaping training in which the 10 s presentation of a retractable lever served as the conditioned stimulus (CS) and 15% ethanol served as the unconditioned stimulus (US) (0.2 ml/CS; 12 CS presentations/session; 27 sessions). Next, in an operant test of conditioned reinforcement, nose pokes into an active aperture delivered presentations of the lever-CS, whereas nose pokes into an inactive aperture had no consequences. Across initial autoshaping sessions, goal-tracking behavior, as measured by entries into the fluid port where ethanol was delivered, developed rapidly. However, with extended training goal-tracking diminished, and sign-tracking responses, as measured by lever-CS activations, emerged. Control rats that received explicitly unpaired CS and US presentations did not show goal-tracking or sign-tracking responses. In the test for conditioned reinforcement, rats with CS-US pairings during autoshaping training made more active relative to inactive nose pokes, whereas rats in the unpaired control group did not. Moreover, active nose pokes were positively correlated with sign-tracking behavior during autoshaping. Extended training may produce a shift in the learned properties of Pavlovian alcohol cues, such that after initially predicting alcohol availability they acquire robust incentive salience.
Anticipatory Emotions in Decision Tasks: Covert Markers of Value or Attentional Processes?
Davis, Tyler; Love, Bradley C.; Maddox, Todd
2009-01-01
Anticipatory emotions precede behavioral outcomes and provide a means to infer interactions between emotional and cognitive processes. A number of theories hold that anticipatory emotions serve as inputs to the decision process and code the value or risk associated with a stimulus. We argue that current data do not unequivocally support this theory. We present an alternative theory whereby anticipatory emotions reflect the outcome of a decision process and serve to ready the subject for new information when making an uncertain response. We test these two accounts, which we refer to as emotions-as-input and emotions-as-outcome, in a task that allows risky stimuli to be dissociated from uncertain responses. We find that emotions are associated with responses as opposed to stimuli. This finding is contrary to the emotions-as-input perspective as it shows that emotions arise from decision processes. PMID:19428002
Altered topology of neural circuits in congenital prosopagnosia.
Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia
2017-08-21
Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.
Blood Pressure Regulation: Every Adaptation is an Integration?
Joyner, Michael J.; Limberg, Jacqueline K.
2013-01-01
This focused review serves to explore relevant issues in regard to blood pressure regulation and by doing so, provides the initial stimulus paper for the Thematic Review series “Blood Pressure Regulation” to be published in the European Journal of Applied Physiology over the coming months. In this introduction, we highlight how variable normal blood pressure can be and challenge the reader to take another look at some key concepts related to blood pressure regulation. We point out that there is frequently an underappreciated balance between peripheral vasodilation and systemic blood pressure regulation and ask the question: Are changes in blood pressure, in effect, reasonable and integrated adaptations to the physiological challenge at hand? We conclude with the idea that blood pressure regulatory systems are both flexible and redundant; ensuring a wide variety of activities associated with life can be accompanied by a perfusion pressure that can serve multiple masters. PMID:23558925
The nature of sexual reinforcement.
Crawford, L L; Holloway, K S; Domjan, M
1993-01-01
Sexual reinforcers are not part of a regulatory system involved in the maintenance of critical metabolic processes, they differ for males and females, they differ as a function of species and mating system, and they show ontogenetic and seasonal changes related to endocrine conditions. Exposure to a member of the opposite sex without copulation can be sufficient for sexual reinforcement. However, copulatory access is a stronger reinforcer, and copulatory opportunity can serve to enhance the reinforcing efficacy of stimulus features of a sexual partner. Conversely, under certain conditions, noncopulatory exposure serves to decrease reinforcer efficacy. Many common learning phenomena such as acquisition, extinction, discrimination learning, second-order conditioning, and latent inhibition have been demonstrated in sexual conditioning. These observations extend the generality of findings obtained with more conventional reinforcers, but the mechanisms of these effects and their gender and species specificity remain to be explored. PMID:8354970
Comparative Genomics of Mycobacteria: Some Answers, Yet More New Questions
Behr, Marcel A.
2015-01-01
Comparative genomic studies permit a genus-level perspective on the distinction between environmental mycobacteria and Mycobacterium tuberculosis, as well as a species-level assessment of genetic variability within M. tuberculosis. Both of these strata of evolutionary analysis serve to generate hypotheses regarding the genomic basis of M. tuberculosis virulence. In contrasting lessons from macroevolutionary study and microevolutionary study, one can form predictions about which segments of the genome are likely to be essential for or dispensable for the pathogenesis of tuberculosis. Although some of these predictions have been experimentally verified, notable exceptions challenge the direct link between these virulence factors and the capacity of M. tuberculosis to successfully cause disease and propagate between human hosts. These unexpected findings serve as the stimulus for further studies, using genomic comparisons and other approaches, to better define the remarkable success of this recalcitrant pathogen. PMID:25395374
Mitochondrial and ER Calcium Uptake and Release Fluxes and their Interplay in Intact Nerve Cells
NASA Astrophysics Data System (ADS)
Friel, David D.
Ionized free Ca ( Ca 2+) is a ubiquitous signaling ion that serves as the critical link between a variety of physiological stimuli and their intracellular effectors. Previous studies of reduced in vitro preparations have provided functional characterizations of various Ca 2+ channels, pumps and exchangers that regulate cellular Ca 2+ movements. However, little is known about the functional interplay between transporters that are expressed together in intact cells and orchestrate stimulus-evoked changes in [ Ca 2+]. This review summarizes recent progress in characterizing Ca 2+ transporters in sympathetic neurons, which provide an ideal model for studying Ca 2+ dynamics in neurons. Our results show how the functional interplay between Ca 2+ transport systems that are regulated by Ca 2+ in quantitatively differ-ent ways leads to emergent properties of Ca 2+ signaling that are expected to play a critical role in defining how Ca 2+ serves its role as a signaling ion.
The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model.
Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew Ja
2017-01-01
The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging.
1975-01-01
The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540
Light Therapy and Alzheimer’s Disease and Related Dementia: Past, Present, and Future
Hanford, Nicholas; Figueiro, Mariana
2012-01-01
Sleep disturbances are common in persons with Alzheimer’s disease or related dementia (ADRD), resulting in a negative impact on the daytime function of the affected person and on the wellbeing of caregivers. The sleep/wake pattern is directly driven by the timing signals generated by a circadian pacemaker, which may or may not be perfectly functioning in those with ADRD. A 24-hour light/dark pattern incident on the retina is the most efficacious stimulus for entraining the circadian system to the solar day. In fact, a carefully orchestrated light/dark pattern has been shown in several controlled studies of older populations, with and without ADRD, to be a powerful non-pharmacological tool to improve sleep efficiency and consolidation. Discussed here are research results from studies looking at the effectiveness of light therapy in improving sleep, depression, and agitation in older adults with ADRD. A 24-hour lighting scheme to increase circadian entrainment, improve visibility, and reduce the risk of falls in those with ADRD is proposed, and future research needs are discussed. PMID:23099814
Light therapy and Alzheimer's disease and related dementia: past, present, and future.
Hanford, Nicholas; Figueiro, Mariana
2013-01-01
Sleep disturbances are common in persons with Alzheimer's disease or related dementia (ADRD), resulting in a negative impact on the daytime function of the affected person and on the wellbeing of caregivers. The sleep/wake pattern is directly driven by the timing signals generated by a circadian pacemaker, which may or may not be perfectly functioning in those with ADRD. A 24-hour light/dark pattern incident on the retina is the most efficacious stimulus for entraining the circadian system to the solar day. In fact, a carefully orchestrated light/dark pattern has been shown in several controlled studies of older populations, with and without ADRD, to be a powerful non-pharmacological tool to improve sleep efficiency and consolidation. Discussed here are research results from studies looking at the effectiveness of light therapy in improving sleep, depression, and agitation in older adults with ADRD. A 24-hour lighting scheme to increase circadian entrainment, improve visibility, and reduce the risk of falls in those with ADRD is proposed, and future research needs are discussed.
Cross-modal detection using various temporal and spatial configurations.
Schirillo, James A
2011-01-01
To better understand temporal and spatial cross-modal interactions, two signal detection experiments were conducted in which an auditory target was sometimes accompanied by an irrelevant flash of light. In the first, a psychometric function for detecting a unisensory auditory target in varying signal-to-noise ratios (SNRs) was derived. Then auditory target detection was measured while an irrelevant light was presented with light/sound stimulus onset asynchronies (SOAs) between 0 and ±700 ms. When the light preceded the sound by 100 ms or was coincident, target detection (d') improved for low SNR conditions. In contrast, for larger SOAs (350 and 700 ms), the behavioral gain resulted from a change in both d' and response criterion (β). However, when the light followed the sound, performance changed little. In the second experiment, observers detected multimodal target sounds at eccentricities of ±8°, and ±24°. Sensitivity benefits occurred at both locations, with a larger change at the more peripheral location. Thus, both temporal and spatial factors affect signal detection measures, effectively parsing sensory and decision-making processes.
A Functional Analytic Approach To Computer-Interactive Mathematics
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed. PMID:15898471
A functional analytic approach to computer-interactive mathematics.
Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M; Ninness, Sharon K
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed.
Touitou, Y; Benoit, O; Foret, J; Aguirre, A; Bogdan, A; Clodoré, M; Touitou, C
1992-03-01
Bright light is a synchronizing agent that entrains human circadian rhythms and modifies various endocrine and neuroendocrine functions. The aim of the present study was to determine whether and how the exposure to a bright light stimulus during the 2 h following a 2 h earlier awakening could modify the disturbance induced by the the sleep deprivation on the plasma patterns of hormones whose secretion is sensitive to light and/or sleep, namely melatonin, prolactin, cortisol and testosterone. Six healthy and synchronized (lights on: 07.00-23.00) male students (22.5 +/- 1.1 years) with normal psychological profiles volunteered for the study in winter. The protocol consisted of a baseline control night (customary sleep schedule) followed by three shortened nights with a rising at 05.00 and a 2 h exposure to either dim light (50 lux; one week) or bright light (2000 lux; other week). Our study showed a phase advance of the circadian rhythm of plasma cortisol without significant modifications of the hormone mean or peak concentration. Plasma melatonin concentration decreased following bright light exposure, whereas no obvious modifications of plasma testosterone or prolactin patterns could be observed in this protocol.
