Sample records for stipitis genomics transcriptomics

  1. Pichia stipitis genomics, transcriptomics, and gene clusters

    Treesearch

    Thomas W. Jeffries; Jennifer R. Headman Van Vleet

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the...

  2. Genomic sequence of the xylose fermenting, insect-inhabitingyeast, Pichia stipitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, Thomas W.; Grigoriev, Igor; Grimwood, Jane

    2007-06-25

    Xylose is a major constituent of angiosperm lignocellulose,so its fermentation is important for bioconversion to fuels andchemicals. Pichia stipitis is the best-studied native xylose fermentingyeast. Genes from P. stipitis have been used to engineer xylosemetabolism in Saccharomycescerevisiae, and the regulation of the P.stipitis genome offers insights into the mechanisms of xylose metabolismin yeasts. We have sequenced, assembled and finished the genome ofP.stipitis. As such, it is one of only a handful of completely finishedeukaryotic organisms undergoing analysis and manual curation. Thesequence has revealed aspects of genome organization, numerous genes forbiocoversion, preliminary insights into regulation of central metabolicpathways, numerous examples ofmore » co-localized genes with related functions,and evidence of how P. stipitis manages to achieve redox balance whilegrowing on xylose under microaerobic conditions.« less

  3. Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis

    Treesearch

    Jose M. Laplaza; Beatriz Rivas Torres; Yong-Su Jin; Thomas W. Jeffries

    2006-01-01

    Pichia stipitis is widely studied for its capacity to ferment d-xylose to ethanol. Strain improvement has been facilitated by recent completion of the P. stipitis genome. P. stipitis uses CUG to code for serine rather than leucine, as is the case for the universal genetic code thereby limiting the availability of heterologous drug resistance markers for transformation...

  4. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Scheffersomyces stipitis is a Crabtree negative yeast, commonly known for its capacity to ferment pentose sugars. Differently from Crabtree positive yeasts such as Saccharomyces cerevisiae, the onset of fermentation in S. stipitis is not dependent on the sugar concentration, but is regulated by a decrease in oxygen levels. Even though S. stipitis has been extensively studied due to its potential application in pentoses fermentation, a limited amount of information is available about its metabolism during aerobic growth on glucose. Here, we provide a systems biology based comparison between the two yeasts, uncovering the metabolism of S. stipitis during aerobic growth on glucose under batch and chemostat cultivations. Results Starting from the analysis of physiological data, we confirmed through 13C-based flux analysis the fully respiratory metabolism of S. stipitis when growing both under glucose limited or glucose excess conditions. The patterns observed showed similarity to the fully respiratory metabolism observed for S. cerevisiae under chemostat cultivations however, intracellular metabolome analysis uncovered the presence of several differences in metabolite patterns. To describe gene expression levels under the two conditions, we performed RNA sequencing and the results were used to quantify transcript abundances of genes from the central carbon metabolism and compared with those obtained with S. cerevisiae. Interestingly, genes involved in central pathways showed different patterns of expression, suggesting different regulatory networks between the two yeasts. Efforts were focused on identifying shared and unique families of transcription factors between the two yeasts through in silico transcription factors analysis, suggesting a different regulation of glycolytic and glucoenogenic pathways. Conclusions The work presented addresses the impact of high-throughput methods in describing and comparing the physiology of Crabtree positive and Crabtree negative yeasts. Based on physiological data and flux analysis we identified the presence of one metabolic condition for S. stipitis under aerobic batch and chemostat cultivations, which shows similarities to the oxidative metabolism observed for S. cerevisiae under chemostat cultivations. Through metabolome analysis and genome-wide transcriptomic analysis several differences were identified. Interestingly, in silico analysis of transciption factors was useful to address a different regulation of mRNAs of genes involved in the central carbon metabolism. To our knowledge, this is the first time that the metabolism of S. stiptis is investigated in details and is compared to S. cerevisiae. Our study provides useful results and allows for the possibility to incorporate these data into recently developed genome-scaled metabolic, thus contributing to improve future industrial applications of S. stipitis as cell factory. PMID:23043429

  5. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis

    Treesearch

    Thomas W. Jeffries; Igor V. Grigroriev; Jane Grimwood; Jose M. Laplaza; Andrea Aerts; Asaf Salamov; Jeremy Schmutz; Erika Lindquist; Paramvir Dehal; Harris Shapiro; Yong-Su Jin; Volkmar Passoth; Paul M. Richardson

    2007-01-01

    Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose...

  6. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

    PubMed

    Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping

    2014-03-01

    Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  8. Metabolic reconstruction and flux analysis of industrial Pichia yeasts.

    PubMed

    Chung, Bevan Kai-Sheng; Lakshmanan, Meiyappan; Klement, Maximilian; Ching, Chi Bun; Lee, Dong-Yup

    2013-03-01

    Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts' metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.

  9. Genetic engineering of Pichia stipitis for fermentation of xylose

    Treesearch

    Thomas W. Jeffries; N. Q. Shi; J. Y. Cho; P. Lu; K. Dahn; J. Hendrick; H. K. Sreenath

    1998-01-01

    A useful genetic system has been developed for the transformation of Pichia stipitis. This includes two selectable markers (URA3 and LEU2), integrating and autonomous replication vectors, a pop-out cassette that enables multiple targeted disruptions, and a genomic X-library for rapid cloning. Using this system we have cloned two genes for alcohol dehydrogenase (PsADH1...

  10. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis

    PubMed Central

    2017-01-01

    The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC. PMID:28658270

  11. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis.

    PubMed

    Acevedo, Alejandro; Conejeros, Raúl; Aroca, Germán

    2017-01-01

    The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC.

  12. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass

    USDA-ARS?s Scientific Manuscript database

    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors [such as furfural and 5-hydroxymethylfurfural (HMF)] to less toxic corresponding alcohols. However, the...

  13. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production

    Treesearch

    Nian-Qing Shi; Brian Davis; Fred Sherman; Jose Cruz; Thomas W. Jeffries

    1999-01-01

    The xylose-utilizing yeast, Pichia stipitis, has a complex respiratory system that contains cytochrome and non-cytochrome alternative electron transport chains in its mitochondria. To gain primary insights into the alternative respiratory pathway, a cytochrome c gene (PsCYC1, Accession No. AF030426) was cloned from wild-type P. stipitis CBS 6054 by cross-hybridization...

  14. Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches.

    PubMed

    Makita, Yuko; Kawashima, Mika; Lau, Nyok Sean; Othman, Ahmad Sofiman; Matsui, Minami

    2018-01-19

    Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene. A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily. The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .

  15. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome.

    PubMed

    Wenger, Yvan; Galliot, Brigitte

    2013-03-25

    Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.

  16. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  17. Swine transcriptome characterization by combined Iso-Seq and RNA-seq for annotating the emerging long read-based reference genome

    USDA-ARS?s Scientific Manuscript database

    PacBio long-read sequencing technology is increasingly popular in genome sequence assembly and transcriptome cataloguing. Recently, a new-generation pig reference genome was assembled based on long reads from this technology. To finely annotate this genome assembly, transcriptomes of nine tissues fr...

  18. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  19. Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. [Cryptococcus; Pichia stipitis; Candida shehatae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.; Biely, P.; Latta, R.K.

    Yeasts able to grow on D-xylose were screened for the ability to hydrolyze xylan. Xylanase activity was found to be rare; a total of only 19 of more than 250 strains yielded a positive test result. The activity was localized largely in the genus Cryptococcus and in Pichia stipitis and its anamorph Candida shehatae. The ability to hydrolyze xylan was generally uncoupled from that to hydrolyze cellulose; only three of the xylan-positive strains also yielded a positive test for cellulolytic activity. Of the 19 xylanolytic strains. 2. P. stipitis CBS 5773 and CBS 5775, converted xylan into ethanol, with aboutmore » 60% of a theoretical yield computed on the basis of the amount of D-xylose present originally that could be released by acid hydrolysis.« less

  20. Pichia stipitis Genes for Alcohol Dehydrogenase with Fermentative and Respiratory Functions

    PubMed Central

    Cho, Jae-yong; Jeffries, Thomas W.

    1998-01-01

    Two genes coding for isozymes of alcohol dehydrogenase (ADH); designated PsADH1 and PsADH2, have been identified and isolated from Pichia stipitis CBS 6054 genomic DNA by Southern hybridization to Saccharomyces cerevisiae ADH genes, and their physiological roles have been characterized through disruption. The amino acid sequences of the PsADH1 and PsADH2 isozymes are 80.5% identical to one another and are 71.9 and 74.7% identical to the S. cerevisiae ADH1 protein. They also show a high level identity with the group I ADH proteins from Kluyveromyces lactis. The PsADH isozymes are presumably localized in the cytoplasm, as they do not possess the amino-terminal extension of mitochondrion-targeted ADHs. Gene disruption studies suggest that PsADH1 plays a major role in xylose fermentation because PsADH1 disruption results in a lower growth rate and profoundly greater accumulation of xylitol. Disruption of PsADH2 does not significantly affect ethanol production or aerobic growth on ethanol as long as PsADH1 is present. The PsADH1 and PsADH2 isozymes appear to be equivalent in the ability to convert ethanol to acetaldehyde, and either is sufficient to allow cell growth on ethanol. However, disruption of both genes blocks growth on ethanol. P. stipitis strains disrupted in either PsADH1 or PsADH2 still accumulate ethanol, although in different amounts, when grown on xylose under oxygen-limited conditions. The PsADH double disruptant, which is unable to grow on ethanol, still produces ethanol from xylose at about 13% of the rate seen in the parental strain. Thus, deletion of both PsADH1 and PsADH2 blocks ethanol respiration but not production, implying a separate path for fermentation. PMID:9546172

  1. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.

    PubMed

    Cho, Hyeyoung; Ra, Chae-Hun; Kim, Sung-Koo

    2014-02-28

    For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

  2. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis.

    PubMed

    Davidson, Nadia M; Oshlack, Alicia

    2018-05-01

    RNA sequencing (RNA-seq) analyses can benefit from performing a genome-guided and de novo assembly, in particular for species where the reference genome or the annotation is incomplete. However, tools for integrating an assembled transcriptome with reference annotation are lacking. Necklace is a software pipeline that runs genome-guided and de novo assembly and combines the resulting transcriptomes with reference genome annotations. Necklace constructs a compact but comprehensive superTranscriptome out of the assembled and reference data. Reads are subsequently aligned and counted in preparation for differential expression testing. Necklace allows a comprehensive transcriptome to be built from a combination of assembled and annotated transcripts, which results in a more comprehensive transcriptome for the majority of organisms. In addition RNA-seq data are mapped back to this newly created superTranscript reference to enable differential expression testing with standard methods.

  3. Plant genome and transcriptome annotations: from misconceptions to simple solutions

    PubMed Central

    Bolger, Marie E; Arsova, Borjana; Usadel, Björn

    2018-01-01

    Abstract Next-generation sequencing has triggered an explosion of available genomic and transcriptomic resources in the plant sciences. Although genome and transcriptome sequencing has become orders of magnitudes cheaper and more efficient, often the functional annotation process is lagging behind. This might be hampered by the lack of a comprehensive enumeration of simple-to-use tools available to the plant researcher. In this comprehensive review, we present (i) typical ontologies to be used in the plant sciences, (ii) useful databases and resources used for functional annotation, (iii) what to expect from an annotated plant genome, (iv) an automated annotation pipeline and (v) a recipe and reference chart outlining typical steps used to annotate plant genomes/transcriptomes using publicly available resources. PMID:28062412

  4. Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054

    Treesearch

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2012-01-01

    The objective of this study was to evaluate the production of ethanol by Scheffersomyces (Pichia) stipitis CBS6054, a native xylose fermenting yeast, from sugars contained in the giant reed (Arundo donax L.) hemicellulosic hydrolysate.

  5. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas

    PubMed Central

    Hou, Yu; Guo, Huahu; Cao, Chen; Li, Xianlong; Hu, Boqiang; Zhu, Ping; Wu, Xinglong; Wen, Lu; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2016-01-01

    Single-cell genome, DNA methylome, and transcriptome sequencing methods have been separately developed. However, to accurately analyze the mechanism by which transcriptome, genome and DNA methylome regulate each other, these omic methods need to be performed in the same single cell. Here we demonstrate a single-cell triple omics sequencing technique, scTrio-seq, that can be used to simultaneously analyze the genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual mammalian cell. We show that large-scale CNVs cause proportional changes in RNA expression of genes within the gained or lost genomic regions, whereas these CNVs generally do not affect DNA methylation in these regions. Furthermore, we applied scTrio-seq to 25 single cancer cells derived from a human hepatocellular carcinoma tissue sample. We identified two subpopulations within these cells based on CNVs, DNA methylome, or transcriptome of individual cells. Our work offers a new avenue of dissecting the complex contribution of genomic and epigenomic heterogeneities to the transcriptomic heterogeneity within a population of cells. PMID:26902283

  6. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells.

    PubMed

    Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang

    2018-01-01

    Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. © 2018 Han et al.; Published by Cold Spring Harbor Laboratory Press.

  7. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells

    PubMed Central

    Han, Kyung Yeon; Kim, Kyu-Tae; Joung, Je-Gun; Son, Dae-Soon; Kim, Yeon Jeong; Jo, Areum; Jeon, Hyo-Jeong; Moon, Hui-Sung; Yoo, Chang Eun; Chung, Woosung; Eum, Hye Hyeon; Kim, Sangmin; Kim, Hong Kwan; Lee, Jeong Eon; Ahn, Myung-Ju; Lee, Hae-Ock; Park, Donghyun; Park, Woong-Yang

    2018-01-01

    Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level. PMID:29208629

  8. Characterisation of the gene cluster for L-rhamnose catabolism in the yeast Scheffersomyces (Pichia) stipitis

    Treesearch

    Outi M. Koivistoinen; Mikko Arvas; Jennifer R. Headman; Martina Andberg; Merja Penttilä; Thomas W. Jeffries; Peter Richard

    2012-01-01

    In Scheffersomyces (Pichia) stipitis and related fungal species the genes for L-rhamnose catabolism RHA1, LRA2, LRA3 and LRA4 but not LADH are clustered. We find that located next to the cluster is a transcription...

  9. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis

    USDA-ARS?s Scientific Manuscript database

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity....

  10. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-06-01

    Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.

  11. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  12. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    PubMed

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  13. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose

    USDA-ARS?s Scientific Manuscript database

    Scheffersomyces (formly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol productio...

  14. Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus.

    PubMed

    Jo, Yeonhwa; Choi, Hoseong; Kim, Sang-Min; Kim, Sun-Lim; Lee, Bong Choon; Cho, Won Kyong

    2016-08-09

    Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination.

  15. Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics

    PubMed Central

    Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.

    2015-01-01

    Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641

  16. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes.

    PubMed

    Gaynor, Kaitlyn M; Solomon, Joseph W; Siller, Stefanie; Jessell, Linnet; Duffy, J Emmett; Rubenstein, Dustin R

    2017-11-01

    Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes. © 2017 John Wiley & Sons Ltd.

  17. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complimented by transcriptome information that will enhance genome assembly and annotation. Previously, we reported a transcriptome reference sequence using a 19X coverage of Sanger and 454-pyrosequencing dat...

  18. Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Jarrod A.; Ho, Isaac; Sunkara, Sirisha

    2011-08-18

    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions inmore » the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ~280 bp or ~3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed.« less

  19. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    PubMed

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  20. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    PubMed

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  1. Genome Annotation and Transcriptomics of Oil-Producing Algae

    DTIC Science & Technology

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  2. CGDV: a webtool for circular visualization of genomics and transcriptomics data.

    PubMed

    Jha, Vineet; Singh, Gulzar; Kumar, Shiva; Sonawane, Amol; Jere, Abhay; Anamika, Krishanpal

    2017-10-24

    Interpretation of large-scale data is very challenging and currently there is scarcity of web tools which support automated visualization of a variety of high throughput genomics and transcriptomics data and for a wide variety of model organisms along with user defined karyotypes. Circular plot provides holistic visualization of high throughput large scale data but it is very complex and challenging to generate as most of the available tools need informatics expertise to install and run them. We have developed CGDV (Circos for Genomics and Transcriptomics Data Visualization), a webtool based on Circos, for seamless and automated visualization of a variety of large scale genomics and transcriptomics data. CGDV takes output of analyzed genomics or transcriptomics data of different formats, such as vcf, bed, xls, tab limited matrix text file, CNVnator raw output and Gene fusion raw output, to plot circular view of the sample data. CGDV take cares of generating intermediate files required for circos. CGDV is freely available at https://cgdv-upload.persistent.co.in/cgdv/ . The circular plot for each data type is tailored to gain best biological insights into the data. The inter-relationship between data points, homologous sequences, genes involved in fusion events, differential expression pattern, sequencing depth, types and size of variations and enrichment of DNA binding proteins can be seen using CGDV. CGDV thus helps biologists and bioinformaticians to visualize a variety of genomics and transcriptomics data seamlessly.

  3. New in-depth rainbow trout transcriptome reference and digital atlas of gene expression

    USDA-ARS?s Scientific Manuscript database

    Sequencing the rainbow trout genome is underway and a transcriptome reference sequence is required to help in genome assembly and gene discovery. Previously, we reported a transcriptome reference sequence using a 19X coverage of 454-pyrosequencing data. Although this work added a great wealth of ann...

  4. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    USDA-ARS?s Scientific Manuscript database

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  5. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production

    USDA-ARS?s Scientific Manuscript database

    We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated ...

  6. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.

    PubMed

    Ra, Chae Hun; Jeong, Gwi-Taek; Shin, Myung Kyo; Kim, Sung-Koo

    2013-07-01

    The seaweed, Gelidium amansii, was fermented to produce bioethanol. Optimal pretreatment condition was determined as 94 mM H2SO4 and 10% (w/v) seaweed slurry at 121°C for 60 min. The mono sugars of 43.5 g/L with 57.4% of conversion from total carbohydrate of 75.8 g/L with G. amansii slurry 100g dcw/L were obtained by thermal acid hydrolysis pretreatment and enzymatic saccharification. G. amansii hydrolysate was used as the substrate for ethanol production by separate hydrolysis and fermentation (SHF). The ethanol concentration of 20.5 g/L was produced by Scheffersomyces stipitis KCTC 7228. The effect of HMF on ethanol production by S. stipitis KCTC 7228 was evaluated and 5-hydroxymethylfurfural (HMF) was converted to 2,5-bis-hydroxymethylfuran. The accumulated 2,5-bis-hydroxymethylfuran in the medium did not affect galactose and glucose uptakes and ethanol production. Biotransformation of HMF to less inhibitory compounds by S. stipitis KCTC 7228 could enhance overall fermentation yields of seaweed hydrolysates to ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of fermentation kinetics of acid-treated corn cob hydrolysate for xylose fermentation in the presence of acetic acid by Pichia stipitis.

    PubMed

    Kashid, Mohan; Ghosalkar, Anand

    2017-08-01

    The efficient utilization of lignocellulosic biomass for ethanol production depends on the fermentability of the biomass hydrolysate obtained after pretreatment. In this work we evaluated the kinetics of ethanol production from xylose using Pichia stipitis in acid-treated corn cob hydrolysate. Acetic acid is one of the main inhibitors in corn cob hydrolysate that negatively impacts kinetics of xylose fermentation by P. stipitis. Unstructured kinetic model has been formulated that describes cell mass growth and ethanol production as a function of xylose, oxygen, ethanol, and acetic acid concentration. Kinetic parameters were estimated under different operating conditions affecting xylose fermentation. This is the first report on kinetics of xylose fermentation by P. stipitis which includes inhibition of acetic acid on growth and product formation. In the presence of acetic acid in the hydrolysate, the model accurately predicted reduction in maximum specific growth rate (from 0.23 to 0.15 h -1 ) and increase in ethanol yield per unit biomass (from 3 to 6.2 gg -1 ), which was also observed during experimental trials. Presence of acetic acid in the fermentation led to significant reduction in the cell growth rate, reduction in xylose consumption and ethanol production rate. The developed model accurately described physiological state of P. stipitis during corn cob hydrolysate fermentation. Proposed model can be used to predict the influence of xylose, ethanol, oxygen, and acetic acid concentration on cell growth and ethanol productivity in industrial fermentation.

  8. Sequencing, Annotation and Analysis of the Syrian Hamster (Mesocricetus auratus) Transcriptome

    PubMed Central

    Tchitchek, Nicolas; Safronetz, David; Rasmussen, Angela L.; Martens, Craig; Virtaneva, Kimmo; Porcella, Stephen F.; Feldmann, Heinz

    2014-01-01

    Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional genomics studies. PMID:25398096

  9. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid.

    PubMed

    Coate, Jeremy E; Doyle, Jeff J

    2010-01-01

    Evolutionary biologists are increasingly comparing gene expression patterns across species. Due to the way in which expression assays are normalized, such studies provide no direct information about expression per gene copy (dosage responses) or per cell and can give a misleading picture of genes that are differentially expressed. We describe an assay for estimating relative expression per cell. When used in conjunction with transcript profiling data, it is possible to compare the sizes of whole transcriptomes, which in turn makes it possible to compare expression per cell for each gene in the transcript profiling data set. We applied this approach, using quantitative reverse transcriptase-polymerase chain reaction and high throughput RNA sequencing, to a recently formed allopolyploid and showed that its leaf transcriptome was approximately 1.4-fold larger than either progenitor transcriptome (70% of the sum of the progenitor transcriptomes). In contrast, the allopolyploid genome is 94.3% as large as the sum of its progenitor genomes and retains > or =93.5% of the sum of its progenitor gene complements. Thus, "transcriptome downsizing" is greater than genome downsizing. Using this transcriptome size estimate, we inferred dosage responses for several thousand genes and showed that the majority exhibit partial dosage compensation. Homoeologue silencing is nonrandomly distributed across dosage responses, with genes showing extreme responses in either direction significantly more likely to have a silent homoeologue. This experimental approach will add value to transcript profiling experiments involving interspecies and interploidy comparisons by converting expression per transcriptome to expression per genome, eliminating the need for assumptions about transcriptome size.

  10. Transcriptome Assembly, Gene Annotation and Tissue Gene Expression Atlas of the Rainbow Trout

    PubMed Central

    Salem, Mohamed; Paneru, Bam; Al-Tobasei, Rafet; Abdouni, Fatima; Thorgaard, Gary H.; Rexroad, Caird E.; Yao, Jianbo

    2015-01-01

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome. PMID:25793877

  11. High-confidence coding and noncoding transcriptome maps

    PubMed Central

    2017-01-01

    The advent of high-throughput RNA sequencing (RNA-seq) has led to the discovery of unprecedentedly immense transcriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that significantly improves the original assemblies, respectively assembled with stranded and/or unstranded RNA-seq data, by orienting unstranded reads using the maximum likelihood estimation and by integrating information about transcription start sites and cleavage and polyadenylation sites. Applying large-scale transcriptomic data comprising 230 billion RNA-seq reads from the ENCODE, Human BodyMap 2.0, The Cancer Genome Atlas, and GTEx projects, CAFE enabled us to predict the directions of about 220 billion unstranded reads, which led to the construction of more accurate transcriptome maps, comparable to the manually curated map, and a comprehensive lncRNA catalog that includes thousands of novel lncRNAs. Our pipeline should not only help to build comprehensive, precise transcriptome maps from complex genomes but also to expand the universe of noncoding genomes. PMID:28396519

  12. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome

    PubMed Central

    Kuznetsova, Inna S.; Thevasagayam, Natascha M.; Sridatta, Prakki S. R.; Komissarov, Aleksey S.; Saju, Jolly M.; Ngoh, Si Y.; Jiang, Junhui; Shen, Xueyan; Orbán, László

    2014-01-01

    As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates. PMID:25120555

  13. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.

    PubMed

    Gan, Ruei-Chi; Chen, Ting-Wen; Wu, Timothy H; Huang, Po-Jung; Lee, Chi-Ching; Yeh, Yuan-Ming; Chiu, Cheng-Hsun; Huang, Hsien-Da; Tang, Petrus

    2016-12-22

    Next-generation sequencing promises the de novo genomic and transcriptomic analysis of samples of interests. However, there are only a few organisms having reference genomic sequences and even fewer having well-defined or curated annotations. For transcriptome studies focusing on organisms lacking proper reference genomes, the common strategy is de novo assembly followed by functional annotation. However, things become even more complicated when multiple transcriptomes are compared. Here, we propose a new analysis strategy and quantification methods for quantifying expression level which not only generate a virtual reference from sequencing data, but also provide comparisons between transcriptomes. First, all reads from the transcriptome datasets are pooled together for de novo assembly. The assembled contigs are searched against NCBI NR databases to find potential homolog sequences. Based on the searched result, a set of virtual transcripts are generated and served as a reference transcriptome. By using the same reference, normalized quantification values including RC (read counts), eRPKM (estimated RPKM) and eTPM (estimated TPM) can be obtained that are comparable across transcriptome datasets. In order to demonstrate the feasibility of our strategy, we implement it in the web service PARRoT. PARRoT stands for Pipeline for Analyzing RNA Reads of Transcriptomes. It analyzes gene expression profiles for two transcriptome sequencing datasets. For better understanding of the biological meaning from the comparison among transcriptomes, PARRoT further provides linkage between these virtual transcripts and their potential function through showing best hits in SwissProt, NR database, assigning GO terms. Our demo datasets showed that PARRoT can analyze two paired-end transcriptomic datasets of approximately 100 million reads within just three hours. In this study, we proposed and implemented a strategy to analyze transcriptomes from non-reference organisms which offers the opportunity to quantify and compare transcriptome profiles through a homolog based virtual transcriptome reference. By using the homolog based reference, our strategy effectively avoids the problems that may cause from inconsistencies among transcriptomes. This strategy will shed lights on the field of comparative genomics for non-model organism. We have implemented PARRoT as a web service which is freely available at http://parrot.cgu.edu.tw .

  14. RNASeq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar 'Riesling'

    USDA-ARS?s Scientific Manuscript database

    The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in heterozygous species. This is a promising approach to improving the annotation of the reference genome sequence of grapevine (Vitis vinifera L.), a species of high-l...

  15. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30

    Treesearch

    Rita C.L.B. Rodrigues; William R. Kenealy; Thomas W. Jeffries

    2011-01-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono-and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3 -Ä1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic...

  16. 2-deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis

    Treesearch

    Hassan K. Sreenath; Thomas W. Jeffries

    1998-01-01

    The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants derepressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucoserepressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants...

  17. Elucidating and mining the Tulipa and Lilium transcriptomes.

    PubMed

    Moreno-Pachon, Natalia M; Leeggangers, Hendrika A C F; Nijveen, Harm; Severing, Edouard; Hilhorst, Henk; Immink, Richard G H

    2016-10-01

    Genome sequencing remains a challenge for species with large and complex genomes containing extensive repetitive sequences, of which the bulbous and monocotyledonous plants tulip and lily are examples. In such a case, sequencing of only the active part of the genome, represented by the transcriptome, is a good alternative to obtain information about gene content. In this study we aimed to generate a high quality transcriptome of tulip and lily and to make this data available as an open-access resource via a user-friendly web-based interface. The Illumina HiSeq 2000 platform was applied and the transcribed RNA was sequenced from a collection of different lily and tulip tissues, respectively. In order to obtain good transcriptome coverage and to facilitate effective data mining, assembly was done using different filtering parameters for clearing out contamination and noise of the RNAseq datasets. This analysis revealed limitations of commonly applied methods and parameter settings used in de novo transcriptome assembly. The final created transcriptomes are publicly available via a user friendly Transcriptome browser ( http://www.bioinformatics.nl/bulbs/db/species/index ). The usefulness of this resource has been exemplified by a search for all potential transcription factors in lily and tulip, with special focus on the TCP transcription factor family. This analysis and other quality parameters point out the quality of the transcriptomes, which can serve as a basis for further genomics studies in lily, tulip, and bulbous plants in general.

  18. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.

  19. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing

    PubMed Central

    2013-01-01

    Background Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Results Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. Conclusions The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants. PMID:24373163

  20. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis.

    PubMed

    Song, Xinqiang; Lin, Qingsong

    2017-08-01

    Rheumatoid arthritis is an autoimmune disease that affects several organs and tissues, predominantly the synovial joints. The pathogenesis of this disease is not completely understood, which maybe involved in the genomic variations, gene expression, protein translation and post-translational modifications. These system variations in genomics, transcriptomics and proteomics are dynamic in nature and their crosstalk is overwhelmingly complex, thus analyzing them separately may not be very informative. However, various '-omics' techniques developed in recent years have opened up new possibilities for clarifying disease pathways and thereby facilitating early diagnosis and specific therapies. This review examines how recent advances in the fields of genomics, transcriptomics and proteomics have contributed to our understanding of rheumatoid arthritis.

  1. Xylitol production by a Pichia stipitis D-xylulokinase mutant

    Treesearch

    Yong-Su Jin; Jose Cruz; Thomas W. Jeffries

    2005-01-01

    Xylitol production by Pichia stipitis FPL-YS30, a xyl3-Ä1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-Ä1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g...

  2. Fermentation kinetics for xylitol production by a Pichia stipitis D-xylulokinase mutant previously grown in spent sulfite liquor

    Treesearch

    Rita C.L.B. Rodrigues; Chenfeng Lu; Bernice Liu; Thomas W. Jeffries

    2008-01-01

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3[delta]) to convert these sugars into useful products. FPL-YS30 produces a...

  3. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    PubMed Central

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  4. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures

    PubMed Central

    Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.

    2017-01-01

    Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719

  5. Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    PubMed Central

    2011-01-01

    Background With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles. Results RNA extracted from laboratory cultures of Porphyromonas gingivalis was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts. Conclusions An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more fluorescent molecules per RNA fragment. PMID:21235785

  6. Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome.

    PubMed

    Mahesh, Hirehally Basavarajegowda; Subba, Pratigya; Advani, Jayshree; Shirke, Meghana Deepak; Loganathan, Ramya Malarini; Chandana, Shankara Lingu; Shilpa, Siddappa; Chatterjee, Oishi; Pinto, Sneha Maria; Prasad, Thottethodi Subrahmanya Keshava; Gowda, Malali

    2018-04-01

    Indian sandalwood ( Santalum album ) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees. © 2018 American Society of Plant Biologists. All Rights Reserved.

  7. The effect of initial cell concentration on xylose fermentation by Pichia stipitis

    Treesearch

    Frank K. Agbogbo; Guillermo Coward-Kelly; Mads Torry-Smith; Kevin Wenger; Thomas W. Jeffries

    2007-01-01

    Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was...

  8. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    PubMed Central

    Naithani, Sushma; Sullivan, Chris; Preece, Justin; Tiwari, Vijay K.; Elser, Justin; Leonard, Jeffrey M.; Sage, Abigail; Gresham, Cathy; Kerhornou, Arnaud; Bolser, Dan; McCarthy, Fiona; Kersey, Paul; Lazo, Gerard R.; Jaiswal, Pankaj

    2014-01-01

    Background Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. Principal Findings The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. Conclusions De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. PMID:24821410

  9. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    PubMed Central

    2012-01-01

    Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331

  10. Draft genome and reference transcriptomic resources for the urticating pine defoliator Thaumetopoea pityocampa (Lepidoptera: Notodontidae).

    PubMed

    Gschloessl, B; Dorkeld, F; Berges, H; Beydon, G; Bouchez, O; Branco, M; Bretaudeau, A; Burban, C; Dubois, E; Gauthier, P; Lhuillier, E; Nichols, J; Nidelet, S; Rocha, S; Sauné, L; Streiff, R; Gautier, M; Kerdelhué, C

    2018-05-01

    The pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) is the main pine defoliator in the Mediterranean region. Its urticating larvae cause severe human and animal health concerns in the invaded areas. This species shows a high phenotypic variability for various traits, such as phenology, fecundity and tolerance to extreme temperatures. This study presents the construction and analysis of extensive genomic and transcriptomic resources, which are an obligate prerequisite to understand their underlying genetic architecture. Using a well-studied population from Portugal with peculiar phenological characteristics, the karyotype was first determined and a first draft genome of 537 Mb total length was assembled into 68,292 scaffolds (N50 = 164 kb). From this genome assembly, 29,415 coding genes were predicted. To circumvent some limitations for fine-scale physical mapping of genomic regions of interest, a 3X coverage BAC library was also developed. In particular, 11 BACs from this library were individually sequenced to assess the assembly quality. Additionally, de novo transcriptomic resources were generated from various developmental stages sequenced with HiSeq and MiSeq Illumina technologies. The reads were de novo assembled into 62,376 and 63,175 transcripts, respectively. Then, a robust subset of the genome-predicted coding genes, the de novo transcriptome assemblies and previously published 454/Sanger data were clustered to obtain a high-quality and comprehensive reference transcriptome consisting of 29,701 bona fide unigenes. These sequences covered 99% of the cegma and 88% of the busco highly conserved eukaryotic genes and 84% of the busco arthropod gene set. Moreover, 90% of these transcripts could be localized on the draft genome. The described information is available via a genome annotation portal (http://bipaa.genouest.org/sp/thaumetopoea_pityocampa/). © 2018 John Wiley & Sons Ltd.