Lange, Florian; Haiduk, Michael; Boos, Moritz; Tinschert, Peter; Schwarze, Anke; Eggert, Frank
2016-10-01
A large number of pedestrians and cyclists regularly ignore the traffic lights to cross the road illegally. In a recent analysis, illegal road crossing behavior has been shown to be enhanced in the presence of incongruent stimulus configurations. Pedestrians and cyclists are more likely to cross against a red light when exposed to an irrelevant conflicting green light. Here, we present experimental and observational data on the factors moderating the risk associated with incongruent traffic lights. In an observational study, we demonstrated that the conflict-related increase in illegal crossing rates is reduced when pedestrian and cyclist green light periods are long. In a laboratory experiment, we manipulated the color of the irrelevant signals to expose participants to different degrees of incongruency. Results revealed that individuals' performance gradually varied as a function of incongruency, suggesting that the negative impact of a conflicting green light can be reduced by slightly adjusting its color. Our findings highlight that the observation of real-world behavior at intersections and the experimental analysis of psychological processes under controlled laboratory conditions can complement each other in identifying risk factors of risky road crossing behavior. Based on this combination, our study elaborates on promising measures to improve safety at signalized intersections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Autonomic nervous system responses to sweet taste: evidence for habituation rather than pleasure.
Leterme, A; Brun, L; Dittmar, A; Robin, O
2008-03-18
Previous recordings of the variations of autonomic nervous system (ANS) parameters associated with each primary taste (sweet, salty, sour and bitter) showed that sweet taste induced very weak ANS responses, in the same range or weaker than responses evoked by mineral water. The purpose of this study was then to determine whether this weak ANS activation reflects the pleasant hedonic valence of sweet or the habituation of the organism to this innate-accepted taste. Twenty healthy volunteer subjects (8 males and 12 females, mean age=22.85 years) participated in the experiment. Taste stimuli were a solution of 0.3 M sucrose and three sweet flavours (orange juice, coke, lemonade) as "pleasant" sweet stimuli, and a solution of 0.15 M NaCl as an "unpleasant" stimulus. "Evian" mineral water served as the diluent and as a neutral stimulus. Throughout the test, five ANS parameters (skin potential and skin resistance, skin blood flow and skin temperature, instantaneous heart rate) were simultaneously and continuously recorded. After they had tasted each solution, subjects filled out a questionnaire in which they had to evaluate the hedonic dimension and the sweet intensity of each gustative stimulus. The lack of correlation between the mean hedonic scores associated with the four sweet stimuli and the mean values of the autonomic parameter variations tends to indicate that the weak ANS responses induced by the sweet gustative stimuli rather reflect the habituation of the organism to sweet taste than a gradation in sensory pleasure.
Disease-specific direct-to-consumer advertising for reminding consumers to take medications.
Bhutada, Nilesh S; Rollins, Brent L
2015-01-01
To assess the relationship between disease-specific direct-to-consumer (DTC) advertising, via traditional advertising effectiveness measures, and consumers' self-reported medication-taking behavior. Data were gathered for 514 respondents (age 18 and above) using an online survey panel. Participants were exposed to a disease-specific (i.e., nonbranded) DTC advertising for depression. The advertising stimulus created for the study was based on the Food and Drug Administration guidelines for disease-specific DTC advertising and modeled after current print disease-specific DTC advertising. Participants reviewed the advertising stimulus through the online program and then responded to a questionnaire containing closed-ended questions assessing the constructs. Data were analyzed using chi-square tests. All tests were interpreted at an a priori alpha of 0.05. Significantly more respondents who were highly involved, paid more attention to the advertisement, and were responsive to DTC advertisements in the past indicated that the disease-specific DTC advertising stimulus reminded them to take their depression and other medications. These exploratory results show disease-specific DTC advertising can help people remember to take their prescription medication when viewed, which may lead to more positive medication-taking behavior and increased medication adherence. Additionally, given the fair balance and legal issues surrounding product-specific DTC advertising, disease-specific DTC advertising can serve as an effective component of the marketing mix for pharmaceutical manufacturers. Future research should attempt to study the impact of disease-specific DTC advertising on consumers' actual medication adherence using standardized adherence measures such as prescription records.
Deviance sensitivity in the auditory cortex of freely moving rats
2018-01-01
Deviance sensitivity is the specific response to a surprising stimulus, one that violates expectations set by the past stimulation stream. In audition, deviance sensitivity is often conflated with stimulus-specific adaptation (SSA), the decrease in responses to a common stimulus that only partially generalizes to other, rare stimuli. SSA is usually measured using oddball sequences, where a common (standard) tone and a rare (deviant) tone are randomly intermixed. However, the larger responses to a tone when deviant does not necessarily represent deviance sensitivity. Deviance sensitivity is commonly tested using a control sequence in which many different tones serve as the standard, eliminating the expectations set by the standard ('deviant among many standards'). When the response to a tone when deviant (against a single standard) is larger than the responses to the same tone in the control sequence, it is concluded that true deviance sensitivity occurs. In primary auditory cortex of anesthetized rats, responses to deviants and to the same tones in the control condition are comparable in size. We recorded local field potentials and multiunit activity from the auditory cortex of awake, freely moving rats, implanted with 32-channel drivable microelectrode arrays and using telemetry. We observed highly significant SSA in the awake state. Moreover, the responses to a tone when deviant were significantly larger than the responses to the same tone in the control condition. These results establish the presence of true deviance sensitivity in primary auditory cortex in awake rats. PMID:29874246
Situational relevance: Context as a factor in serial overshadowing of taste aversion learning.
Kwok, Dorothy W S; Boakes, Robert A
2017-08-31
In a serial overshadowing procedure a target stimulus, A, is followed after an interval by a potentially interfering stimulus, B, and this is then followed by an unconditioned stimulus, US. Revusky (1977) proposed that the degree to which B overshadows conditioning of A depends on whether or not the two events take place in the same context. To test this proposal two experiments used a 1-trial long-delay conditioned taste aversion (CTA) procedure; sucrose served as the target taste (A) and dilute hydrochloric acid (HCl) as the overshadowing taste (B), with lithium chloride injection providing the US. In Experiment 1 these tastes were novel; weaker overshadowing by HCl of an aversion to sucrose was found when the two tastes were presented in different contexts. Experiment 2 tested whether the effect of pre-exposure to HCl, thereby rendering it less effective in overshadowing a sucrose aversion, was also context-dependent. In the conditioning session rats again received either context-same or context-different presentations of sucrose and HCl. However, for some rats HCl was pre-exposed in the same context to which it was later presented during conditioning (Consistent), while others were pre-exposed to HCl in a different context to the one in which it was presented during conditioning (Inconsistent). The Inconsistent group produced greater overshadowing than the Consistent group and thus confirmed that the latent inhibition effect was also context dependent. This study supports Revusky's (1977) idea of situational relevance.
Flemming, Timothy M.; Beran, Michael J.; Thompson, Roger K. R.; Kleider, Heather M.; Washburn, David A.
2013-01-01
Thus far, language- and token-trained apes (e.g., D. Premack, 1976; R. K. R. Thompson, D. L. Oden, & S. T. Boysen, 1997) have provided the best evidence that nonhuman animals can solve, complete, and construct analogies, thus implicating symbolic representation as the mechanism enabling the phenomenon. In this study, the authors examined the role of stimulus meaning in the analogical reasoning abilities of three different primate species. Humans (Homo sapiens), chimpanzees (Pan troglodytes), and rhesus monkeys (Macaca mulatta) completed the same relational matching-to-sample (RMTS) tasks with both meaningful and nonmeaningful stimuli. This discrimination of relations-between-relations serves as the basis for analogical reasoning. Meaningfulness facilitated the acquisition of analogical matching for human participants, whereas individual differences among the chimpanzees suggest that meaning can either enable or hinder their ability to complete analogies. Rhesus monkeys did not succeed in the RMTS task regardless of stimulus meaning, suggesting that their ability to reason analogically, if present at all, may be dependent on a dimension other than the representational value of stimuli. PMID:18489233
Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential
NASA Astrophysics Data System (ADS)
Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai
2012-02-01
Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.
Dynamic Reweighting of Auditory Modulation Filters.
Joosten, Eva R M; Shamma, Shihab A; Lorenzi, Christian; Neri, Peter
2016-07-01
Sound waveforms convey information largely via amplitude modulations (AM). A large body of experimental evidence has provided support for a modulation (bandpass) filterbank. Details of this model have varied over time partly reflecting different experimental conditions and diverse datasets from distinct task strategies, contributing uncertainty to the bandwidth measurements and leaving important issues unresolved. We adopt here a solely data-driven measurement approach in which we first demonstrate how different models can be subsumed within a common 'cascade' framework, and then proceed to characterize the cascade via system identification analysis using a single stimulus/task specification and hence stable task rules largely unconstrained by any model or parameters. Observers were required to detect a brief change in level superimposed onto random level changes that served as AM noise; the relationship between trial-by-trial noisy fluctuations and corresponding human responses enables targeted identification of distinct cascade elements. The resulting measurements exhibit a dynamic complex picture in which human perception of auditory modulations appears adaptive in nature, evolving from an initial lowpass to bandpass modes (with broad tuning, Q∼1) following repeated stimulus exposure.
Corrugator activity confirms immediate negative affect in surprise
Topolinski, Sascha; Strack, Fritz
2015-01-01
The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956
Corrugator activity confirms immediate negative affect in surprise.
Topolinski, Sascha; Strack, Fritz
2015-01-01
The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.
Thermal Imaging of the Periorbital Regions during the Presentation of an Auditory Startle Stimulus
Gane, Luke; Power, Sarah; Kushki, Azadeh; Chau, Tom
2011-01-01
Infrared thermal imaging of the inner canthi of the periorbital regions of the face can potentially serve as an input signal modality for an alternative access system for individuals with conditions that preclude speech or voluntary movement, such as total locked-in syndrome. However, it is unknown if the temperature of these regions is affected by the human startle response, as changes in the facial temperature of the periorbital regions manifested during the startle response could generate false positives in a thermography-based access system. This study presents an examination of the temperature characteristics of the periorbital regions of 11 able-bodied adult participants before and after a 102 dB auditory startle stimulus. The results indicate that the startle response has no substantial effect on the mean temperature of the periorbital regions. This indicates that thermography-based access solutions would be insensitive to startle reactions in their user, an important advantage over other modalities being considered in the context of access solutions for individuals with a severe motor disability. PMID:22073302
Comparison between Humphrey Field Analyzer and Micro Perimeter 1 in normal and glaucoma subjects.