  11. Placental transcriptome co-expression analysis reveals conserved regulatory program across gestation

    USDA-ARS?s Scientific Manuscript database

    Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organization of the placental transcriptome through a systematic a...

  12. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  13. The testes transcriptome derived from the New World Screwworm, Cochliomyia hominivorax TSA

    USDA-ARS?s Scientific Manuscript database

    In a collaboration with National Center for Genome Resources researchers, we sequenced and assembled the testes transcriptome derived from the Pacora, Panama, production plant strain of the New World Screwworm, Cochliomyia hominivorax. This transcriptome contains 4,149 unigenes and the Transcriptome...

  14. Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader.

    PubMed

    Richardson, Mark F; Sequeira, Fernando; Selechnik, Daniel; Carneiro, Miguel; Vallinoto, Marcelo; Reid, Jack G; West, Andrea J; Crossland, Michael R; Shine, Richard; Rollins, Lee A

    2018-01-01

    Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers. © The Authors 2017. Published by Oxford University Press.

  15. Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader

    PubMed Central

    Reid, Jack G; Crossland, Michael R

    2018-01-01

    Abstract Background Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Findings Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. Conclusions This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers. PMID:29186423

  16. iMETHYL: an integrative database of human DNA methylation, gene expression, and genomic variation.

    PubMed

    Komaki, Shohei; Shiwa, Yuh; Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Otomo, Ryo; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Sasaki, Makoto; Shimizu, Atsushi

    2018-01-01

    We launched an integrative multi-omics database, iMETHYL (http://imethyl.iwate-megabank.org). iMETHYL provides whole-DNA methylation (~24 million autosomal CpG sites), whole-genome (~9 million single-nucleotide variants), and whole-transcriptome (>14 000 genes) data for CD4 + T-lymphocytes, monocytes, and neutrophils collected from approximately 100 subjects. These data were obtained from whole-genome bisulfite sequencing, whole-genome sequencing, and whole-transcriptome sequencing, making iMETHYL a comprehensive database.

  17. [Genomics and transcriptomics of the Chinese liver fluke Clonorchis sinensis (Opisthorchiidae, Trematoda)].

    PubMed

    Chelomina, G N

    2017-01-01

    The review summarizes the results of first genomic and transcriptomic investigations of the liver fluke Clonorchis sinensis (Opisthorchiidae, Trematoda). The studies mark the dawn of the genomic era for opisthorchiids, which cause severe hepatobiliary diseases in humans and animals. Their results aided in understanding the molecular mechanisms of adaptation to parasitism, parasite survival in mammalian biliary tracts, and genome dynamics in the individual development and the development of parasite-host relationships. Special attention is paid to the achievements in studying the codon usage bias and the roles of mobile genetic elements (MGEs) and small interfering RNAs (siRNAs). Interspecific comparisons at the genomic and transcriptomic levels revealed molecular differences, which may contribute to understanding the specialized niches and physiological needs of the respective species. The studies in C. sinensis provide a basis for further basic and applied research in liver flukes and, in particular, the development of efficient means to prevent, diagnose, and treat clonorchiasis.

  18. Transcriptome analysis and related databases of Lactococcus lactis.

    PubMed

    Kuipers, Oscar P; de Jong, Anne; Baerends, Richard J S; van Hijum, Sacha A F T; Zomer, Aldert L; Karsens, Harma A; den Hengst, Chris D; Kramer, Naomi E; Buist, Girbe; Kok, Jan

    2002-08-01

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.

  19. Comparative transcriptome analysis in Sclerotinia sclerotiorum and S. trifoliorum by 454 Titanium RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum and S. trifoliorum are two closely related devastating plant pathogens. Extensive research has been conducted on S. sclerotiorum and its genome sequences are available. To take advantages of the genomic information of S. sclerotiorum, we compared the transcriptome of S. tr...

  20. Transcriptome characterization for genome annotation and functional genomics in Theobroma cacao

    USDA-ARS?s Scientific Manuscript database

    Evidence from leaf transcriptome sequencing using two technology platforms, in combination with protein homology and trained ab initio predictions, previously enabled us to build 35,000 gene models in T. cacao (www.cacaogenomedb.org). Here we review the contribution of each data type to cacao gene a...

  1. Genomic, transcriptomic and phenomic variation reveals the complex adaptation to stress response of modern maize breeding

    USDA-ARS?s Scientific Manuscript database

    Early maize adaptation to different agricultural environments was an important process associated with the creation of a stable food supply that allowed the evolution of human civilization in the Americas. To explore the mechanisms of maize adaptation, genomic, transcriptomic and phenomic data were ...

  2. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data.

    PubMed

    Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M

    2012-04-05

    The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.

  3. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    PubMed Central

    2012-01-01

    Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257

  4. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  5. Single-cell transcriptomics for microbial eukaryotes.

    PubMed

    Kolisko, Martin; Boscaro, Vittorio; Burki, Fabien; Lynn, Denis H; Keeling, Patrick J

    2014-11-17

    One of the greatest hindrances to a comprehensive understanding of microbial genomics, cell biology, ecology, and evolution is that most microbial life is not in culture. Solutions to this problem have mainly focused on whole-community surveys like metagenomics, but these analyses inevitably loose information and present particular challenges for eukaryotes, which are relatively rare and possess large, gene-sparse genomes. Single-cell analyses present an alternative solution that allows for specific species to be targeted, while retaining information on cellular identity, morphology, and partitioning of activities within microbial communities. Single-cell transcriptomics, pioneered in medical research, offers particular potential advantages for uncultivated eukaryotes, but the efficiency and biases have not been tested. Here we describe a simple and reproducible method for single-cell transcriptomics using manually isolated cells from five model ciliate species; we examine impacts of amplification bias and contamination, and compare the efficacy of gene discovery to traditional culture-based transcriptomics. Gene discovery using single-cell transcriptomes was found to be comparable to mass-culture methods, suggesting single-cell transcriptomics is an efficient entry point into genomic data from the vast majority of eukaryotic biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Assessing the Gene Content of the Megagenome: Sugar Pine (Pinus lambertiana)

    PubMed Central

    Gonzalez-Ibeas, Daniel; Martinez-Garcia, Pedro J.; Famula, Randi A.; Delfino-Mix, Annette; Stevens, Kristian A.; Loopstra, Carol A.; Langley, Charles H.; Neale, David B.; Wegrzyn, Jill L.

    2016-01-01

    Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq have been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here to contribute to the otherwise scarce comparisons of second and third generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data were also used to address questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers. PMID:27799338

  7. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    NASA Astrophysics Data System (ADS)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  8. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq

    PubMed Central

    Su, Zhipeng; Zhu, Jiawen; Xu, Zhuofei; Xiao, Ran; Zhou, Rui; Li, Lu; Chen, Huanchun

    2016-01-01

    Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumoniae, a highly contagious respiratory disease of swine. Although the genome of A. pleuropneumoniae was sequenced several years ago, limited information is available on the genome-wide transcriptional analysis to accurately annotate the gene structures and regulatory elements. High-throughput RNA sequencing (RNA-seq) has been applied to study the transcriptional landscape of bacteria, which can efficiently and accurately identify gene expression regions and unknown transcriptional units, especially small non-coding RNAs (sRNAs), UTRs and regulatory regions. The aim of this study is to comprehensively analyze the transcriptome of A. pleuropneumoniae by RNA-seq in order to improve the existing genome annotation and promote our understanding of A. pleuropneumoniae gene structures and RNA-based regulation. In this study, we utilized RNA-seq to construct a single nucleotide resolution transcriptome map of A. pleuropneumoniae. More than 3.8 million high-quality reads (average length ~90 bp) from a cDNA library were generated and aligned to the reference genome. We identified 32 open reading frames encoding novel proteins that were mis-annotated in the previous genome annotations. The start sites for 35 genes based on the current genome annotation were corrected. Furthermore, 51 sRNAs in the A. pleuropneumoniae genome were discovered, of which 40 sRNAs were never reported in previous studies. The transcriptome map also enabled visualization of 5'- and 3'-UTR regions, in which contained 11 sRNAs. In addition, 351 operons covering 1230 genes throughout the whole genome were identified. The RNA-Seq based transcriptome map validated annotated genes and corrected annotations of open reading frames in the genome, and led to the identification of many functional elements (e.g. regions encoding novel proteins, non-coding sRNAs and operon structures). The transcriptional units described in this study provide a foundation for future studies concerning the gene functions and the transcriptional regulatory architectures of this pathogen. PMID:27018591

  9. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.

    PubMed

    Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan

    2013-07-01

    Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.

  10. RNA-Seq Based Transcriptional Map of Bovine Respiratory Disease Pathogen “Histophilus somni 2336”

    PubMed Central

    Kumar, Ranjit; Lawrence, Mark L.; Watt, James; Cooksey, Amanda M.; Burgess, Shane C.; Nanduri, Bindu

    2012-01-01

    Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify “novel” genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method. The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations. PMID:22276113

  11. RNA-seq based transcriptional map of bovine respiratory disease pathogen "Histophilus somni 2336".

    PubMed

    Kumar, Ranjit; Lawrence, Mark L; Watt, James; Cooksey, Amanda M; Burgess, Shane C; Nanduri, Bindu

    2012-01-01

    Genome structural annotation, i.e., identification and demarcation of the boundaries for all the functional elements in a genome (e.g., genes, non-coding RNAs, proteins and regulatory elements), is a prerequisite for systems level analysis. Current genome annotation programs do not identify all of the functional elements of the genome, especially small non-coding RNAs (sRNAs). Whole genome transcriptome analysis is a complementary method to identify "novel" genes, small RNAs, regulatory regions, and operon structures, thus improving the structural annotation in bacteria. In particular, the identification of non-coding RNAs has revealed their widespread occurrence and functional importance in gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Histophilus somni, one of the causative agents of Bovine Respiratory Disease (BRD) as well as bovine infertility, abortion, septicemia, arthritis, myocarditis, and thrombotic meningoencephalitis. In this study, we report a single nucleotide resolution transcriptome map of H. somni strain 2336 using RNA-Seq method.The RNA-Seq based transcriptome map identified 94 sRNAs in the H. somni genome of which 82 sRNAs were never predicted or reported in earlier studies. We also identified 38 novel potential protein coding open reading frames that were absent in the current genome annotation. The transcriptome map allowed the identification of 278 operon (total 730 genes) structures in the genome. When compared with the genome sequence of a non-virulent strain 129Pt, a disproportionate number of sRNAs (∼30%) were located in genomic region unique to strain 2336 (∼18% of the total genome). This observation suggests that a number of the newly identified sRNAs in strain 2336 may be involved in strain-specific adaptations.

  12. Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio)

    PubMed Central

    2012-01-01

    Background Common carp (Cyprinus carpio) is thought to have undergone one extra round of genome duplication compared to zebrafish. Transcriptome analysis has been used to study the existence and timing of genome duplication in species for which genome sequences are incomplete. Large-scale transcriptome data for the common carp genome should help reveal the timing of the additional duplication event. Results We have sequenced the transcriptome of common carp using 454 pyrosequencing. After assembling the 454 contigs and the published common carp sequences together, we obtained 49,669 contigs and identified genes using homology searches and an ab initio method. We identified 4,651 orthologous pairs between common carp and zebrafish and found 129,984 paralogous pairs within the common carp. An estimation of the synonymous substitution rate in the orthologous pairs indicated that common carp and zebrafish diverged 120 million years ago (MYA). We identified one round of genome duplication in common carp and estimated that it had occurred 5.6 to 11.3 MYA. In zebrafish, no genome duplication event after speciation was observed, suggesting that, compared to zebrafish, common carp had undergone an additional genome duplication event. We annotated the common carp contigs with Gene Ontology terms and KEGG pathways. Compared with zebrafish gene annotations, we found that a set of biological processes and pathways were enriched in common carp. Conclusions The assembled contigs helped us to estimate the time of the fourth-round of genome duplication in common carp. The resource that we have built as part of this study will help advance functional genomics and genome annotation studies in the future. PMID:22424280

  13. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    PubMed

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  14. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  15. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  16. Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize

    USDA-ARS?s Scientific Manuscript database

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft geno...

  17. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    PubMed

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    PubMed Central

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.

  19. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.

    PubMed

    Saito, Kazuki; Hirai, Masami Y; Yonekura-Sakakibara, Keiko

    2008-01-01

    Following the sequencing of whole genomes of model plants, high-throughput decoding of gene function is a major challenge in modern plant biology. In view of remarkable technical advances in transcriptomics and metabolomics, integrated analysis of these 'omics' by data-mining informatics is an excellent tool for prediction and identification of gene function, particularly for genes involved in complicated metabolic pathways. The availability of Arabidopsis public transcriptome datasets containing data of >1000 microarrays reinforces the potential for prediction of gene function by transcriptome coexpression analysis. Here, we review the strategy of combining transcriptome and metabolome as a powerful technology for studying the functional genomics of model plants and also crop and medicinal plants.

  20. A New Omics Data Resource of Pleurocybella porrigens for Gene Discovery

    PubMed Central

    Dohra, Hideo; Someya, Takumi; Takano, Tomoyuki; Harada, Kiyonori; Omae, Saori; Hirai, Hirofumi; Yano, Kentaro; Kawagishi, Hirokazu

    2013-01-01

    Background Pleurocybella porrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P . porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P . porrigens and the related species, however, are not stored in the public database. To gain the omics data in P . porrigens , we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P . porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P . porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P . porrigens , provided from this research, will give a new data resource for gene discovery in basidiomycetes. PMID:23936076

  1. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions

    PubMed Central

    2012-01-01

    Background Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. Results Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. Conclusions Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. PMID:23034163

  2. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.

    PubMed

    Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki

    2013-07-09

    The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.

  3. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS)

    Treesearch

    Peng Zhao; Hui-Juan Zhou; Daniel Potter; Yi-Heng Hu; Xiao-Jia Feng; Meng Dang; Li Feng; Saman Zulfiqar; Wen-Zhe Liu; Gui-Fang Zhao; Keith Woeste

    2018-01-01

    Genomic data are a powerful tool for elucidating the processes involved in the evolution and divergence of species. The speciation and phylogenetic relationships among Chinese Juglans remain unclear. Here, we used results from phylogenomic and population genetic analyses, transcriptomics, Genotyping-By-Sequencing (GBS), and whole chloroplast...

  4. Improved annotation with de novo transcriptome assembly in four social amoeba species.

    PubMed

    Singh, Reema; Lawal, Hajara M; Schilde, Christina; Glöckner, Gernot; Barton, Geoffrey J; Schaap, Pauline; Cole, Christian

    2017-01-31

    Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects.

  5. A Single Transcriptome of a Green Toad (Bufo viridis) Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers

    PubMed Central

    Gerchen, Jörn F.; Reichert, Samuel J.; Röhr, Johannes T.; Dieterich, Christoph; Kloas, Werner

    2016-01-01

    Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species. PMID:27232626

  6. Evaluation of nonionic adsorbent resins for removal of inhibitory compounds from corncob hydrolysate for ethanol fermentation.

    PubMed

    Hatano, Ken-ichi; Aoyagi, Naokazu; Miyakawa, Takuya; Tanokura, Masaru; Kubota, Kenji

    2013-12-01

    The aim of this study was to investigate the effect of XAD4-column treatment on removal of several fermentation inhibitors from corncob hydrolysate (CH). From analysis using a model hydrolysate, more than 99% of 5-hydroxy-methyl furfural, furfural and vanillin were removed by this treatment, and more than 97% of the total xylose, glucose and arabinose remained in the detoxified CH (DCH). The resulting DCH was tested as a substrate for ethanol production by Saccharomyces cerevisiae and Pichia stipitis. The highest ethanol levels for S. cerevisiae were 1.40 and 4.92 g l(-1) in CH and DCH, respectively. For P. stipitis, the levels were 0 and 4.73 g l(-1) in the CH and DCH media, respectively. The levels of alcohol volumetric productivity in the DCH medium were 0.374 and 0.200 g l(-1)h(-1) for S. cerevisiae and P. stipitis, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Single-Cell Sequencing for Drug Discovery and Drug Development.

    PubMed

    Wu, Hongjin; Wang, Charles; Wu, Shixiu

    2017-01-01

    Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The Transcriptomics of Secondary Growth and Wood Formation in Conifers

    PubMed Central

    Carvalho, Ana; Paiva, Jorge; Louzada, José; Lima-Brito, José

    2013-01-01

    In the last years, forestry scientists have adapted genomics and next-generation sequencing (NGS) technologies to the search for candidate genes related to the transcriptomics of secondary growth and wood formation in several tree species. Gymnosperms, in particular, the conifers, are ecologically and economically important, namely, for the production of wood and other forestry end products. Until very recently, no whole genome sequencing of a conifer genome was available. Due to the gradual improvement of the NGS technologies and inherent bioinformatics tools, two draft assemblies of the whole genomes sequence of Picea abies and Picea glauca arose in the current year. These draft genome assemblies will bring new insights about the structure, content, and evolution of the conifer genomes. Furthermore, new directions in the forestry, breeding and research of conifers will be discussed in the following. The identification of genes associated with the xylem transcriptome and the knowledge of their regulatory mechanisms will provide less time-consuming breeding cycles and a high accuracy for the selection of traits related to wood production and quality. PMID:24288610

  9. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    PubMed

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  10. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants

    PubMed Central

    2010-01-01

    Background Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. Results The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conclusions Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution. PMID:20565927

  11. Comparison between the Amount of Environmental Change and the Amount of Transcriptome Change

    PubMed Central

    Ogata, Norichika; Kozaki, Toshinori; Yokoyama, Takeshi; Hata, Tamako; Iwabuchi, Kikuo

    2015-01-01

    Cells must coordinate adjustments in genome expression to accommodate changes in their environment. We hypothesized that the amount of transcriptome change is proportional to the amount of environmental change. To capture the effects of environmental changes on the transcriptome, we compared transcriptome diversities (defined as the Shannon entropy of frequency distribution) of silkworm fat-body tissues cultured with several concentrations of phenobarbital. Although there was no proportional relationship, we did identify a drug concentration “tipping point” between 0.25 and 1.0 mM. Cells cultured in media containing lower drug concentrations than the tipping point showed uniformly high transcriptome diversities, while those cultured at higher drug concentrations than the tipping point showed uniformly low transcriptome diversities. The plasticity of transcriptome diversity was corroborated by cultivations of fat bodies in MGM-450 insect medium without phenobarbital and in 0.25 mM phenobarbital-supplemented MGM-450 insect medium after previous cultivation (cultivation for 80 hours in MGM-450 insect medium without phenobarbital, followed by cultivation for 10 hours in 1.0 mM phenobarbital-supplemented MGM-450 insect medium). Interestingly, the transcriptome diversities of cells cultured in media containing 0.25 mM phenobarbital after previous cultivation (cultivation for 80 hours in MGM-450 insect medium without phenobarbital, followed by cultivation for 10 hours in 1.0 mM phenobarbital-supplemented MGM-450 insect medium) were different from cells cultured in media containing 0.25 mM phenobarbital after previous cultivation (cultivation for 80 hours in MGM-450 insect medium without phenobarbital). This hysteretic phenomenon of transcriptome diversities indicates multi-stability of the genome expression system. Cellular memories were recorded in genome expression networks as in DNA/histone modifications. PMID:26657512

  12. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai.

    PubMed

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-03-09

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.

  13. Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai

    PubMed Central

    Kim, Mi Ae; Rhee, Jae-Sung; Kim, Tae Ha; Lee, Jung Sick; Choi, Ah-Young; Choi, Beom-Soon; Choi, Ik-Young; Sohn, Young Chang

    2017-01-01

    In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone. PMID:28282934

  14. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome

    PubMed Central

    2011-01-01

    Background The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously thought to be encoded by bacteria. Supporting physiological data, global gene expression analysis shows that traps significantly over-express genes involved in respiration and that phosphate uptake might occur mainly in traps, whereas nitrogen uptake could in part take place in vegetative parts. Expression of DNA repair and ROS detoxification enzymes may be indicative of a response to increased respiration. Finally, evidence from the bladderwort transcriptome, direct measurement of ROS in situ, and cross-species comparisons of organellar genomes and multiple nuclear genes supports the hypothesis that increased nucleotide substitution rates throughout the plant may be due to the mutagenic action of amplified ROS production. PMID:21639913

  16. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    PubMed Central

    Chen, Hualan; Zhang, Yong; Qian, Wubin; Kim, Heebal; Gan, Shangquan; Zhao, Yiqiang; Li, Jianwen; Yi, Kang; Feng, Huapeng; Zhu, Pengyang; Li, Bo; Liu, Qiuyue; Fairley, Suan; Magor, Katharine E; Du, Zhenlin; Hu, Xiaoxiang; Goodman, Laurie; Tafer, Hakim; Vignal, Alain; Lee, Taeheon; Kim, Kyu-Won; Sheng, Zheya; An, Yang; Searle, Steve; Herrero, Javier; Groenen, Martien A M; Crooijmans, Richard P M A; Faraut, Thomas; Cai, Qingle; Webster, Robert G; Aldridge, Jerry R; Warren, Wesley C; Bartschat, Sebastian; Kehr, Stephanie; Marz, Manja; Stadler, Peter F; Smith, Jacqueline; Kraus, Robert H S; Zhao, Yaofeng; Ren, Liming; Fei, Jing; Morisson, Mireille; Kaiser, Pete; Griffin, Darren K; Rao, Man; Pitel, Frederique; Wang, Jun; Li, Ning

    2014-01-01

    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck’s defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses. PMID:23749191

  17. DOGMA: domain-based transcriptome and proteome quality assessment.

    PubMed

    Dohmen, Elias; Kremer, Lukas P M; Bornberg-Bauer, Erich; Kemena, Carsten

    2016-09-01

    Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes.

    PubMed

    Chauhan, Pallavi; Hansson, Bengt; Kraaijeveld, Ken; de Knijff, Peter; Svensson, Erik I; Wellenreuther, Maren

    2014-09-22

    There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.

  19. Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.)

    USDA-ARS?s Scientific Manuscript database

    This study reports generation of large-scale genomic resources for pigeonpea, a so-called ‘orphan crop species’ of the semi-arid tropic regions. Roche FLX/454 sequencing was carried out on a normalized cDNA pool prepared from 31 tissues produced 494,353 short transcript reads (STRs). Cluster analysi...

  20. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computationalmore » predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.« less

  1. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production.

    PubMed

    Roth, Melissa S; Cokus, Shawn J; Gallaher, Sean D; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A; Merchant, Sabeeha S; Pellegrini, Matteo; Niyogi, Krishna K

    2017-05-23

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase ( BKT ), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.

  2. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    DOE PAGES

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; ...

    2017-05-08

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less

  3. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. Here, to advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniformmore » gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. Finally, the high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.« less

  4. Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production

    PubMed Central

    Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.; Walter, Andreas; Lopez, David; Erickson, Erika; Endelman, Benjamin; Westcott, Daniel; Larabell, Carolyn A.; Merchant, Sabeeha S.; Pellegrini, Matteo

    2017-01-01

    Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production. PMID:28484037

  5. Effects of pseudorabies virus infection on the tracheobronchial lymph node transcriptome

    USDA-ARS?s Scientific Manuscript database

    This study represents the first swine transcriptome hiveplots created from GSEA data and provides a novel insight into the global transcriptome changes spanning the swine genome. RNA isolated from draining tracheobronchial lymph nodes (TBLN) from 5-week old pigs clinically infected with a feral iso...

  6. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Candice N.; Hirsch, Cory D.; Brohammer, Alex B.

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison ofmore » these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.« less

  7. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

    DOE PAGES

    Hirsch, Candice N.; Hirsch, Cory D.; Brohammer, Alex B.; ...

    2016-11-01

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison ofmore » these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.« less

  8. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize[OPEN

    PubMed Central

    Soifer, Ilya; Barad, Omer; Shem-Tov, Doron; Baruch, Kobi; Lu, Fei; Hernandez, Alvaro G.; Wright, Chris L.; Koehler, Klaus; Buell, C. Robin; de Leon, Natalia

    2016-01-01

    Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools. PMID:27803309

  9. RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations

    PubMed Central

    Munger, Steven C.; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K.; Gatti, Daniel M.; Hinerfeld, Douglas A.; Svenson, Karen L.; Keller, Mark P.; Attie, Alan D.; Hibbs, Matthew A.; Graber, Joel H.; Chesler, Elissa J.; Churchill, Gary A.

    2014-01-01

    Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449

  10. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  11. Reefgenomics.Org - a repository for marine genomics data.

    PubMed

    Liew, Yi Jin; Aranda, Manuel; Voolstra, Christian R

    2016-01-01

    Over the last decade, technological advancements have substantially decreased the cost and time of obtaining large amounts of sequencing data. Paired with the exponentially increased computing power, individual labs are now able to sequence genomes or transcriptomes to investigate biological questions of interest. This has led to a significant increase in available sequence data. Although the bulk of data published in articles are stored in public sequence databases, very often, only raw sequencing data are available; miscellaneous data such as assembled transcriptomes, genome annotations etc. are not easily obtainable through the same means. Here, we introduce our website (http://reefgenomics.org) that aims to centralize genomic and transcriptomic data from marine organisms. Besides providing convenient means to download sequences, we provide (where applicable) a genome browser to explore available genomic features, and a BLAST interface to search through the hosted sequences. Through the interface, multiple datasets can be queried simultaneously, allowing for the retrieval of matching sequences from organisms of interest. The minimalistic, no-frills interface reduces visual clutter, making it convenient for end-users to search and explore processed sequence data. DATABASE URL: http://reefgenomics.org. © The Author(s) 2016. Published by Oxford University Press.

  12. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.

    PubMed

    Zeng, Victor; Extavour, Cassandra G

    2012-01-01

    The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL: asgard.rc.fas.harvard.edu.

  13. Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis.

    PubMed

    Nakanishi, Simone C; Soares, Lauren B; Biazi, Luiz Eduardo; Nascimento, Viviane M; Costa, Aline C; Rocha, George Jackson M; Ienczak, Jaciane L

    2017-10-01

    Alcoholic fermentation of released sugars in pretreatment and enzymatic hydrolysis of biomass is a central feature for second generation ethanol (E2G) production. Saccharomyces cerevisiae used industrially in the production of first generation ethanol (E1G) convert sucrose, fructose, and glucose into ethanol. However, these yeasts have no ability to ferment pentose (xylose). Therefore, the present work has focused on E2G production by Scheffersomyces stipitis and Spathaspora passalidarum. The fermentation strategy with high pitch, cell recycle, fed-batch mode, and temperature decrease for each batch were performed in a hydrolyzate obtained from a pretreatment at 130°C with NaOH solution (1.5% w/v) added with 0.15% (w/w) of anthraquinone (AQ) and followed by enzymatic hydrolysis. The process strategy has increased volumetric productivity from 0.35 to 0.38 g · L -1  · h -1 (first to third batch) for S. stipitis and from 0.38 to 0.81 g · L -1  · h -1 for S. passalidarum (first to fourth batch). Mass balance for the process proposed in this work showed the production of 177.33 kg ethanol/ton of sugar cane bagasse for S. passalidarum compared to 124.13 kg ethanol/ton of sugar cane bagasse for S. stipitis fermentation. The strategy proposed in this work can be considered as a promising strategy in the production of second generation ethanol. Biotechnol. Bioeng. 2017;114: 2211-2221. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Allele Identification for Transcriptome-Based Population Genomics in the Invasive Plant Centaurea solstitialis

    PubMed Central

    Dlugosch, Katrina M.; Lai, Zhao; Bonin, Aurélie; Hierro, José; Rieseberg, Loren H.

    2013-01-01

    Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11−430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios. PMID:23390612

  15. Genomic and transcriptomic predictors of triglyceride response to regular exercise

    PubMed Central

    Sarzynski, Mark A; Davidsen, Peter K; Sung, Yun Ju; Hesselink, Matthijs K C; Schrauwen, Patrick; Rice, Treva K; Rao, D C; Falciani, Francesco; Bouchard, Claude

    2015-01-01

    Aim We performed genome-wide and transcriptome-wide profiling to identify genes and single nucleotide polymorphisms (SNPs) associated with the response of triglycerides (TG) to exercise training. Methods Plasma TG levels were measured before and after a 20-week endurance training programme in 478 white participants from the HERITAGE Family Study. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. Affymetrix HG-U133+2 arrays were used to quantitate gene expression levels from baseline muscle biopsies of a subset of participants (N=52). Genome-wide association study (GWAS) analysis was performed using MERLIN, while transcriptomic predictor models were developed using the R-package GALGO. Results The GWAS results showed that eight SNPs were associated with TG training-response (ΔTG) at p<9.9×10−6, while another 31 SNPs showed p values <1×10−4. In multivariate regression models, the top 10 SNPs explained 32.0% of the variance in ΔTG, while conditional heritability analysis showed that four SNPs statistically accounted for all of the heritability of ΔTG. A molecular signature based on the baseline expression of 11 genes predicted 27% of ΔTG in HERITAGE, which was validated in an independent study. A composite SNP score based on the top four SNPs, each from the genomic and transcriptomic analyses, was the strongest predictor of ΔTG (R2=0.14, p=3.0×10−68). Conclusions Our results indicate that skeletal muscle transcript abundance at 11 genes and SNPs at a number of loci contribute to TG response to exercise training. Combining data from genomics and transcriptomics analyses identified a SNP-based gene signature that should be further tested in independent samples. PMID:26491034

  16. The consequences of chromosomal aneuploidy on the transcriptome of cancer cells☆

    PubMed Central

    Ried, Thomas; Hu, Yue; Difilippantonio, Michael J.; Ghadimi, B. Michael; Grade, Marian; Camps, Jordi

    2016-01-01

    Chromosomal aneuploidies are a defining feature of carcinomas, i.e., tumors of epithelial origin. Such aneuploidies result in tumor specific genomic copy number alterations. The patterns of genomic imbalances are tumor specific, and to a certain extent specific for defined stages of tumor development. Genomic imbalances occur already in premalignant precursor lesions, i.e., before the transition to invasive disease, and their distribution is maintained in metastases, and in cell lines derived from primary tumors. These observations are consistent with the interpretation that tumor specific genomic imbalances are drivers of malignant transformation. Naturally, this precipitates the question of how such imbalances influence the expression of resident genes. A number of laboratories have systematically integrated copy number alterations with gene expression changes in primary tumors and metastases, cell lines, and experimental models of aneuploidy to address the question as to whether genomic imbalances deregulate the expression of one or few key genes, or rather affect the cancer transcriptome more globally. The majority of these studies showed that gene expression levels follow genomic copy number. Therefore, gross genomic copy number changes, including aneuploidies of entire chromosome arms and chromosomes, result in a massive deregulation of the transcriptome of cancer cells. This article is part of a Special Issue entitled: Chromatin in time and space. PMID:22426433

  17. Single-cell sequencing and tumorigenesis: improved understanding of tumor evolution and metastasis.

    PubMed

    Ellsworth, Darrell L; Blackburn, Heather L; Shriver, Craig D; Rabizadeh, Shahrooz; Soon-Shiong, Patrick; Ellsworth, Rachel E

    2017-12-01

    Extensive genomic and transcriptomic heterogeneity in human cancer often negatively impacts treatment efficacy and survival, thus posing a significant ongoing challenge for modern treatment regimens. State-of-the-art DNA- and RNA-sequencing methods now provide high-resolution genomic and gene expression portraits of individual cells, facilitating the study of complex molecular heterogeneity in cancer. Important developments in single-cell sequencing (SCS) technologies over the past 5 years provide numerous advantages over traditional sequencing methods for understanding the complexity of carcinogenesis, but significant hurdles must be overcome before SCS can be clinically useful. In this review, we: (1) highlight current methodologies and recent technological advances for isolating single cells, single-cell whole-genome and whole-transcriptome amplification using minute amounts of nucleic acids, and SCS, (2) summarize research investigating molecular heterogeneity at the genomic and transcriptomic levels and how this heterogeneity affects clonal evolution and metastasis, and (3) discuss the promise for integrating SCS in the clinical care arena for improved patient care.

  18. Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis.

    PubMed

    Ntaikou, Ioanna; Menis, Nikolaos; Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos

    2018-04-30

    The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L -1 initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L -1 was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes.

  20. Assembled contigs of the synganglion transcriptome from an Australian population of the cattle tick, Rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    In a collaboration with National Center for Genome Resources and University of Texas at El Paso researchers, we sequenced and assembled the transcriptome of the synganglion of the Texas strain (Deutsch) of the cattle tick Rhipicephalus microplus. This transcriptome contains 43, 468 sequences and wa...

  1. Assembled contigs of the synganglion transcriptome from a Texas population of the cattle tick, Rhipicephalus microplus.

    USDA-ARS?s Scientific Manuscript database

    In a collaboration with National Center for Genome Resources and University of Texas at El Paso researchers, we sequenced and assembled the transcriptome of the synganglion of the Texas strain (Deutsch) of the cattle tick Rhipicephalus microplus. This transcriptome contains 43, 468 sequences and wa...

  2. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines.

    PubMed

    Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas

    2014-04-24

    With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.