Ratra, Vineet; Ratra, Dhanashree; Gupta, Muneeswar; Vaitheeswaran, K
2012-05-01
To determine the correlation between fundus perimetry with Micro Perimeter 1 (MP1) and conventional automated static threshold perimetry using the Humphrey Field Analyzer (HFA) in healthy individuals and in subjects with glaucoma. In this study, we enrolled 45 eyes with glaucoma and 21 eyes of age-matched, healthy individuals. All subjects underwent complete ophthalmic examination. Differential light sensitivity was measured at 21 corresponding points in a rectangular test grid in both MP1 and HFA. Similar examination settings were used with Goldmann III stimulus, stimulus presentation time of 200 ms, and white background illumination (1.27 cd/m(2)). Statistical analysis was done with the SPSS 14 using linear regression and independent t-test. The mean light thresholds of 21 matching points in control group with MP1 and HFA were 14.97 ± 2.64 dB and 30.90 ± 2.08 dB, respectively. In subjects with glaucoma, the mean values were MP1: 11.73 ± 4.36 dB and HFA: 27.96 ± 5.41 dB. Mean difference of light thresholds among the two instruments was 15.86 ± 3.25 dB in normal subjects (P < 0.001) and 16.22 ± 2.77 dB in glaucoma subjects (P < 0.001). Pearson correlation analysis of the HFA and MP1 results for each test point location in both cases and control subjects showed significant positive correlation (controls, r = 0.439, P = 0.047; glaucoma subjects, r = 0.812, P < 0.001). There was no difference between nasal and temporal points but a slight vertical asymmetry was observed with MP1. There are significant and reproducible differences in the differential light threshold in MP1 and HFA in both normal and glaucoma subjects. We found a correction factor of 17.271 for comparison of MP1 with HFA. MP1 appeared to be more sensitive in predicting loss in glaucoma.
Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.
Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira
2011-10-01
Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.
Giménez, Marina C; Beersma, Domien G M; Bollen, Pauline; van der Linden, Matthijs L; Gordijn, Marijke C M
2014-06-01
Light is an important environmental stimulus for the entrainment of the circadian clock and for increasing alertness. The intrinsically photosensitive ganglion cells in the retina play an important role in transferring this light information to the circadian system and they are elicited in particular by short-wavelength light. Exposure to short wavelengths is reduced, for instance, in elderly people due to yellowing of the ocular lenses. This reduction may be involved in the disrupted circadian rhythms observed in aged subjects. Here, we tested the effects of reduced blue light exposure in young healthy subjects (n = 15) by using soft orange contact lenses (SOCL). We showed (as expected) that a reduction in the melatonin suppressing effect of light is observed when subjects wear the SOCL. However, after chronic exposure to reduced (short wavelength) light for two consecutive weeks we observed an increase in sensitivity of the melatonin suppression response. The response normalized as if it took place under a polychromatic light pulse. No differences were found in the dim light melatonin onset or in the amplitude of the melatonin rhythms after chronic reduced blue light exposure. The effects on sleep parameters were limited. Our results demonstrate that the non-visual light system of healthy young subjects is capable of adapting to changes in the spectral composition of environmental light exposure. The present results emphasize the importance of considering not only the short-term effects of changes in environmental light characteristics.
Lucia, S; Cercignani, G; Frediani, A; Petracchi, D
2003-01-01
Behavioral responses of Halobacterium salinarum appear as changes in the frequency of motion reversals. Turning on orange light decreases the reversal frequency, whereas blue light induces reversals. Light pulses normally induce the same response as step-up stimuli. However, anomalous behavioral reactions, including inverse responses, are seen when stimuli are applied in sequence. The occurrence of a prior stimulus is conditioning for successive stimulation on a time scale of the same order of adaptational processes. These prolonged conditioning effects are color-specific. The only adaptation process identified so far is methylation of the transducers, and this could be somehow color-specific. Therefore we tested for the behavioral anomalies in a mutant in which all methylation sites on the transducer have been eliminated. The results show that behavioral anomalies are unaffected by the absence of methylation processes on the transducer.
Assessing potential targets of calcium action in light-modulated gravitropism
NASA Technical Reports Server (NTRS)
Roux, S. J.
1995-01-01
Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.
Buder revisited: cell and organ polarity during phototropism.
Nick, P; Furuya, M
1996-10-01
The induction of a radial polarity by environmental stimuli was studied at the cellular and organ levels, with phototropism chosen as a model. The light gradient acting on the whole coleoptile was opposed to the light direction acting upon individual cells in the classical Buder experiment, irradiating from the inside out. Alternatively, the stimulus was administered to the coleoptile tip with a microbeam-irradiation device. Tropistic curvature was assayed as a marker for the response of the whole organ, whereas cell elongation and the orientation of cortical microtubules were taken as markers for the responses of individual cells. Upon tip irradiation, signals much faster than basipetal auxin transport migrate towards the base. The data are discussed in terms of an organ polarity that is the primary result of the asymmetric light signal and affects, in a second step, an endogenous radial polarity of epidermal cells.
ERIC Educational Resources Information Center
Doran, Erin E.
2015-01-01
This study evaluates the recent move toward Tier One by the University of Texas at San Antonio (UTSA) in light of its historical commitment to serve the largely Hispanic population of South Texas. Among the largest Hispanic-serving universities, UTSA provides a useful case study of this type of institution both historically and at the…
The light-makeup advantage in facial processing: Evidence from event-related potentials.
Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi
2017-01-01
The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succession were of the same person or not. The ERP waveforms in response to the first faces were analyzed. In two experiments with different stimulus probabilities, the amplitudes of N170 and vertex positive potential (VPP) were smaller for faces with light makeup than for faces with heavy makeup or no makeup. The P1 amplitude did not differ between facial types. In a subsequent rating phase, faces with light makeup were rated as more attractive than faces with heavy makeup and no makeup. The results suggest that the processing fluency of faces with light makeup is one of the reasons why light makeup is preferred to heavy makeup and no makeup in daily life.
The light-makeup advantage in facial processing: Evidence from event-related potentials
Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi
2017-01-01
The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succession were of the same person or not. The ERP waveforms in response to the first faces were analyzed. In two experiments with different stimulus probabilities, the amplitudes of N170 and vertex positive potential (VPP) were smaller for faces with light makeup than for faces with heavy makeup or no makeup. The P1 amplitude did not differ between facial types. In a subsequent rating phase, faces with light makeup were rated as more attractive than faces with heavy makeup and no makeup. The results suggest that the processing fluency of faces with light makeup is one of the reasons why light makeup is preferred to heavy makeup and no makeup in daily life. PMID:28234959
Neonatal and fetal response decrement of evoked responses – a MEG study
Sheridan, Carolin J.; Preissl, Hubert; Siegel, Eric R.; Murphy, Pam; Ware, Maureen; Lowery, Curtis L.; Eswaran, Hari
2008-01-01
Objective To investigate the response decrements of visual evoked responses (VER) in newborns and assess the applicability of this paradigm to fetuses in magnetoencephalographic (MEG) recordings. Methods Twelve newborns with no known risks or complications participated at chronological ages between six and 22 days. They constituted the follow-up group to a prenatal study conducted on a sample of 25 fetuses whose gestational age (GA) varied between 29 and 37 weeks at the time of recording. Trains of four light flashes with an interstimulus interval of 2 s followed by 10 s without stimulation were delivered to record VER. Results Nine of the 12 newborns responded to the stimulation and showed response decrements in amplitude from the first to the last light flash. Furthermore, the response latency increased significantly from the first to the last stimulus. The remaining three recordings were discontinued early. Even though the prenatal visual evoked response rate was only 29%, the fetuses exhibited a response decrement after the first stimulus. Conclusions The amplitude of VERs can be used to elicit a response decrement in newborns and, with limitations, even in fetuses. This paradigm might be a useful tool for a direct non-invasive assessment of neonatal and prenatal brain development and CNS functioning. Significance The proposed method might be a first step towards an early detection of developmental deficits in newborns and fetuses. PMID:18226946
Conditioned Fear Inhibits c-fos mRNA Expression in the Central Extended Amygdala
Day, Heidi E.W.; Kryskow, Elisa M.; Nyhuis, Tara J.; Herlihy, Lauren; Campeau, Serge
2008-01-01
We have shown previously that unconditioned stressors inhibit neurons of the lateral/capsular division of the central nucleus of the amygdala (CEAl/c) and oval division of the bed nucleus of the stria terminalis (BSTov), which form part of the central extended amygdala. The current study investigated whether conditioned fear inhibits c-fos mRNA expression in these regions. Male rats were trained either to associate a visual stimulus (light) with footshock or were exposed to the light alone. After training, animals were replaced in the apparatus, and 2 hours later injected remotely, via a catheter, with amphetamine (2 mg/kg i.p.), to induce c-fos mRNA and allow inhibition of expression to be measured. The rats were then presented with 15 visual stimuli over a 30 minute period. As expected, fear conditioned animals that were not injected with amphetamine, had extremely low levels of c-fos mRNA in the central extended amygdala. In contrast, animals that were trained with the light alone (no fear conditioning) and were injected with amphetamine had high levels of c-fos mRNA in the CEAl/c and BSTov. Animals that underwent fear-conditioning, and were re-exposed to the conditioned stimulus after amphetamine injection had significantly reduced levels of c-fos mRNA in both the BSTov and CEAl/c, compared to the non-conditioned animals. These data suggest that conditioned fear can inhibit neurons of the central extended amygdala. Because these neurons are GABAergic, and project to the medial CEA (an amygdaloid output region), this may be a novel mechanism whereby conditioned fear potentiates amygdaloid output. PMID:18634767
Rusanen, Juha; Frolov, Roman; Weckström, Matti; Kinoshita, Michiyo; Arikawa, Kentaro
2018-04-30
Lamina monopolar cells (LMCs) are the first-order visual interneurons of insects and crustacea, primarily involved in achromatic vision. Here we investigated morphological and electrophysiological properties of LMCs in the butterfly Papilio xuthus Using intracellular recording coupled with dye injection, we found two types of LMCs. Cells with roundish terminals near the distal surface of the medulla demonstrating no or small depolarizing spikes were classified as L1/2. LMCs with elongated terminals deep in the medulla that showed prominent spiking were classified as L3/4. The majority of LMCs of both types had broad spectral sensitivities, peaking between 480 and 570 nm. Depending on the experimental conditions, spikes varied from small to action potential-like events, with their amplitudes and rates decreasing as stimulus brightness increased. When the eye was stimulated with naturalistic contrast-modulated time series, spikes were reliably triggered by high-contrast components of the stimulus. Spike-triggered average functions showed that spikes emphasize rapid membrane depolarizations. Our results suggest that spikes are mediated by voltage-activated Na + channels, which are mainly inactivated at rest. Strong local minima in the coherence functions of spiking LMCs indicate that the depolarizing conductance contributes to the amplification of graded responses even when detectable spikes are not evoked. We propose that the information transfer strategies of spiking LMCs change with light intensity. In dim light, both graded voltage signals and large spikes are used together without mutual interference, due to separate transmission bandwidths. In bright light, signals are non-linearly amplified by the depolarizing conductance in the absence of detectable spikes. © 2018. Published by The Company of Biologists Ltd.
Representation in development: from a model system to some general processes.
Montuori, Luke M; Honey, Robert C
2015-03-01
The view that filial imprinting might serve as a useful model system for studying the neurobiological basis of memory was inspired, at least in part, by a simple idea: acquired filial preferences reflect the formation of a memory or representation of the imprinting object itself, as opposed to the change in the efficacy of stimulus-response pathways, for example. We provide a synthesis of the evidence that supports this idea; and show that the processes of memory formation observed in filial imprinting find surprisingly close counterparts in other species, including our own. Copyright © 2014 Elsevier Ltd. All rights reserved.