  3. Comparative Transcriptomics of Strawberries (Fragaria spp.) Provides Insights into Evolutionary Patterns.

    PubMed

    Qiao, Qin; Xue, Li; Wang, Qia; Sun, Hang; Zhong, Yang; Huang, Jinling; Lei, Jiajun; Zhang, Ticao

    2016-01-01

    Multiple closely related species with genomic sequences provide an ideal system for studies on comparative and evolutionary genomics, as well as the mechanism of speciation. The whole genome sequences of six strawberry species ( Fragaria spp.) have been released, which provide one of the richest genomic resources of any plant genus. In this study, we first generated seven transcriptome sequences of Fragaria species de novo , with a total of 48,557-82,537 unigenes per species. Combined with 13 other species genomes in Rosales, we reconstructed a phylogenetic tree at the genomic level. The phylogenic tree shows that Fragaria closed grouped with Rubus and the Fragaria clade is divided into three subclades. East Asian species appeared in every subclade, suggesting that the genus originated in this area at ∼7.99 Mya. Four species found in mountains of Southwest China originated at ∼3.98 Mya, suggesting that rapid speciation occurred to adapt to changing environments following the uplift of the Qinghai-Tibet Plateau. Moreover, we identified 510 very significantly positively selected genes in the cultivated species F . × ananassa genome. This set of genes was enriched in functions related to specific agronomic traits, such as carbon metabolism and plant hormone signal transduction processes, which are directly related to fruit quality and flavor. These findings illustrate comprehensive evolutionary patterns in Fragaria and the genetic basis of fruit domestication of cultivated strawberry at the genomic/transcriptomic level.

  4. The Draft Genome and Transcriptome of Amaranthus hypochondriacus: A C4 Dicot Producing High-Lysine Edible Pseudo-Cereal

    PubMed Central

    Sunil, Meeta; Hariharan, Arun K.; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R.; Gupta, Ravi P.; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-01-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution. PMID:25071079

  5. Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing.

    PubMed

    Liu, Tiancheng; Yu, Lin; Liu, Lei; Li, Hong; Li, Yixue

    2015-01-01

    High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO) studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the "funnel-like" model and the "hourglass" model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.

  6. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    PubMed

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  7. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains

    PubMed Central

    2013-01-01

    Background S. erythraea is a Gram-positive filamentous bacterium used for the industrial-scale production of erythromycin A which is of high clinical importance. In this work, we sequenced the whole genome of a high-producing strain (E3) obtained by random mutagenesis and screening from the wild-type strain NRRL23338, and examined time-series expression profiles of both E3 and NRRL23338. Based on the genomic data and transcriptpmic data of these two strains, we carried out comparative analysis of high-producing strain and wild-type strain at both the genomic level and the transcriptomic level. Results We observed a large number of genetic variants including 60 insertions, 46 deletions and 584 single nucleotide variations (SNV) in E3 in comparison with NRRL23338, and the analysis of time series transcriptomic data indicated that the genes involved in erythromycin biosynthesis and feeder pathways were significantly up-regulated during the 60 hours time-course. According to our data, BldD, a previously identified ery cluster regulator, did not show any positive correlations with the expression of ery cluster, suggesting the existence of alternative regulation mechanisms of erythromycin synthesis in S. erythraea. Several potential regulators were then proposed by integration analysis of genomic and transcriptomic data. Conclusion This is a demonstration of the functional comparative genomics between an industrial S. erythraea strain and the wild-type strain. These findings help to understand the global regulation mechanisms of erythromycin biosynthesis in S. erythraea, providing useful clues for genetic and metabolic engineering in the future. PMID:23902230

  8. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.

    PubMed

    Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry

    2016-11-01

    Parallel sequencing of a single cell's genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ∼3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.

  9. NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome.

    PubMed

    Chandrani, P; Kulkarni, V; Iyer, P; Upadhyay, P; Chaubal, R; Das, P; Mulherkar, R; Singh, R; Dutt, A

    2015-06-09

    Human papilloma virus (HPV) accounts for the most common cause of all virus-associated human cancers. Here, we describe the first graphic user interface (GUI)-based automated tool 'HPVDetector', for non-computational biologists, exclusively for detection and annotation of the HPV genome based on next-generation sequencing data sets. We developed a custom-made reference genome that comprises of human chromosomes along with annotated genome of 143 HPV types as pseudochromosomes. The tool runs on a dual mode as defined by the user: a 'quick mode' to identify presence of HPV types and an 'integration mode' to determine genomic location for the site of integration. The input data can be a paired-end whole-exome, whole-genome or whole-transcriptome data set. The HPVDetector is available in public domain for download: http://www.actrec.gov.in/pi-webpages/AmitDutt/HPVdetector/HPVDetector.html. On the basis of our evaluation of 116 whole-exome, 23 whole-transcriptome and 2 whole-genome data, we were able to identify presence of HPV in 20 exomes and 4 transcriptomes of cervical and head and neck cancer tumour samples. Using the inbuilt annotation module of HPVDetector, we found predominant integration of viral gene E7, a known oncogene, at known 17q21, 3q27, 7q35, Xq28 and novel sites of integration in the human genome. Furthermore, co-infection with high-risk HPVs such as 16 and 31 were found to be mutually exclusive compared with low-risk HPV71. HPVDetector is a simple yet precise and robust tool for detecting HPV from tumour samples using variety of next-generation sequencing platforms including whole genome, whole exome and transcriptome. Two different modes (quick detection and integration mode) along with a GUI widen the usability of HPVDetector for biologists and clinicians with minimal computational knowledge.

  10. Scanning of Transposable Elements and Analyzing Expression of Transposase Genes of Sweet Potato [Ipomoea batatas

    PubMed Central

    Tao, Xiang; Lai, Xian-Jun; Zhang, Yi-Zheng; Tan, Xue-Mei; Wang, Haiyan

    2014-01-01

    Background Transposable elements (TEs) are the most abundant genomic components in eukaryotes and affect the genome by their replications and movements to generate genetic plasticity. Sweet potato performs asexual reproduction generally and the TEs may be an important genetic factor for genome reorganization. Complete identification of TEs is essential for the study of genome evolution. However, the TEs of sweet potato are still poorly understood because of its complex hexaploid genome and difficulty in genome sequencing. The recent availability of the sweet potato transcriptome databases provides an opportunity for discovering and characterizing the expressed TEs. Methodology/Principal Findings We first established the integrated-transcriptome database by de novo assembling four published sweet potato transcriptome databases from three cultivars in China. Using sequence-similarity search and analysis, a total of 1,405 TEs including 883 retrotransposons and 522 DNA transposons were predicted and categorized. Depending on mapping sets of RNA-Seq raw short reads to the predicted TEs, we compared the quantities, classifications and expression activities of TEs inter- and intra-cultivars. Moreover, the differential expressions of TEs in seven tissues of Xushu 18 cultivar were analyzed by using Illumina digital gene expression (DGE) tag profiling. It was found that 417 TEs were expressed in one or more tissues and 107 in all seven tissues. Furthermore, the copy number of 11 transposase genes was determined to be 1–3 copies in the genome of sweet potato by Real-time PCR-based absolute quantification. Conclusions/Significance Our result provides a new method for TE searching on species with transcriptome sequences while lacking genome information. The searching, identification and expression analysis of TEs will provide useful TE information in sweet potato, which are valuable for the further studies of TE-mediated gene mutation and optimization in asexual reproduction. It contributes to elucidating the roles of TEs in genome evolution. PMID:24608103

  11. Floral gene resources from basal angiosperms for comparative genomics research

    PubMed Central

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777

  12. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  13. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef).

    PubMed

    Cannarozzi, Gina; Plaza-Wüthrich, Sonia; Esfeld, Korinna; Larti, Stéphanie; Wilson, Yi Song; Girma, Dejene; de Castro, Edouard; Chanyalew, Solomon; Blösch, Regula; Farinelli, Laurent; Lyons, Eric; Schneider, Michel; Falquet, Laurent; Kuhlemeier, Cris; Assefa, Kebebew; Tadele, Zerihun

    2014-07-09

    Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.

  14. Development of single-copy nuclear intron markers for species-level phylogenetics: Case study with Paullinieae (Sapindaceae).

    PubMed

    Chery, Joyce G; Sass, Chodon; Specht, Chelsea D

    2017-09-01

    We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a "pseudoreference" closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.

  15. RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress

    PubMed Central

    Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd

    2013-01-01

    An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815

  16. Separating homeologs by phasing in the tetraploid wheat transcriptome.

    PubMed

    Krasileva, Ksenia V; Buffalo, Vince; Bailey, Paul; Pearce, Stephen; Ayling, Sarah; Tabbita, Facundo; Soria, Marcelo; Wang, Shichen; Akhunov, Eduard; Uauy, Cristobal; Dubcovsky, Jorge

    2013-06-25

    The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies.

  17. Separating homeologs by phasing in the tetraploid wheat transcriptome

    PubMed Central

    2013-01-01

    Background The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing. Conclusions Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. PMID:23800085

  18. A new source of resistance to 2-furaldehyde from Scheffersomyces (Pichia) stipitis for sustainable lignocellulose-to-biofuel conversion.

    PubMed

    Wang, Xu; Lewis Liu, Z; Zhang, Xiaoping; Ma, Menggen

    2017-06-01

    Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment have been identified as a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuel production. Development of robust next-generation biocatalyst is a key for a low-cost biofuel production industry. Scheffersomyces (Pichia) stipitis is a naturally occurring C-5 sugar utilization yeast; however, little is known about the genetic background underlying its potential tolerance to biomass conversion inhibitors. We investigated and identified five uncharacterized putative aryl-alcohol dehydrogenase genes (SsAADs) from this yeast as a new source of resistance against biomass fermentation inhibitor 2-furaldehyde (furfural) by gene expression, gene cloning, and direct enzyme assay analysis using partially purified proteins. All five proteins from S. stipitis showed furfural reduction using cofactor NADH. An optimum active temperature was observed at 40 °C for SsAad1p; 30 °C for SsAad3p, SsAad4p, and SsAad5p; and 20 °C for SsAad2p. SsAad2p, SsAad3p, and SsAad4p showed tolerance to a wide range of pH from 4.5 to 8, but SsAad1p and SsAad5p were sensitive to pH changes beyond 7. Genes SsAAD2, SsAAD3, and SsAAD4 displayed significantly enhanced higher levels of expression in response to the challenge of furfural. Their encoding proteins also showed higher levels of specific activity toward furfural and were suggested as core functional enzymes contributing aldehyde resistance in S. stipitis.

  19. Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome.

    PubMed

    Boon, E; Zimmerman, E; Lang, B F; Hijri, M

    2010-07-01

    Arbuscular mycorrhizal fungi (AMF) are heterokaryotes with an unusual genetic makeup. Substantial genetic variation occurs among nuclei within a single mycelium or isolate. AMF reproduce through spores that contain varying fractions of this heterogeneous population of nuclei. It is not clear whether this genetic variation on the genome level actually contributes to the AMF phenotype. To investigate the extent to which polymorphisms in nuclear genes are transcribed, we analysed the intra-isolate genomic and cDNA sequence variation of two genes, the large subunit ribosomal RNA (LSU rDNA) of Glomus sp. DAOM-197198 (previously known as G. intraradices) and the POL1-like sequence (PLS) of Glomus etunicatum. For both genes, we find high sequence variation at the genome and transcriptome level. Reconstruction of LSU rDNA secondary structure shows that all variants are functional. Patterns of PLS sequence polymorphism indicate that there is one functional gene copy, PLS2, which is preferentially transcribed, and one gene copy, PLS1, which is a pseudogene. This is the first study that investigates AMF intra-isolate variation at the transcriptome level. In conclusion, it is possible that, in AMF, multiple nuclear genomes contribute to a single phenotype.

  20. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

    PubMed

    Wasik, Kaja; Gurtowski, James; Zhou, Xin; Ramos, Olivia Mendivil; Delás, M Joaquina; Battistoni, Giorgia; El Demerdash, Osama; Falciatori, Ilaria; Vizoso, Dita B; Smith, Andrew D; Ladurner, Peter; Schärer, Lukas; McCombie, W Richard; Hannon, Gregory J; Schatz, Michael

    2015-10-06

    The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.

  1. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

    PubMed

    Baldrian, Petr; López-Mondéjar, Rubén

    2014-02-01

    Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.

  2. Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus

    PubMed Central

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567

  3. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Comparative Genomic and Transcriptomic Characterization of the Toxigenic Marine Dinoflagellate Alexandrium ostenfeldii

    PubMed Central

    Jaeckisch, Nina; Yang, Ines; Wohlrab, Sylke; Glöckner, Gernot; Kroymann, Juergen; Vogel, Heiko; Cembella, Allan; John, Uwe

    2011-01-01

    Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins. PMID:22164224

  5. The aquatic animals' transcriptome resource for comparative functional analysis.

    PubMed

    Chou, Chih-Hung; Huang, Hsi-Yuan; Huang, Wei-Chih; Hsu, Sheng-Da; Hsiao, Chung-Der; Liu, Chia-Yu; Chen, Yu-Hung; Liu, Yu-Chen; Huang, Wei-Yun; Lee, Meng-Lin; Chen, Yi-Chang; Huang, Hsien-Da

    2018-05-09

    Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/ .

  6. The Embryonic Transcriptome of the Red-Eared Slider Turtle (Trachemys scripta)

    PubMed Central

    Kaplinsky, Nicholas J.; Gilbert, Scott F.; Cebra-Thomas, Judith; Lilleväli, Kersti; Saare, Merly; Chang, Eric Y.; Edelman, Hannah E.; Frick, Melissa A.; Guan, Yin; Hammond, Rebecca M.; Hampilos, Nicholas H.; Opoku, David S. B.; Sariahmed, Karim; Sherman, Eric A.; Watson, Ray

    2013-01-01

    The bony shell of the turtle is an evolutionary novelty not found in any other group of animals, however, research into its formation has suggested that it has evolved through modification of conserved developmental mechanisms. Although these mechanisms have been extensively characterized in model organisms, the tools for characterizing them in non-model organisms such as turtles have been limited by a lack of genomic resources. We have used a next generation sequencing approach to generate and assemble a transcriptome from stage 14 and 17 Trachemys scripta embryos, stages during which important events in shell development are known to take place. The transcriptome consists of 231,876 sequences with an N50 of 1,166 bp. GO terms and EC codes were assigned to the 61,643 unique predicted proteins identified in the transcriptome sequences. All major GO categories and metabolic pathways are represented in the transcriptome. Transcriptome sequences were used to amplify several cDNA fragments designed for use as RNA in situ probes. One of these, BMP5, was hybridized to a T. scripta embryo and exhibits both conserved and novel expression patterns. The transcriptome sequences should be of broad use for understanding the evolution and development of the turtle shell and for annotating any future T. scripta genome sequences. PMID:23840449

  7. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, CY; Yang, H; Wei, CL

    Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Using high-throughput Illumina RNA-seq, the transcriptome from poly (A){sup +} RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled intomore » 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.« less

  8. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    PubMed Central

    2011-01-01

    Background Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Results Using high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). Conclusions An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis. PMID:21356090

  9. Transcriptome

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  10. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes).

    PubMed

    Kukekova, Anna V; Johnson, Jennifer L; Teiling, Clotilde; Li, Lewyn; Oskina, Irina N; Kharlamova, Anastasiya V; Gulevich, Rimma G; Padte, Ravee; Dubreuil, Michael M; Vladimirova, Anastasiya V; Shepeleva, Darya V; Shikhevich, Svetlana G; Sun, Qi; Ponnala, Lalit; Temnykh, Svetlana V; Trut, Lyudmila N; Acland, Gregory M

    2011-10-03

    Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.

  11. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    PubMed Central

    2011-01-01

    Background Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information. PMID:21967120

  12. Comparative Transcriptomics of Strawberries (Fragaria spp.) Provides Insights into Evolutionary Patterns

    PubMed Central

    Qiao, Qin; Xue, Li; Wang, Qia; Sun, Hang; Zhong, Yang; Huang, Jinling; Lei, Jiajun; Zhang, Ticao

    2016-01-01

    Multiple closely related species with genomic sequences provide an ideal system for studies on comparative and evolutionary genomics, as well as the mechanism of speciation. The whole genome sequences of six strawberry species (Fragaria spp.) have been released, which provide one of the richest genomic resources of any plant genus. In this study, we first generated seven transcriptome sequences of Fragaria species de novo, with a total of 48,557–82,537 unigenes per species. Combined with 13 other species genomes in Rosales, we reconstructed a phylogenetic tree at the genomic level. The phylogenic tree shows that Fragaria closed grouped with Rubus and the Fragaria clade is divided into three subclades. East Asian species appeared in every subclade, suggesting that the genus originated in this area at ∼7.99 Mya. Four species found in mountains of Southwest China originated at ∼3.98 Mya, suggesting that rapid speciation occurred to adapt to changing environments following the uplift of the Qinghai–Tibet Plateau. Moreover, we identified 510 very significantly positively selected genes in the cultivated species F. × ananassa genome. This set of genes was enriched in functions related to specific agronomic traits, such as carbon metabolism and plant hormone signal transduction processes, which are directly related to fruit quality and flavor. These findings illustrate comprehensive evolutionary patterns in Fragaria and the genetic basis of fruit domestication of cultivated strawberry at the genomic/transcriptomic level. PMID:28018379

  13. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  14. Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals

    PubMed Central

    Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou

    2015-01-01

    Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180

  15. International Standards for Genomes, Transcriptomes, and Metagenomes

    PubMed Central

    Mason, Christopher E.; Afshinnekoo, Ebrahim; Tighe, Scott; Wu, Shixiu; Levy, Shawn

    2017-01-01

    Challenges and biases in preparing, characterizing, and sequencing DNA and RNA can have significant impacts on research in genomics across all kingdoms of life, including experiments in single-cells, RNA profiling, and metagenomics (across multiple genomes). Technical artifacts and contamination can arise at each point of sample manipulation, extraction, sequencing, and analysis. Thus, the measurement and benchmarking of these potential sources of error are of paramount importance as next-generation sequencing (NGS) projects become more global and ubiquitous. Fortunately, a variety of methods, standards, and technologies have recently emerged that improve measurements in genomics and sequencing, from the initial input material to the computational pipelines that process and annotate the data. Here we review current standards and their applications in genomics, including whole genomes, transcriptomes, mixed genomic samples (metagenomes), and the modified bases within each (epigenomes and epitranscriptomes). These standards, tools, and metrics are critical for quantifying the accuracy of NGS methods, which will be essential for robust approaches in clinical genomics and precision medicine. PMID:28337071

  16. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    PubMed Central

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome. PMID:20392818

  17. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing.

    PubMed

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-08-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.

  18. Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using Next-Generation Genomics, Transcriptomics and Proteogenomics

    PubMed Central

    Dodhia, Kejal; Stoll, Thomas; Hastie, Marcus; Furuki, Eiko; Ellwood, Simon R.; Williams, Angela H.; Tan, Yew-Foon; Testa, Alison C.; Gorman, Jeffrey J.; Oliver, Richard P.

    2016-01-01

    Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models. PMID:26840125

  19. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  20. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    PubMed

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  1. Transcriptomes Reveal Genetic Signatures Underlying Physiological Variations Imposed by Different Fermentation Conditions in Lactobacillus plantarum

    PubMed Central

    Bongers, Roger S.; van Bokhorst-van de Veen, Hermien; Wiersma, Anne; Overmars, Lex; Marco, Maria L.; Kleerebezem, Michiel

    2012-01-01

    Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of conditions that differ in temperature, pH, as well as NaCl, amino acid, and O2 levels. Samples derived from these fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics, e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological variations imposed by different fermentation conditions. PMID:22802930

  2. Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast.

    PubMed

    Singh, Anita; Bishnoi, Narsi R

    2012-03-01

    Microwave alkali pretreated wheat straw was used for in-house enzyme production by Aspergillusflavus and Trichodermareesei. Produced enzymes were concentrated, pooled and assessed for the hydrolysis of pretreated wheat straw. Factors affecting hydrolysis were screened out by Placket-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). Under optimum conditions, 82% efficiency in hydrolysis yield was observed. After the optimization by response surface methodology (RSM), a model was proposed to predict the optimum value confirmed by the experimental results. The concentrated enzymatic hydrolyzate was fermented for ethanol production by Saccharomyces cerevisiae, Pichia stipitis and co-culture of both. The yield of ethanol was found to be 0.48 g(p)/g(s), 0.43 g(p)/g(s) and 0.40 g(p)/g(s) by S. cerevisiae, P. stipitis and by co-culture, respectively, using concentrated enzymatic hydrolyzate. During anaerobic fermentation 42.31 μmol/mL, 36.69 μmol/mL, 43.35 μmol/mL CO(2) was released by S. cerevisiae, P. stipitis and by co-culture, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Omics approaches in food safety: fulfilling the promise?

    PubMed Central

    Bergholz, Teresa M.; Moreno Switt, Andrea I.; Wiedmann, Martin

    2014-01-01

    Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to detection, prevention and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. While practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions. PMID:24572764

  4. The Co-regulation Data Harvester: Automating gene annotation starting from a transcriptome database

    NASA Astrophysics Data System (ADS)

    Tsypin, Lev M.; Turkewitz, Aaron P.

    Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.

  5. De novo assembly and transcriptome characterization of the freshwater prawn Palaemonetes argentinus: Implications for a detoxification response.

    PubMed

    García, C Fernando; Pedrini, Nicolas; Sánchez-Paz, Arturo; Reyna-Blanco, Carlos S; Lavarias, Sabrina; Muhlia-Almazán, Adriana; Fernández-Giménez, Analía; Laino, Aldana; de-la-Re-Vega, Enrique; Lukaszewicz, German; López-Zavala, Alonso A; Brieba, Luis G; Criscitello, Michael F; Carrasco-Miranda, Jesús S; García-Orozco, Karina D; Ochoa-Leyva, Adrian; Rudiño-Piñera, Enrique; Sanchez-Flores, Alejandro; Sotelo-Mundo, Rogerio R

    2018-02-01

    Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. RNA-Seq analysis of isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic Escherichia coli prototype isolates

    PubMed Central

    Hazen, Tracy H.; Daugherty, Sean C.; Shetty, Amol; Mahurkar, Anup A.; White, Owen; Kaper, James B.; Rasko, David A.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis. PMID:26124752

  7. Using deep RNA sequencing for the structural annotation of the laccaria bicolor mycorrhizal transcriptome.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, P. E.; Trivedi, G.; Sreedasyam, A.

    2010-07-06

    Accurate structural annotation is important for prediction of function and required for in vitro approaches to characterize or validate the gene expression products. Despite significant efforts in the field, determination of the gene structure from genomic data alone is a challenging and inaccurate process. The ease of acquisition of transcriptomic sequence provides a direct route to identify expressed sequences and determine the correct gene structure. We developed methods to utilize RNA-seq data to correct errors in the structural annotation and extend the boundaries of current gene models using assembly approaches. The methods were validated with a transcriptomic data set derivedmore » from the fungus Laccaria bicolor, which develops a mycorrhizal symbiotic association with the roots of many tree species. Our analysis focused on the subset of 1501 gene models that are differentially expressed in the free living vs. mycorrhizal transcriptome and are expected to be important elements related to carbon metabolism, membrane permeability and transport, and intracellular signaling. Of the set of 1501 gene models, 1439 (96%) successfully generated modified gene models in which all error flags were successfully resolved and the sequences aligned to the genomic sequence. The remaining 4% (62 gene models) either had deviations from transcriptomic data that could not be spanned or generated sequence that did not align to genomic sequence. The outcome of this process is a set of high confidence gene models that can be reliably used for experimental characterization of protein function. 69% of expressed mycorrhizal JGI 'best' gene models deviated from the transcript sequence derived by this method. The transcriptomic sequence enabled correction of a majority of the structural inconsistencies and resulted in a set of validated models for 96% of the mycorrhizal genes. The method described here can be applied to improve gene structural annotation in other species, provided that there is a sequenced genome and a set of gene models.« less

  8. Transcriptome complexity in cardiac development and diseases--an expanding universe between genome and phenome.

    PubMed

    Gao, Chen; Wang, Yibin

    2014-01-01

    With the advancement of transcriptome profiling by micro-arrays and high-throughput RNA-sequencing, transcriptome complexity and its dynamics are revealed at different levels in cardiovascular development and diseases. In this review, we will highlight the recent progress in our knowledge of cardiovascular transcriptome complexity contributed by RNA splicing, RNA editing and noncoding RNAs. The emerging importance of many of these previously under-explored aspects of gene regulation in cardiovascular development and pathology will be discussed.

  9. Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification.

    PubMed

    Ramos, Miguel Jesus Nunes; Coito, João Lucas; Fino, Joana; Cunha, Jorge; Silva, Helena; de Almeida, Patrícia Gomes; Costa, Maria Manuela Ribeiro; Amâncio, Sara; Paulo, Octávio S; Rocheta, Margarida

    2017-01-01

    RNA-seq of Vitis during early stages of bud development, in male, female and hermaphrodite flowers, identified new loci outside of annotated gene models, suggesting their involvement in sex establishment. The molecular mechanisms responsible for flower sex specification remain unclear for most plant species. In the case of V. vinifera ssp. vinifera, it is not fully understood what determines hermaphroditism in the domesticated subspecies and male or female flowers in wild dioecious relatives (Vitis vinifera ssp. sylvestris). Here, we describe a de novo assembly of the transcriptome of three flower developmental stages from the three Vitis vinifera flower types. The validation of de novo assembly showed a correlation of 0.825. The main goals of this work were the identification of V. v. sylvestris exclusive transcripts and the characterization of differential gene expression during flower development. RNA from several flower developmental stages was used previously to generate Illumina sequence reads. Through a sequential de novo assembly strategy one comprehensive transcriptome comprising 95,516 non-redundant transcripts was assembled. From this dataset 81,064 transcripts were annotated to V. v. vinifera reference transcriptome and 11,084 were annotated against V. v. vinifera reference genome. Moreover, we found 3368 transcripts that could not be mapped to Vitis reference genome. From all the non-redundant transcripts that were assembled, bioinformatics analysis identified 133 specific of V. v. sylvestris and 516 transcripts differentially expressed among the three flower types. The detection of transcription from areas of the genome not currently annotated suggests active transcription of previously unannotated genomic loci during early stages of bud development.

  10. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees.

    PubMed

    Trapp, Judith; McAfee, Alison; Foster, Leonard J

    2017-02-01

    Globally, there are over 20 000 bee species (Hymenoptera: Apoidea: Anthophila) with a host of biologically fascinating characteristics. Although they have long been studied as models for social evolution, recent challenges to bee health (mainly diseases and pesticides) have gathered the attention of both public and research communities. Genome sequences of twelve bee species are now complete or under progress, facilitating the application of additional 'omic technologies. Here, we review recent developments in honey bee and native bee research in the genomic era. We discuss the progress in genome sequencing and functional annotation, followed by the enabled comparative genomics, proteomics and transcriptomics applications regarding social evolution and health. Finally, we end with comments on future challenges in the postgenomic era. © 2016 John Wiley & Sons Ltd.

  11. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines

    PubMed Central

    2014-01-01

    Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272

  12. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  13. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    PubMed

    Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  14. Transcriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis

    PubMed Central

    Ma, Jun; Kanakala, S.; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. Conclusion The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus. PMID:25769053

  15. De Novo Assembly and Annotation of the Transcriptome of the Agricultural Weed Ipomoea purpurea Uncovers Gene Expression Changes Associated with Herbicide Resistance

    PubMed Central

    Leslie, Trent; Baucom, Regina S.

    2014-01-01

    Human-mediated selection can lead to rapid evolution in very short time scales, and the evolution of herbicide resistance in agricultural weeds is an excellent example of this phenomenon. The common morning glory, Ipomoea purpurea, is resistant to the herbicide glyphosate, but genetic investigations of this trait have been hampered by the lack of genomic resources for this species. Here, we present the annotated transcriptome of the common morning glory, Ipomoea purpurea, along with an examination of whole genome expression profiling to assess potential gene expression differences between three artificially selected herbicide resistant lines and three susceptible lines. The assembled Ipomoea transcriptome reported in this work contains 65,459 assembled transcripts, ~28,000 of which were functionally annotated by assignment to Gene Ontology categories. Our RNA-seq survey using this reference transcriptome identified 19 differentially expressed genes associated with resistance—one of which, a cytochrome P450, belongs to a large plant family of genes involved in xenobiotic detoxification. The differentially expressed genes also broadly implicated receptor-like kinases, which were down-regulated in the resistant lines, and other growth and defense genes, which were up-regulated in resistant lines. Interestingly, the target of glyphosate—EPSP synthase—was not overexpressed in the resistant Ipomoea lines as in other glyphosate resistant weeds. Overall, this work identifies potential candidate resistance loci for future investigations and dramatically increases genomic resources for this species. The assembled transcriptome presented herein will also provide a valuable resource to the Ipomoea community, as well as to those interested in utilizing the close relationship between the Convolvulaceae and the Solanaceae for phylogenetic and comparative genomics examinations. PMID:25155274

  16. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance.

    PubMed

    Leslie, Trent; Baucom, Regina S

    2014-08-25

    Human-mediated selection can lead to rapid evolution in very short time scales, and the evolution of herbicide resistance in agricultural weeds is an excellent example of this phenomenon. The common morning glory, Ipomoea purpurea, is resistant to the herbicide glyphosate, but genetic investigations of this trait have been hampered by the lack of genomic resources for this species. Here, we present the annotated transcriptome of the common morning glory, Ipomoea purpurea, along with an examination of whole genome expression profiling to assess potential gene expression differences between three artificially selected herbicide resistant lines and three susceptible lines. The assembled Ipomoea transcriptome reported in this work contains 65,459 assembled transcripts, ~28,000 of which were functionally annotated by assignment to Gene Ontology categories. Our RNA-seq survey using this reference transcriptome identified 19 differentially expressed genes associated with resistance-one of which, a cytochrome P450, belongs to a large plant family of genes involved in xenobiotic detoxification. The differentially expressed genes also broadly implicated receptor-like kinases, which were down-regulated in the resistant lines, and other growth and defense genes, which were up-regulated in resistant lines. Interestingly, the target of glyphosate-EPSP synthase-was not overexpressed in the resistant Ipomoea lines as in other glyphosate resistant weeds. Overall, this work identifies potential candidate resistance loci for future investigations and dramatically increases genomic resources for this species. The assembled transcriptome presented herein will also provide a valuable resource to the Ipomoea community, as well as to those interested in utilizing the close relationship between the Convolvulaceae and the Solanaceae for phylogenetic and comparative genomics examinations. Copyright © 2014 Leslie and Baucom.

  17. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  18. ATGC transcriptomics: a web-based application to integrate, explore and analyze de novo transcriptomic data.

    PubMed

    Gonzalez, Sergio; Clavijo, Bernardo; Rivarola, Máximo; Moreno, Patricio; Fernandez, Paula; Dopazo, Joaquín; Paniego, Norma

    2017-02-22

    In the last years, applications based on massively parallelized RNA sequencing (RNA-seq) have become valuable approaches for studying non-model species, e.g., without a fully sequenced genome. RNA-seq is a useful tool for detecting novel transcripts and genetic variations and for evaluating differential gene expression by digital measurements. The large and complex datasets resulting from functional genomic experiments represent a challenge in data processing, management, and analysis. This problem is especially significant for small research groups working with non-model species. We developed a web-based application, called ATGC transcriptomics, with a flexible and adaptable interface that allows users to work with new generation sequencing (NGS) transcriptomic analysis results using an ontology-driven database. This new application simplifies data exploration, visualization, and integration for a better comprehension of the results. ATGC transcriptomics provides access to non-expert computer users and small research groups to a scalable storage option and simple data integration, including database administration and management. The software is freely available under the terms of GNU public license at http://atgcinta.sourceforge.net .

  19. PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics

    PubMed Central

    2012-01-01

    Background The peanut (Arachis hypogaea) is an important crop cultivated worldwide for oil production and food sources. Its complex genetic architecture (e.g., the large and tetraploid genome possibly due to unique cross of wild diploid relatives and subsequent chromosome duplication: 2n = 4x = 40, AABB, 2800 Mb) presents a major challenge for its genome sequencing and makes it a less-studied crop. Without a doubt, transcriptome sequencing is the most effective way to harness the genome structure and gene expression dynamics of this non-model species that has a limited genomic resource. Description With the development of next generation sequencing technologies such as 454 pyro-sequencing and Illumina sequencing by synthesis, the transcriptomics data of peanut is rapidly accumulated in both the public databases and private sectors. Integrating 187,636 Sanger reads (103,685,419 bases), 1,165,168 Roche 454 reads (333,862,593 bases) and 57,135,995 Illumina reads (4,073,740,115 bases), we generated the first release of our peanut transcriptome assembly that contains 32,619 contigs. We provided EC, KEGG and GO functional annotations to these contigs and detected SSRs, SNPs and other genetic polymorphisms for each contig. Based on both open-source and our in-house tools, PeanutDB presents many seamlessly integrated web interfaces that allow users to search, filter, navigate and visualize easily the whole transcript assembly, its annotations and detected polymorphisms and simple sequence repeats. For each contig, sequence alignment is presented in both bird’s-eye view and nucleotide level resolution, with colorfully highlighted regions of mismatches, indels and repeats that facilitate close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors. Conclusion As a public genomic database that integrates peanut transcriptome data from different sources, PeanutDB (http://bioinfolab.muohio.edu/txid3818v1) provides the Peanut research community with an easy-to-use web portal that will definitely facilitate genomics research and molecular breeding in this less-studied crop. PMID:22712730

  20. The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum).

    PubMed

    Mun, Seyoung; Kim, Yun-Ji; Markkandan, Kesavan; Shin, Wonseok; Oh, Sumin; Woo, Jiyoung; Yoo, Jongsu; An, Hyesuck; Han, Kyudong

    2017-06-01

    The manila clam, Ruditapes philippinarum, is an important bivalve species in worldwide aquaculture including Korea. The aquaculture production of R. philippinarum is under threat from diverse environmental factors including viruses, microorganisms, parasites, and water conditions with subsequently declining production. In spite of its importance as a marine resource, the reference genome of R. philippinarum for comprehensive genetic studies is largely unexplored. Here, we report the de novo whole-genome and transcriptome assembly of R. philippinarum across three different tissues (foot, gill, and adductor muscle), and provide the basic data for advanced studies in selective breeding and disease control in order to obtain successful aquaculture systems. An approximately 2.56 Gb high quality whole-genome was assembled with various library construction methods. A total of 108,034 protein coding gene models were predicted and repetitive elements including simple sequence repeats and noncoding RNAs were identified to further understanding of the genetic background of R. philippinarum for genomics-assisted breeding. Comparative analysis with the bivalve marine invertebrates uncover that the gene family related to complement C1q was enriched. Furthermore, we performed transcriptome analysis with three different tissues in order to support genome annotation and then identified 41,275 transcripts which were annotated. The R. philippinarum genome resource will markedly advance a wide range of potential genetic studies, a reference genome for comparative analysis of bivalve species and unraveling mechanisms of biological processes in molluscs. We believe that the R. philippinarum genome will serve as an initial platform for breeding better-quality clams using a genomic approach. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp)

    PubMed Central

    Spriggs, Andrew; Henderson, Steven T.; Hand, Melanie L.; Johnson, Susan D.; Taylor, Jennifer M.; Koltunow, Anna

    2018-01-01

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads. PMID:29528046

  2. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp).

    PubMed

    Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna

    2018-02-09

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata  v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.

  3. Agricultural biodiversity in the post-genomics era

    USDA-ARS?s Scientific Manuscript database

    The toolkit available for assessing and utilizing biological diversity within agricultural systems is rapidly expanding. In particular, genome and transcriptome re-sequencing as well as genome complexity reduction techniques are gaining popularity as the cost of generating short read sequence data d...

  4. Genomics and Weeds: A Synthesis

    USDA-ARS?s Scientific Manuscript database

    Genomics can be used to solve many problems associated with the management of weeds. New target sites for herbicides have been discovered through functional genomic approaches to determine gene function. Modes of action of herbicides can be clarified or discovered by transcriptome analysis. Under...

  5. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree

    PubMed Central

    Rangiah, Kannan; Mahesh, HB; Rajamani, Anantharamanan; Shirke, Meghana D.; Russiachand, Heikham; Loganathan, Ramya Malarini; Shankara Lingu, Chandana; Siddappa, Shilpa; Ramamurthy, Aishwarya; Sathyanarayana, BN

    2015-01-01

    Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways. PMID:26290780

  6. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  7. PATRIC, the bacterial bioinformatics database and analysis resource.

    PubMed

    Wattam, Alice R; Abraham, David; Dalay, Oral; Disz, Terry L; Driscoll, Timothy; Gabbard, Joseph L; Gillespie, Joseph J; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K; Olson, Robert; Overbeek, Ross; Pusch, Gordon D; Shukla, Maulik; Schulman, Julie; Stevens, Rick L; Sullivan, Daniel E; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J C; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W

    2014-01-01

    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10,000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.

  8. PATRIC, the bacterial bioinformatics database and analysis resource

    PubMed Central

    Wattam, Alice R.; Abraham, David; Dalay, Oral; Disz, Terry L.; Driscoll, Timothy; Gabbard, Joseph L.; Gillespie, Joseph J.; Gough, Roger; Hix, Deborah; Kenyon, Ronald; Machi, Dustin; Mao, Chunhong; Nordberg, Eric K.; Olson, Robert; Overbeek, Ross; Pusch, Gordon D.; Shukla, Maulik; Schulman, Julie; Stevens, Rick L.; Sullivan, Daniel E.; Vonstein, Veronika; Warren, Andrew; Will, Rebecca; Wilson, Meredith J.C.; Yoo, Hyun Seung; Zhang, Chengdong; Zhang, Yan; Sobral, Bruno W.

    2014-01-01

    The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein–protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue. PMID:24225323

  9. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.

  10. Ocean biogeochemistry modeled with emergent trait-based genomics

    NASA Astrophysics Data System (ADS)

    Coles, V. J.; Stukel, M. R.; Brooks, M. T.; Burd, A.; Crump, B. C.; Moran, M. A.; Paul, J. H.; Satinsky, B. M.; Yager, P. L.; Zielinski, B. L.; Hood, R. R.

    2017-12-01

    Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and “omics” data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean.

  11. Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes

    USDA-ARS?s Scientific Manuscript database

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...

  12. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  13. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  14. Customizing the Connectivity Map Approach for Functional Evaluation in Toxicogenomics Studies (SOT)

    EPA Science Inventory

    Evaluating effects on the transcriptome can provide insight on putative chemical-specific mechanisms of action (MOAs). With whole genome transcriptomics technologies becoming more amenable to high-throughput screening, libraries of chemicals can be evaluated in vitro to produce l...

  15. Evaluation of Sequencing Approaches for High-Throughput Transcriptomics - (BOSC)

    EPA Science Inventory

    Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. The generation of high-throughput global gene expression...

  16. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa

    PubMed Central

    2012-01-01

    Introduction Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa. Results cDNA libraries of ten species belonging to five animal phyla (2 Annelida [including Sipuncula], 2 Arthropoda, 2 Mollusca, 2 Nemertea, and 2 Porifera) were sequenced in different batches with an Illumina Genome Analyzer II (read length 100 or 150 bp), rendering between ca. 25 and 52 million reads per species. Read thinning, trimming, and de novo assembly were performed under different parameters to optimize output. Between 67,423 and 207,559 contigs were obtained across the ten species, post-optimization. Of those, 9,069 to 25,681 contigs retrieved blast hits against the NCBI non-redundant database, and approximately 50% of these were assigned with Gene Ontology terms, covering all major categories, and with similar percentages in all species. Local blasts against our datasets, using selected genes from major signaling pathways and housekeeping genes, revealed high efficiency in gene recovery compared to available genomes of closely related species. Intriguingly, our transcriptomic datasets detected multiple paralogues in all phyla and in nearly all gene pathways, including housekeeping genes that are traditionally used in phylogenetic applications for their purported single-copy nature. Conclusions We generated the first study of comparative transcriptomics across multiple animal phyla (comparing two species per phylum in most cases), established the first Illumina-based transcriptomic datasets for sponge, nemertean, and sipunculan species, and generated a tractable catalogue of annotated genes (or gene fragments) and protein families for ten newly sequenced non-model organisms, some of commercial importance (i.e., Octopus vulgaris). These comprehensive sets of genes can be readily used for phylogenetic analysis, gene expression profiling, developmental analysis, and can also be a powerful resource for gene discovery. The characterization of the transcriptomes of such a diverse array of animal species permitted the comparison of sequencing depth, functional annotation, and efficiency of genomic sampling using the same pipelines, which proved to be similar for all considered species. In addition, the datasets revealed their potential as a resource for paralogue detection, a recurrent concern in various aspects of biological inquiry, including phylogenetics, molecular evolution, development, and cellular biochemistry. PMID:23190771

  17. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  18. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  19. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome.

    PubMed

    Jo, Ick-Hyun; Lee, Jinsu; Hong, Chi Eun; Lee, Dong Jin; Bae, Wonsil; Park, Sin-Gi; Ahn, Yong Ju; Kim, Young Chang; Kim, Jang Uk; Lee, Jung Woo; Hyun, Dong Yun; Rhee, Sung-Keun; Hong, Chang Pyo; Bang, Kyong Hwan; Ryu, Hojin

    2017-09-15

    Korean ginseng ( Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng , we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana . Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng . In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.

  20. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses

    PubMed Central

    Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu

    2015-01-01

    Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement. PMID:26208029

  1. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses.

    PubMed

    Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu

    2015-01-01

    Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.

  2. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta

    PubMed Central

    Paviala, Jenni; Morandin, Claire; Wheat, Christopher; Sundström, Liselotte; Helanterä, Heikki

    2017-01-01

    Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon. PMID:29177112

  3. RNA-Seq Technology and Its Application in Fish Transcriptomics

    PubMed Central

    Ba, Yi; Zhuang, Qianfeng

    2014-01-01

    Abstract High-throughput sequencing technologies, also known as next-generation sequencing (NGS) technologies, have revolutionized the way that genomic research is advancing. In addition to the static genome, these state-of-art technologies have been recently exploited to analyze the dynamic transcriptome, and the resulting technology is termed RNA sequencing (RNA-seq). RNA-seq is free from many limitations of other transcriptomic approaches, such as microarray and tag-based sequencing method. Although RNA-seq has only been available for a short time, studies using this method have completely changed our perspective of the breadth and depth of eukaryotic transcriptomes. In terms of the transcriptomics of teleost fishes, both model and non-model species have benefited from the RNA-seq approach and have undergone tremendous advances in the past several years. RNA-seq has helped not only in mapping and annotating fish transcriptome but also in our understanding of many biological processes in fish, such as development, adaptive evolution, host immune response, and stress response. In this review, we first provide an overview of each step of RNA-seq from library construction to the bioinformatic analysis of the data. We then summarize and discuss the recent biological insights obtained from the RNA-seq studies in a variety of fish species. PMID:24380445

  4. RNA-seq analysis of Rubus idaeus cv. Nova: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches.

    PubMed

    Hyun, Tae Kyung; Lee, Sarah; Kumar, Dhinesh; Rim, Yeonggil; Kumar, Ritesh; Lee, Sang Yeol; Lee, Choong Hwan; Kim, Jae-Yean

    2014-10-01

    Using Illumina sequencing technology, we have generated the large-scale transcriptome sequencing data containing abundant information on genes involved in the metabolic pathways in R. idaeus cv. Nova fruits. Rubus idaeus (Red raspberry) is one of the important economical crops that possess numerous nutrients, micronutrients and phytochemicals with essential health benefits to human. The molecular mechanism underlying the ripening process and phytochemical biosynthesis in red raspberry is attributed to the changes in gene expression, but very limited transcriptomic and genomic information in public databases is available. To address this issue, we generated more than 51 million sequencing reads from R. idaeus cv. Nova fruit using Illumina RNA-Seq technology. After de novo assembly, we obtained 42,604 unigenes with an average length of 812 bp. At the protein level, Nova fruit transcriptome showed 77 and 68 % sequence similarities with Rubus coreanus and Fragaria versa, respectively, indicating the evolutionary relationship between them. In addition, 69 % of assembled unigenes were annotated using public databases including NCBI non-redundant, Cluster of Orthologous Groups and Gene ontology database, suggesting that our transcriptome dataset provides a valuable resource for investigating metabolic processes in red raspberry. To analyze the relationship between several novel transcripts and the amounts of metabolites such as γ-aminobutyric acid and anthocyanins, real-time PCR and target metabolite analysis were performed on two different ripening stages of Nova. This is the first attempt using Illumina sequencing platform for RNA sequencing and de novo assembly of Nova fruit without reference genome. Our data provide the most comprehensive transcriptome resource available for Rubus fruits, and will be useful for understanding the ripening process and for breeding R. idaeus cultivars with improved fruit quality.

  5. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae.

    PubMed

    Mao, Yunrui; Zhang, Yonghua; Xu, Chuan; Qiu, Yingxiong

    2016-01-01

    Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa. © 2015 John Wiley & Sons Ltd.

  6. Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution

    PubMed Central

    Dong, Yanhan; Li, Ying; Zhao, Miaomiao; Jing, Maofeng; Liu, Xinyu; Liu, Muxing; Guo, Xianxian; Zhang, Xing; Chen, Yue; Liu, Yongfeng; Liu, Yanhong; Ye, Wenwu; Zhang, Haifeng; Wang, Yuanchao; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2015-01-01

    Genome dynamics of pathogenic organisms are driven by pathogen and host co-evolution, in which pathogen genomes are shaped to overcome stresses imposed by hosts with various genetic backgrounds through generation of a variety of isolates. This same principle applies to the rice blast pathogen Magnaporthe oryzae and the rice host; however, genetic variations among different isolates of M. oryzae remain largely unknown, particularly at genome and transcriptome levels. Here, we applied genomic and transcriptomic analytical tools to investigate M. oryzae isolate 98-06 that is the most aggressive in infection of susceptible rice cultivars. A unique 1.4 Mb of genomic sequences was found in isolate 98-06 in comparison to reference strain 70-15. Genome-wide expression profiling revealed the presence of two critical expression patterns of M. oryzae based on 64 known pathogenicity-related (PaR) genes. In addition, 134 candidate effectors with various segregation patterns were identified. Five tested proteins could suppress BAX-mediated programmed cell death in Nicotiana benthamiana leaves. Characterization of isolate-specific effector candidates Iug6 and Iug9 and PaR candidate Iug18 revealed that they have a role in fungal propagation and pathogenicity. Moreover, Iug6 and Iug9 are located exclusively in the biotrophic interfacial complex (BIC) and their overexpression leads to suppression of defense-related gene expression in rice, suggesting that they might participate in biotrophy by inhibiting the SA and ET pathways within the host. Thus, our studies identify novel effector and PaR proteins involved in pathogenicity of the highly aggressive M. oryzae field isolate 98-06, and reveal molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions. PMID:25837042

  7. Genomic structural differences between cattle and river buffalo identified through a combination and genomic and transcriptomic analysis

    USDA-ARS?s Scientific Manuscript database

    Water buffalo (Bubalus bubalis L.) is an important livestock species worldwide. Like many other livestock species, water buffalo lacks high quality and continuous reference genome assembly required for fine-scale comparative genomics studies. In this work, we present a dataset, which characterizes g...

  8. Aquatic Plant Genomics: Advances, Applications, and Prospects

    PubMed Central

    Li, Gaojie; Yang, Jingjing

    2017-01-01

    Genomics is a discipline in genetics that studies the genome composition of organisms and the precise structure of genes and their expression and regulation. Genomics research has resolved many problems where other biological methods have failed. Here, we summarize advances in aquatic plant genomics with a focus on molecular markers, the genes related to photosynthesis and stress tolerance, comparative study of genomes and genome/transcriptome sequencing technology. PMID:28900619

  9. The past, present, and future of Leishmania genomics and transcriptomics

    PubMed Central

    Cantacessi, Cinzia; Dantas-Torres, Filipe; Nolan, Matthew J.; Otranto, Domenico

    2015-01-01

    It has been nearly 10 years since the completion of the first entire genome sequence of a Leishmania parasite. Genomic and transcriptomic analyses have advanced our understanding of the biology of Leishmania, and shed new light on the complex interactions occurring within the parasite–host–vector triangle. Here, we review these advances and examine potential avenues for translation of these discoveries into treatment and control programs. In addition, we argue for a strong need to explore how disease in dogs relates to that in humans, and how an improved understanding in line with the ‘One Health’ concept may open new avenues for the control of these devastating diseases. PMID:25638444

  10. Seqping: gene prediction pipeline for plant genomes using self-training gene models and transcriptomic data.

    PubMed

    Chan, Kuang-Lim; Rosli, Rozana; Tatarinova, Tatiana V; Hogan, Michael; Firdaus-Raih, Mohd; Low, Eng-Ti Leslie

    2017-01-27

    Gene prediction is one of the most important steps in the genome annotation process. A large number of software tools and pipelines developed by various computing techniques are available for gene prediction. However, these systems have yet to accurately predict all or even most of the protein-coding regions. Furthermore, none of the currently available gene-finders has a universal Hidden Markov Model (HMM) that can perform gene prediction for all organisms equally well in an automatic fashion. We present an automated gene prediction pipeline, Seqping that uses self-training HMM models and transcriptomic data. The pipeline processes the genome and transcriptome sequences of the target species using GlimmerHMM, SNAP, and AUGUSTUS pipelines, followed by MAKER2 program to combine predictions from the three tools in association with the transcriptomic evidence. Seqping generates species-specific HMMs that are able to offer unbiased gene predictions. The pipeline was evaluated using the Oryza sativa and Arabidopsis thaliana genomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the pipeline was able to identify at least 95% of BUSCO's plantae dataset. Our evaluation shows that Seqping was able to generate better gene predictions compared to three HMM-based programs (MAKER2, GlimmerHMM and AUGUSTUS) using their respective available HMMs. Seqping had the highest accuracy in rice (0.5648 for CDS, 0.4468 for exon, and 0.6695 nucleotide structure) and A. thaliana (0.5808 for CDS, 0.5955 for exon, and 0.8839 nucleotide structure). Seqping provides researchers a seamless pipeline to train species-specific HMMs and predict genes in newly sequenced or less-studied genomes. We conclude that the Seqping pipeline predictions are more accurate than gene predictions using the other three approaches with the default or available HMMs.

  11. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense×Tanacetum vulgare hybrid and allopolyploid (Asteraceae).

    PubMed

    Qi, Xiangyu; Wang, Haibin; Song, Aiping; Jiang, Jiafu; Chen, Sumei; Chen, Fadi

    2018-01-01

    Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense × T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.

  12. De novo transciptome assembly in polyploid species

    USDA-ARS?s Scientific Manuscript database

    In the absence of a reference genome, the ultimate goal of a de novo transcriptome assembly is to accurately and comprehensively reconstruct the set of messenger RNA transcripts represented in the sample. Non-reference assembly of the transcriptome of polyploid species poses a particular challenge b...

  13. Global impact of RNA splicing on transcriptome remodeling in the heart.

    PubMed

    Gao, Chen; Wang, Yibin

    2012-08-01

    In the eukaryotic transcriptome, both the numbers of genes and different RNA species produced by each gene contribute to the overall complexity. These RNA species are generated by the utilization of different transcriptional initiation or termination sites, or more commonly, from different messenger RNA (mRNA) splicing events. Among the 30,000+ genes in human genome, it is estimated that more than 95% of them can generate more than one gene product via alternative RNA splicing. The protein products generated from different RNA splicing variants can have different intracellular localization, activity, or tissue-distribution. Therefore, alternative RNA splicing is an important molecular process that contributes to the overall complexity of the genome and the functional specificity and diversity among different cell types. In this review, we will discuss current efforts to unravel the full complexity of the cardiac transcriptome using a deep-sequencing approach, and highlight the potential of this technology to uncover the global impact of RNA splicing on the transcriptome during development and diseases of the heart.

  14. Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga

    PubMed Central

    Guarnieri, Michael T.; Nag, Ambarish; Smolinski, Sharon L.; Darzins, Al; Seibert, Michael; Pienkos, Philip T.

    2011-01-01

    Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga. PMID:22043295

  15. Short communication: development and characterization of novel transcriptome-derived microsatellites for genetic analysis of persimmon.

    PubMed

    Luo, C; Zhang, Q L; Luo, Z R

    2014-04-16

    Oriental persimmon (Diospyros kaki Thunb.) (2n = 6x = 90) is a major commercial and deciduous fruit tree that is believed to have originated in China. However, rare transcriptomic and genomic information on persimmon is available. Using Roche 454 sequencing technology, the transcriptome from RNA of the flowers of D. kaki was analyzed. A total of 1,250,893 reads were generated and 83,898 unigenes were assembled. A total of 42,711 SSR loci were identified from 23,494 unigenes and 289 polymerase chain reaction primer pairs were designed. Of these 289 primers, 155 (53.6%) showed robust PCR amplification and 98 revealed polymorphism between 15 persimmon genotypes, indicating a polymorphic rate of 63.23% of the productive primers for characterization and genotyping of the genus Diospyros. Transcriptome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no genomic sequence information available.

  16. The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

    PubMed

    Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong

    2018-04-01

    The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.

  17. The Use of Functional Genomics in Conjunction with Metabolomics for Mycobacterium tuberculosis Research

    PubMed Central

    Swanepoel, Conrad C.

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a fatal infectious disease, resulting in 1.4 million deaths globally per annum. Over the past three decades, genomic studies have been conducted in an attempt to elucidate the functionality of the genome of the pathogen. However, many aspects of this complex genome remain largely unexplored, as approaches like genomics, proteomics, and transcriptomics have failed to characterize them successfully. In turn, metabolomics, which is relatively new to the “omics” revolution, has shown great potential for investigating biological systems or their modifications. Furthermore, when these data are interpreted in combination with previously acquired genomics, proteomics and transcriptomics data, using what is termed a systems biology approach, a more holistic understanding of these systems can be achieved. In this review we discuss how metabolomics has contributed so far to characterizing TB, with emphasis on the resulting improved elucidation of M. tuberculosis in terms of (1) metabolism, (2) growth and replication, (3) pathogenicity, and (4) drug resistance, from the perspective of systems biology. PMID:24771957

  18. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.

    PubMed

    Sukwong, Pailin; Ra, Chae Hun; Sunwoo, In Yung; Tantratian, Sumate; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-03-23

    This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H 2 SO 4 , and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.

  19. Impact of pseudo-continuous fermentation on the ethanol tolerance of Scheffersomyces stipitis.

    PubMed

    Liang, Meng; Kim, Min Hea; He, Qinghua Peter; Wang, Jin

    2013-09-01

    In this work we conducted the pseudo-continuous fermentation, i.e., continuous fermentation with cell retention, using Scheffersomyces stipitis, and studied its effect on ethanol tolerance of the strain. During the fermentation experiments, S. stipitis was adapted to a mild concentration of ethanol (20-26 g/L) for two weeks. Two substrates (glucose and xylose) were used in different fermentation experiments. After fermentation, various experiments were performed to evaluate the ethanol tolerance of adapted cells and unadapted cells. Compared to the unadapted cells, the viability of adapted cells increased by 8 folds with glucose as the carbon source and 6 folds with xylose as the carbon source following exposure to 60 g/L ethanol for 2 h. Improved ethanol tolerance of the adapted cells was also revealed in the effects of ethanol on plasma membrane permeability, extracellular alkalization and acidification. The mathematical modeling of cell leakage, extracellular alkalization and acidification revealed that cells cultured on glucose show better ethanol tolerance than cells cultured on xylose but the differences become smaller for adapted cells. The results show that pseudo-continuous fermentation can effectively improve cell's ethanol tolerance due to the environmental pressure during the fermentation process. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity

    PubMed Central

    Yassour, Moran; Grabherr, Manfred; Blood, Philip D.; Bowden, Joshua; Couger, Matthew Brian; Eccles, David; Li, Bo; Lieber, Matthias; MacManes, Matthew D.; Ott, Michael; Orvis, Joshua; Pochet, Nathalie; Strozzi, Francesco; Weeks, Nathan; Westerman, Rick; William, Thomas; Dewey, Colin N.; Henschel, Robert; LeDuc, Richard D.; Friedman, Nir; Regev, Aviv

    2013-01-01

    De novo assembly of RNA-Seq data allows us to study transcriptomes without the need for a genome sequence, such as in non-model organisms of ecological and evolutionary importance, cancer samples, or the microbiome. In this protocol, we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-Seq data in non-model organisms. We also present Trinity’s supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples, and approaches to identify protein coding genes. In an included tutorial we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sf.net. PMID:23845962

  1. Trinity: Transcriptome Assembly for Genetic and Functional Analysis of Cancer | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The cancer transcriptome is shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially different than the reference or for detecting sequences from the cancer microbiome.

  2. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing

    Treesearch

    Zhuang Hu; Tian Zhang; Xiao-Xiao Gao; Yang Wang; Qiang Zhang; Hui-Juan Zhou; Gui-Fang Zhao; Ma-Li Wang; Keith E. Woeste; Peng Zhao

    2016-01-01

    Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome...

  3. Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant Deschampsia antarctica Desv

    PubMed Central

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Background Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. Results The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5′- or 3′-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. Conclusions We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome. PMID:24647560

  4. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome.

  5. Advanced Applications of Next-Generation Sequencing Technologies to Orchid Biology.

    PubMed

    Yeh, Chuan-Ming; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2018-01-01

    Next-generation sequencing technologies are revolutionizing biology by permitting, transcriptome sequencing, whole-genome sequencing and resequencing, and genome-wide single nucleotide polymorphism profiling. Orchid research has benefited from this breakthrough, and a few orchid genomes are now available; new biological questions can be approached and new breeding strategies can be designed. The first part of this review describes the unique features of orchid biology. The second part provides an overview of the current next-generation sequencing platforms, many of which are already used in plant laboratories. The third part summarizes the state of orchid transcriptome and genome sequencing and illustrates current achievements. The genetic sequences currently obtained will not only provide a broad scope for the study of orchid biology, but also serves as a starting point for uncovering the mystery of orchid evolution.

  6. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  7. Functional genomics of physiological plasticity and local adaptation in killifish.

    PubMed

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  8. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  9. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    PubMed

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  10. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus

    PubMed Central

    2013-01-01

    Background The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. Results The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. Conclusions The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders. PMID:23985341

  11. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities.

    PubMed

    Zhang, Quan; Zhu, Feng; Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as revealed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus.

  12. A comprehensive resource of genomic, epigenomic and transcriptomic sequencing data for the black truffle Tuber melanosporum

    PubMed Central

    2014-01-01

    Background Tuber melanosporum, also known in the gastronomic community as “truffle”, features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. Findings We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody (“truffle”), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. Conclusions The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles. PMID:25392735

  13. A comprehensive resource of genomic, epigenomic and transcriptomic sequencing data for the black truffle Tuber melanosporum.

    PubMed

    Chen, Pao-Yang; Montanini, Barbara; Liao, Wen-Wei; Morselli, Marco; Jaroszewicz, Artur; Lopez, David; Ottonello, Simone; Pellegrini, Matteo

    2014-01-01

    Tuber melanosporum, also known in the gastronomic community as "truffle", features one of the largest fungal genomes (125 Mb) with an exceptionally high transposable element (TE) and repetitive DNA content (>58%). The main purpose of DNA methylation in fungi is TE silencing. As obligate outcrossing organisms, truffles are bound to a sexual mode of propagation, which together with TEs is thought to represent a major force driving the evolution of DNA methylation. Thus, it was of interest to examine if and how T. melanosporum exploits DNA methylation to maintain genome integrity. We performed whole-genome DNA bisulfite sequencing and mRNA sequencing on different developmental stages of T. melanosporum; namely, fruitbody ("truffle"), free-living mycelium and ectomycorrhiza. The data revealed a high rate of cytosine methylation (>44%), selectively targeting TEs rather than genes with a strong preference for CpG sites. Whole genome DNA sequencing uncovered multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs, almost exclusively in free-living mycelium propagated in vitro. Treatment of mycelia with 5-azacytidine partially reduced DNA methylation and increased TE transcription. Our transcriptome assembly also resulted in the identification of a set of novel transcripts from 614 genes. The datasets presented here provide valuable and comprehensive (epi)genomic information that can be of interest for evolutionary genomics studies of multicellular (filamentous) fungi, in particular Ascomycetes belonging to the subphylum, Pezizomycotina. Evidence derived from comparative methylome and transcriptome analyses indicates that a non-exhaustive and partly reversible methylation process operates in truffles.

  14. Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns.

    PubMed

    Grusz, Amanda L; Rothfels, Carl J; Schuettpelz, Eric

    2016-08-30

    Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns-an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes.

  15. Genome-wide inference of regulatory networks in Streptomyces coelicolor.

    PubMed

    Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou

    2010-10-18

    The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  16. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    PubMed Central

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  17. Overcoming Barriers to Progress in Exercise Genomics

    PubMed Central

    Bouchard, Claude

    2011-01-01

    This commentary focuses on the issues of statistical power, the usefulness of hypothesis-free approaches such as in genome-wide association explorations, the necessity of expanding the research beyond common DNA variants, the advantage of combining transcriptomics with genomics, and the complexities inherent to the search for links between genotype and phenotype in exercise genomics research. PMID:21697717

  18. Alternaria section Alternaria: Species, formae speciales or pathotypes?

    PubMed Central

    Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W.

    2015-01-01

    The cosmopolitan fungal genus Alternaria consists of multiple saprophytic and pathogenic species. Based on phylogenetic and morphological studies, the genus is currently divided into 26 sections. Alternaria sect. Alternaria contains most of the small-spored Alternaria species with concatenated conidia, including important plant, human and postharvest pathogens. Species within sect. Alternaria have been mostly described based on morphology and / or host-specificity, yet molecular variation between them is minimal. To investigate whether the described morphospecies within sect. Alternaria are supported by molecular data, whole-genome sequencing of nine Alternaria morphospecies supplemented with transcriptome sequencing of 12 Alternaria morphospecies as well as multi-gene sequencing of 168 Alternaria isolates was performed. The assembled genomes ranged in size from 33.3–35.2 Mb within sect. Alternaria and from 32.0–39.1 Mb for all Alternaria genomes. The number of repetitive sequences differed significantly between the different Alternaria genomes; ranging from 1.4–16.5 %. The repeat content within sect. Alternaria was relatively low with only 1.4–2.7 % of repeats. Whole-genome alignments revealed 96.7–98.2 % genome identity between sect. Alternaria isolates, compared to 85.1–89.3 % genome identity for isolates from other sections to the A. alternata reference genome. Similarly, 1.4–2.8 % and 0.8–1.8 % single nucleotide polymorphisms (SNPs) were observed in genomic and transcriptomic sequences, respectively, between isolates from sect. Alternaria, while the percentage of SNPs found in isolates from different sections compared to the A. alternata reference genome was considerably higher; 8.0–10.3 % and 6.1–8.5 %. The topology of a phylogenetic tree based on the whole-genome and transcriptome reads was congruent with multi-gene phylogenies based on commonly used gene regions. Based on the genome and transcriptome data, a set of core proteins was extracted, and primers were designed on two gene regions with a relatively low degree of conservation within sect. Alternaria (96.8 and 97.3 % conservation). Their potential discriminatory power within sect. Alternaria was tested next to nine commonly used gene regions in sect. Alternaria, namely the SSU, LSU, ITS, gapdh, rpb2, tef1, Alt a 1, endoPG and OPA10-2 gene regions. The phylogenies from the two gene regions with a relatively low conservation, KOG1058 and KOG1077, could not distinguish the described morphospecies within sect. Alternaria more effectively than the phylogenies based on the commonly used gene regions for Alternaria. Based on genome and transcriptome comparisons and molecular phylogenies, Alternaria sect. Alternaria consists of only 11 phylogenetic species and one species complex. Thirty-five morphospecies, which cannot be distinguished based on the multi-gene phylogeny, are synonymised under A. alternata. By providing guidelines for the naming and identification of phylogenetic species in Alternaria sect. Alternaria, this manuscript provides a clear and stable species classification in this section. PMID:26951037

  19. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi.

    PubMed

    Feldmesser, Ester; Rosenwasser, Shilo; Vardi, Assaf; Ben-Dor, Shifra

    2014-02-22

    The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated. Several approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and protein levels, and resulted in an improvement of 20% versus any of the read-based approaches alone. To the best of our knowledge, this is the first time that an automated transcript definition is subjected to quality control using manually defined and curated genes and thereafter the process is improved. We recommend using a set of manually curated genes to troubleshoot transcriptome reconstruction.

  20. JGI Plant Genomics Gene Annotation Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward thismore » aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.« less

  1. High-throughput illumina strand-specific RNA sequencing library preparation

    USDA-ARS?s Scientific Manuscript database

    Conventional Illumina RNA-Seq does not have the resolution to decode the complex eukaryote transcriptome due to the lack of RNA polarity information. Strand-specific RNA sequencing (ssRNA-Seq) can overcome these limitations and as such is better suited for genome annotation, de novo transcriptome as...

  2. The testes transcriptome derived from the New World Screwworm, Cochliomyia hominivorax SRA

    USDA-ARS?s Scientific Manuscript database

    In a collaboration with National Center for Genome Resources researchers, we sequenced and assembled the testes transcriptome derived from the Pacora, Panama, production plant strain J06 of the New World Screwworm, Cochliomyia hominivorax. This sequencing project produced 72,750,822 raw reads and th...

  3. Transcriptome analysis of Pseudomonas syringae identifies new genes, ncRNAs, and antisense activity

    USDA-ARS?s Scientific Manuscript database

    To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method t...

  4. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes.

    PubMed

    Castoe, Todd A; de Koning, Jason A P; Hall, Kathryn T; Yokoyama, Ken D; Gu, Wanjun; Smith, Eric N; Feschotte, Cédric; Uetz, Peter; Ray, David A; Dobry, Jason; Bogden, Robert; Mackessy, Stephen P; Bronikowski, Anne M; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2011-07-28

    The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline.

  5. The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Coward-Kelly, Guillermo; Torry-Smith, Mads; Wenger, Kevin; Jeffries, Thomas W.

    Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was produced when the initial cell concentrations were high, cell density had no effect on the final ethanol yield. A two-parameter mathematical model was used to predict the cell population dynamics at the different initial cell concentrations. The model parameters, a and b correlate with the initial cell concentrations used with an R 2 of 0.99.

  6. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose.

    PubMed

    Slininger, P J; Dien, B S; Lomont, J M; Bothast, R J; Ladisch, M R; Okos, M R

    2014-08-01

    Scheffersomyces (formerly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol production as functions of ethanol, oxygen, and xylose concentrations for both growth and fermentation stages. The model was validated for various growth conditions including batch, cell recycle, batch with in situ ethanol removal and fed-batch. The model provides a summary of basic physiological yeast properties and is an important tool for simulating and optimizing various culture conditions and evaluating various bioreactor designs for ethanol production. © 2014 Wiley Periodicals, Inc.

  7. Analysis of insecticide resistance-related genes of the Carmine spider mite Tetranychus cinnabarinus based on a de novo assembled transcriptome.

    PubMed

    Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin

    2014-01-01

    The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value <10-5) matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA) analysis identified 435 core eukaryotic genes (CEGs) in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.

  8. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  9. Transcriptome characterisation of Pinus tabuliformis and evolution of genes in the Pinus phylogeny

    PubMed Central

    2013-01-01

    Background The Chinese pine (Pinus tabuliformis) is an indigenous conifer species in northern China but is relatively underdeveloped as a genomic resource; thus, limiting gene discovery and breeding. Large-scale transcriptome data were obtained using a next-generation sequencing platform to compensate for the lack of P. tabuliformis genomic information. Results The increasing amount of transcriptome data on Pinus provides an excellent resource for multi-gene phylogenetic analysis and studies on how conserved genes and functions are maintained in the face of species divergence. The first P. tabuliformis transcriptome from a normalised cDNA library of multiple tissues and individuals was sequenced in a full 454 GS-FLX run, producing 911,302 sequencing reads. The high quality overlapping expressed sequence tags (ESTs) were assembled into 46,584 putative transcripts, and more than 700 SSRs and 92,000 SNPs/InDels were characterised. Comparative analysis of the transcriptome of six conifer species yielded 191 orthologues, from which we inferred a phylogenetic tree, evolutionary patterns and calculated rates of gene diversion. We also identified 938 fast evolving sequences that may be useful for identifying genes that perhaps evolved in response to positive selection and might be responsible for speciation in the Pinus lineage. Conclusions A large collection of high-quality ESTs was obtained, de novo assembled and characterised, which represents a dramatic expansion of the current transcript catalogues of P. tabuliformis and which will gradually be applied in breeding programs of P. tabuliformis. Furthermore, these data will facilitate future studies of the comparative genomics of P. tabuliformis and other related species. PMID:23597112

  10. RNA sequencing of transformed lymphoblastoid cells from siblings discordant for autism spectrum disorders reveals transcriptomic and functional alterations: Evidence for sex-specific effects.

    PubMed

    Tylee, Daniel S; Espinoza, Alfred J; Hess, Jonathan L; Tahir, Muhammad A; McCoy, Sarah Y; Rim, Joshua K; Dhimal, Totadri; Cohen, Ori S; Glatt, Stephen J

    2017-03-01

    Genome-wide expression studies of samples derived from individuals with autism spectrum disorder (ASD) and their unaffected siblings have been widely used to shed light on transcriptomic differences associated with this condition. Females have historically been under-represented in ASD genomic studies. Emerging evidence from studies of structural genetic variants and peripheral biomarkers suggest that sex-differences may exist in the biological correlates of ASD. Relatively few studies have explicitly examined whether sex-differences exist in the transcriptomic signature of ASD. The present study quantified genome-wide expression values by performing RNA sequencing on transformed lymphoblastoid cell lines and identified transcripts differentially expressed between same-sex, proximal-aged sibling pairs. We found that performing separate analyses for each sex improved our ability to detect ASD-related transcriptomic differences; we observed a larger number of dysregulated genes within our smaller set of female samples (n = 12 sibling pairs), as compared with the set of male samples (n = 24 sibling pairs), with small, but statistically significant overlap between the sexes. Permutation-based gene-set analyses and weighted gene co-expression network analyses also supported the idea that the transcriptomic signature of ASD may differ between males and females. We discuss our findings in the context of the relevant literature, underscoring the need for future ASD studies to explicitly account for differences between the sexes. Autism Res 2017, 10: 439-455. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhai, Yuxiu; Yao, Lin; Jiang, Yanhua; Li, Fengling

    2017-05-01

    Chlamys farreri is an economically important mollusk that can accumulate excessive amounts of cadmium (Cd). Studying the molecular mechanism of Cd accumulation in bivalves is difficult because of the lack of genome background. Transcriptomic analysis based on high-throughput RNA sequencing has been shown to be an efficient and powerful method for the discovery of relevant genes in non-model and genome reference-free organisms. Here, we constructed two cDNA libraries (control and Cd exposure groups) from the digestive gland of C. farreri and compared the transcriptomic data between them. A total of 227 673 transcripts were assembled into 105 071 unigenes, most of which shared high similarity with sequences in the NCBI non-redundant protein database. For functional classification, 24 493 unigenes were assigned to Gene Ontology terms. Additionally, EuKaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes analyses assigned 12 028 unigenes to 26 categories and 7 849 unigenes to five pathways, respectively. Comparative transcriptomics analysis identified 3 800 unigenes that were differentially expressed in the Cd-treated group compared with the control group. Among them, genes associated with heavy metal accumulation were screened, including metallothionein, divalent metal transporter, and metal tolerance protein. The functional genes and predicted pathways identified in our study will contribute to a better understanding of the metabolic and immune system in the digestive gland of C. farreri. In addition, the transcriptomic data will provide a comprehensive resource that may contribute to the understanding of molecular mechanisms that respond to marine pollutants in bivalves.

  12. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L.

    PubMed

    Yang, Hongli; Liu, Jing; Huang, Shunmou; Guo, Tingting; Deng, Linbin; Hua, Wei

    2014-03-15

    Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  13. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis.

    PubMed

    Wang, Guanglu; Shi, Ting; Chen, Tao; Wang, Xiaoyue; Wang, Yongcheng; Liu, Dingyu; Guo, Jiaxin; Fu, Jing; Feng, Lili; Wang, Zhiwen; Zhao, Xueming

    2018-06-02

    Commercial riboflavin production with Bacillus subtilis has been developed by combining rational and classical strain development for almost two decades, but how an improved riboflavin producer can be created rationally is still not completely understood. In this study, we demonstrate the combined use of integrated genomic and transcriptomic analysis of the genetic basis for riboflavin over-production in B. subtilis. This methodology succeeded in discerning the positive mutations in the mutagenesis derived riboflavin producer B. subtilis 24/pMX45 through whole-genome sequencing and transcriptome sequencing. These included RibC (G199D), ribD + (G+39A), PurA (P242L), CcpN(A44S), YvrH (R222Q) and two nonsense mutations YhcF (R90*) and YwaA (Q68*). Reintroducing these specific mutations into the wild-type strain recovered the riboflavin overproduction phenotype and subsequent metabolic engineering greatly improved riboflavin production, achieving an up to 3.4-fold increase of the riboflavin titer over the sequenced producer. A novel mutation, YvrH (R222Q), involved in a typical two-component regulatory system deregulated the purine de novo synthesis pathway and increased the pool of intracellular purine metabolites, which in turn increased riboflavin production. Taken together, we present a case study of combining genome and transcriptome analysis to elucidate the genetic underpinnings of a complex cellular property, which enabled the transfer of beneficial mutations to engineer a reference strain into an overproducer. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. The draft genome and transcriptome of Cannabis sativa

    PubMed Central

    2011-01-01

    Background Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics. PMID:22014239

  15. The draft genome and transcriptome of Cannabis sativa.

    PubMed

    van Bakel, Harm; Stout, Jake M; Cote, Atina G; Tallon, Carling M; Sharpe, Andrew G; Hughes, Timothy R; Page, Jonathan E

    2011-10-20

    Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

  16. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers

    PubMed Central

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816

  17. Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains.

    PubMed

    Lee, Soojin; Kim, Borim; Yang, Jeongmo; Jeong, Daun; Park, Soohyun; Shin, Sang Heum; Kook, Jun Ho; Yang, Kap-Seok; Lee, Jinwon

    2015-11-01

    The integration of transcriptomics and metabolomics can provide precise information on gene-to-metabolite networks for identifying the function of novel genes. The goal of this study was to identify novel gene functions involved in 2,3-butanediol (2,3-BDO) biosynthesis by a comprehensive analysis of the transcriptome and metabolome of five mutated Klebsiella pneumonia strains (∆wabG = SGSB100, ∆wabG∆budA = SGSB106, ∆wabG∆budB = SGSB107, ∆wabG∆budC = SGSB108, ∆wabG∆budABC = SGSB109). First, the transcriptomes of all five mutants were analyzed and the genes exhibiting reproducible changes in expression were determined. The transcriptome was well conserved among the five strains, and differences in gene expression occurred mainly in genes coding for 2,3-BDO biosynthesis (budA, budB, and budC) and the genes involved in the degradation of reactive oxygen, biosynthesis and transport of arginine, cysteine biosynthesis, sulfur metabolism, oxidoreductase reaction, and formate dehydrogenase reaction. Second, differences in the metabolome (estimated by carbon distribution, CO2 emission, and redox balance) among the five mutant strains due to gene alteration of the 2,3-BDO operon were detected. The functional genomics approach integrating metabolomics and transcriptomics in K. Pneumonia presented here provides an innovative means of identifying novel gene functions involved in 2,3-BDO biosynthesis metabolism and whole cell metabolism.

  18. De Novo Transcriptome of the Hemimetabolous German Cockroach (Blattella germanica)

    PubMed Central

    Zhou, Xiaojie; Qian, Kun; Tong, Ying; Zhu, Junwei Jerry; Qiu, Xinghui; Zeng, Xiaopeng

    2014-01-01

    Background The German cockroach, Blattella germanica, is an important insect pest that transmits various pathogens mechanically and causes severe allergic diseases. This insect has long served as a model system for studies of insect biology, physiology and ecology. However, the lack of genome or transcriptome information heavily hinder our further understanding about the German cockroach in every aspect at a molecular level and on a genome-wide scale. To explore the transcriptome and identify unique sequences of interest, we subjected the B. germanica transcriptome to massively parallel pyrosequencing and generated the first reference transcriptome for B. germanica. Methodology/Principal Findings A total of 1,365,609 raw reads with an average length of 529 bp were generated via pyrosequencing the mixed cDNA library from different life stages of German cockroach including maturing oothecae, nymphs, adult females and males. The raw reads were de novo assembled to 48,800 contigs and 3,961 singletons with high-quality unique sequences. These sequences were annotated and classified functionally in terms of BLAST, GO and KEGG, and the genes putatively coding detoxification enzyme systems, insecticide targets, key components in systematic RNA interference, immunity and chemoreception pathways were identified. A total of 3,601 SSRs (Simple Sequence Repeats) loci were also predicted. Conclusions/Significance The whole transcriptome pyrosequencing data from this study provides a usable genetic resource for future identification of potential functional genes involved in various biological processes. PMID:25265537

  19. The utility of transcriptomics in fish conservation.

    PubMed

    Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A

    2018-01-29

    There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.

  20. Exploring Triacylglycerol Biosynthetic Pathway in Developing Seeds of Chia (Salvia hispanica L.): A Transcriptomic Approach

    PubMed Central

    Rupwate, Sunny D.; Rajasekharan, Ram; Srinivasan, Malathi

    2015-01-01

    Chia (Salvia hispanica L.), a member of the mint family (Lamiaceae), is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA). At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb), with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO) terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG) classification, the major category was “Metabolism” (31.97%), of which the most prominent class was ‘carbohydrate metabolism and transport’ (5.81% of total KOG classifications) followed by ‘secondary metabolite biosynthesis transport and catabolism’ (5.34%) and ‘lipid metabolism’ (4.57%). A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs) were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research and understanding of chia. The identified novel UniGenes will facilitate gene discovery and creation of genomic resource for this crop. PMID:25875809

  1. Transcriptome analysis of eyestalk and hemocytes in the ridgetail white prawn Exopalaemon carinicauda: assembly, annotation and marker discovery.

    PubMed

    Li, Jitao; Li, Jian; Chen, Ping; Liu, Ping; He, Yuying

    2015-01-01

    The ridgetail white prawn Exopalaemon carinicauda is one of major economic mariculture species in eastern China. The deficiency of genomic and transcriptomic data is becoming the bottleneck of further researches on its good traits. In the present study, 454 pyrosequencing was undertaken to investigate the transcriptome profiles of E. carinicauda. A collection of 1,028,710 sequence reads (459.59 Mb) obtained from cDNA prepared from eyestalk and hemocytes was assembled into 162,056 expressed sequence tags (ESTs). Of these, 29.88 % of 48,428 contigs and 70.12 % of 113,628 singlets possessed high similarities to sequences in the GenBank non-redundant database, with most significant (E value <1e(-10)) unigenes matches occurring with crustacean and insect sequences. KEGG analysis of unigenes identified putative members of biological pathways related to growth and immunity. In addition, we obtained a total of putative 125,112 SNPs and 13,467 microsatellites. These results will contribute to the understanding of the genome makeup and provide useful information for future functional genomic research in E. carinicauda.

  2. Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics

    Treesearch

    Kevin Weitemier; Shannon C.K. Straub; Richard C. Cronn; Mark Fishbein; Roswitha Schmickl; Angela McDonnell; Aaron Liston

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed ( Asclepias syriaca ) were used to design enrichment probes for 3385...

  3. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization.

    PubMed

    Fasano, Carlo; Diretto, Gianfranco; Aversano, Riccardo; D'Agostino, Nunzio; Di Matteo, Antonio; Frusciante, Luigi; Giuliano, Giovanni; Carputo, Domenico

    2016-06-01

    Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. SolEST database: a "one-stop shop" approach to the study of Solanaceae transcriptomes.

    PubMed

    D'Agostino, Nunzio; Traini, Alessandra; Frusciante, Luigi; Chiusano, Maria Luisa

    2009-11-30

    Since no genome sequences of solanaceous plants have yet been completed, expressed sequence tag (EST) collections represent a reliable tool for broad sampling of Solanaceae transcriptomes, an attractive route for understanding Solanaceae genome functionality and a powerful reference for the structural annotation of emerging Solanaceae genome sequences. We describe the SolEST database http://biosrv.cab.unina.it/solestdb which integrates different EST datasets from both cultivated and wild Solanaceae species and from two species of the genus Coffea. Background as well as processed data contained in the database, extensively linked to external related resources, represent an invaluable source of information for these plant families. Two novel features differentiate SolEST from other resources: i) the option of accessing and then visualizing Solanaceae EST/TC alignments along the emerging tomato and potato genome sequences; ii) the opportunity to compare different Solanaceae assemblies generated by diverse research groups in the attempt to address a common complaint in the SOL community. Different databases have been established worldwide for collecting Solanaceae ESTs and are related in concept, content and utility to the one presented herein. However, the SolEST database has several distinguishing features that make it appealing for the research community and facilitates a "one-stop shop" for the study of Solanaceae transcriptomes.

  5. Redefining the genetics of Murine Gammaherpesvirus 68 via transcriptome-based annotation

    PubMed Central

    Johnson, L. Steven; Willert, Erin K.; Virgin, Herbert W.

    2010-01-01

    Summary Viral genetic studies often focus on large open reading frames (ORFs) identified during genome annotation (ORF-based annotation). Here we provide a tool and software set for defining gene expression by murine gammaherpesvirus 68 (γHV68) nucleotide-by-nucleotide across the 119,450 basepair (bp) genome. These tools allowed us to determine that viral RNA expression was significantly more complex than predicted from ORF-based annotation, including over 73,000 nucleotides of unexpected transcription within 30 expressed genomic regions (EGRs). Approximately 90% of this RNA expression was antisense to genomic regions containing known large ORFs. We verified the existence of novel transcripts in three EGRs using standard methods to validate the approach and determined which parts of the transcriptome depend on protein or viral DNA synthesis. This redefines the genetic map of γHV68, indicates that herpesviruses contain significantly more genetic complexity than predicted from ORF-based genome annotations, and provides new tools and approaches for viral genetic studies. PMID:20542255

  6. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression.

    PubMed

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N Luisa

    2015-02-02

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well to other bacterial species as long as multiple whole-genome sequences are available that collectively capture the vast majority of the species supragenome. Copyright © 2015 John Wiley & Sons, Inc.

  7. Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods.

    PubMed

    Liscovitch-Brauer, Noa; Alon, Shahar; Porath, Hagit T; Elstein, Boaz; Unger, Ron; Ziv, Tamar; Admon, Arie; Levanon, Erez Y; Rosenthal, Joshua J C; Eisenberg, Eli

    2017-04-06

    RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ocean biogeochemistry modeled with emergent trait-based genomics.

    PubMed

    Coles, V J; Stukel, M R; Brooks, M T; Burd, A; Crump, B C; Moran, M A; Paul, J H; Satinsky, B M; Yager, P L; Zielinski, B L; Hood, R R

    2017-12-01

    Marine ecosystem models have advanced to incorporate metabolic pathways discovered with genomic sequencing, but direct comparisons between models and "omics" data are lacking. We developed a model that directly simulates metagenomes and metatranscriptomes for comparison with observations. Model microbes were randomly assigned genes for specialized functions, and communities of 68 species were simulated in the Atlantic Ocean. Unfit organisms were replaced, and the model self-organized to develop community genomes and transcriptomes. Emergent communities from simulations that were initialized with different cohorts of randomly generated microbes all produced realistic vertical and horizontal ocean nutrient, genome, and transcriptome gradients. Thus, the library of gene functions available to the community, rather than the distribution of functions among specific organisms, drove community assembly and biogeochemical gradients in the model ocean. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    PubMed

    Ning, Juan; Wang, Minxiao; Li, Chaolun; Sun, Song

    2013-01-01

    Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs) that provide a resource for gene function studies. Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  10. Transcriptome-derived evidence supports recent polyploidization and a major phylogeographic division in Trithuria submersa (Hydatellaceae, Nymphaeales).

    PubMed

    Marques, Isabel; Montgomery, Sean A; Barker, Michael S; Macfarlane, Terry D; Conran, John G; Catalán, Pilar; Rieseberg, Loren H; Rudall, Paula J; Graham, Sean W

    2016-04-01

    Relatively little is known about species-level genetic diversity in flowering plants outside the eudicots and monocots, and it is often unclear how to interpret genetic patterns in lineages with whole-genome duplications. We addressed these issues in a polyploid representative of Hydatellaceae, part of the water-lily order Nymphaeales. We examined a transcriptome of Trithuria submersa for evidence of recent whole-genome duplication, and applied transcriptome-derived microsatellite (expressed-sequence tag simple-sequence repeat (EST-SSR)) primers to survey genetic variation in populations across its range in mainland Australia. A transcriptome-based Ks plot revealed at least one recent polyploidization event, consistent with fixed heterozygous genotypes representing underlying sets of homeologous loci. A strong genetic division coincides with a trans-Nullarbor biogeographic boundary. Patterns of 'allelic' variation (no more than two variants per EST-SSR genotype) and recently published chromosomal evidence are consistent with the predicted polyploidization event and substantial homozygosity underlying fixed heterozygote SSR genotypes, which in turn reflect a selfing mating system. The Nullarbor Plain is a barrier to gene flow between two deep lineages of T. submersa that may represent cryptic species. The markers developed here should also be useful for further disentangling species relationships, and provide a first step towards future genomic studies in Trithuria. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. OperomeDB: A Database of Condition-Specific Transcription Units in Prokaryotic Genomes.

    PubMed

    Chetal, Kashish; Janga, Sarath Chandra

    2015-01-01

    Background. In prokaryotic organisms, a substantial fraction of adjacent genes are organized into operons-codirectionally organized genes in prokaryotic genomes with the presence of a common promoter and terminator. Although several available operon databases provide information with varying levels of reliability, very few resources provide experimentally supported results. Therefore, we believe that the biological community could benefit from having a new operon prediction database with operons predicted using next-generation RNA-seq datasets. Description. We present operomeDB, a database which provides an ensemble of all the predicted operons for bacterial genomes using available RNA-sequencing datasets across a wide range of experimental conditions. Although several studies have recently confirmed that prokaryotic operon structure is dynamic with significant alterations across environmental and experimental conditions, there are no comprehensive databases for studying such variations across prokaryotic transcriptomes. Currently our database contains nine bacterial organisms and 168 transcriptomes for which we predicted operons. User interface is simple and easy to use, in terms of visualization, downloading, and querying of data. In addition, because of its ability to load custom datasets, users can also compare their datasets with publicly available transcriptomic data of an organism. Conclusion. OperomeDB as a database should not only aid experimental groups working on transcriptome analysis of specific organisms but also enable studies related to computational and comparative operomics.

  12. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes.

    PubMed

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37-100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins.

  13. Transposable elements re-wire and fine-tune the transcriptome.

    PubMed

    Cowley, Michael; Oakey, Rebecca J

    2013-01-01

    What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.

  14. Exploring the genetic architecture and improving genomic prediction accuracy for mastitis and milk production traits in dairy cattle by mapping variants to hepatic transcriptomic regions responsive to intra-mammary infection.

    PubMed

    Fang, Lingzhao; Sahana, Goutam; Ma, Peipei; Su, Guosheng; Yu, Ying; Zhang, Shengli; Lund, Mogens Sandø; Sørensen, Peter

    2017-05-12

    A better understanding of the genetic architecture of complex traits can contribute to improve genomic prediction. We hypothesized that genomic variants associated with mastitis and milk production traits in dairy cattle are enriched in hepatic transcriptomic regions that are responsive to intra-mammary infection (IMI). Genomic markers [e.g. single nucleotide polymorphisms (SNPs)] from those regions, if included, may improve the predictive ability of a genomic model. We applied a genomic feature best linear unbiased prediction model (GFBLUP) to implement the above strategy by considering the hepatic transcriptomic regions responsive to IMI as genomic features. GFBLUP, an extension of GBLUP, includes a separate genomic effect of SNPs within a genomic feature, and allows differential weighting of the individual marker relationships in the prediction equation. Since GFBLUP is computationally intensive, we investigated whether a SNP set test could be a computationally fast way to preselect predictive genomic features. The SNP set test assesses the association between a genomic feature and a trait based on single-SNP genome-wide association studies. We applied these two approaches to mastitis and milk production traits (milk, fat and protein yield) in Holstein (HOL, n = 5056) and Jersey (JER, n = 1231) cattle. We observed that a majority of genomic features were enriched in genomic variants that were associated with mastitis and milk production traits. Compared to GBLUP, the accuracy of genomic prediction with GFBLUP was marginally improved (3.2 to 3.9%) in within-breed prediction. The highest increase (164.4%) in prediction accuracy was observed in across-breed prediction. The significance of genomic features based on the SNP set test were correlated with changes in prediction accuracy of GFBLUP (P < 0.05). GFBLUP provides a framework for integrating multiple layers of biological knowledge to provide novel insights into the biological basis of complex traits, and to improve the accuracy of genomic prediction. The SNP set test might be used as a first-step to improve GFBLUP models. Approaches like GFBLUP and SNP set test will become increasingly useful, as the functional annotations of genomes keep accumulating for a range of species and traits.

  15. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    PubMed

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Assembled contigs of the Haller's organ transcriptome from an Australian population of the cattle tick, Rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    In a collaboration with National Center for Genome Resources and University of Texas at El Paso researchers, we sequenced and assembled the transcriptome of the Haller's organ of an Australian strain (NRFS) of the cattle tick Rhipicephalus microplus (recently reclassified as Rhipicephalus australis...

  17. Characterization of adult transcriptomes from the omnivorous lady beetle Coleomegilla maculata fed pollen or insect egg diet

    USDA-ARS?s Scientific Manuscript database

    Diet, nutrition, and obesity are important topics of current research. While many insect genome and/or transcriptome models are based on dietary specialists, the lady beetle Coleomegilla maculata, a common New World species, is highly omnivorous. C. maculata feeds on plants, fungi, insects and other...

  18. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis)

    USDA-ARS?s Scientific Manuscript database

    Genomic and transcriptomic data on kiwifruit (Actinidia chinensis) in public databases are very limited despite its nutritional and economic value. Previously, we have constructed and sequenced nine fruit RNA-Seq libraries of A. chinensis cv. 'Hongyang' at immature, mature, and postharvest ripening...

  19. Information Theoretical Analysis of a Bovine Gene Atlas Reveals Chromosomal Regions with Tissue Specific Gene Expression.

    USDA-ARS?s Scientific Manuscript database

    An essential step to understanding the genomic biology of any organism is to comprehensively survey its transcriptome. We present the Bovine Gene Atlas (BGA) a compendium of over 7.2 million unique 20 base Illumina DGE tags representing 100 tissue transcriptomes collected primarily from L1 Dominette...

  20. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)

    PubMed Central

    Safronov, Omid; Kreuzwieser, Jürgen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz

    2017-01-01

    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies. PMID:28570677

  1. A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing.

    PubMed

    Chen, Shi-Yi; Deng, Feilong; Jia, Xianbo; Li, Cao; Lai, Song-Jia

    2017-08-09

    It is widely acknowledged that transcriptional diversity largely contributes to biological regulation in eukaryotes. Since the advent of second-generation sequencing technologies, a large number of RNA sequencing studies have considerably improved our understanding of transcriptome complexity. However, it still remains a huge challenge for obtaining full-length transcripts because of difficulties in the short read-based assembly. In the present study we employ PacBio single-molecule long-read sequencing technology for whole-transcriptome profiling in rabbit (Oryctolagus cuniculus). We totally obtain 36,186 high-confidence transcripts from 14,474 genic loci, among which more than 23% of genic loci and 66% of isoforms have not been annotated yet within the current reference genome. Furthermore, about 17% of transcripts are computationally revealed to be non-coding RNAs. Up to 24,797 alternative splicing (AS) and 11,184 alternative polyadenylation (APA) events are detected within this de novo constructed transcriptome, respectively. The results provide a comprehensive set of reference transcripts and hence contribute to the improved annotation of rabbit genome.

  2. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics.

    PubMed

    Sanchez, Diego H; Pieckenstain, Fernando L; Szymanski, Jedrzey; Erban, Alexander; Bromke, Mariusz; Hannah, Matthew A; Kraemer, Ute; Kopka, Joachim; Udvardi, Michael K

    2011-02-14

    One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl(-) correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, 'triangulation' from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species.

  3. Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention

    PubMed Central

    McNulty, Samantha N.; Strübe, Christina; Rosa, Bruce A.; Martin, John C.; Tyagi, Rahul; Choi, Young-Jun; Wang, Qi; Hallsworth Pepin, Kymberlie; Zhang, Xu; Ozersky, Philip; Wilson, Richard K.; Sternberg, Paul W.; Gasser, Robin B.; Mitreva, Makedonka

    2016-01-01

    The bovine lungworm, Dictyocaulus viviparus (order Strongylida), is an important parasite of livestock that causes substantial economic and production losses worldwide. Here we report the draft genome, variome, and developmental transcriptome of D. viviparus. The genome (161 Mb) is smaller than those of related bursate nematodes and encodes fewer proteins (14,171 total). In the first genome-wide assessment of genomic variation in any parasitic nematode, we found a high degree of sequence variability in proteins predicted to be involved host-parasite interactions. Next, we used extensive RNA sequence data to track gene transcription across the life cycle of D. viviparus, and identified genes that might be important in nematode development and parasitism. Finally, we predicted genes that could be vital in host-parasite interactions, genes that could serve as drug targets, and putative RNAi effectors with a view to developing functional genomic tools. This extensive, well-curated dataset should provide a basis for developing new anthelmintics, vaccines, and improved diagnostic tests and serve as a platform for future investigations of drug resistance and epidemiology of the bovine lungworm and related nematodes. PMID:26856411

  4. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome.

    PubMed

    Zhang, Yunzeng; Barthe, Gary; Grosser, Jude W; Wang, Nian

    2016-07-08

    Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R(2) = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.

  5. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  6. Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics.

    PubMed

    Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K S; Li, Juanjuan; Li, Xia; Deyholos, Michael K; Cronk, Quentin C B

    2014-04-01

    Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5-9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. A previously unknown paleopolyploidy event that occurred 20-40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research.

  7. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles.

    PubMed

    Tzika, Athanasia C; Helaers, Raphaël; Schramm, Gerrit; Milinkovitch, Michel C

    2011-09-26

    Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics.

  8. Agricultural applications of insect ecological genomics

    USDA-ARS?s Scientific Manuscript database

    Agricultural entomology is poised to benefit from the application of ecological genomics, in particular the fields of biofuels generation and pest insect control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and other insects, and transcriptomic approa...

  9. Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    PubMed Central

    Wu, Qing-jun; Wang, Shao-li; Yang, Xin; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Su, Qi; Xu, Bao-yun; Hu, Song-nian; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Background Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. Methodology and Principal Findings Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. Conclusions This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis. PMID:22558125

  10. AmphiBase: A new genomic resource for non-model amphibian species.

    PubMed

    Kwon, Taejoon

    2017-01-01

    More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community. © 2017 Wiley Periodicals, Inc.

  11. Analysis of embryonic development in the unsequenced axolotl: waves of transcriptomic upheaval and stability

    PubMed Central

    Jiang, Peng; Nelson, Jeffrey D.; Leng, Ning; Collins, Michael; Swanson, Scott; Dewey, Colin N.; Thomson, James A.; Stewart, Ron

    2016-01-01

    The axolotl (Ambystoma mexicanum) has long been the subject of biological research, primarily owing to its outstanding regenerative capabilities. However, the gene expression programs governing its embryonic development are particularly underexplored, especially when compared to other amphibian model species. Therefore, we performed whole transcriptome polyA+ RNA sequencing experiments on 17 stages of embryonic development. As the axolotl genome is unsequenced and its gene annotation is incomplete, we built de novo transcriptome assemblies for each stage and garnered functional annotation by comparing expressed contigs with known genes in other organisms. In evaluating the number of differentially expressed genes over time, we identify three waves of substantial transcriptome upheaval each followed by a period of relative transcriptome stability. The first wave of upheaval is between the one and two cell stage. We show that the number of differentially expressed genes per unit time is higher between the one and two cell stage than it is across the mid-blastula transition (MBT), the period of zygotic genome activation. We use total RNA sequencing to demonstrate that the vast majority of genes with increasing polyA+ signal between the one and two cell stage result from polyadenylation rather than de novo transcription. The first stable phase begins after the two cell stage and continues until the mid-blastula transition, corresponding with the pre-MBT phase of transcriptional quiescence in amphibian development. Following this is a peak of differential gene expression corresponding with the activation of the zygotic genome and a phase of transcriptomic stability from stages 9 to 11. We observe a third wave of transcriptomic change between stages 11 and 14, followed by a final stable period. The last two stable phases have not been documented in amphibians previously and correspond to times of major morphogenic change in the axolotl embryo: gastrulation and neurulation. These results yield new insights into global gene expression during early stages of amphibian embryogenesis and will help to further develop the axolotl as a model species for developmental and regenerative biology. PMID:27475628

  12. Role of genomics and transcriptomics in selection of reintroduction source populations.

    PubMed

    He, Xiaoping; Johansson, Mattias L; Heath, Daniel D

    2016-10-01

    The use and importance of reintroduction as a conservation tool to return a species to its historical range from which it has been extirpated will increase as climate change and human development accelerate habitat loss and population extinctions. Although the number of reintroduction attempts has increased rapidly over the past 2 decades, the success rate is generally low. As a result of population differences in fitness-related traits and divergent responses to environmental stresses, population performance upon reintroduction is highly variable, and it is generally agreed that selecting an appropriate source population is a critical component of a successful reintroduction. Conservation genomics is an emerging field that addresses long-standing challenges in conservation, and the potential for using novel molecular genetic approaches to inform and improve conservation efforts is high. Because the successful establishment and persistence of reintroduced populations is highly dependent on the functional genetic variation and environmental stress tolerance of the source population, we propose the application of conservation genomics and transcriptomics to guide reintroduction practices. Specifically, we propose using genome-wide functional loci to estimate genetic variation of source populations. This estimate can then be used to predict the potential for adaptation. We also propose using transcriptional profiling to measure the expression response of fitness-related genes to environmental stresses as a proxy for acclimation (tolerance) capacity. Appropriate application of conservation genomics and transcriptomics has the potential to dramatically enhance reintroduction success in a time of rapidly declining biodiversity and accelerating environmental change. © 2016 Society for Conservation Biology.