Böddeker, K W; Böddeker, M
1976-01-01
An exact observation and description of scratching behavior leads to a behavioral model for the obsessional scratching in patients with atopic dermatitis. The patient who cannot handle negative emotions because of a deficit in social behavior strategies suffers from diffuse tension. He can reduce the tension for the moment by scratching. Thus itching is being reinforced. The feeling of misbehavior occurs with delay and then again can serve as a stimulus for more tension.--Basing on this model behavior therapeutical techniques for breaking up this vicious circle are discussed.
NASA Technical Reports Server (NTRS)
Mattson, D. L.
1975-01-01
The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.
NASA Technical Reports Server (NTRS)
Christy, L. F.; Kelton-Fogg, G.; Lizak, R.; Vahlkamp, C.
1978-01-01
An ever expanding body of rehabilitation engineering technology is developing in this country, but it rarely reaches the people for whom it is intended. The increasing concern of state and federal departments of rehabilitation for this technology lag was the stimulus for a series of problem-solving workshops held in California during 1977. As a result of the workshops, the recommendation emerged that the California Department of Rehabilitation take the lead in the development of a coordinated delivery system that would eventually serve the entire state and be a model for similar systems across the nation.
Parvulescu Revisited: Small Tank Acoustics for Bioacousticians.
Rogers, Peter H; Hawkins, Anthony D; Popper, Arthur N; Fay, Richard R; Gray, Michael D
2016-01-01
Researchers often perform hearing studies on fish in small tanks. The acoustic field in such a tank is considerably different from the acoustic field that occurs in the animal's natural environment. The significance of these differences is magnified by the nature of the fish's auditory system where either acoustic pressure (a scalar), acoustic particle velocity (a vector), or both may serve as the stimulus. It is essential for the underwater acoustician to understand the acoustics of small tanks to be able to carry out valid auditory research in the laboratory and to properly compare and interpret the results of others.
Vegetarianism and food perception. Selective visual attention to meat pictures.
Stockburger, Jessica; Renner, Britta; Weike, Almut I; Hamm, Alfons O; Schupp, Harald T
2009-04-01
Vegetarianism provides a model system to examine the impact of negative affect towards meat, based on ideational reasoning. It was hypothesized that meat stimuli are efficient attention catchers in vegetarians. Event-related brain potential recordings served to index selective attention processes at the level of initial stimulus perception. Consistent with the hypothesis, late positive potentials to meat pictures were enlarged in vegetarians compared to omnivores. This effect was specific for meat pictures and obtained during passive viewing and an explicit attention task condition. These findings demonstrate the attention capture of food stimuli, deriving affective salience from ideational reasoning and symbolic meaning.
Frequency analysis for modulation-enhanced powder diffraction.
Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi
2016-07-01
Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.
Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.
Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R
2016-01-01
There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.
Primer of School Lighting Lamps and Maintenance.
ERIC Educational Resources Information Center
Allphin, Willard
The basic principles of the most commonly used lamp types and the circuitry which makes them operate are discussed. The two objectives of this book are to serve as a--(1) guide to economical lighting, and (2) a permanent reference source for troubleshooting. Areas dealt with include--(1) lighting fundamentals, (2) incandescent lamps, (3)…
Complex discriminative stimulus properties of (+)lysergic acid diethylamide (LSD) in C57Bl/6J mice.
Benneyworth, Michael A; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine
2005-06-01
The drug discrimination procedure is the most frequently used in vivo model of hallucinogen activity. Historically, most drug discrimination studies have been conducted in the rat. With the development of genetically modified mice, a powerful new tool has become available for investigating the mechanisms of drug-induced behavior. The current paper is part of an ongoing effort to determine the utility of the drug discrimination technique for evaluating hallucinogenic drugs in mice. To establish the training procedures and characterize the stimulus properties of (+)lysergic acid diethylamide (LSD) in mice. Using a two-lever drug discrimination procedure, C57Bl/6J mice were trained to discriminate 0.45 mg/kg LSD vs saline on a VI30 sec schedule of reinforcement, with vanilla-flavored Ensure serving as the reinforcer. As in rats, acquisition was orderly, but the training dose was nearly five-fold higher for mice than rats. LSD lever selection was dose-dependent. Time-course studies revealed a rapid loss of the LSD stimulus effects. The 5-HT(2A/2C) receptor agonist, 2,5-dimethoxy-4-bromoamphetamine [(-)DOB] (1.0 mg/kg), substituted fully for LSD and the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) (1.6 mg/kg), substituted partially for LSD. Pretreatment with the 5-HT(2A) receptor-selective antagonist, MDL 100907, or the 5-HT(1A)-selective antagonist WAY 100635, showed that each antagonist only partially blocked LSD discrimination. Substitution of 1.0 mg/kg (-)DOB for LSD was fully blocked by pretreatment with MDL 100907 but unaltered by WAY 100635 pretreatment. These data suggest that in mice the stimulus effects of LSD have both a 5-HT(2A) receptor and a 5-HT(1A) receptor component.
A role of right middle frontal gyrus in reorienting of attention: a case study
Japee, Shruti; Holiday, Kelsey; Satyshur, Maureen D.; Mukai, Ikuko; Ungerleider, Leslie G.
2015-01-01
The right middle fontal gyrus (MFG) has been proposed to be a site of convergence of the dorsal and ventral attention networks, by serving as a circuit-breaker to interrupt ongoing endogenous attentional processes in the dorsal network and reorient attention to an exogenous stimulus. Here, we probed the contribution of the right MFG to both endogenous and exogenous attention by comparing performance on an orientation discrimination task of a patient with a right MFG resection and a group of healthy controls. On endogenously cued trials, participants were shown a central cue that predicted with 90% accuracy the location of a subsequent peri-threshold Gabor patch stimulus. On exogenously cued trials, a cue appeared briefly at one of two peripheral locations, followed by a variable inter-stimulus interval (ISI; range 0–700 ms) and a Gabor patch in the same or opposite location as the cue. Behavioral data showed that for endogenous, and short ISI exogenous trials, valid cues facilitated responses compared to invalid cues, for both the patient and controls. However, at long ISIs, the patient exhibited difficulty in reverting to top-down attentional control, once the facilitatory effect of the exogenous cue had dissipated. When explicitly cued during long ISIs to attend to both stimulus locations, the patient was able to engage successfully in top-down control. This result indicates that the right MFG may play an important role in reorienting attention from exogenous to endogenous attentional control. Resting state fMRI data revealed that the right superior parietal lobule and right orbitofrontal cortex, showed significantly higher correlations with a left MFG seed region (a region tightly coupled with the right MFG in controls) in the patient relative to controls. We hypothesize that this paradoxical increase in cortical coupling represents a compensatory mechanism in the patient to offset the loss of function of the resected tissue in right prefrontal cortex. PMID:25784862
Hernaus, Dennis; Gold, James M; Waltz, James A; Frank, Michael J
2018-04-03
While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems together with a compromised ability to represent expected value. Guided by computational frameworks, we formulated and tested two scenarios in which maladaptive representations of expected value should be most evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia. In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations of choice options were presented in a subsequent transfer phase. Computational modeling was employed to elucidate contributions from stimulus-response systems (actor-critic) and expected value (Q-learning). People with schizophrenia showed robust performance impairments with increasing value difference between two competing options, which strongly correlated with decreased contributions from expected value-based learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction error in the actor-critic. We provide evidence that decision-making impairments in schizophrenia increase monotonically with demands placed on expected value computations. A contextual choice bias is consistent with overreliance on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of expected value. These results shed new light on conditions under which decision-making impairments may arise. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Short-term total sleep deprivation alters delay-conditioned memory in the rat.
Tripathi, Shweta; Jha, Sushil K
2016-06-01
Short-term sleep deprivation soon after training may impair memory consolidation. Also, a particular sleep stage or its components increase after learning some tasks, such as negative and positive reinforcement tasks, avoidance tasks, and spatial learning tasks, and so forth. It suggests that discrete memory types may require specific sleep stage or its components for their optimal processing. The classical conditioning paradigms are widely used to study learning and memory but the role of sleep in a complex conditioned learning is unclear. Here, we have investigated the effects of short-term sleep deprivation on the consolidation of delay-conditioned memory and the changes in sleep architecture after conditioning. Rats were trained for the delay-conditioned task (for conditioning, house-light [conditioned stimulus] was paired with fruit juice [unconditioned stimulus]). Animals were divided into 3 groups: (a) sleep deprived (SD); (b) nonsleep deprived (NSD); and (c) stress control (SC) groups. Two-way ANOVA revealed a significant interaction between groups and days (training and testing) during the conditioned stimulus-unconditioned stimulus presentation. Further, Tukey post hoc comparison revealed that the NSD and SC animals exhibited significant increase in performances during testing. The SD animals, however, performed significantly less during testing. Further, we observed that wakefulness and NREM sleep did not change after training and testing. Interestingly, REM sleep increased significantly on both days compared to baseline more specifically during the initial 4-hr time window after conditioning. Our results suggest that the consolidation of delay-conditioned memory is sleep-dependent and requires augmented REM sleep during an explicit time window soon after training. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Serlin, B S; Roux, S J
1984-01-01
The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on the phytochrome-controlled light response. These results support the hypothesis that calcium functions as a chemical messenger to couple the stimulus of phytochrome photoactivation with physiological responses in plants. Images PMID:11536594
Night vision in barn owls: visual acuity and contrast sensitivity under dark adaptation.
Orlowski, Julius; Harmening, Wolf; Wagner, Hermann
2012-12-06
Barn owls are effective nocturnal predators. We tested their visual performance at low light levels and determined visual acuity and contrast sensitivity of three barn owls by their behavior at stimulus luminances ranging from photopic to fully scotopic levels (23.5 to 1.5 × 10⁻⁶). Contrast sensitivity and visual acuity decreased only slightly from photopic to scotopic conditions. Peak grating acuity was at mesopic (4 × 10⁻² cd/m²) conditions. Barn owls retained a quarter of their maximal acuity when luminance decreased by 5.5 log units. We argue that the visual system of barn owls is designed to yield as much visual acuity under low light conditions as possible, thereby sacrificing resolution at photopic conditions.
Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel
2017-12-01
Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.
Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel
2017-01-01
Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway. PMID:29196762
The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model
Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew JA
2017-01-01
Objective: The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. Methods: After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Results: Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Conclusions: Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging. PMID:29348978
Kinoshita, Michiyo; Pfeiffer, Keram; Homberg, Uwe
2007-04-01
Many migrating animals employ a celestial compass mechanism for spatial navigation. Behavioral experiments in bees and ants have shown that sun compass navigation may rely on the spectral gradient in the sky as well as on the pattern of sky polarization. While polarized-light sensitive interneurons (POL neurons) have been identified in the brain of several insect species, there are at present no data on the neural basis of coding the spectral gradient of the sky. In the present study we have analyzed the chromatic properties of two identified POL neurons in the brain of the desert locust. Both neurons, termed TuTu1 and LoTu1, arborize in the anterior optic tubercle and respond to unpolarized light as well as to polarized light. We show here that the polarized-light response of both types of neuron relies on blue-sensitive photoreceptors. Responses to unpolarized light depended on stimulus position and wavelength. Dorsal unpolarized blue light inhibited the neurons, while stimulation from the ipsilateral side resulted in opponent responses to UV light and green light. While LoTu1 was inhibited by UV light and was excited by green light, one subtype of TuTu1 was excited by UV and inhibited by green light. In LoTu1 the sensitivity to polarized light was at least 2 log units higher than the response to unpolarized light stimuli. Taken together, the spatial and chromatic properties of the neurons may be suited to signal azimuthal directions based on a combination of the spectral gradient and the polarization pattern of the sky.
ERIC Educational Resources Information Center
Garst, Barry A.; Baughman, Sarah; Franz, Nancy
2014-01-01
Examining traditional and contemporary professional development practices of youth-serving organizations can inform practices across Extension, particularly in light of the barriers that have been noted for effectively developing the professional competencies of Extension educators. With professional development systems changing quickly,…
"Being there" and remembering it: Presence improves memory encoding.
Makowski, Dominique; Sperduti, Marco; Nicolas, Serge; Piolino, Pascale
2017-08-01
Few studies have investigated the link between episodic memory and presence: the feeling of "being there" and reacting to a stimulus as if it were real. We collected data from 244 participants after they had watched the movie Avengers: Age of Ultron. They answered questions about factual (details of the movie) and temporal memory (order of the scenes) about the movie, as well as their emotion experience and their sense of presence during the projection. Both higher emotion experience and sense of presence were related to better factual memory, but not to temporal order memory. Crucially, the link between emotion and factual memory was mediated by the sense of presence. We interpreted the role of presence as an external absorption of the attentional focus toward the stimulus, thus enhancing memory encoding. Our findings could shed light on the cognitive processes underlying memory impairments in psychiatric conditions characterized by an altered sense of reality. Copyright © 2017 Elsevier Inc. All rights reserved.
Colzato, Lorenza S; Steenbergen, Laura; Hommel, Bernhard
2018-01-23
The aim of the study was to throw more light on the relationship between rumination and cognitive-control processes. Seventy-eight adults were assessed with respect to rumination tendencies by means of the LEIDS-r before performing a Stroop task, an event-file task assessing the automatic retrieval of irrelevant information, an attentional set-shifting task, and the Attentional Network Task, which provided scores for alerting, orienting, and executive control functioning. The size of the Stroop effect and irrelevant retrieval in the event-five task were positively correlated with the tendency to ruminate, while all other scores did not correlate with any rumination scale. Controlling for depressive tendencies eliminated the Stroop-related finding (an observation that may account for previous failures to replicate), but not the event-file finding. Taken altogether, our results suggest that rumination does not affect attention, executive control, or response selection in general, but rather selectively impairs the control of stimulus-induced retrieval of irrelevant information.
Stimulus-responsive hydrogels: Theory, modern advances, and applications
Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.
2016-01-01
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415
Atkins, Norman; Ren, Shifang; Hatcher, Nathan; Burgoon, Penny W; Mitchell, Jennifer W; Sweedler, Jonathan V; Gillette, Martha U
2018-06-20
Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.
Dynamical mechanism of circadian singularity behavior in Neurospora
NASA Astrophysics Data System (ADS)
Sun, Maorong; Wang, Yi; Xu, Xin; Yang, Ling
2016-09-01
Many organisms have oscillators with a period of about 24 hours, called "circadian clocks". They employ negative biochemical feedback loops that are self-contained within a single cell (requiring no cell-to-cell interaction). Circadian singularity behavior is a phenomenon of the abolishment of circadian rhythmicities by a critical stimulus. These behaviors have been found experimentally in Neurospora, human and hamster, by temperature step-up or light pulse. Two alternative models have been proposed to explain this phenomenon: desynchronization of cell populations, and loss of oscillations in all cells by resetting each cell close to a steady state. In this work, we use a mathematical model to investigate the dynamical mechanism of circadian singularity behavior in Neurospora. Our findings suggest that the arrhythmic behavior after the critical stimulus is caused by the collaboration of the desynchronization and the loss of oscillation amplitude. More importantly, we found that the stable manifold of the unstable equilibrium point, instead of the steady state itself, plays a crucial role in circadian singularity behavior.
2012-10-01
in place. Mark Ginsberg, one of our local jewelry story owners has acquired 3D extruding printers for medical instrumentation applications and will...comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...tested out our software, which was written to control the monitor brightness, duration, and color for each visual stimulus. The software has been
Apoptosis: a basic pathological reaction of injured neonatal muscle.
Fidziańska, A; Kamińska, A
1991-01-01
A light and electron microscopic study of immature muscle cell degeneration induced by bupivacaine (BPVC) was performed. The pattern of muscle cell death is related to muscle maturity; in newborn rats, cell death has the morphology of apoptosis, whereas in the older animals muscle cell death resembles cell necrosis and the ultrastructural feature of these changes are essentially the same as those described in adult muscle. The ability to undergo apoptosis in response to a pathological stimulus is a common effector mechanism of immature muscle.
Self-organization of multifunctional surfaces--the fingerprints of light on a complex system.
Reinhardt, Hendrik; Kim, Hee-Cheol; Pietzonka, Clemens; Kruempelmann, Julia; Harbrecht, Bernd; Roling, Bernhard; Hampp, Norbert
2013-06-25
Nanocomposite patterns and nanotemplates are generated by a single-step bottom-up concept that introduces laser-induced periodic surface structures (LIPSS) as a tool for site-specific reaction control in multicomponent systems. Periodic intensity fluctuations of this photothermal stimulus inflict spatial-selective reorganizations, dewetting scenarios and phase segregations, thus creating regular patterns of anisotropic physicochemical properties that feature attractive optical, electrical, magnetic, and catalytic properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Some sequential, distribution-free pattern classification procedures with applications
NASA Technical Reports Server (NTRS)
Poage, J. L.
1971-01-01
Some sequential, distribution-free pattern classification techniques are presented. The decision problem to which the proposed classification methods are applied is that of discriminating between two kinds of electroencephalogram responses recorded from a human subject: spontaneous EEG and EEG driven by a stroboscopic light stimulus at the alpha frequency. The classification procedures proposed make use of the theory of order statistics. Estimates of the probabilities of misclassification are given. The procedures were tested on Gaussian samples and the EEG responses.
Streif, Stefan; Oesterhelt, Dieter; Marwan, Wolfgang
2010-03-18
Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY. By mathematical modeling we infer the kinetic mechanisms of stimulus-induced transducer methylation and adaptation. The model (deterministic and in the form of ordinary differential equations) correctly predicts experimentally observed transducer demethylation (as detected by released methanol) in response to attractant and repellent stimuli of wildtype cells, a cheY deletion mutant, and a mutant in which the stimulated transducer species is methylation-deficient. We provide a kinetic model for signal processing in photo- and chemotaxis in the archaeon H. salinarum suggesting an essential role of receptor cooperativity, antagonistic reversible methylation, and a CheY-dependent feedback on transducer demethylation.
Construction and updating of event models in auditory event processing.
Huff, Markus; Maurer, Annika E; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank
2018-02-01
Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event boundaries. Evidence from reading time studies (increased reading times with increasing amount of change) suggest that updating of event models is incremental. We present results from 5 experiments that studied event processing (including memory formation processes and reading times) using an audio drama as well as a transcript thereof as stimulus material. Experiments 1a and 1b replicated the event boundary advantage effect for memory. In contrast to recent evidence from studies using visual stimulus material, Experiments 2a and 2b found no support for incremental updating with normally sighted and blind participants for recognition memory. In Experiment 3, we replicated Experiment 2a using a written transcript of the audio drama as stimulus material, allowing us to disentangle encoding and retrieval processes. Our results indicate incremental updating processes at encoding (as measured with reading times). At the same time, we again found recognition performance to be unaffected by the amount of change. We discuss these findings in light of current event cognition theories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Srey, Chandra S.; Maddux, Jean-Marie N.; Chaudhri, Nadia
2015-01-01
Environmental stimuli that are reliably paired with alcohol may acquire incentive salience, a property that can operate in the use and abuse of alcohol. Here we investigated the incentive salience of Pavlovian alcohol cues using a preclinical animal model. Male, Long-Evans rats (Harlan) with unrestricted access to food and water were acclimated to drinking 15% ethanol (v/v) in their home-cages. Rats then received Pavlovian autoshaping training in which the 10 s presentation of a retractable lever served as the conditioned stimulus (CS) and 15% ethanol served as the unconditioned stimulus (US) (0.2 ml/CS; 12 CS presentations/session; 27 sessions). Next, in an operant test of conditioned reinforcement, nose pokes into an active aperture delivered presentations of the lever-CS, whereas nose pokes into an inactive aperture had no consequences. Across initial autoshaping sessions, goal-tracking behavior, as measured by entries into the fluid port where ethanol was delivered, developed rapidly. However, with extended training goal-tracking diminished, and sign-tracking responses, as measured by lever-CS activations, emerged. Control rats that received explicitly unpaired CS and US presentations did not show goal-tracking or sign-tracking responses. In the test for conditioned reinforcement, rats with CS-US pairings during autoshaping training made more active relative to inactive nose pokes, whereas rats in the unpaired control group did not. Moreover, active nose pokes were positively correlated with sign-tracking behavior during autoshaping. Extended training may produce a shift in the learned properties of Pavlovian alcohol cues, such that after initially predicting alcohol availability they acquire robust incentive salience. PMID:25784867
Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue
Villaruel, Franz R.; Chaudhri, Nadia
2016-01-01
Individual differences exist in the attribution of incentive salience to conditioned stimuli associated with food. Here, we investigated whether individual differences also manifested with a Pavlovian alcohol conditioned stimulus (CS). We compiled data from five experiments that used a Pavlovian autoshaping paradigm and tests of conditioned reinforcement. In all experiments, male, Long-Evans rats with unrestricted access to food and water were acclimated to 15% ethanol. Next, rats received Pavlovian autoshaping training, in which a 10 s presentation of a retractable lever served as the CS and 0.2 mL of 15% ethanol served as the unconditioned stimulus (US). Finally, rats underwent conditioned reinforcement tests in which nose-pokes to an active aperture led to brief presentations of the lever-CS, but nose-pokes to an inactive aperture had no consequence. Rats were categorized as sign-trackers, goal-trackers and intermediates based on a response bias score that reflected their tendencies to sign-track or goal-track at different times during training. We found that distinct groups of rats either consistently interacted with the lever-CS (“sign-trackers”) or routinely approached the port during the lever-CS (“goal-trackers”) across a majority of the training sessions. However, some individuals (“shifted sign-trackers”) with an early tendency to goal-track later shifted to comparable asymptotic levels of sign-tracking as the group identified as sign-trackers. The lever-CS functioned as a conditioned reinforcer for sign-trackers and shifted sign-trackers, but not for goal-trackers. These results provide evidence of robust individual differences in the extent to which a Pavlovian alcohol cue gains incentive salience and functions as a conditioned reinforcer. PMID:28082877
Individual Differences in the Attribution of Incentive Salience to a Pavlovian Alcohol Cue.