  13. Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics

    PubMed Central

    Biswas, Prasun; Chakraborty, Sukanya; Dutta, Smritikana; Pal, Amita; Das, Malay

    2016-01-01

    Bamboos are an important member of the subfamily Bambusoideae, family Poaceae. The plant group exhibits wide variation with respect to the timing (1–120 years) and nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody bamboos is synchronous across culms growing over a large area, known as gregarious flowering. In many monocarpic bamboos this is followed by mass death and seed setting. While in sporadic flowering an isolated wild clump may flower, set little or no seed and remain alive. Such wide variation in flowering time and extent means that the plant group serves as repositories for genes and expression patterns that are unique to bamboo. Due to the dearth of available genomic and transcriptomic resources, limited studies have been undertaken to identify the potential molecular players in bamboo flowering. The public release of the first bamboo genome sequence Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and Oryza sativa provide us the opportunity to study this long-standing biological problem in a comparative and functional genomics framework. We identified bamboo genes homologous to those of Oryza and Brachypodium that are involved in established pathways such as vernalization, photoperiod, autonomous, and hormonal regulation of flowering. Additionally, we investigated triggers like stress (drought), physiological maturity and micro RNAs that may play crucial roles in flowering. We also analyzed available transcriptome datasets of different bamboo species to identify genes and their involvement in bamboo flowering. Finally, we summarize potential research hurdles that need to be addressed in future research. PMID:28018419

  14. Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.

    PubMed

    Wolf, Timo; Schneiker-Bekel, Susanne; Neshat, Armin; Ortseifen, Vera; Wibberg, Daniel; Zemke, Till; Pühler, Alfred; Kalinowski, Jörn

    2017-06-10

    Actinoplanes sp. SE50/110 is the natural producer of acarbose, which is used in the treatment of diabetes mellitus type II. However, until now the transcriptional organization and regulation of the acarbose biosynthesis are only understood rudimentarily. The genome sequence of Actinoplanes sp. SE50/110 was known before, but was resequenced in this study to remove assembly artifacts and incorrect base callings. The annotation of the genome was refined in a multi-step approach, including modern bioinformatic pipelines, transcriptome and proteome data. A whole transcriptome RNA-seq library as well as an RNA-seq library enriched for primary 5'-ends were used for the detection of transcription start sites, to correct tRNA predictions, to identify novel transcripts like small RNAs and to improve the annotation through the correction of falsely annotated translation start sites. The transcriptome data sets were also applied to identify 31 cis-regulatory RNA structures, such as riboswitches or RNA thermometers as well as three leaderless transcribed short peptides found in putative attenuators upstream of genes for amino acid biosynthesis. The transcriptional organization of the acarbose biosynthetic gene cluster was elucidated in detail and fourteen novel biosynthetic gene clusters were suggested. The accurate genome sequence and precise annotation of the Actinoplanes sp. SE50/110 genome will be the foundation for future genetic engineering and systems biology studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The genome and transcriptome of the enteric parasite Entamoeba invadens, a model for encystation

    PubMed Central

    2013-01-01

    Background Several eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion. Results We report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains. Conclusions Our analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens. PMID:23889909

  16. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    PubMed

    Chao, Tianle; Wang, Guizhi; Wang, Jianmin; Liu, Zhaohua; Ji, Zhibin; Hou, Lei; Zhang, Chunlan

    2016-01-01

    High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  17. Alcoholic fermentation of d-xylose by yeasts. [Brettanomyces naardenensis; Candida shehatae; Candida tenuis; Pachysolen tannaphilus, Pichia segobiensis; Pichia stipitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toivola, A.; Yarrow, D.; van den Bosch, E.

    1984-06-01

    Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of D-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment D-cellobiose revealed that only Candida tenuis CBS 4435 was a goodmore » fermenter of both xylose and cellobiose under the test conditions used.« less

  18. Global Genomic Analysis of Prostate, Breast and Pancreatic Cancer

    DTIC Science & Technology

    2012-10-01

    fever virus (Lauck et al. 2011). The success of transposon-based genomic library construction for genomic analyses suggests that it should be possible...2011. Novel, divergent simian hemorrhagic Fever viruses in a wild ugandan red colobus Gertz et al. 140 Genome Research www.genome.org Cold Spring...2009. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5: e1000569. doi: 10.1371

  19. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  20. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes.

    PubMed

    Eddy, Sean R

    2014-01-01

    Transcriptomics experiments and computational predictions both enable systematic discovery of new functional RNAs. However, many putative noncoding transcripts arise instead from artifacts and biological noise, and current computational prediction methods have high false positive rates. I discuss prospects for improving computational methods for analyzing and identifying functional RNAs, with a focus on detecting signatures of conserved RNA secondary structure. An interesting new front is the application of chemical and enzymatic experiments that probe RNA structure on a transcriptome-wide scale. I review several proposed approaches for incorporating structure probing data into the computational prediction of RNA secondary structure. Using probabilistic inference formalisms, I show how all these approaches can be unified in a well-principled framework, which in turn allows RNA probing data to be easily integrated into a wide range of analyses that depend on RNA secondary structure inference. Such analyses include homology search and genome-wide detection of new structural RNAs.

  1. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    PubMed

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  2. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  3. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants1[OPEN

    PubMed Central

    Brereton, Nicholas J. B.; Marleau, Julie; Nissim, Werther Guidi; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2016-01-01

    Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system. PMID:27002060

  4. Global transcriptomic profiling using small volumes of whole blood: a cost-effective method for translational genomic biomarker identification in small animals.

    PubMed

    Fricano, Meagan M; Ditewig, Amy C; Jung, Paul M; Liguori, Michael J; Blomme, Eric A G; Yang, Yi

    2011-01-01

    Blood is an ideal tissue for the identification of novel genomic biomarkers for toxicity or efficacy. However, using blood for transcriptomic profiling presents significant technical challenges due to the transcriptomic changes induced by ex vivo handling and the interference of highly abundant globin mRNA. Most whole blood RNA stabilization and isolation methods also require significant volumes of blood, limiting their effective use in small animal species, such as rodents. To overcome these challenges, a QIAzol-based RNA stabilization and isolation method (QSI) was developed to isolate sufficient amounts of high quality total RNA from 25 to 500 μL of rat whole blood. The method was compared to the standard PAXgene Blood RNA System using blood collected from rats exposed to saline or lipopolysaccharide (LPS). The QSI method yielded an average of 54 ng total RNA per μL of rat whole blood with an average RNA Integrity Number (RIN) of 9, a performance comparable with the standard PAXgene method. Total RNA samples were further processed using the NuGEN Ovation Whole Blood Solution system and cDNA was hybridized to Affymetrix Rat Genome 230 2.0 Arrays. The microarray QC parameters using RNA isolated with the QSI method were within the acceptable range for microarray analysis. The transcriptomic profiles were highly correlated with those using RNA isolated with the PAXgene method and were consistent with expected LPS-induced inflammatory responses. The present study demonstrated that the QSI method coupled with NuGEN Ovation Whole Blood Solution system is cost-effective and particularly suitable for transcriptomic profiling of minimal volumes of whole blood, typical of those obtained with small animal species.

  5. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods.

    PubMed

    Pyle, Jesse D; Keeling, Patrick J; Nibert, Max L

    2017-04-02

    A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prediction of constitutive A-to-I editing sites from human transcriptomes in the absence of genomic sequences

    PubMed Central

    2013-01-01

    Background Adenosine-to-inosine (A-to-I) RNA editing is recognized as a cellular mechanism for generating both RNA and protein diversity. Inosine base pairs with cytidine during reverse transcription and therefore appears as guanosine during sequencing of cDNA. Current approaches of RNA editing identification largely depend on the comparison between transcriptomes and genomic DNA (gDNA) sequencing datasets from the same individuals, and it has been challenging to identify editing candidates from transcriptomes in the absence of gDNA information. Results We have developed a new strategy to accurately predict constitutive RNA editing sites from publicly available human RNA-seq datasets in the absence of relevant genomic sequences. Our approach establishes new parameters to increase the ability to map mismatches and to minimize sequencing/mapping errors and unreported genome variations. We identified 695 novel constitutive A-to-I editing sites that appear in clusters (named “editing boxes”) in multiple samples and which exhibit spatial and dynamic regulation across human tissues. Some of these editing boxes are enriched in non-repetitive regions lacking inverted repeat structures and contain an extremely high conversion frequency of As to Is. We validated a number of editing boxes in multiple human cell lines and confirmed that ADAR1 is responsible for the observed promiscuous editing events in non-repetitive regions, further expanding our knowledge of the catalytic substrate of A-to-I RNA editing by ADAR enzymes. Conclusions The approach we present here provides a novel way of identifying A-to-I RNA editing events by analyzing only RNA-seq datasets. This method has allowed us to gain new insights into RNA editing and should also aid in the identification of more constitutive A-to-I editing sites from additional transcriptomes. PMID:23537002

  8. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    PubMed Central

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  9. Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish.

    PubMed

    Lie, Kai K; Tørresen, Ole K; Solbakken, Monica Hongrø; Rønnestad, Ivar; Tooming-Klunderud, Ave; Nederbragt, Alexander J; Jentoft, Sissel; Sæle, Øystein

    2018-03-06

    The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species. Long and short read sequencing technologies were combined to generate a ballan wrasse genome of 805 Mbp. Analysis of the genome and transcriptome assemblies confirmed the absence of genes that code for proteins involved in gastric function. The gene coding for the appetite stimulating protein ghrelin was also absent in wrasse. Gene synteny mapping identified several appetite-controlling genes and their paralogs previously undescribed in fish. Transcriptome profiling along the length of the intestine found a declining expression gradient from the anterior to the posterior, and a distinct expression profile in the hind gut. We showed gene loss has occurred for all known genes related to stomach function in the ballan wrasse, while the remaining functions of the digestive tract appear intact. The results also show appetite control in ballan wrasse has undergone substantial changes. The loss of ghrelin suggests that other genes, such as motilin, may play a ghrelin like role. The wrasse genome offers novel insight in to the evolutionary traits of this large family. As the stomach plays a major role in protein digestion, the lack of genes related to stomach digestion in wrasse suggests it requires formulated diets with higher levels of readily digestible protein than those for gastric species.

  10. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome.

    PubMed

    Yu, Guo-Jun; Wang, Man; Huang, Jie; Yin, Ya-Lin; Chen, Yi-Jie; Jiang, Shuai; Jin, Yan-Xia; Lan, Xian-Qing; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    Ganoderma lucidum is a basidiomycete white rot fungus and is of medicinal importance in China, Japan and other countries in the Asiatic region. To date, much research has been performed in identifying the medicinal ingredients in Ganoderma lucidum. Despite its important therapeutic effects in disease, little is known about Ganoderma lucidum at the genomic level. In order to gain a molecular understanding of this fungus, we utilized Illumina high-throughput technology to sequence and analyze the transcriptome of Ganoderma lucidum. We obtained 6,439,690 and 6,416,670 high-quality reads from the mycelium and fruiting body of Ganoderma lucidum, and these were assembled to form 18,892 and 27,408 unigenes, respectively. A similarity search was performed against the NCBI non-redundant nucleotide database and a customized database composed of five fungal genomes. 11,098 and 8, 775 unigenes were matched to the NCBI non-redundant nucleotide database and our customized database, respectively. All unigenes were subjected to annotation by Gene Ontology, Eukaryotic Orthologous Group terms and Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes from the Ganoderma lucidum mycelium and fruiting body stage were analyzed, resulting in the identification of 13 unigenes which are involved in the terpenoid backbone biosynthesis pathway. Quantitative real-time PCR was used to confirm the expression levels of these unigenes. Ganoderma lucidum was also studied for wood degrading activity and a total of 22 putative FOLymes (fungal oxidative lignin enzymes) and 120 CAZymes (carbohydrate-active enzymes) were predicted from our Ganoderma lucidum transcriptome. Our study provides comprehensive gene expression information on Ganoderma lucidum at the transcriptional level, which will form the foundation for functional genomics studies in this fungus. The use of Illumina sequencing technology has made de novo transcriptome assembly and gene expression analysis possible in species that lack full genome information.

  11. Deep Insight into the Ganoderma lucidum by Comprehensive Analysis of Its Transcriptome

    PubMed Central

    Yu, Guo-Jun; Wang, Man; Huang, Jie; Yin, Ya-Lin; Chen, Yi-Jie; Jiang, Shuai; Jin, Yan-Xia; Lan, Xian-Qing; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    Background Ganoderma lucidum is a basidiomycete white rot fungus and is of medicinal importance in China, Japan and other countries in the Asiatic region. To date, much research has been performed in identifying the medicinal ingredients in Ganoderma lucidum. Despite its important therapeutic effects in disease, little is known about Ganoderma lucidum at the genomic level. In order to gain a molecular understanding of this fungus, we utilized Illumina high-throughput technology to sequence and analyze the transcriptome of Ganoderma lucidum. Methodology/Principal Findings We obtained 6,439,690 and 6,416,670 high-quality reads from the mycelium and fruiting body of Ganoderma lucidum, and these were assembled to form 18,892 and 27,408 unigenes, respectively. A similarity search was performed against the NCBI non-redundant nucleotide database and a customized database composed of five fungal genomes. 11,098 and 8, 775 unigenes were matched to the NCBI non-redundant nucleotide database and our customized database, respectively. All unigenes were subjected to annotation by Gene Ontology, Eukaryotic Orthologous Group terms and Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes from the Ganoderma lucidum mycelium and fruiting body stage were analyzed, resulting in the identification of 13 unigenes which are involved in the terpenoid backbone biosynthesis pathway. Quantitative real-time PCR was used to confirm the expression levels of these unigenes. Ganoderma lucidum was also studied for wood degrading activity and a total of 22 putative FOLymes (fungal oxidative lignin enzymes) and 120 CAZymes (carbohydrate-active enzymes) were predicted from our Ganoderma lucidum transcriptome. Conclusions Our study provides comprehensive gene expression information on Ganoderma lucidum at the transcriptional level, which will form the foundation for functional genomics studies in this fungus. The use of Illumina sequencing technology has made de novo transcriptome assembly and gene expression analysis possible in species that lack full genome information. PMID:22952861

  12. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)

    PubMed Central

    2012-01-01

    Background In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes. PMID:22607098

  13. Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics.

    PubMed

    Breinholt, Jesse W; Earl, Chandra; Lemmon, Alan R; Lemmon, Emily Moriarty; Xiao, Lei; Kawahara, Akito Y

    2018-01-01

    The advent of next-generation sequencing technology has allowed for thecollection of large portions of the genome for phylogenetic analysis. Hybrid enrichment and transcriptomics are two techniques that leverage next-generation sequencing and have shown much promise. However, methods for processing hybrid enrichment data are still limited. We developed a pipeline for anchored hybrid enrichment (AHE) read assembly, orthology determination, contamination screening, and data processing for sequences flanking the target "probe" region. We apply this approach to study the phylogeny of butterflies and moths (Lepidoptera), a megadiverse group of more than 157,000 described species with poorly understood deep-level phylogenetic relationships. We introduce a new, 855 locus AHE kit for Lepidoptera phylogenetics and compare resulting trees to those from transcriptomes. The enrichment kit was designed from existing genomes, transcriptomes, and expressed sequence tags and was used to capture sequence data from 54 species from 23 lepidopteran families. Phylogenies estimated from AHE data were largely congruent with trees generated from transcriptomes, with strong support for relationships at all but the deepest taxonomic levels. We combine AHE and transcriptomic data to generate a new Lepidoptera phylogeny, representing 76 exemplar species in 42 families. The tree provides robust support for many relationships, including those among the seven butterfly families. The addition of AHE data to an existing transcriptomic dataset lowers node support along the Lepidoptera backbone, but firmly places taxa with AHE data on the phylogeny. Combining taxa sequenced for AHE with existing transcriptomes and genomes resulted in a tree with strong support for (Calliduloidea $+$ Gelechioidea $+$ Thyridoidea) $+$ (Papilionoidea $+$ Pyraloidea $+$ Macroheterocera). To examine the efficacy of AHE at a shallow taxonomic level, phylogenetic analyses were also conducted on a sister group representing a more recent divergence, the Saturniidae and Sphingidae. These analyses utilized sequences from the probe region and data flanking it, nearly doubled the size of the dataset; resulting trees supported new phylogenetics relationships, especially within the Saturniidae and Sphingidae (e.g., Hemarina derived in the latter). We hope that our data processing pipeline, hybrid enrichment gene set, and approach of combining AHE data with transcriptomes will be useful for the broader systematics community. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Integrated genomics of Mucorales reveals novel therapeutic targets

    USDA-ARS?s Scientific Manuscript database

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. We sequenced 30 fungal genomes and performed transcriptomics with three representative Rhizopus and Mucor strains with human airway epithelial cells during fungal invasion to reveal key host and fungal determinants contributing ...

  15. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens

    PubMed Central

    2013-01-01

    Background The brown planthopper (Nilaparvata lugens) is one of the most serious rice plant pests in Asia. N. lugens causes extensive rice damage by sucking rice phloem sap, which results in stunted plant growth and the transmission of plant viruses. Despite the importance of this insect pest, little is known about the immunological mechanisms occurring in this hemimetabolous insect species. Results In this study, we performed a genome- and transcriptome-wide analysis aiming at the immune-related genes. The transcriptome datasets include the N. lugens intestine, the developmental stage, wing formation, and sex-specific expression information that provided useful gene expression sequence data for the genome-wide analysis. As a result, we identified a large number of genes encoding N. lugens pattern recognition proteins, modulation proteins in the prophenoloxidase (proPO) activating cascade, immune effectors, and the signal transduction molecules involved in the immune pathways, including the Toll, Immune deficiency (Imd) and Janus kinase signal transducers and activators of transcription (JAK-STAT) pathways. The genome scale analysis revealed detailed information of the gene structure, distribution and transcription orientations in scaffolds. A comparison of the genome-available hemimetabolous and metabolous insect species indicate the differences in the immune-related gene constitution. We investigated the gene expression profiles with regards to how they responded to bacterial infections and tissue, as well as development and sex expression specificity. Conclusions The genome- and transcriptome-wide analysis of immune-related genes including pattern recognition and modulation molecules, immune effectors, and the signal transduction molecules involved in the immune pathways is an important step in determining the overall architecture and functional network of the immune components in N. lugens. Our findings provide the comprehensive gene sequence resource and expression profiles of the immune-related genes of N. lugens, which could facilitate the understanding of the innate immune mechanisms in the hemimetabolous insect species. These data give insight into clarifying the potential functional roles of the immune-related genes involved in the biological processes of development, reproduction, and virus transmission in N. lugens. PMID:23497397

  16. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage.

    PubMed

    Romero-Campero, Francisco J; Perez-Hurtado, Ignacio; Lucas-Reina, Eva; Romero, Jose M; Valverde, Federico

    2016-03-12

    Chlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production. The genome of Chlamydomonas is available, facilitating the analysis of its transcriptome by RNA-seq data. This has produced a massive amount of data that remains fragmented making necessary the application of integrative approaches based on molecular systems biology. We constructed a gene co-expression network based on RNA-seq data and developed a web-based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome. ChlamyNET exhibits a scale-free and small world topology. Applying clustering techniques, we identified nine gene clusters that capture the structure of the transcriptome under the analyzed conditions. One of the most central clusters was shown to be involved in carbon/nitrogen metabolism and signalling, whereas one of the most peripheral clusters was involved in DNA replication and cell cycle regulation. The transcription factors and regulators in the Chlamydomonas genome have been identified in ChlamyNET. The biological processes potentially regulated by them as well as their putative transcription factor binding sites were determined. The putative light regulated transcription factors and regulators in the Chlamydomonas genome were analyzed in order to provide a case study on the use of ChlamyNET. Finally, we used an independent data set to cross-validate the predictive power of ChlamyNET. The topological properties of ChlamyNET suggest that the Chlamydomonas transcriptome posseses important characteristics related to error tolerance, vulnerability and information propagation. The central part of ChlamyNET constitutes the core of the transcriptome where most authoritative hub genes are located interconnecting key biological processes such as light response with carbon and nitrogen metabolism. Our study reveals that key elements in the regulation of carbon and nitrogen metabolism, light response and cell cycle identified in higher plants were already established in Chlamydomonas. These conserved elements are not only limited to transcription factors, regulators and their targets, but also include the cis-regulatory elements recognized by them.

  17. De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis

    PubMed Central

    2012-01-01

    Background Chinese fir (Cunninghamia lanceolata) is an important timber species that accounts for 20–30% of the total commercial timber production in China. However, the available genomic information of Chinese fir is limited, and this severely encumbers functional genomic analysis and molecular breeding in Chinese fir. Recently, major advances in transcriptome sequencing have provided fast and cost-effective approaches to generate large expression datasets that have proven to be powerful tools to profile the transcriptomes of non-model organisms with undetermined genomes. Results In this study, the transcriptomes of nine tissues from Chinese fir were analyzed using the Illumina HiSeq™ 2000 sequencing platform. Approximately 40 million paired-end reads were obtained, generating 3.62 gigabase pairs of sequencing data. These reads were assembled into 83,248 unique sequences (i.e. Unigenes) with an average length of 449 bp, amounting to 37.40 Mb. A total of 73,779 Unigenes were supported by more than 5 reads, 42,663 (57.83%) had homologs in the NCBI non-redundant and Swiss-Prot protein databases, corresponding to 27,224 unique protein entries. Of these Unigenes, 16,750 were assigned to Gene Ontology classes, and 14,877 were clustered into orthologous groups. A total of 21,689 (29.40%) were mapped to 119 pathways by BLAST comparison against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The majority of the genes encoding the enzymes in the biosynthetic pathways of cellulose and lignin were identified in the Unigene dataset by targeted searches of their annotations. And a number of candidate Chinese fir genes in the two metabolic pathways were discovered firstly. Eighteen genes related to cellulose and lignin biosynthesis were cloned for experimental validating of transcriptome data. Overall 49 Unigenes, covering different regions of these selected genes, were found by alignment. Their expression patterns in different tissues were analyzed by qRT-PCR to explore their putative functions. Conclusions A substantial fraction of transcript sequences was obtained from the deep sequencing of Chinese fir. The assembled Unigene dataset was used to discover candidate genes of cellulose and lignin biosynthesis. This transcriptome dataset will provide a comprehensive sequence resource for molecular genetics research of C. lanceolata. PMID:23171398

  18. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa.

    PubMed

    Tong, Chaobo; Wang, Xiaowu; Yu, Jingyin; Wu, Jian; Li, Wanshun; Huang, Junyan; Dong, Caihua; Hua, Wei; Liu, Shengyi

    2013-10-07

    The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species.

  19. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.

    PubMed

    Taylor, Jeremy F; Whitacre, Lynsey K; Hoff, Jesse L; Tizioto, Polyana C; Kim, JaeWoo; Decker, Jared E; Schnabel, Robert D

    2016-08-17

    Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data. We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions. We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual's genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms. Assembly errors and a lack of annotation of functional elements significantly limit the utility of the current draft livestock reference assemblies. The Functional Annotation of Animal Genomes initiative seeks to annotate functional elements, while a 70X Pac-Bio assembly for cow is underway and may result in a significantly improved reference assembly.

  20. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles.

    PubMed

    Kües, Ursula; Nelson, David R; Liu, Chang; Yu, Guo-Jun; Zhang, Jianhui; Li, Jianqin; Wang, Xin-Cun; Sun, Hui

    2015-06-01

    Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of Ganoderma species. The current review carries out a detailed comparison of the nuclear genomes, mitochondrial genomes and transcriptomes from several Ganoderma species. Genes involved in biosynthetic pathways such as CYP450 genes and in cellular development such as matA and matB genes are characterized and compared in detail, as examples to demonstrate the usefulness of comparative genomic analyses for the identification of critical genes. Resources needed for future data integration and exploitation are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  2. The Characterization of the Phlebotomus papatasi Transcriptome

    DTIC Science & Technology

    2013-04-01

    Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome . Bioinformatics. 2004; 20, no. 2:161–169. [PubMed: 14734306...discovery in organisms where sequencing the whole genome is not possible (Lindlof 2003), or in addition to genome information for more accurate gene...biology of these important vectors, and generate essential data for annotation of the newly sequenced phlebotomine sand fly genomes (McDowell et al

  3. Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis

    PubMed Central

    Tellgren-Roth, Christian; Baudo, Charles D.; Kennell, John C.; Sun, Sheng; Billmyre, R. Blake; Schröder, Markus S.; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L.; Heitman, Joseph

    2017-01-01

    Abstract Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. PMID:28100699

  4. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    PubMed Central

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the “invertebrates,” but very few genomes from these organisms have been sequenced. We have, therefore, formed a “Global Invertebrate Genomics Alliance” (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture. PMID:24336862

  5. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes.

    PubMed

    Bracken-Grissom, Heather; Collins, Allen G; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Mónica; Messing, Charles; O'Brien, Stephen J; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W; Ryan, Joseph F; Schulze, Anja; Wörheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E; Diaz, M Christina; Evans, Nathaniel; Flot, Jean-François; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y; Laberge, Tammy; Lavrov, Dennis; Michonneau, François; Moroz, Leonid L; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A; Rhodes, Adelaide; Santos, Scott R; Satoh, Nori; Thacker, Robert W; Van de Peer, Yves; Voolstra, Christian R; Welch, David Mark; Winston, Judith; Zhou, Xin

    2014-01-01

    Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.

  6. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    PubMed

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  7. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.

    PubMed

    Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis

    2015-08-14

    In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.

  8. Evidence for contemporary plant mitoviruses

    USDA-ARS?s Scientific Manuscript database

    Mitoviruses have small RNA(+) genomes, replicate in mitochondria, and have to date been directly shown to infect only fungi. For this report, sequences that appear to represent approximately complete mitovirus genomes were discovered in plant transcriptome data at GenBank. At least 17 of the refined...

  9. Transposable Elements Re-Wire and Fine-Tune the Transcriptome

    PubMed Central

    Cowley, Michael; Oakey, Rebecca J.

    2013-01-01

    What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs—particularly retrotransposons—contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes. PMID:23358118

  10. De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.

    PubMed

    Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min

    2013-02-01

    Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.

    PubMed

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  12. Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates

    PubMed Central

    Wisecaver, Jennifer H.; Brosnahan, Michael L.; Hackett, Jeremiah D.

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT. PMID:24259313

  13. Transcriptome instability as a molecular pan-cancer characteristic of carcinomas.

    PubMed

    Sveen, Anita; Johannessen, Bjarne; Teixeira, Manuel R; Lothe, Ragnhild A; Skotheim, Rolf I

    2014-08-10

    We have previously proposed transcriptome instability as a genome-wide, pre-mRNA splicing-related characteristic of colorectal cancer. Here, we explore the hypothesis of transcriptome instability being a general characteristic of cancer. Exon-level microarray expression data from ten cancer datasets were analyzed, including breast cancer, cervical cancer, colorectal cancer, gastric cancer, lung cancer, neuroblastoma, and prostate cancer (555 samples), as well as paired normal tissue samples from the colon, lung, prostate, and stomach (93 samples). Based on alternative splicing scores across the genomes, we calculated sample-wise relative amounts of aberrant exon skipping and inclusion. Strong and non-random (P < 0.001) correlations between these estimates and the expression levels of splicing factor genes (n = 280) were found in most cancer types analyzed (breast-, cervical-, colorectal-, lung- and prostate cancer). This suggests a biological explanation for the splicing variation. Surprisingly, these associations prevailed in pan-cancer analyses. This is in contrast to the tissue and cancer specific patterns observed in comparisons across healthy tissue samples from the colon, lung, prostate, and stomach, and between paired cancer-normal samples from the same four tissue types. Based on exon-level expression profiling and computational analyses of alternative splicing, we propose transcriptome instability as a molecular pan-cancer characteristic. The affected cancers show strong and non-random associations between low expression levels of splicing factor genes, and high amounts of aberrant exon skipping and inclusion, and vice versa, on a genome-wide scale.

  14. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes

    PubMed Central

    Rajkumar, Hemalatha; Ramagoni, Ramesh Kumar; Anchoju, Vijayendra Chary; Vankudavath, Raju Naik; Syed, Arshi Uz Zaman

    2015-01-01

    Allium cepa (onion) is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb). Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37–100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins. PMID:26284934

  15. The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution

    PubMed Central

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976

  16. Mining biological databases for candidate disease genes

    NASA Astrophysics Data System (ADS)

    Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.

    2001-07-01

    The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).

  17. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.

    PubMed

    Fernandez-Valverde, Selene L; Calcino, Andrew D; Degnan, Bernard M

    2015-05-15

    The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.

  18. Developing tools for the study of molluscan immunity: The sequencing of the genome of the eastern oyster, Crassostrea virginica.

    PubMed

    Gómez-Chiarri, Marta; Warren, Wesley C; Guo, Ximing; Proestou, Dina

    2015-09-01

    The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics

    PubMed Central

    Sveinsson, Saemundur; McDill, Joshua; Wong, Gane K. S.; Li, Juanjuan; Li, Xia; Deyholos, Michael K.; Cronk, Quentin C. B.

    2014-01-01

    Background and Aims Cultivated flax (Linum usitatissimum) is known to have undergone a whole-genome duplication around 5–9 million years ago. The aim of this study was to investigate whether other whole-genome duplication events have occurred in the evolutionary history of cultivated flax. Knowledge of such whole-genome duplications will be important in understanding the biology and genomics of cultivated flax. Methods Transcriptomes of 11 Linum species were sequenced using the Illumina platform. The short reads were assembled de novo and the DupPipe pipeline was used to look for signatures of polyploidy events from the age distribution of paralogues. In addition, phylogenies of all paralogues were assembled within an estimated age window of interest. These phylogenies were assessed for evidence of a paleopolyploidy event within the genus Linum. Key Results A previously unknown paleopolyploidy event that occurred 20–40 million years ago was discovered and shown to be specific to a clade within Linum containing cultivated flax (L. usitatissimum) and other mainly blue-flowered species. The finding was supported by two lines of evidence. First, a significant change of slope (peak) was shown in the age distribution of paralogues that was phylogenetically restricted to, and ubiquitous in, this clade. Second, a large number of paralogue phylogenies were retrieved that are consistent with a polyploidy event occurring within that clade. Conclusions The results show the utility of multi-species transcriptomics for detecting whole-genome duplication events and demonstrate that that multiple rounds of polyploidy have been important in shaping the evolutionary history of flax. Understanding and characterizing these whole-genome duplication events will be important for future Linum research. PMID:24380843

  20. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus).

    PubMed

    Thanh, Nguyen Minh; Jung, Hyungtaek; Lyons, Russell E; Njaci, Isaac; Yoon, Byoung-Ha; Chand, Vincent; Tuan, Nguyen Viet; Thu, Vo Thi Minh; Mather, Peter

    2015-10-01

    Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles

    PubMed Central

    2011-01-01

    Background Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. Results Here, we use 454 technology to sequence the brain transcriptome of four divergent reptilian and one reference avian species: the Nile crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. Using an in-house pipeline for recursive similarity searches of >3,000,000 reads against multiple databases from 7 reference vertebrates, we compile a reptilian comparative transcriptomics dataset, with homology assignment for 20,000 to 31,000 transcripts per species and a cumulated non-redundant sequence length of 248.6 Mbases. Our approach identifies the majority (87%) of chicken brain transcripts and about 50% of de novo assembled reptilian transcripts. In addition to 57,502 microsatellite loci, we identify thousands of SNP and indel polymorphisms for population genetic and linkage analyses. We also build very large multiple alignments for Sauropsida and mammals (two million residues per species) and perform extensive phylogenetic analyses suggesting that turtles are not basal living reptiles but are rather associated with Archosaurians, hence, potentially answering a long-standing question in the phylogeny of Amniotes. Conclusions The reptilian transcriptome (freely available at http://www.reptilian-transcriptomes.org) should prove a useful new resource as reptiles are becoming important new models for comparative genomics, ecology, and evolutionary developmental genetics. PMID:21943375

  2. GigaTON: an extensive publicly searchable database providing a new reference transcriptome in the pacific oyster Crassostrea gigas.

    PubMed

    Riviere, Guillaume; Klopp, Christophe; Ibouniyamine, Nabihoudine; Huvet, Arnaud; Boudry, Pierre; Favrel, Pascal

    2015-12-02

    The Pacific oyster, Crassostrea gigas, is one of the most important aquaculture shellfish resources worldwide. Important efforts have been undertaken towards a better knowledge of its genome and transcriptome, which makes now C. gigas becoming a model organism among lophotrochozoans, the under-described sister clade of ecdysozoans within protostomes. These massive sequencing efforts offer the opportunity to assemble gene expression data and make such resource accessible and exploitable for the scientific community. Therefore, we undertook this assembly into an up-to-date publicly available transcriptome database: the GigaTON (Gigas TranscriptOme pipeliNe) database. We assembled 2204 million sequences obtained from 114 publicly available RNA-seq libraries that were realized using all embryo-larval development stages, adult organs, different environmental stressors including heavy metals, temperature, salinity and exposure to air, which were mostly performed as part of the Crassostrea gigas genome project. This data was analyzed in silico and resulted into 56621 newly assembled contigs that were deposited into a publicly available database, the GigaTON database. This database also provides powerful and user-friendly request tools to browse and retrieve information about annotation, expression level, UTRs, splice and polymorphism, and gene ontology associated to all the contigs into each, and between all libraries. The GigaTON database provides a convenient, potent and versatile interface to browse, retrieve, confront and compare massive transcriptomic information in an extensive range of conditions, tissues and developmental stages in Crassostrea gigas. To our knowledge, the GigaTON database constitutes the most extensive transcriptomic database to date in marine invertebrates, thereby a new reference transcriptome in the oyster, a highly valuable resource to physiologists and evolutionary biologists.

  3. The genomic and transcriptomic basis of the potential of Lactobacillus plantarum A6 to improve the nutritional quality of a cereal based fermented food.

    PubMed

    Turpin, Williams; Weiman, Marion; Guyot, Jean-Pierre; Lajus, Aurélie; Cruveiller, Stéphane; Humblot, Christèle

    2018-02-02

    The objective of this work was to investigate the nutritional potential of Lactobacillus plantarum A6 in a food matrix using next generation sequencing. To this end, we characterized the genome of the A6 strain for a complete overview of its potential. We then compared its transcriptome when grown in a food matrix made from pearl millet to and its transcriptome when cultivated in a laboratory medium. Genomic comparison of the strain L. plantarum A6 with the strains WCFS1, ST-III, JDM1 and ATCC14917 led to the identification of five regions of genomic plasticity. More specifically, 362 coding sequences, mostly annotated as coding for proteins of unknown functions, were specific to L. plantarum A6. A total of 1201 genes were significantly differentially expressed in laboratory medium and food matrix. Among them, 821 genes were up-regulated in the food matrix compared to the laboratory medium, representing 23% of whole genomic objects. In the laboratory medium, the expression of 380 genes, representing 11% of the all genomic objects was at least double than in the food matrix. Genes encoding important functions for the nutritional quality of the food were identified. Considering its efficiency as an amylolytic strain, we investigated all genes involved in carbohydrate metabolism, paying particular attention to starch metabolism. An extracellular alpha amylase, a neopullulanase and maltodextrin transporters were identified, all of which were highly expressed in the food matrix. In addition, genes involved in alpha-galactoside metabolism were identified but only two of them were induced in food matrix than in laboratory medium. This may be because alpha galactosides were already eliminated during soaking. Different biosynthetic pathways involved in the synthesis of vitamin B (folate, riboflavin, and cobalamin) were identified. They allowed the identification of a potential of vitamin synthesis, which should be confirmed through biochemical analysis in further work. Surprisingly, some genes involved in metabolism and bioaccessibility of iron were identified. They were related directly to the use of transport of iron, or indirectly to metabolism of polyphenols, responsible of iron chelation in the food. The combination of genomics and transcriptomics not only revealed previously undocumented nutritional properties of L. plantarum A6, but also documented the behaviour of this bacterium in food. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.

    PubMed

    Hughes, Lily C; Ortí, Guillermo; Huang, Yu; Sun, Ying; Baldwin, Carole C; Thompson, Andrew W; Arcila, Dahiana; Betancur-R, Ricardo; Li, Chenhong; Becker, Leandro; Bellora, Nicolás; Zhao, Xiaomeng; Li, Xiaofeng; Wang, Min; Fang, Chao; Xie, Bing; Zhou, Zhuocheng; Huang, Hai; Chen, Songlin; Venkatesh, Byrappa; Shi, Qiong

    2018-05-14

    Our understanding of phylogenetic relationships among bony fishes has been transformed by analysis of a small number of genes, but uncertainty remains around critical nodes. Genome-scale inferences so far have sampled a limited number of taxa and genes. Here we leveraged 144 genomes and 159 transcriptomes to investigate fish evolution with an unparalleled scale of data: >0.5 Mb from 1,105 orthologous exon sequences from 303 species, representing 66 out of 72 ray-finned fish orders. We apply phylogenetic tests designed to trace the effect of whole-genome duplication events on gene trees and find paralogy-free loci using a bioinformatics approach. Genome-wide data support the structure of the fish phylogeny, and hypothesis-testing procedures appropriate for phylogenomic datasets using explicit gene genealogy interrogation settle some long-standing uncertainties, such as the branching order at the base of the teleosts and among early euteleosts, and the sister lineage to the acanthomorph and percomorph radiations. Comprehensive fossil calibrations date the origin of all major fish lineages before the end of the Cretaceous.

  5. Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    USDA-ARS?s Scientific Manuscript database

    Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...

  6. Characterization of the Asian citrus psyllid transcriptome

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (Diaphorina citri Kuwayama) and other psyllids are important agricultural pests that cause extensive economic damage by feeding and as vectors of plant pathogens. No psyllid genomes have been characterized, and little is known about the composition of psyllid genomes or the ...

  7. A 2-D guinea pig lung proteome map

    USDA-ARS?s Scientific Manuscript database

    Guinea pigs represent an important model for a number of infectious and non-infectious pulmonary diseases. The guinea pig genome has recently been sequenced to full coverage, opening up new research avenues using genomics, transcriptomics and proteomics techniques in this species. In order to furth...

  8. Enzymatic Hydrolysis and Simultaneous Saccharification and Fermentation of Soybean Processing Intermediates for the Production of Ethanol and Concentration of Protein and Lipids

    PubMed Central

    Long, Craig C.; Gibbons, William

    2012-01-01

    Carbohydrates in soybeans are generally undesirable due to their low digestibility and because they “dilute” more valuable components (proteins, lipids). To remove these carbohydrates and raise the titer of more valuable components, ethanol production was investigated. Commercial enzymes (Novozyme cellulase, β-glucosidase, and pectinase) were added to ground soybeans (SB), soybean meal (SBM), soybean hulls (SH), and soybean white flakes (WF) at a 10% solids loading rate to quantify hydrolyzed glucan. Saccharification resulted in glucan reductions of 28%, 45%, 76%, and 80% (SBM, SB, SH, WF, resp.). Simultaneous saccharification and fermentation (SSF) trials were conducted at 5%, 10%, 15%, and 20% solids loading with Saccharomyces cerevisiae NRRL Y-2034 and Scheffersomyces stipitis NRRL Y-7124, with protein, fiber, and lipids analyzed at SSF 10% solids and saccharification trials. S. cerevisiae and S. stipitis produced ~3–12.5 g/L ethanol and ~2.5–8.6 g/L ethanol, respectively, on SB, SBM, and WF over all solid loading rates. SH resulted in higher ethanol titers for both S. cerevisiae (~9–23 g/L) and S. stipitis (~9.5–14.5 g/L). Protein concentrations decreased by 2.5–10% for the SB, SBM, and WF, but increased by 53%–55% in SH. Oil concentrations increased by ~50% for SB; by ~500%–1300% for the others. PMID:23762751

  9. Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves)

    PubMed Central

    2012-01-01

    Background Adaptive divergence driven by environmental heterogeneity has long been a fascinating topic in ecology and evolutionary biology. The study of the genetic basis of adaptive divergence has, however, been greatly hampered by a lack of genomic information. The recent development of transcriptome sequencing provides an unprecedented opportunity to generate large amounts of genomic data for detailed investigations of the genetics of adaptive divergence in non-model organisms. Herein, we used the Illumina sequencing platform to sequence the transcriptome of brain and liver tissues from a single individual of the Vinous-throated Parrotbill, Paradoxornis webbianus bulomachus, an ecologically important avian species in Taiwan with a wide elevational range of sea level to 3100 m. Results Our 10.1 Gbp of sequences were first assembled based on Zebra Finch (Taeniopygia guttata) and chicken (Gallus gallus) RNA references. The remaining reads were then de novo assembled. After filtering out contigs with low coverage (<10X), we retained 67,791 of 487,336 contigs, which covered approximately 5.3% of the P. w. bulomachus genome. Of 7,779 contigs retained for a top-hit species distribution analysis, the majority (about 86%) were matched to known Zebra Finch and chicken transcripts. We also annotated 6,365 contigs to gene ontology (GO) terms: in total, 122 GO-slim terms were assigned, including biological process (41%), molecular function (32%), and cellular component (27%). Many potential genetic markers for future adaptive genomic studies were also identified: 8,589 single nucleotide polymorphisms, 1,344 simple sequence repeats and 109 candidate genes that might be involved in elevational or climate adaptation. Conclusions Our study shows that transcriptome data can serve as a rich genetic resource, even for a single run of short-read sequencing from a single individual of a non-model species. This is the first study providing transcriptomic information for species in the avian superfamily Sylvioidea, which comprises more than 1,000 species. Our data can be used to study adaptive divergence in heterogeneous environments and investigate other important ecological and evolutionary questions in parrotbills from different populations and even in other species in the Sylvioidea. PMID:22530590

  10. Genomic Resources Notes Accepted 1 June 2015-31 July 2015.

    PubMed

    Álvarez, P; Arthofer, Wolfgang; Coelho, Maria M; Conklin, D; Estonba, A; Grosso, Ana R; Helyar, S J; Langa, J; Machado, Miguel P; Montes, I; Pinho, Joana; Rief, Alexander; Schartl, Manfred; Schlick-Steiner, Birgit C; Seeber, Julia; Steiner, Florian M; Vilas, C

    2015-11-01

    This article documents the public availability of (i) microbiomes in diet and gut of larvae from the dipteran Dilophus febrilis using massive parallel sequencing, (ii) SNP and SSR discovery and characterization in the transcriptome of the Atlantic mackerel (Scomber scombrus, L) and (iii) assembled transcriptome for an endangered, endemic Iberian cyprinid fish (Squalius pyrenaicus). © 2015 John Wiley & Sons Ltd.

  11. A Unique Model Platform for C4 Plant Systems and Synthetic Biology

    DTIC Science & Technology

    2015-12-10

    International Conference in Bioinformatics , Sydney, Australia, July 31 - August 2, 2014.  Nielsen LK (2015) Genome scale metabolic and regulatory...the comparison of transcriptome proteome and central metabolome in mature and immature tissue. Preliminary data were obtained suggesting successful...guide the comparison of transcriptome, proteome and central metabolome in mature and immature tissue. Preliminary data were obtained suggesting

  12. YeATS- a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut

    USDA-ARS?s Scientific Manuscript database

    The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves exist...

  13. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. © 2013 Wiley Periodicals, Inc.

  14. Extraction of Molecular Features through Exome to Transcriptome Alignment

    PubMed Central

    Mudvari, Prakriti; Kowsari, Kamran; Cole, Charles; Mazumder, Raja; Horvath, Anelia

    2014-01-01

    Integrative Next Generation Sequencing (NGS) DNA and RNA analyses have very recently become feasible, and the published to date studies have discovered critical disease implicated pathways, and diagnostic and therapeutic targets. A growing number of exomes, genomes and transcriptomes from the same individual are quickly accumulating, providing unique venues for mechanistic and regulatory features analysis, and, at the same time, requiring new exploration strategies. In this study, we have integrated variation and expression information of four NGS datasets from the same individual: normal and tumor breast exomes and transcriptomes. Focusing on SNPcentered variant allelic prevalence, we illustrate analytical algorithms that can be applied to extract or validate potential regulatory elements, such as expression or growth advantage, imprinting, loss of heterozygosity (LOH), somatic changes, and RNA editing. In addition, we point to some critical elements that might bias the output and recommend alternative measures to maximize the confidence of findings. The need for such strategies is especially recognized within the growing appreciation of the concept of systems biology: integrative exploration of genome and transcriptome features reveal mechanistic and regulatory insights that reach far beyond linear addition of the individual datasets. PMID:24791251

  15. Salivary biomarker development using genomic, proteomic and metabolomic approaches

    PubMed Central

    2012-01-01

    The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches. PMID:23114182

  16. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  17. Genomic understanding of dinoflagellates.

    PubMed

    Lin, Senjie

    2011-01-01

    The phylum of dinoflagellates is characterized by many unusual and interesting genomic and physiological features, the imprint of which, in its immense genome, remains elusive. Much novel understanding has been achieved in the last decade on various aspects of dinoflagellate biology, but most remarkably about the structure, expression pattern and epigenetic modification of protein-coding genes in the nuclear and organellar genomes. Major findings include: 1) the great diversity of dinoflagellates, especially at the base of the dinoflagellate tree of life; 2) mini-circularization of the genomes of typical dinoflagellate plastids (with three membranes, chlorophylls a, c1 and c2, and carotenoid peridinin), the scrambled mitochondrial genome and the extensive mRNA editing occurring in both systems; 3) ubiquitous spliced leader trans-splicing of nuclear-encoded mRNA and demonstrated potential as a novel tool for studying dinoflagellate transcriptomes in mixed cultures and natural assemblages; 4) existence and expression of histones and other nucleosomal proteins; 5) a ribosomal protein set expected of typical eukaryotes; 6) genetic potential of non-photosynthetic solar energy utilization via proton-pump rhodopsin; 7) gene candidates in the toxin synthesis pathways; and 8) evidence of a highly redundant, high gene number and highly recombined genome. Despite this progress, much more work awaits genome-wide transcriptome and whole genome sequencing in order to unfold the molecular mechanisms underlying the numerous mysterious attributes of dinoflagellates. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  18. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    PubMed Central

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  19. International network of cancer genome projects

    PubMed Central

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of over 25,000 cancer genomes at the genomic, epigenomic, and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically-relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554

  20. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    PubMed

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus.

    PubMed

    Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix C; Storch, Daniela; Pörtner, Hans-Otto; Held, Christoph; Lucassen, Magnus

    2013-12-01

    Research investigating the genetic basis of physiological responses has significantly broadened our understanding of the mechanisms underlying organismic response to environmental change. However, genomic data are currently available for few taxa only, thus excluding physiological model species from this approach. In this study we report the transcriptome of the model organism Hyas araneus from Spitsbergen (Arctic). We generated 20,479 transcripts, using the 454 GS FLX sequencing technology in combination with an Illumina HiSeq sequencing approach. Annotation by Blastx revealed 7159 blast hits in the NCBI non-redundant protein database. The comparison between the spider crab H. araneus transcriptome and EST libraries of the European lobster Homarus americanus and the porcelain crab Petrolisthes cinctipes yielded 3229/2581 sequences with a significant hit, respectively. The clustering by the Markov Clustering Algorithm (MCL) revealed a common core of 1710 clusters present in all three species and 5903 unique clusters for H. araneus. The combined sequencing approaches generated transcripts that will greatly expand the limited genomic data available for crustaceans. We introduce the MCL clustering for transcriptome comparisons as a simple approach to estimate similarities between transcriptomic libraries of different size and quality and to analyze homologies within the selected group of species. In particular, we identified a large variety of reverse transcriptase (RT) sequences not only in the H. araneus transcriptome and other decapod crustaceans, but also sea urchin, supporting the hypothesis of a heritable, anti-viral immunity and the proposed viral fragment integration by host-derived RTs in marine invertebrates. © 2013.

  2. Nutritional Genomics, Polyphenols, Diets, and Their Impact on Dietetics

    PubMed Central

    Barnes, Stephen

    2009-01-01

    Nutritional genomics offers a way to optimize human health and the quality of life. It is an attractive endeavor, but one with substantial challenges. It encompasses almost all known aspects of science, ranging from the genomes of humans, plants and microorganisms, to the highest levels of food science, analytical science, computing and statistics of large systems, as well as human behavior. The underlying biochemistry that is targeted by the principal issues in nutritional genomics is described and entails genomics, transcriptomics, proteomics and metabolomics. A major feature relevant to nutritional genomics is the single nucleotide polymorphisms in genes that interact with nutrients and other bioactive food components. These genetic changes may lead to alterations in absorption, metabolism and functional responses to bioactive nutritional factors. Bioactive food components may also regulate gene expression at the transcriptome, protein abundance and/or protein turnover levels. Even if all of these variables are known, additional variables to be taken into account include the nutritional variability of the food (unprocessed and processed), the amount that is actually eaten, and the eating-related behaviors of those consuming the food. These challenges are explored within the context of soy intake. Finally, the importance of international co-operation in nutritional genomics research is presented. PMID:18954579

  3. Applications and challenges of next-generation sequencing in Brassica species.

    PubMed

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  4. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing.

    PubMed

    Legendre, Matthieu; Santini, Sébastien; Rico, Alain; Abergel, Chantal; Claverie, Jean-Michel

    2011-03-04

    Mimivirus, a giant dsDNA virus infecting Acanthamoeba, is the prototype of the mimiviridae family, the latest addition to the family of the nucleocytoplasmic large DNA viruses (NCLDVs). Its 1.2 Mb-genome was initially predicted to encode 917 genes. A subsequent RNA-Seq analysis precisely mapped many transcript boundaries and identified 75 new genes. We now report a much deeper analysis using the SOLiD™ technology combining RNA-Seq of the Mimivirus transcriptome during the infectious cycle (202.4 Million reads), and a complete genome re-sequencing (45.3 Million reads). This study corrected the genome sequence and identified several single nucleotide polymorphisms. Our results also provided clear evidence of previously overlooked transcription units, including an important RNA polymerase subunit distantly related to Euryarchea homologues. The total Mimivirus gene count is now 1018, 11% greater than the original annotation. This study highlights the huge progress brought about by ultra-deep sequencing for the comprehensive annotation of virus genomes, opening the door to a complete one-nucleotide resolution level description of their transcriptional activity, and to the realistic modeling of the viral genome expression at the ultimate molecular level. This work also illustrates the need to go beyond bioinformatics-only approaches for the annotation of short protein and non-coding genes in viral genomes.

  5. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish

    EPA Science Inventory

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...

  6. Translational genomics for analysis of complex traits in peanut and sorghum

    USDA-ARS?s Scientific Manuscript database

    The integration of sequencing and genotype data from natural variation studies (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) facilitated the development of DNA markers in the form of single nucleotide polymorphic (SNP)...

  7. Integrated translational genomics for analysis of complex traits in sorghum

    USDA-ARS?s Scientific Manuscript database

    We will report on the integration of sequencing and genotype data from natural variation (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) with the goal of identifying genes controlling important agronomic traits and tran...

  8. Proteogenomics | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Proteogenomics, or the integration of proteomics with genomics and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research.  By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.

  9. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. A New Model Army: Emerging fish models to study the genomics of vertebrate Evo-Devo

    PubMed Central

    Braasch, Ingo; Peterson, Samuel M.; Desvignes, Thomas; McCluskey, Braedan M.; Batzel, Peter; Postlethwait, John H.

    2014-01-01

    Many fields of biology – including vertebrate Evo-Devo research – are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this ‘genomic tsunami’. Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies - for which we introduce the term ‘chromonome’ – should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era. PMID:25111899

  11. Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data

    PubMed Central

    2017-01-01

    Mapping gene expression as a quantitative trait using whole genome-sequencing and transcriptome analysis allows to discover the functional consequences of genetic variation. We developed a novel method and ultra-fast software Findr for higly accurate causal inference between gene expression traits using cis-regulatory DNA variations as causal anchors, which improves current methods by taking into consideration hidden confounders and weak regulations. Findr outperformed existing methods on the DREAM5 Systems Genetics challenge and on the prediction of microRNA and transcription factor targets in human lymphoblastoid cells, while being nearly a million times faster. Findr is publicly available at https://github.com/lingfeiwang/findr. PMID:28821014

  12. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  13. A comparative in silico linear B-cell epitope prediction and characterization for South American and African Trypanosoma vivax strains.

    PubMed

    Guedes, Rafael Lucas Muniz; Rodrigues, Carla Monadeli Filgueira; Coatnoan, Nicolas; Cosson, Alain; Cadioli, Fabiano Antonio; Garcia, Herakles Antonio; Gerber, Alexandra Lehmkuhl; Machado, Rosangela Zacarias; Minoprio, Paola Marcella Camargo; Teixeira, Marta Maria Geraldes; de Vasconcelos, Ana Tereza Ribeiro

    2018-02-27

    Trypanosoma vivax is a parasite widespread across Africa and South America. Immunological methods using recombinant antigens have been developed aiming at specific and sensitive detection of infections caused by T. vivax. Here, we sequenced for the first time the transcriptome of a virulent T. vivax strain (Lins), isolated from an outbreak of severe disease in South America (Brazil) and performed a computational integrated analysis of genome, transcriptome and in silico predictions to identify and characterize putative linear B-cell epitopes from African and South American T. vivax. A total of 2278, 3936 and 4062 linear B-cell epitopes were respectively characterized for the transcriptomes of T. vivax LIEM-176 (Venezuela), T. vivax IL1392 (Nigeria) and T. vivax Lins (Brazil) and 4684 for the genome of T. vivax Y486 (Nigeria). The results presented are a valuable theoretical source that may pave the way for highly sensitive and specific diagnostic tools. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended 'male sex drive' hypothesis.

    PubMed

    Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi

    2016-09-30

    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.

    PubMed

    Haas, Brian J; Papanicolaou, Alexie; Yassour, Moran; Grabherr, Manfred; Blood, Philip D; Bowden, Joshua; Couger, Matthew Brian; Eccles, David; Li, Bo; Lieber, Matthias; MacManes, Matthew D; Ott, Michael; Orvis, Joshua; Pochet, Nathalie; Strozzi, Francesco; Weeks, Nathan; Westerman, Rick; William, Thomas; Dewey, Colin N; Henschel, Robert; LeDuc, Richard D; Friedman, Nir; Regev, Aviv

    2013-08-01

    De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.

  16. Enabling large-scale next-generation sequence assembly with Blacklight

    PubMed Central

    Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.

    2014-01-01

    Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974

  17. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    PubMed

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  18. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.

    PubMed

    Jayakodi, Murukarthick; Choi, Beom-Soon; Lee, Sang-Choon; Kim, Nam-Hoon; Park, Jee Young; Jang, Woojong; Lakshmanan, Meiyappan; Mohan, Shobhana V G; Lee, Dong-Yup; Yang, Tae-Jin

    2018-04-12

    The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.

  19. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti.

    PubMed

    Maringer, Kevin; Yousuf, Amjad; Heesom, Kate J; Fan, Jun; Lee, David; Fernandez-Sesma, Ana; Bessant, Conrad; Matthews, David A; Davidson, Andrew D

    2017-01-19

    Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.

  20. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea.

    PubMed

    Li, Meng; Baker, Brett J; Anantharaman, Karthik; Jain, Sunit; Breier, John A; Dick, Gregory J

    2015-11-17

    Microbial activity is one of the most important processes to mediate the flux of organic carbon from the ocean surface to the seafloor. However, little is known about the microorganisms that underpin this key step of the global carbon cycle in the deep oceans. Here we present genomic and transcriptomic evidence that five ubiquitous archaeal groups actively use proteins, carbohydrates, fatty acids and lipids as sources of carbon and energy at depths ranging from 800 to 4,950 m in hydrothermal vent plumes and pelagic background seawater across three different ocean basins. Genome-enabled metabolic reconstructions and gene expression patterns show that these marine archaea are motile heterotrophs with extensive mechanisms for scavenging organic matter. Our results shed light on the ecological and physiological properties of ubiquitous marine archaea and highlight their versatile metabolic strategies in deep oceans that might play a critical role in global carbon cycling.

  1. Discovery of SCORs: Anciently derived, highly conserved gene-associated repeats in stony corals.

    PubMed

    Qiu, Huan; Zelzion, Ehud; Putnam, Hollie M; Gates, Ruth D; Wagner, Nicole E; Adams, Diane K; Bhattacharya, Debashish

    2017-10-01

    Stony coral (Scleractinia) genomes are still poorly explored and many questions remain about their evolution and contribution to the success and longevity of reefs. We analyzed transcriptome and genome data from Montipora capitata, Acropora digitifera, and transcriptome data from 20 other coral species. To our surprise, we found highly conserved, anciently derived, Scleractinia COral-specific Repeat families (SCORs) that are abundant in all the studied lineages. SCORs form complex secondary structures and are located in untranslated regions and introns, but most abundant in intergenic DNA. These repeat families have undergone frequent duplication and degradation, suggesting a 'boom and bust' cycle of invasion and loss. We speculate that due to their surprisingly high sequence identities across deeply diverged corals, physical association with genes, and dynamic evolution, SCORs might have adaptive functions in corals that need to be explored using population genomic and function-based approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.

    PubMed

    Zagrobelny, Mika; Scheibye-Alsing, Karsten; Jensen, Niels Bjerg; Møller, Birger Lindberg; Gorodkin, Jan; Bak, Søren

    2009-12-02

    An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases) were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being convergent between plants and insects. Pyrosequencing is an attractive approach to gain access to genes in the biosynthesis of bio-active natural products from insects and other organisms, for which the genome sequence is not known. Based on analysis of the Z. filipendulae transcriptome, promising gene candidates for biosynthesis of cyanogenic glucosides was identified, and the suitability of Z. filipendulae as a model system for cyanogenesis in insects is evident.

  3. Integrated and translational genomics for analysis of complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    We report here on integration of sequencing and genotype data from natural variation (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) with the goal of translating gems from these resources into useable DNA markers in the ...

  4. NCI-CPTAC DREAM Proteogenomics Challenge (Registration Now Open) | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Proteogenomics, integration of proteomics, genomics, and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research.  By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.

  5. Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity

    USDA-ARS?s Scientific Manuscript database

    The relationship between secondary metabolism and infection in pathogenic fungi has remained largely elusive. Penicillium comprises a group of plant pathogens with varying host specificities and with the ability to produce a wide array of secondary metabolites. The genomes of three Penicillium exp...

  6. The genomic landscape of rapid, repeated evolutionary rescue from toxic pollution in wild fish

    USDA-ARS?s Scientific Manuscript database

    Here we describe evolutionary rescue from intense pollution via multiple modes of selection in killifish populations from 4 urban estuaries of the US eastern seaboard. Comparative transcriptomics and analysis of 384 whole genome sequences show that the functioning of a receptor-based signaling pathw...

  7. A developmental transcriptome map for allotetraploid arachis hypogaea

    USDA-ARS?s Scientific Manuscript database

    The advent of the genome sequences of Arachis duranensis and Arachis ipaensis has ushered in a new era for peanut genomics. With the goal of producing a gene atlas for cultivated peanut (Arachis hypogaea), 22 different tissue types and ontogenies that represent the full development of peanut were s...

  8. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers represent the largest single cell in the plant kingdom, and they have been used as a model to study cell function, differentiation, maturation, and cell death. The cotton fiber transcriptome can be clustered into two genomic regions: conserved and recombination hotspots. Genetic link...

  9. Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis.

    PubMed

    Zhu, Yafeng; Engström, Pär G; Tellgren-Roth, Christian; Baudo, Charles D; Kennell, John C; Sun, Sheng; Billmyre, R Blake; Schröder, Markus S; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar Ram; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L; Heitman, Joseph; Scheynius, Annika; Lehtiö, Janne

    2017-03-17

    Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology.

    PubMed

    Dilly, G F; Gaitán-Espitia, J D; Hofmann, G E

    2015-03-01

    This is the first de novo transcriptome and complete mitochondrial genome of an Antarctic sea urchin species sequenced to date. Sterechinus neumayeri is an Antarctic sea urchin and a model species for ecology, development, physiology and global change biology. To identify transcripts important to ocean acidification (OA) and thermal stress, this transcriptome was created pooling, and 13 larval samples representing developmental stages on day 11 (late gastrula), 19 (early pluteus) and 30 (mid pluteus) maintained at three CO2 levels (421, 652, and 1071 μatm) as well as four additional heat-shocked samples. The normalized cDNA pool was sequenced using emulsion PCR (pyrosequencing) resulting in 1.34M reads with an average read length of 492 base pairs. 40,994 isotigs were identified, averaging 1188 bp with a median coverage of 11×. Additional primer design and gap sequencing were required to complete the mitochondrial genome. The mitogenome of S. neumayeri is a circular DNA molecule with a length of 15 684 bp that contains all 37 genes normally found in metazoans. We detail the main features of the transcriptome and the mitogenome architecture and investigate the phylogenetic relationships of S. neumayeri within Echinoidea. In addition, we provide comparative analyses of S. neumayeri with its closest relative, Strongylocentrotus purpuratus, including a list of potential OA gene targets. The resources described here will support a variety of quantitative (genomic, proteomic, multistress and comparative) studies to interrogate physiological responses to OA and other stressors in this important Antarctic calcifier. © 2014 John Wiley & Sons Ltd.

  11. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain

    PubMed Central

    Hattangady, Dipti S.; Singh, Atul K.; Muthaiyan, Arun; Jayaswal, Radheshyam K.; Gustafson, John E.; Ulanov, Alexander V.; Li, Zhong; Wilkinson, Brian J.; Pfeltz, Richard F.

    2015-01-01

    Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL) than strain 13136p−m+V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. PMID:27025616

  12. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly

    PubMed Central

    2013-01-01

    Background The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies. PMID:23496952

  13. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly.

    PubMed

    Francis, Warren R; Christianson, Lynne M; Kiko, Rainer; Powers, Meghan L; Shaner, Nathan C; Haddock, Steven H D

    2013-03-12

    The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies.

  14. RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne).

    PubMed

    Jung, Won Yong; Lee, Sang Sook; Kim, Chul Wook; Kim, Hyun-Soon; Min, Sung Ran; Moon, Jae Sun; Kwon, Suk-Yoon; Jeon, Jae-Heung; Cho, Hye Sun

    2014-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has long been cultivated as a vegetable and as a source of fructans (inulin) for pharmaceutical applications in diabetes and obesity prevention. However, transcriptomic and genomic data for Jerusalem artichoke remain scarce. In this study, Illumina RNA sequencing (RNA-Seq) was performed on samples from Jerusalem artichoke leaves, roots, stems and two different tuber tissues (early and late tuber development). Data were used for de novo assembly and characterization of the transcriptome. In total 206,215,632 paired-end reads were generated. These were assembled into 66,322 loci with 272,548 transcripts. Loci were annotated by querying against the NCBI non-redundant, Phytozome and UniProt databases, and 40,215 loci were homologous to existing database sequences. Gene Ontology terms were assigned to 19,848 loci, 15,434 loci were matched to 25 Clusters of Eukaryotic Orthologous Groups classifications, and 11,844 loci were classified into 142 Kyoto Encyclopedia of Genes and Genomes pathways. The assembled loci also contained 10,778 potential simple sequence repeats. The newly assembled transcriptome was used to identify loci with tissue-specific differential expression patterns. In total, 670 loci exhibited tissue-specific expression, and a subset of these were confirmed using RT-PCR and qRT-PCR. Gene expression related to inulin biosynthesis in tuber tissue was also investigated. Exsiting genetic and genomic data for H. tuberosus are scarce. The sequence resources developed in this study will enable the analysis of thousands of transcripts and will thus accelerate marker-assisted breeding studies and studies of inulin biosynthesis in Jerusalem artichoke.

  15. Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology

    PubMed Central

    Mykles, Donald L.; Burnett, Karen G.; Durica, David S.; Joyce, Blake L.; McCarthy, Fiona M.; Schmidt, Carl J.; Stillman, Jonathon H.

    2016-01-01

    High-throughput RNA sequencing (RNA-seq) technology has become an important tool for studying physiological responses of organisms to changes in their environment. De novo assembly of RNA-seq data has allowed researchers to create a comprehensive catalog of genes expressed in a tissue and to quantify their expression without a complete genome sequence. The contributions from the “Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology” symposium in this issue show the successes and limitations of using RNA-seq in the study of crustaceans. In conjunction with the symposium, the Animal Genome to Phenome Research Coordination Network collated comments from participants at the meeting regarding the challenges encountered when using transcriptomics in their research. Input came from novices and experts ranging from graduate students to principal investigators. Many were unaware of the bioinformatics analysis resources currently available on the CyVerse platform. Our analysis of community responses led to three recommendations for advancing the field: (1) integration of genomic and RNA-seq sequence assemblies for crustacean gene annotation and comparative expression; (2) development of methodologies for the functional analysis of genes; and (3) information and training exchange among laboratories for transmission of best practices. The field lacks the methods for manipulating tissue-specific gene expression. The decapod crustacean research community should consider the cherry shrimp, Neocaridina denticulata, as a decapod model for the application of transgenic tools for functional genomics. This would require a multi-investigator effort. PMID:27639274

  16. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.

    PubMed

    Sun, Liang; Lu, Zhilong; Li, Jianxiu; Sun, Feifei; Huang, Ribo

    2018-02-01

    Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log 2 fold-change ≥ 2) and 39 significantly down-regulated genes (log 2 fold-change ≤ - 2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that "pyruvate metabolism" was significantly different (P < 0.05) between the two strains. The split genes and the differentially expressed genes involved in the "pyruvate metabolism" pathway are probably responsible for the increased L-lactic acid production by SCT-10-10-60. The genome and transcriptome sequencing information and comparison of SCT-10-10-60 with ATCC 11443 provide insights into the anabolism of L-lactic acid and a reference for improving L-lactic acid production using genetic engineering.

  17. A survey of the sorghum transcriptome using single-molecule long reads

    DOE PAGES

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; ...

    2016-06-24

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novelmore » splice isoforms. Additionally, we uncover APA ofB11,000 expressed genes and more than 2,100 novel genes. Lastly, these results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.« less

  18. A survey of the sorghum transcriptome using single-molecule long reads

    PubMed Central

    Abdel-Ghany, Salah E.; Hamilton, Michael; Jacobi, Jennifer L.; Ngam, Peter; Devitt, Nicholas; Schilkey, Faye; Ben-Hur, Asa; Reddy, Anireddy S. N.

    2016-01-01

    Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ∼11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism. PMID:27339290

  19. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose

    PubMed Central

    Jiménez-Guerrero, Irene; Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; López-Baena, Francisco Javier; Ollero, Francisco Javier

    2017-01-01

    Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes. PMID:29267254

  20. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.