Villaruel, Franz R; Chaudhri, Nadia
2016-01-01
Individual differences exist in the attribution of incentive salience to conditioned stimuli associated with food. Here, we investigated whether individual differences also manifested with a Pavlovian alcohol conditioned stimulus (CS). We compiled data from five experiments that used a Pavlovian autoshaping paradigm and tests of conditioned reinforcement. In all experiments, male, Long-Evans rats with unrestricted access to food and water were acclimated to 15% ethanol. Next, rats received Pavlovian autoshaping training, in which a 10 s presentation of a retractable lever served as the CS and 0.2 mL of 15% ethanol served as the unconditioned stimulus (US). Finally, rats underwent conditioned reinforcement tests in which nose-pokes to an active aperture led to brief presentations of the lever-CS, but nose-pokes to an inactive aperture had no consequence. Rats were categorized as sign-trackers, goal-trackers and intermediates based on a response bias score that reflected their tendencies to sign-track or goal-track at different times during training. We found that distinct groups of rats either consistently interacted with the lever-CS ("sign-trackers") or routinely approached the port during the lever-CS ("goal-trackers") across a majority of the training sessions. However, some individuals ("shifted sign-trackers") with an early tendency to goal-track later shifted to comparable asymptotic levels of sign-tracking as the group identified as sign-trackers. The lever-CS functioned as a conditioned reinforcer for sign-trackers and shifted sign-trackers, but not for goal-trackers. These results provide evidence of robust individual differences in the extent to which a Pavlovian alcohol cue gains incentive salience and functions as a conditioned reinforcer.
King, M J; Wood, J M; Lacherez, P F; Marszalek, R P
2012-01-01
Drivers are known to be optimistic about their risk of crash involvement, believing that they are less likely to be involved in a crash than other drivers. However, little comparative research has been conducted among other road users. In addition, optimism about crash risk is conceptualised as applying only to an individual's assessment of his or her personal risk of crash involvement. The possibility that the self-serving nature of optimism about safety might be generalised to the group-level as a cyclist or a pedestrian, i.e., becoming group-serving rather than self-serving, has been overlooked in relation to road safety. This study analysed a subset of data collected as part of a larger research project on the visibility of pedestrians, cyclists and road workers, focusing on a set of questionnaire items administered to 406 pedestrians, 838 cyclists and 622 drivers. The items related to safety in various scenarios involving drivers, pedestrians and cyclists, allowing predictions to be derived about group differences in agreement with items based on the assumption that the results would exhibit group-serving bias. Analysis of the responses indicated that specific hypotheses about group-serving interpretations of safety and responsibility were supported in 22 of the 26 comparisons. When the nine comparisons relevant to low lighting conditions were considered separately, seven were found to be supported. The findings of the research have implications for public education and for the likely acceptance of messages which are inconsistent with current assumptions and expectations of pedestrians and cyclists. They also suggest that research into group-serving interpretations of safety, even for temporary roles rather than enduring groups, could be fruitful. Further, there is an implication that gains in safety can be made by better educating road users about the limitations of their visibility and the ramifications of this for their own road safety, particularly in low light. 2010 Elsevier Ltd. All rights reserved.
National Term and Condition for Light Refreshments and Meals
Unless the event(s) are specified in the approved workplan, the recipient agrees to obtain prior approval from EPA for the use of grant funds for light refreshments and/or meals served at meetings, conferences, training workshops, and outreach activities.
Tissue-Autonomous Promotion of Palisade Cell Development by Phototropin 2 in Arabidopsis[W
Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira
2011-01-01
Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)–tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner. PMID:21972260
Pupillary behavior in relation to wavelength and age
Lobato-Rincón, Luis-Lucio; Cabanillas-Campos, Maria del Carmen; Bonnin-Arias, Cristina; Chamorro-Gutiérrez, Eva; Murciano-Cespedosa, Antonio; Sánchez-Ramos Roda, Celia
2014-01-01
Pupil light reflex can be used as a non-invasive ocular predictor of cephalic autonomic nervous system integrity. Spectral sensitivity of the pupil's response to light has, for some time, been an interesting issue. It has generally, however, only been investigated with the use of white light and studies with monochromatic wavelengths are scarce. This study investigates the effects of wavelength and age within three parameters of the pupil light reflex (amplitude of response, latency, and velocity of constriction) in a large sample of younger and older adults (N = 97), in mesopic conditions. Subjects were exposed to a single light stimulus at four different wavelengths: white (5600°K), blue (450 nm), green (510 nm), and red (600 nm). Data was analyzed appropriately, and, when applicable, using the General Linear Model (GLM), Randomized Complete Block Design (RCBD), Student's t-test and/or ANCOVA. Across all subjects, pupillary response to light had the greatest amplitude and shortest latency in white and green light conditions. In regards to age, older subjects (46–78 years) showed an increased latency in white light and decreased velocity of constriction in green light compared to younger subjects (18–45 years old). This study provides data patterns on parameters of wavelength-dependent pupil reflexes to light in adults and it contributes to the large body of pupillometric research. It is hoped that this study will add to the overall evaluation of cephalic autonomic nervous system integrity. PMID:24795595
Perception of Social Interactions for Spatially Scrambled Biological Motion
Thurman, Steven M.; Lu, Hongjing
2014-01-01
It is vitally important for humans to detect living creatures in the environment and to analyze their behavior to facilitate action understanding and high-level social inference. The current study employed naturalistic point-light animations to examine the ability of human observers to spontaneously identify and discriminate socially interactive behaviors between two human agents. Specifically, we investigated the importance of global body form, intrinsic joint movements, extrinsic whole-body movements, and critically, the congruency between intrinsic and extrinsic motions. Motion congruency is hypothesized to be particularly important because of the constraint it imposes on naturalistic action due to the inherent causal relationship between limb movements and whole body motion. Using a free response paradigm in Experiment 1, we discovered that many naïve observers (55%) spontaneously attributed animate and/or social traits to spatially-scrambled displays of interpersonal interaction. Total stimulus motion energy was strongly correlated with the likelihood that an observer would attribute animate/social traits, as opposed to physical/mechanical traits, to the scrambled dot stimuli. In Experiment 2, we found that participants could identify interactions between spatially-scrambled displays of human dance as long as congruency was maintained between intrinsic/extrinsic movements. Violating the motion congruency constraint resulted in chance discrimination performance for the spatially-scrambled displays. Finally, Experiment 3 showed that scrambled point-light dancing animations violating this constraint were also rated as significantly less interactive than animations with congruent intrinsic/extrinsic motion. These results demonstrate the importance of intrinsic/extrinsic motion congruency for biological motion analysis, and support a theoretical framework in which early visual filters help to detect animate agents in the environment based on several fundamental constraints. Only after satisfying these basic constraints could stimuli be evaluated for high-level social content. In this way, we posit that perceptual animacy may serve as a gateway to higher-level processes that support action understanding and social inference. PMID:25406075
Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk
2015-01-01
Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.
The reference frame for encoding and retention of motion depends on stimulus set size.
Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk
2017-04-01
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.
A theta rhythm in macaque visual cortex and its attentional modulation
Spyropoulos, Georgios; Fries, Pascal
2018-01-01
Theta rhythms govern rodent sniffing and whisking, and human language processing. Human psychophysics suggests a role for theta also in visual attention. However, little is known about theta in visual areas and its attentional modulation. We used electrocorticography (ECoG) to record local field potentials (LFPs) simultaneously from areas V1, V2, V4, and TEO of two macaque monkeys performing a selective visual attention task. We found a ≈4-Hz theta rhythm within both the V1–V2 and the V4–TEO region, and theta synchronization between them, with a predominantly feedforward directed influence. ECoG coverage of large parts of these regions revealed a surprising spatial correspondence between theta and visually induced gamma. Furthermore, gamma power was modulated with theta phase. Selective attention to the respective visual stimulus strongly reduced these theta-rhythmic processes, leading to an unusually strong attention effect for V1. Microsaccades (MSs) were partly locked to theta. However, neuronal theta rhythms tended to be even more pronounced for epochs devoid of MSs. Thus, we find an MS-independent theta rhythm specific to visually driven parts of V1–V2, which rhythmically modulates local gamma and entrains V4–TEO, and which is strongly reduced by attention. We propose that the less theta-rhythmic and thereby more continuous processing of the attended stimulus serves the exploitation of this behaviorally most relevant information. The theta-rhythmic and thereby intermittent processing of the unattended stimulus likely reflects the ecologically important exploration of less relevant sources of information. PMID:29848632
McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David
2018-07-01
A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Keane, Brian P; Silverstein, Steven M; Wang, Yushi; Papathomas, Thomas V
2013-05-01
Schizophrenia patients are less susceptible to depth inversion illusions (DIIs) in which concave faces appear as convex, but what stimulus attributes generate this effect and how does it vary with clinical state? To address these issues, we had 30 schizophrenia patients and 25 well-matched healthy controls make convexity judgments on physically concave faces and scenes. Patients were selectively sampled from three levels of care to ensure symptom heterogeneity. Half of the concave objects were painted with realistic texture to enhance the convexity illusion; the remaining objects were painted uniform beige to reduce the illusion. Subjects viewed the objects with one eye while laterally moving in front of the stimulus (to see depth via motion parallax) or with two eyes while remaining motionless (to see depth stereoscopically). For each group, DIIs were stronger with texture than without, and weaker with stereoscopic information than without, indicating that patients responded normally to stimulus alterations. More importantly, patients experienced fewer illusions than controls irrespective of the face/scene category, texture, or viewing condition (parallax/stereo). Illusions became less frequent as patients experienced more positive symptoms and required more structured treatment. Taken together, these results indicate that people with schizophrenia experience fewer DIIs with a variety of object types and viewing conditions, perhaps because of a lessened tendency to construe any type of object as convex. Moreover, positive symptoms and the need for structured treatment are associated with more accurate 3-D perception, suggesting that DII may serve as a state marker for the illness. © 2013 American Psychological Association
Obesity, growth hormone and exercise.
Thomas, Gwendolyn A; Kraemer, William J; Comstock, Brett A; Dunn-Lewis, Courtenay; Maresh, Carl M; Volek, Jeff S
2013-09-01
Growth hormone (GH) is regulated, suppressed and stimulated by numerous physiological stimuli. However, it is believed that obesity disrupts the physiological and pathological factors that regulate, suppress or stimulate GH release. Pulsatile GH has been potently stimulated in healthy subjects by both aerobic and resistance exercise of the right intensity and duration. GH modulates fuel metabolism, reduces total fat mass and abdominal fat mass, and could be a potent stimulus of lipolysis when administered to obese individuals exogenously. Only pulsatile GH has been shown to augment adipose tissue lipolysis and, therefore, increasing pulsatile GH response may be a therapeutic target. This review discusses the factors that cause secretion of GH, how obesity may alter GH secretion and how both aerobic and resistance exercise stimulates GH, as well as how exercise of a specific intensity may be used as a stimulus for GH release in individuals who are obese. Only five prior studies have investigated exercise as a stimulus of endogenous GH in individuals who are obese. Based on prior literature, resistance exercise may provide a therapeutic target for releasing endogenous GH in individuals who are obese if specific exercise programme variables are utilized. Biological activity of GH indicates that this may be an important precursor to beneficial changes in body fat and lean tissue mass in obese individuals. However, additional research is needed including what molecular GH variants are acutely released and involved at target tissues as a result of different exercise stimuli and what specific exercise programme variables may serve to stimulate GH in individuals who are obese.
A novel operant task to assess social reward and motivation in rodents.
Borland, Johnathan M; Frantz, Kyle J; Aiani, Lauren M; Grantham, Kymberly N; Song, Zhimin; Albers, H Elliott
2017-08-01
Social reward plays a critical role in the development of beneficial social relationships, and disorders of the mechanisms controlling social reward are involved in the etiology of many psychiatric diseases. We present a novel operant social preference task to quantify social reward in rodents using an apparatus with three chambers separated by one-way vertical-swing doors. The experimental animal is placed in the larger chamber while the two smaller chambers either remain empty or contain a stimulus animal or other potential reward stimulus. Adding weights to the door can alter effort required for rewards. Hamsters (Mesocricetus auratus) entered the chamber containing a stimulus hamster significantly more frequently than an empty chamber. When the reinforcing effects of social interactions were compared to food reward under progressive cost requirements, the reinforcing effects of social interaction and sunflower seeds were similar. Progressively increasing the door weight decreased number of entries, but increased time spent attempting to open the doors. The quantification of the rewarding properties of social interactions has almost exclusively used the conditioned place preference (CPP) paradigm. Although robust and reliable, CPP includes a memory component, because it relies on the association of place with the social interaction while the operant task presented here does not. This task allows for detailed and direct assessment of social and non-social rewards that may serve as effective behavioral reinforcers in this operant conditioning model, and it can be used to investigate the neural mechanisms regulating motivation. Copyright © 2017 Elsevier B.V. All rights reserved.
Trace conditioning in insects—keep the trace!
Dylla, Kristina V.; Galili, Dana S.; Szyszka, Paul; Lüdke, Alja
2013-01-01
Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination—a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning. PMID:23986710
Information processing capacity while wearing personal protective eyewear.
Wade, Chip; Davis, Jerry; Marzilli, Thomas S; Weimar, Wendi H
2006-08-15
It is difficult to overemphasize the function vision plays in information processing, specifically in maintaining postural control. Vision appears to be an immediate, effortless event; suggesting that eyes need only to be open to employ the visual information provided by the environment. This study is focused on investigating the effect of Occupational Safety and Health Administration regulated personal protective eyewear (29 CFR 1910.133) on physiological and cognitive factors associated with information processing capabilities. Twenty-one college students between the ages of 19 and 25 years were randomly tested in each of three eyewear conditions (control, new and artificially aged) on an inclined and horizontal support surface for auditory and visual stimulus reaction time. Data collection trials consisted of 50 randomly selected (25 auditory, 25 visual) stimuli over a 10-min surface-eyewear condition trial. Auditory stimulus reaction time was significantly affected by the surface by eyewear interaction (F2,40 = 7.4; p < 0.05). Similarly, analysis revealed a significant surface by eyewear interaction in reaction time following the visual stimulus (F2,40 = 21.7; p < 0.05). The current findings do not trivialize the importance of personal protective eyewear usage in an occupational setting; rather, they suggest the value of future research focused on the effect that personal protective eyewear has on the physiological, cognitive and biomechanical contributions to postural control. These findings suggest that while personal protective eyewear may serve to protect an individual from eye injury, an individual's use of such personal protective eyewear may have deleterious effects on sensory information associated with information processing and postural control.
Thanellou, Alexandra; Green, John T.
2011-01-01
Reinstatement, the return of an extinguished conditioned response (CR) after reexposure to the unconditioned stimulus (US), and spontaneous recovery, the return of an extinguished CR with the passage of time, are two of four well-established phenomena which demonstrate that extinction does not erase the conditioned stimulus (CS)-US association. However, reinstatement of extinguished eyeblink CRs has never been demonstrated and spontaneous recovery of extinguished eyeblink CRs has not been systematically demonstrated in rodent eyeblink conditioning. In Experiment 1, US reexposure was administered 24 hours prior to a reinstatement test. In Experiment 2, US reexposure was administered 5 min prior to a reinstatement test. In Experiment 3, a long, discrete cue (a houselight), present in all phases of training and testing, served as a context within which each trial occurred to maximize context processing, which in other preparations has been shown to be required for reinstatement. In Experiment 4, an additional group was included that received footshock exposure, rather than US reexposure, between extinction and test, and contextual freezing was measured prior to test. Spontaneous recovery was robust in Experiments 3 and 4. In Experiment 4, context freezing was strong in a group given footshock exposure but not in a group given eyeshock US reexposure. There was no reinstatement observed in any experiment. With stimulus conditions that produce eyeblink conditioning and research designs that produce reinstatement in other forms of classical conditioning, we observed spontaneous recovery but not reinstatement of extinguished eyeblink CRs. This suggests that reinstatement, but not spontaneous recovery, is a preparation- or substrate-dependent phenomenon. PMID:21517145
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J
2011-08-24
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.
Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex
Tan (陈勇毅), Andrew Y. Y.; Brown, Brandon D.; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J.
2011-01-01
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: 1) how does orientation selectivity in mouse V1 neurons compare with that in previously described species? 2) what is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity - based on membrane potential, synaptic excitation, and synaptic inhibition - to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats. PMID:21865476
Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making
Tremel, Joshua J.; Wheeler, Mark E.
2015-01-01
During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation. PMID:25562821
Loeber, Sabine; Duka, Theodora
2009-12-01
To investigate whether acute alcohol would affect performance of a conditioned behavioural response to obtain a reward outcome and impair performance in a task measuring inhibitory control to provide new knowledge of how the acute effects of alcohol might contribute to the transition from alcohol use to dependence. A randomized controlled between-subjects design was employed. The laboratory of experimental psychology at the University of Sussex. Thirty-two light to moderate social drinkers recruited from the undergraduate and postgraduate population. After the administration of alcohol (0.8 g/kg) or placebo participants underwent an instrumental reward-seeking procedure, with abstract stimuli serving as S+ (always predicting a win of 10 pence) and S- (always predicting a loss of 10 pence). In addition, a Stop Signal task was administered before and after the administration of alcohol. Participants of the alcohol group performed the behavioural response to obtain the reward outcome more often than placebo subjects in trials associated with loss of money. This finding was observed, although alcohol was not affecting explicit knowledge of stimulus-response outcome contingencies and acquisition of conditioned attentional and emotional responses. In addition, alcohol increased Stop Signal reaction time indicating disinhibiting effects of alcohol, and this was associated positively with response probability to the S-. These results demonstrate that alcohol is affecting inhibitory control of behavioural responses to external signals even when associated with punishment, contributing in this way to the transition from alcohol use to dependence.
Specific Skin Lesions of Sarcoidosis Located at Venipuncture Points for Blood Sample Collection.
Marcoval, Joaquim; Penín, Rosa M; Mañá, Juan
2018-05-01
It has been suggested that the predilection of sarcoidosis to affect scars is due to the presence of antigens or foreign bodies that can serve as a stimulus for granuloma formation. Several patients with sarcoidosis-specific skin lesions in venous puncture sites have been reported. However, in these patients the pathogenesis of the cutaneous lesions is not clear because the presence of foreign bodies is not to be expected. Our objective was to describe 3 patients who developed specific lesions of sarcoidosis in areas of venipuncture and to discuss their possible pathogenesis. The database of the Sarcoid Clinic of Bellvitge Hospital (an 800-bed university referral center providing tertiary care to approximately 1 million people in Barcelona, Spain) was reviewed to detect those patients with specific cutaneous lesions of systemic sarcoidosis in areas of venipuncture. Three patients with biopsy-proven specific cutaneous lesions of systemic sarcoidosis in areas of venipuncture for blood collection were detected (3 women, mean age 56 years). In one case, the histopathological image shows the hypothetical path of a needle through the skin. In 2 cases, an amorphous birefringent material was detected under polarized light. This material was consistent with silicone. In patients who are developing sarcoidosis, the smallest amount of oil used as lubricant in the needle for sample blood collection may induce the formation of granulomas. In addition to exploring scars, it is advisable to explore the cubital folds to detect specific cutaneous lesions of sarcoidosis.
Lecci, Sandro; Fernandez, Laura M. J.; Weber, Frederik D.; Cardis, Romain; Chatton, Jean-Yves; Born, Jan; Lüthi, Anita
2017-01-01
Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non–rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders. PMID:28246641
Liscum, E; Stowe-Evans, E L
2000-09-01
Phototropism is the process by which plants reorient growth of various organs, most notably stems, in response to lateral differences in light quantity and/or quality. The ubiquitous nature of the phototropic response in the plant kingdom implies that it provides some adaptive evolutionary advantage. Upon visual inspection it is tempting to surmise that phototropic curvatures result from a relatively simple growth response to a directional stimulus. However, detailed photophysiological, and more recently genetic and molecular, studies have demonstrated that phototropism is in fact regulated by complex interactions among several photosensory systems. At least two receptors, phototropin and a presently unidentified receptor, appear to mediate the primary photoreception of directional blue light cues in dark-grown plants. PhyB may also function as a primary receptor to detect lateral increases in far-red light in neighbor-avoidance responses of light-grown plants. Phytochromes (phyA and phyB at a minimum) also appear to function as secondary receptors to regulate adaptation processes that ultimately modulate the magnitude of curvature induced by primary photoperception. As a result of the interactions of these multiple photosensory systems plants are able to maximize the adaptive advantage of the phototropic response in ever changing light environments.
NASA Astrophysics Data System (ADS)
Aguilar, Mariela C.; Gonzalez, Alex; Rowaan, Cornelis; De Freitas, Carolina; Rosa, Potyra R.; Alawa, Karam; Lam, Byron L.; Parel, Jean-Marie A.
2016-03-01
As there is no clinically available instrument to systematically and reliably determine the photosensitivity thresholds of patients with dry eyes, blepharospasms, migraines, traumatic brain injuries, and genetic disorders such as Achromatopsia, retinitis pigmentosa and other retinal dysfunctions, a computer-controlled optoelectronics system was designed. The BPEI Photosensitivity System provides a light stimuli emitted from a bi-cupola concave, 210 white LED array with varying intensity ranging from 1 to 32,000 lux. The system can either utilize a normal or an enhanced testing mode for subjects with low light tolerance. The automated instrument adjusts the intensity of each light stimulus. The subject is instructed to indicate discomfort by pressing a hand-held button. Reliability of the responses is tracked during the test. The photosensitivity threshold is then calculated after 10 response reversals. In a preliminary study, we demonstrated that subjects suffering from Achromatopsia experienced lower photosensitivity thresholds than normal subjects. Hence, the system can safely and reliably determine the photosensitivity thresholds of healthy and light sensitive subjects by detecting and quantifying the individual differences. Future studies will be performed with this system to determine the photosensitivity threshold differences between normal subjects and subjects suffering from other conditions that affect light sensitivity.
NASA Astrophysics Data System (ADS)
Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi
2017-02-01
We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.
A Reversible Light-Operated Nanovalve on Mesoporous Silica Nanoparticles
Tarn, Derrick; Ferris, Daniel P.; Barnes, Jonathan C.; Ambrogio, Michael W.; Stoddart, J. Fraser
2014-01-01
Two azobenzene α-cyclodextrin based nanovalves are designed, synthesized and assembled on mesoporous silica nanoparticles. When in aqueous conditions, the cyclodextrin cap is tightly bound to the azobenzene moiety and capable of holding back loaded cargo molecules. Upon irradiation with a near-UV light laser, trans to cis- photoisomerization of azobenzene initiates a dethreading process, which causes the cyclodextrin cap to unbind followed by the release of cargo. The addition of a bulky stopper group to the end of the stalk allows this design to be reversible; complete dethreading of cyclodextrin as a result of unbinding with azobenzene is prevented as a consequence of steric interference. As a result, thermal relaxation of cis- to trans-azobenzene allows for the rebinding of cyclodextrin and resealing of the nanopores, a process which entraps the remaining cargo. Two stalks were designed with different lengths and tested with alizarin red S and propidium iodide. No cargo release was observed prior to light irradiation, and the system was capable of multiuse. On / off control was also demonstrated by monitoring the release of cargo when the light stimulus was applied and removed, respectively. PMID:24519642
The faintest speck of dirt: disgust enhances the detection of impurity.
Sherman, Gary D; Haidt, Jonathan; Clore, Gerald L
2012-12-01
Purity is commonly regarded as being physically embodied in the color white, with even trivial deviations from whiteness indicating a loss of purity. In three studies, we explored the implications of this "white = pure" association for disgust, an emotion that motivates the detection and avoidance of impurities that threaten purity and cleanliness. We hypothesized that disgust tunes perception to prioritize the light end of the light-dark spectrum, which results in a relative hypersensitivity to changes in lightness in this range. In studies 1 and 2, greater sensitivity to disgusting stimuli was associated with greater ability to make subtle gray-scale discriminations (e.g., detecting a faint gray stimulus against a white background) at the light end of the spectrum relative to ability to make subtle gray-scale discriminations at the dark end of the spectrum. In study 3, after viewing disgusting images, disgust-sensitive individuals demonstrated a heightened ability to detect deviations from white. These findings suggest that disgust not only motivates people to avoid impurities, but actually makes them better able to see them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidayat, Arif, E-mail: arif.hidayat.fmipa@um.ac.id; Latifah, Eny; Kurniati, Diana
This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.
Human phase response curve to intermittent blue light using a commercially available device
Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I
2012-01-01
Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC. We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm−2, ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world. PMID:22753544
Human phase response curve to intermittent blue light using a commercially available device.
Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I
2012-10-01
Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm(−2), ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.
NASA Technical Reports Server (NTRS)
Hangarter, R. P.
1997-01-01
Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.
Sustained and Transient Contributions to the Rat Dark-Adapted Electroretinogram b-Wave
Dang, Trung M.; Vingrys, Algis J.; Bui, Bang V.
2013-01-01
The most dominant feature of the electroretinogram, the b-wave, is thought to reflect ON-bipolar cell responses. However, a number of studies suggest that the b-wave is made up of several components. We consider the composition of the rat b-wave by subtracting corneal negative components obtained using intravitreal application of pharmacological agents to remove postreceptoral responses. By analyzing the intensity-response characteristic of the PII across a range of fixed times during and after a light step, we find that the rat isolated PII has 2 components. The first has fast rise and decay characteristics with a low sensitivity to light. GABAc-mediated inhibitory pathways enhance this transient-ON component to manifest increased and deceased sensitivity to light at shorter (<160 ms) and longer times, respectively. The second component has slower temporal characteristics but is more sensitive to light. GABAc-mediated inhibition enhances this sustained-ON component but has little effect on its sensitivity to light. After stimulus offset, both transient and sustained components return to baseline, and a long latency sustained positive component becomes apparent. The light sensitivities of transient-ON and sustained-OFF components are consistent with activity arising from cone ON- and OFF-bipolar cells, whereas the sustained-ON component is likely to arise from rod bipolar cells. PMID:23533706
Gravity, light and plant form.
Hangarter, R P
1997-06-01
Plants have evolved highly sensitive and selective mechanisms that detect and respond to various aspects of their environment. As a plant develops, it integrates the environmental information perceived by all of its sensory systems and adapts its growth to the prevailing environmental conditions. Light is of critical importance because plants depend on it for energy and, thus, survival. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency. Gravity provides an almost constant stimulus that is the source of critical spatial information about its surroundings and provides important cues for orientating plant growth. Gravity plays a particularly important role during the early stages of seedling growth by stimulating a negative gravitropic response in the primary shoot that orientates it towards the source of light, and a positive gravitropic response in the primary root that causes it to grow down into the soil, providing support and nutrient acquisition. Gravity also influences plant form during later stages of development through its effect on lateral organs and supporting structures. Thus, the final form of a plant depends on the cumulative effects of light, gravity and other environmental sensory inputs on endogenous developmental programs. This article is focused on developmental interactions modulated by light and gravity.
Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.
Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan
2008-01-01
The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.
A unique role of endogenous visual-spatial attention in rapid processing of multiple targets
Guzman, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru
2012-01-01
Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions). We report that endogenous attention uniquely contributes to processing of multiple targets. For speeded visual discrimination, response times are faster for multiple redundant targets than for single targets due to probability summation and/or signal integration. This redundancy gain was unaffected when attention was exogenously diverted from the targets, but was completely eliminated when attention was endogenously diverted. This was not due to weaker manipulation of exogenous attention because our exogenous and endogenous cues similarly affected overall response times. Thus, whereas exogenous attention is superior for processing single targets, endogenous attention plays a unique role in allocating resources crucial for rapid concurrent processing of multiple targets. PMID:21517209
Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light.
Karimi, Mahdi; Sahandi Zangabad, Parham; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R
2017-04-05
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Rider, Andrew T; Henning, G Bruce; Eskew, Rhea T; Stockman, Andrew
2018-04-24
The neural signals generated by the light-sensitive photoreceptors in the human eye are substantially processed and recoded in the retina before being transmitted to the brain via the optic nerve. A key aspect of this recoding is the splitting of the signals within the two major cone-driven visual pathways into distinct ON and OFF branches that transmit information about increases and decreases in the neural signal around its mean level. While this separation is clearly important physiologically, its effect on perception is unclear. We have developed a model of the ON and OFF pathways in early color processing. Using this model as a guide, we can produce imbalances in the ON and OFF pathways by changing the shapes of time-varying stimulus waveforms and thus make reliable and predictable alterations to the perceived average color of the stimulus-although the physical mean of the waveforms does not change. The key components in the model are the early half-wave rectifying synapses that split retinal photoreceptor outputs into the ON and OFF pathways and later sigmoidal nonlinearities in each pathway. The ability to systematically vary the waveforms to change a perceptual quality by changing the balance of signals between the ON and OFF visual pathways provides a powerful psychophysical tool for disentangling and investigating the neural workings of human vision. Copyright © 2018 the Author(s). Published by PNAS.
The influence of iris color on the pupillary light reflex.
Bergamin, O; Schoetzau, A; Sugimoto, K; Zulauf, M
1998-08-01
This study was carried out to investigate the effect of iris color on the pupillary light reflex (PLR) in normal healthy volunteers. Pupil perimetry was performed on 50 healthy volunteers with the Octopus 1-2-3 automated perimeter. Within the 30-deg visual field, 33 test locations were investigated four times. Stimulus parameters were Goldmann size V (1.72 degrees), intensity 1632 cd/m2, stimulus time 200 ms, background illumination 0 cd/m2, and interstimulus interval 3 s. Pupillometric parameters studied were initial pupil size, amplitude (magnitude of pupillary contraction), latency time, contraction time, pre-PLR movement, contraction velocity, and redilation velocity. Pupillometric parameters were investigated by analysis of variance by the independent variables blue and brown irides. Iris color (blue vs brown) influenced statistically significantly (P < 0.05) amplitude (0.504 mm vs 0.594 mm), contraction time (401 ms vs 407 ms), contraction velocity (13.75 mm2/s vs 16.01 mm2/s), and redilation velocity (4.80 mm2/s vs 5.66 mm2/s). Iris color did not influence initial pupil size (4.78 mm vs 4.83 mm), latency time (520 mm vs 521 ms), and pre-PLR movement (0.328 mm2/s vs 0.325 mm2/s). Pupillary contraction amplitude and velocity depended on iris color, whereas pupil size and latency time were independent of iris color. Therefore, iris color might be considered when, evaluating pupillary movements in pupil perimetry.
Byrne, Colene M; Mercincavage, Lauren M; Pan, Eric C; Vincent, Adam G; Johnston, Douglas S; Middleton, Blackford
2010-04-01
We compare health information technology (IT) in the Department of Veterans Affairs (VA) to norms in the private sector, and we estimate the costs and benefits of selected VA health IT systems. The VA spent proportionately more on IT than the private health care sector spent, but it achieved higher levels of IT adoption and quality of care. The potential value of the VA's health IT investments is estimated at $3.09 billion in cumulative benefits net of investment costs. This study serves as a framework to inform efforts to measure and calculate the benefits of federal health IT stimulus programs.
Martin Luther King, Jr., General Hospital and community involvement.
Humphrey, M M
1973-07-01
Community involvement is not just one facet of the new Martin Luther King, Jr., General Hospital's existence. It is the mainstream from which all other activities flow. In addition to meeting the conventional needs of a conventional hospital staff with the core collection of texts and journals, this library goes one step further. It acts as a resource for its community health workers, dietitians, and nurses in their various outreach programs. It serves as a stimulus for the high school or community college student who may be curious about a health career. It also finds time to provide reading material for its patients.