    In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.

  1. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin.

    PubMed

    Zhao, Ying-Jun; Zeng, Yan; Chen, Lei; Dong, Yang; Wang, Wen

    2014-12-01

    As an ancient arthropod with a history of 390 million years, spiders evolved numerous morphological forms resulting from adaptation to different environments. The venom and silk of spiders, which have promising commercial applications in agriculture, medicine and engineering fields, are of special interests to researchers. However, little is known about their genomic components, which hinders not only understanding spider biology but also utilizing their valuable genes. Here we report on deep sequenced and de novo assembled transcriptomes of three orb-web spider species, Gasteracantha arcuata, Nasoonaria sinensis and Gasteracantha hasselti which are distributed in tropical forests of south China. With Illumina paired-end RNA-seq technology, 54 871, 101 855 and 75 455 unigenes for the three spider species were obtained, respectively, among which 9 300, 10 001 and 10 494 unique genes are annotated, respectively. From these annotated unigenes, we comprehensively analyzed silk and toxin gene components and structures for the three spider species. Our study provides valuable transcriptome data for three spider species which previously lacked any genetic/genomic data. The results have laid the first fundamental genomic basis for exploiting gene resources from these spiders. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  2. Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress.

    PubMed

    Godoy, Liliana; Vera-Wolf, Patricia; Martinez, Claudio; Ugalde, Juan A; Ganga, María Angélica

    2016-09-28

    Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes.

  3. Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress

    PubMed Central

    Godoy, Liliana; Vera-Wolf, Patricia; Martinez, Claudio; Ugalde, Juan A.; Ganga, María Angélica

    2016-01-01

    Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes. PMID:27678167

  4. De novo assembly of the transcriptome of Aegiceras corniculatum, a mangrove species in the Indo-West Pacific region.

    PubMed

    Fang, Lu; Yang, Yuchen; Guo, Wuxia; Li, Jianfang; Zhong, Cairong; Huang, Yelin; Zhou, Renchao; Shi, Suhua

    2016-08-01

    Aegiceras corniculatum (L.) Blanco is one of the most salt tolerant mangrove species and can thrive in 3% salinity at the seaward edge of mangrove forests. Here we sequenced the transcriptome of A. corniculatum used Illumina GA platform to develop its genomic resources for ecological and evolutionary studies. We obtained about 50 million high-quality paired-end reads with 75bp in length. Using the short read assembler Velvet, we yielded 49,437 contigs with the average length of 625bp. A total of 32,744 (66.23%) contigs showed significant similarity to the GenBank non-redundant (NR) protein database. 30,911 and 18,004 of these sequences were assigned to Gene Ontology and eukaryotic orthologous groups of proteins (KOG). A total of 4942 transcripts from our assemblies had significant similarity with KEGG Orthologs and were involved in 144 KEGG pathways, while 9899 unigenes had enzyme commission (EC) numbers. In addition, 9792 transcriptome-derived SSRs were identified from 7342 sequences. With our strict criteria, 4165 candidate SNPs were also identified from 2058 contigs. Some of these SNPs were further validated by Sanger sequencing. Genomic resources generated in this study should be valuable in ecological, evolutionary, and functional genomics studies for this mangrove species. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Discovery of parvovirus-related sequences in an unexpected broad range of animals.

    PubMed

    François, S; Filloux, D; Roumagnac, P; Bigot, D; Gayral, P; Martin, D P; Froissart, R; Ogliastro, M

    2016-09-07

    Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.

  6. Global survey of genomic imprinting by transcriptome sequencing.

    PubMed

    Babak, Tomas; Deveale, Brian; Armour, Christopher; Raymond, Christopher; Cleary, Michele A; van der Kooy, Derek; Johnson, Jason M; Lim, Lee P

    2008-11-25

    Genomic imprinting restricts gene expression to a paternal or maternal allele. To date, approximately 90 imprinted transcripts have been identified in mouse, of which the majority were detected after intense interrogation of clusters of imprinted genes identified by phenotype-driven assays in mice with uniparental disomies [1]. Here we use selective priming and parallel sequencing to measure allelic bias in whole transcriptomes. By distinguishing parent-of-origin bias from strain-specific bias in embryos derived from a reciprocal cross of mice, we constructed a genome-wide map of imprinted transcription. This map was able to objectively locate over 80% of known imprinted loci and allowed the detection and confirmation of six novel imprinted genes. Even in the intensely studied embryonic day 9.5 developmental stage that we analyzed, more than half of all imprinted single-nucleotide polymorphisms did not overlap previously discovered imprinted transcripts; a large fraction of these represent novel noncoding RNAs within known imprinted loci. For example, a previously unnoticed, maternally expressed antisense transcript was mapped within the Grb10 locus. This study demonstrates the feasibility of using transcriptome sequencing for mapping of imprinted gene expression in physiologically normal animals. Such an approach will allow researchers to study imprinting without restricting themselves to individual loci or specific transcripts.

  7. Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates

    PubMed Central

    Ellison, Christopher E.; Kowbel, David; Glass, N. Louise; Taylor, John W.

    2014-01-01

    ABSTRACT Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. PMID:24692637

  8. T-IDBA: A de novo Iterative de Bruijn Graph Assembler for Transcriptome

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Leung, Henry C. M.; Yiu, S. M.; Chin, Francis Y. L.

    RNA-seq data produced by next-generation sequencing technology is a useful tool for analyzing transcriptomes. However, existing de novo transcriptome assemblers do not fully utilize the properties of transcriptomes and may result in short contigs because of the splicing nature (shared exons) of the genes. We propose the T-IDBA algorithm to reconstruct expressed isoforms without reference genome. By using pair-end information to solve the problem of long repeats in different genes and branching in the same gene due to alternative splicing, the graph can be decomposed into small components, each corresponds to a gene. The most possible isoforms with sufficient support from the pair-end reads will be found heuristically. In practice, our de novo transcriptome assembler, T-IDBA, outperforms Abyss substantially in terms of sensitivity and precision for both simulated and real data. T-IDBA is available at http://www.cs.hku.hk/~alse/tidba/

  9. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research.

    PubMed

    Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Khalil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao

    2017-02-20

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.

  10. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition

    PubMed Central

    He, Bin; Tao, Xiang; Gu, Yinghong; Wei, Changhe; Cheng, Xiaojie; Xiao, Suqin; Cheng, Zaiquan; Zhang, Yizheng

    2015-01-01

    Oryza meyeriana (O. meyeriana), with a GG genome type (2n = 24), accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93–11) genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26) differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease resistance in O. meyeriana. PMID:26640944

  11. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets.

    PubMed

    Geib, Scott M; Calla, Bernarda; Hall, Brian; Hou, Shaobin; Manoukis, Nicholas C

    2014-10-28

    The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences present in Drosophila melanogaster. We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing 20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data. Through characterizing the transcriptome of B. dorsalis through its life history and comparing the transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research that will focus on improving our understanding of the physiology and biology of this species at the molecular level. This knowledge can also be applied towards developing improved methods for control, survey, and eradication of this important pest.

  12. De Novo Transcriptomic Analysis of Peripheral Blood Lymphocytes from the Chinese Goose: Gene Discovery and Immune System Pathway Description

    PubMed Central

    Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun

    2015-01-01

    Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system. PMID:25816068

  13. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history.

    PubMed

    Dong, Xiaofeng; Armstrong, Stuart D; Xia, Dong; Makepeace, Benjamin L; Darby, Alistair C; Kadowaki, Tatsuhiko

    2017-03-01

    The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee. © The Author 2017. Published by Oxford University Press.

  14. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    PubMed Central

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-01-01

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes. PMID:25806041

  15. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    DOE PAGES

    Seaver, Samuel M.D.; Bradbury, Louis M.T.; Frelin, Océane; ...

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions andmore » possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.« less

  16. Listeriomics: an Interactive Web Platform for Systems Biology of Listeria

    PubMed Central

    Koutero, Mikael; Tchitchek, Nicolas; Cerutti, Franck; Lechat, Pierre; Maillet, Nicolas; Hoede, Claire; Chiapello, Hélène; Gaspin, Christine

    2017-01-01

    ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. PMID:28317029

  17. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities.

    PubMed

    Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D

    2013-01-01

    Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.

  18. A large-scale full-length cDNA analysis to explore the budding yeast transcriptome

    PubMed Central

    Miura, Fumihito; Kawaguchi, Noriko; Sese, Jun; Toyoda, Atsushi; Hattori, Masahira; Morishita, Shinichi; Ito, Takashi

    2006-01-01

    We performed a large-scale cDNA analysis to explore the transcriptome of the budding yeast Saccharomyces cerevisiae. We sequenced two cDNA libraries, one from the cells exponentially growing in a minimal medium and the other from meiotic cells. Both libraries were generated by using a vector-capping method that allows the accurate mapping of transcription start sites (TSSs). Consequently, we identified 11,575 TSSs associated with 3,638 annotated genomic features, including 3,599 ORFs, to suggest that most yeast genes have two or more TSSs. In addition, we identified 45 previously undescribed introns, including those affecting current ORF annotations and those spliced alternatively. Furthermore, the analysis revealed 667 transcription units in the intergenic regions and transcripts derived from antisense strands of 367 known features. We also found that 348 ORFs carry TSSs in their 3′-halves to generate sense transcripts starting from inside the ORFs. These results indicate that the budding yeast transcriptome is considerably more complex than previously thought, and it shares many recently revealed characteristics with the transcriptomes of mammals and other higher eukaryotes. Thus, the genome-wide active transcription that generates novel classes of transcripts appears to be an intrinsic feature of the eukaryotic cells. The budding yeast will serve as a versatile model for the studies on these aspects of transcriptome, and the full-length cDNA clones can function as an invaluable resource in such studies. PMID:17101987

  19. Genome-Scale Transcriptome Analysis in Response to Nitric Oxide in Birch Cells: Implications of the Triterpene Biosynthetic Pathway

    PubMed Central

    Zeng, Fansuo; Sun, Fengkun; Li, Leilei; Liu, Kun; Zhan, Yaguang

    2014-01-01

    Evidence supporting nitric oxide (NO) as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP) were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10−5) sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374) were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis. PMID:25551661

  20. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel.

    PubMed

    Pujolar, Jose Martin; Marino, Ilaria A M; Milan, Massimo; Coppe, Alessandro; Maes, Gregory E; Capoccioni, Fabrizio; Ciccotti, Eleonora; Bervoets, Lieven; Covaci, Adrian; Belpaire, Claude; Cramb, Gordon; Patarnello, Tomaso; Bargelloni, Luca; Bortoluzzi, Stefania; Zane, Lorenzo

    2012-09-25

    Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.

  1. Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei.

    PubMed

    Zhou, Peng; Zhang, Guoqiang; Chen, Shangwu; Jiang, Zhengqiang; Tang, Yanbin; Henrissat, Bernard; Yan, Qiaojuan; Yang, Shaoqing; Chen, Chin-Fu; Zhang, Bing; Du, Zhenglin

    2014-04-21

    The zygomycete fungi like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. To date, over hundreds of fungal genomes are publicly available. However, Zygomycetes have been rarely investigated both genetically and genomically. Here, we report the genome of R. miehei CAU432 to explore the thermostable enzymatic repertoire of this fungus. The assembled genome size is 27.6-million-base (Mb) with 10,345 predicted protein-coding genes. Even being thermophilic, the G + C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than 50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes. Based on the existence of a large repertoire of amylolytic, proteolytic and lipolytic genes in the genome, R. miehei has potential in the production of a variety of such enzymes.

  2. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties.

    PubMed

    Hittalmani, Shailaja; Mahesh, H B; Shirke, Meghana Deepak; Biradar, Hanamareddy; Uday, Govindareddy; Aruna, Y R; Lohithaswa, H C; Mohanrao, A

    2017-06-15

    Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.

  3. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis.

    PubMed

    Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming

    2015-09-28

    Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors.

  4. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis

    PubMed Central

    Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming

    2015-01-01

    Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors. PMID:26411888

  5. Accessing the genomic effects of naked nanoceria in murine neuronal cells.

    PubMed

    Lee, Tin-Lap; Raitano, Joan M; Rennert, Owen M; Chan, Siu-Wai; Chan, Wai-Yee

    2012-07-01

    Cerium oxide nanoparticles (nanoceria) are engineered nanoparticles whose versatility is due to their unique redox properties. We and others have demonstrated that naked nanoceria can act as antioxidants to protect cells against oxidative damage. Although the redox properties may be beneficial, the genome-wide effects of nanoceria on gene transcription and associated biological processes remain elusive. Here we applied a functional genomic approach to examine the genome-wide effects of nanoceria on global gene transcription and cellular functions in mouse neuronal cells. Importantly, we demonstrated that nanoceria induced chemical- and size-specific changes in the murine neuronal cell transcriptome. The nanoceria contributed more than 83% of the population of uniquely altered genes and were associated with a unique spectrum of genes related to neurological disease, cell cycle control, and growth. These observations suggest that an in-depth assessment of potential health effects of naked nanoceria and other naked nanoparticles is both necessary and imminent. Cerium oxide nanoparticles are important antioxidants, with potential applications in neurodegenerative conditions. This team of investigators demonstrated the genomic effects of nanoceria, showing that it induced chemical- and size-specific changes in the murine neuronal cell transcriptome. Published by Elsevier Inc.

  6. Shotgun Bisulfite Sequencing of the Betula platyphylla Genome Reveals the Tree’s DNA Methylation Patterning

    PubMed Central

    Su, Chang; Wang, Chao; He, Lin; Yang, Chuanping; Wang, Yucheng

    2014-01-01

    DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. PMID:25514241

  7. Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50)

    PubMed Central

    Iamartino, Daniela; Pruitt, Kim D; Sonstegard, Tad; Smith, Timothy P L; Low, Wai Yee; Biagini, Tommaso; Bomba, Lorenzo; Capomaccio, Stefano; Castiglioni, Bianca; Coletta, Angelo; Corrado, Federica; Ferré, Fabrizio; Iannuzzi, Leopoldo; Lawley, Cynthia; Macciotta, Nicolò; McClure, Matthew; Mancini, Giordano; Matassino, Donato; Mazza, Raffaele; Milanesi, Marco; Moioli, Bianca; Morandi, Nicola; Ramunno, Luigi; Peretti, Vincenzo; Pilla, Fabio; Ramelli, Paola; Schroeder, Steven; Strozzi, Francesco; Thibaud-Nissen, Francoise; Zicarelli, Luigi; Ajmone-Marsan, Paolo; Valentini, Alessio; Chillemi, Giovanni; Zimin, Aleksey

    2017-01-01

    Abstract Water buffalo is a globally important species for agriculture and local economies. A de novo assembled, well-annotated reference sequence for the water buffalo is an important prerequisite for studying the biology of this species, and is necessary to manage genetic diversity and to use modern breeding and genomic selection techniques. However, no such genome assembly has been previously reported. There are 2 species of domestic water buffalo, the river (2n = 50) and the swamp (2n = 48) buffalo. Here we describe a draft quality reference sequence for the river buffalo created from Illumina GA and Roche 454 short read sequences using the MaSuRCA assembler. The assembled sequence is 2.83 Gb, consisting of 366 983 scaffolds with a scaffold N50 of 1.41 Mb and contig N50 of 21 398 bp. Annotation of the genome was supported by transcriptome data from 30 tissues and identified 21 711 predicted protein coding genes. Searches for complete mammalian BUSCO gene groups found 98.6% of curated single copy orthologs present among predicted genes, which suggests a high level of completeness of the genome. The annotated sequence is available from NCBI at accession GCA_000471725.1. PMID:29048578

  8. SmedGD 2.0: The Schmidtea mediterranea genome database

    PubMed Central

    Robb, Sofia M.C.; Gotting, Kirsten; Ross, Eric; Sánchez Alvarado, Alejandro

    2016-01-01

    Planarians have emerged as excellent models for the study of key biological processes such as stem cell function and regulation, axial polarity specification, regeneration, and tissue homeostasis among others. The most widely used organism for these studies is the free-living flatworm Schmidtea mediterranea. In 2007, the Schmidtea mediterranea Genome Database (SmedGD) was first released to provide a much needed resource for the small, but growing planarian community. SmedGD 1.0 has been a depository for genome sequence, a draft assembly, and related experimental data (e.g., RNAi phenotypes, in situ hybridization images, and differential gene expression results). We report here a comprehensive update to SmedGD (SmedGD 2.0) that aims to expand its role as an interactive community resource. The new database includes more recent, and up-to-date transcription data, provides tools that enhance interconnectivity between different genome assemblies and transcriptomes, including next generation assemblies for both the sexual and asexual biotypes of S. mediterranea. SmedGD 2.0 (http://smedgd.stowers.org) not only provides significantly improved gene annotations, but also tools for data sharing, attributes that will help both the planarian and biomedical communities to more efficiently mine the genomics and transcriptomics of S. mediterranea. PMID:26138588

  9. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  10. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE PAGES

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; ...

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  11. Identification and mapping of conserved ortholog set(COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cocoa and comparative genomics studies

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao is a tree cultivated in the tropics around the world for its seeds that are the source of both chocolate and cocoa butter. The cacao genome sequencing project initiated as a collaboration between USDA, Mars, Inc. and IBM has generated a great deal of transcriptome and genome sequenc...

  12. JANE: efficient mapping of prokaryotic ESTs and variable length sequence reads on related template genomes

    PubMed Central

    2009-01-01

    Background ESTs or variable sequence reads can be available in prokaryotic studies well before a complete genome is known. Use cases include (i) transcriptome studies or (ii) single cell sequencing of bacteria. Without suitable software their further analysis and mapping would have to await finalization of the corresponding genome. Results The tool JANE rapidly maps ESTs or variable sequence reads in prokaryotic sequencing and transcriptome efforts to related template genomes. It provides an easy-to-use graphics interface for information retrieval and a toolkit for EST or nucleotide sequence function prediction. Furthermore, we developed for rapid mapping an enhanced sequence alignment algorithm which reassembles and evaluates high scoring pairs provided from the BLAST algorithm. Rapid assembly on and replacement of the template genome by sequence reads or mapped ESTs is achieved. This is illustrated (i) by data from Staphylococci as well as from a Blattabacteria sequencing effort, (ii) mapping single cell sequencing reads is shown for poribacteria to sister phylum representative Rhodopirellula Baltica SH1. The algorithm has been implemented in a web-server accessible at http://jane.bioapps.biozentrum.uni-wuerzburg.de. Conclusion Rapid prokaryotic EST mapping or mapping of sequence reads is achieved applying JANE even without knowing the cognate genome sequence. PMID:19943962

  13. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei

    PubMed Central

    Uliano-Silva, Marcela; Dondero, Francesco; Dan Otto, Thomas; Costa, Igor; Lima, Nicholas Costa Barroso; Americo, Juliana Alves; Mazzoni, Camila Junqueira; Prosdocimi, Francisco; Rebelo, Mauro de Freitas

    2018-01-01

    Abstract Background For more than 25 years, the golden mussel, Limnoperna fortunei, has aggressively invaded South American freshwaters, having travelled more than 5000 km upstream across 5 countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it. Findings We assembled the 1.6-Gb genome into 20 548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60 717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. Conclusions We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina paired-end, mate-paired, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei’s genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control. PMID:29267857

  14. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    PubMed Central

    Severson, David W.; Behura, Susanta K.

    2016-01-01

    Dengue (DENV), yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions. PMID:27809220

  15. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei.

    PubMed

    Uliano-Silva, Marcela; Dondero, Francesco; Dan Otto, Thomas; Costa, Igor; Lima, Nicholas Costa Barroso; Americo, Juliana Alves; Mazzoni, Camila Junqueira; Prosdocimi, Francisco; Rebelo, Mauro de Freitas

    2018-02-01

    For more than 25 years, the golden mussel, Limnoperna fortunei, has aggressively invaded South American freshwaters, having travelled more than 5000 km upstream across 5 countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it. We assembled the 1.6-Gb genome into 20 548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60 717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina paired-end, mate-paired, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei's genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control.

  16. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    DTIC Science & Technology

    2012-11-15

    the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen- depleted growth conditions support a total of... sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for...biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from

  17. The NCI Genomic Data Commons as an engine for precision medicine.

    PubMed

    Jensen, Mark A; Ferretti, Vincent; Grossman, Robert L; Staudt, Louis M

    2017-07-27

    The National Cancer Institute Genomic Data Commons (GDC) is an information system for storing, analyzing, and sharing genomic and clinical data from patients with cancer. The recent high-throughput sequencing of cancer genomes and transcriptomes has produced a big data problem that precludes many cancer biologists and oncologists from gleaning knowledge from these data regarding the nature of malignant processes and the relationship between tumor genomic profiles and treatment response. The GDC aims to democratize access to cancer genomic data and to foster the sharing of these data to promote precision medicine approaches to the diagnosis and treatment of cancer.

  18. Transcriptome Analysis and Differential Gene Expression on the Testis of Orange Mud Crab, Scylla olivacea, during Sexual Maturation

    PubMed Central

    Waiho, Khor; Fazhan, Hanafiah; Shahreza, Md Sheriff; Moh, Julia Hwei Zhong; Noorbaiduri, Shaibani; Wong, Li Lian; Sinnasamy, Saranya

    2017-01-01

    Adequate genetic information is essential for sustainable crustacean fisheries and aquaculture management. The commercially important orange mud crab, Scylla olivacea, is prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aquaculture candidate, full domestication of this species is hampered by the lack of knowledge about the sexual maturation process and the molecular mechanisms behind it, especially in males. To date, data on its whole genome is yet to be reported for S. olivacea. The available transcriptome data published previously on this species focus primarily on females and the role of central nervous system in reproductive development. De novo transcriptome sequencing for the testes of S. olivacea from immature, maturing and mature stages were performed. A total of approximately 144 million high-quality reads were generated and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approximately 15–23% of the total assembled transcripts were annotated when compared to public protein sequence databases (i.e. UniProt database, Interpro database, Pfam database and Drosophila melanogaster protein database), and GO-categorised with GO Ontology terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were mined from the transcriptome data of present study. Transcriptome comparison among the testes of different maturation stages revealed one gene (beta crystallin like gene) with the most significant differential expression—up-regulated in immature stage and down-regulated in maturing and mature stages. This was further validated by qRT-PCR. In conclusion, a comprehensive transcriptome of the testis of orange mud crabs from different maturation stages were obtained. This report provides an invaluable resource for enhancing our understanding of this species’ genome structure and biology, as expressed and controlled by their gonads. PMID:28135340

  19. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  20. Identification of Immune-Related Genes and Development of SSR/SNP Markers from the Spleen Transcriptome of Schizothorax prenanti.

    PubMed

    Luo, Hui; Xiao, Shijun; Ye, Hua; Zhang, Zhengshi; Lv, Changhuan; Zheng, Shuming; Wang, Zhiyong; Wang, Xiaoqing

    2016-01-01

    Schizothorax prenanti (S. prenanti) is mainly distributed in the upstream regions of the Yangtze River and its tributaries in China. This species is indigenous and commercially important. However, in recent years, wild populations and aquacultures have faced the serious challenges of germplasm variation loss and an increased susceptibility to a range of pathogens. Currently, the genetics and immune mechanisms of S. prenanti are unknown, partly due to a lack of genome and transcriptome information. Here, we sought to identify genes related to immune functions and to identify molecular markers to study the function of these genes and for trait mapping. To this end, the transcriptome from spleen tissues of S. prenanti was analyzed and sequenced. Using paired-end reads from the Illumina Hiseq2500 platform, 48,517 transcripts were isolated from the spleen transcriptome. These transcripts could be clustered into 37,785 unigenes with an N50 length of 2,539 bp. The majority of the unigenes (35,653, 94.4%) were successfully annotated using non-redundant nucleotide sequence analysis (nt), and the non-redundant protein (nr), Swiss-Prot, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. KEGG pathway assignment identified more than 500 immune-related genes. Furthermore, 7,545 putative simple sequence repeats (SSRs), 857,535 single nucleotide polymorphisms (SNPs), and 53,481 insertion/deletion (InDels) were detected from the transcriptome. This is the first reported high-throughput transcriptome analysis of S. prenanti, and it provides valuable genetic resources for the investigation of immune mechanisms, conservation of germplasm, and molecular marker-assisted breeding of S. prenanti.

  1. The Long Noncoding RNA Transcriptome of Dictyostelium discoideum Development.

    PubMed

    Rosengarten, Rafael D; Santhanam, Balaji; Kokosar, Janez; Shaulsky, Gad

    2017-02-09

    Dictyostelium discoideum live in the soil as single cells, engulfing bacteria and growing vegetatively. Upon starvation, tens of thousands of amoebae enter a developmental program that includes aggregation, multicellular differentiation, and sporulation. Major shifts across the protein-coding transcriptome accompany these developmental changes. However, no study has presented a global survey of long noncoding RNAs (ncRNAs) in D. discoideum To characterize the antisense and long intergenic noncoding RNA (lncRNA) transcriptome, we analyzed previously published developmental time course samples using an RNA-sequencing (RNA-seq) library preparation method that selectively depletes ribosomal RNAs (rRNAs). We detected the accumulation of transcripts for 9833 protein-coding messenger RNAs (mRNAs), 621 lncRNAs, and 162 putative antisense RNAs (asRNAs). The noncoding RNAs were interspersed throughout the genome, and were distinct in expression level, length, and nucleotide composition. The noncoding transcriptome displayed a temporal profile similar to the coding transcriptome, with stages of gradual change interspersed with larger leaps. The transcription profiles of some noncoding RNAs were strongly correlated with known differentially expressed coding RNAs, hinting at a functional role for these molecules during development. Examining the mitochondrial transcriptome, we modeled two novel antisense transcripts. We applied yet another ribosomal depletion method to a subset of the samples to better retain transfer RNA (tRNA) transcripts. We observed polymorphisms in tRNA anticodons that suggested a post-transcriptional means by which D. discoideum compensates for codons missing in the genomic complement of tRNAs. We concluded that the prevalence and characteristics of long ncRNAs indicate that these molecules are relevant to the progression of molecular and cellular phenotypes during development. Copyright © 2017 Rosengarten et al.

  2. In silico mining and PCR-based approaches to transcription factor discovery in non-model plants: gene discovery of the WRKY transcription factors in conifers.

    PubMed

    Liu, Jun-Jun; Xiang, Yu

    2011-01-01

    WRKY transcription factors are key regulators of numerous biological processes in plant growth and development, as well as plant responses to abiotic and biotic stresses. Research on biological functions of plant WRKY genes has focused in the past on model plant species or species with largely characterized transcriptomes. However, a variety of non-model plants, such as forest conifers, are essential as feed, biofuel, and wood or for sustainable ecosystems. Identification of WRKY genes in these non-model plants is equally important for understanding the evolutionary and function-adaptive processes of this transcription factor family. Because of limited genomic information, the rarity of regulatory gene mRNAs in transcriptomes, and the sequence divergence to model organism genes, identification of transcription factors in non-model plants using methods similar to those generally used for model plants is difficult. This chapter describes a gene family discovery strategy for identification of WRKY transcription factors in conifers by a combination of in silico-based prediction and PCR-based experimental approaches. Compared to traditional cDNA library screening or EST sequencing at transcriptome scales, this integrated gene discovery strategy provides fast, simple, reliable, and specific methods to unveil the WRKY gene family at both genome and transcriptome levels in non-model plants.

  3. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing

    PubMed Central

    Jin, Hangxia; Dong, Dekun; Yang, Qinghua; Zhu, Danhua

    2016-01-01

    Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted. PMID:26930632

  4. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence.

    PubMed

    Pauchet, Y; Wilkinson, P; Vogel, H; Nelson, D R; Reynolds, S E; Heckel, D G; ffrench-Constant, R H

    2010-02-01

    The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.

  5. De novo assembly of the transcriptome of the non-model plant Streptocarpus rexii employing a novel heuristic to recover locus-specific transcript clusters.

    PubMed

    Chiara, Matteo; Horner, David S; Spada, Alberto

    2013-01-01

    De novo transcriptome characterization from Next Generation Sequencing data has become an important approach in the study of non-model plants. Despite notable advances in the assembly of short reads, the clustering of transcripts into unigene-like (locus-specific) clusters remains a somewhat neglected subject. Indeed, closely related paralogous transcripts are often merged into single clusters by current approaches. Here, a novel heuristic method for locus-specific clustering is compared to that implemented in the de novo assembler Oases, using the same initial transcript collections, derived from Arabidopsis thaliana and the developmental model Streptocarpus rexii. We show that the proposed approach improves cluster specificity in the A. thaliana dataset for which the reference genome is available. Furthermore, for the S. rexii data our filtered transcript collection matches a larger number of distinct annotated loci in reference genomes than the Oases set, while containing a reduced overall number of loci. A detailed discussion of advantages and limitations of our approach in processing de novo transcriptome reconstructions is presented. The proposed method should be widely applicable to other organisms, irrespective of the transcript assembly method employed. The S. rexii transcriptome is available as a sophisticated and augmented publicly available online database.

  6. Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

    PubMed

    Zuo, Chunman; Blow, Matthew; Sreedasyam, Avinash; Kuo, Rita C; Ramamoorthy, Govindarajan Kunde; Torres-Jerez, Ivone; Li, Guifen; Wang, Mei; Dilworth, David; Barry, Kerrie; Udvardi, Michael; Schmutz, Jeremy; Tang, Yuhong; Xu, Ying

    2018-01-01

    Switchgrass ( Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.

  7. Research resource: Tissue-specific transcriptomics and cistromics of nuclear receptor signaling: a web research resource.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; LaGrone, Benjamin S; Steffen, David L; McKenna, Neil J

    2010-10-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step towards this goal, we searched the MEDLINE database for studies, which referenced either expression microarray and/or genome-wide location analysis datasets in which a NR or NR ligand was an experimental variable. A total of 1122 studies encompassing 325 unique organs, tissues, primary cells, and cell lines, 35 NRs, and 91 NR ligands were retrieved and annotated. The data were incorporated into a new section of the Nuclear Receptor Signaling Atlas Molecule Pages, Transcriptomics and Cistromics, for which we designed an intuitive, freely accessible user interface to browse the studies. Each study links to an abstract, the MEDLINE record, and, where available, Gene Expression Omnibus and ArrayExpress records. The resource will be updated on a regular basis to provide a current and comprehensive entrez into the sum of transcriptomic and cistromic research in this field.

  8. Comprehensive Transcriptome Profiling and Functional Analysis of the Frog (Bombina maxima) Immune System

    PubMed Central

    Zhao, Feng; Yan, Chao; Wang, Xuan; Yang, Yang; Wang, Guangyin; Lee, Wenhui; Xiang, Yang; Zhang, Yun

    2014-01-01

    Amphibians occupy a key phylogenetic position in vertebrates and evolution of the immune system. But, the resources of its transcriptome or genome are still little now. Bombina maxima possess strong ability to survival in very harsh environment with a more mature immune system. We obtained a comprehensive transcriptome by RNA-sequencing technology. 14.3% of transcripts were identified to be skin-specific genes, most of which were not isolated from skin secretion in previous works or novel non-coding RNAs. 27.9% of transcripts were mapped into 242 predicted KEGG pathways and 6.16% of transcripts related to human disease and cancer. Of 39 448 transcripts with the coding sequence, at least 1501 transcripts (570 genes) related to the immune system process. The molecules of immune signalling pathway were almost presented, several transcripts with high expression in skin and stomach. Experiments showed that lipopolysaccharide or bacteria challenge stimulated pro-inflammatory cytokine production and activation of pro-inflammatory caspase-1. These frog's data can remarkably expand the existing genome or transcriptome resources of amphibians, especially immunity data. The entity of the data provides a valuable platform for further investigation on more detailed immune response in B. maxima and a comparative study with other amphibians. PMID:23942912

  9. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.

    USDA-ARS?s Scientific Manuscript database

    The P. ultimum DAOM BR144 (=CBS 805.95 = ATCC200006) genome (42.8 Mb) encodes 15,290 genes, and has extensive sequence similarity and synteny with related Phytophthora spp., including the potato late blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86 % o...

  10. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been...

  11. An atlas of bovine gene expression reveals novel distinctive tissue characteristics and evidence for improving genome annotation

    USDA-ARS?s Scientific Manuscript database

    Background A comprehensive transcriptome survey, or gene atlas, provides information essential for a complete understanding of the genomic biology of an organism. We present an atlas of RNA abundance for 92 adult, juvenile and fetal cattle tissues and three cattle cell lines. Results The Bovine Gene...

  12. A Universal Genome Array and Transcriptome Atlas for Brachypodium Distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mockler, Todd

    Brachypodium distachyon is the premier experimental model grass platform and is related to candidate feedstock crops for bioethanol production. Based on the DOE-JGI Brachypodium Bd21 genome sequence and annotation we designed a whole genome DNA microarray platform. The quality of this array platform is unprecedented due to the exceptional quality of the Brachypodium genome assembly and annotation and the stringent probe selection criteria employed in the design. We worked with members of the international community and the bioinformatics/design team at Affymetrix at all stages in the development of the array. We used the Brachypodium arrays to interrogate the transcriptomes ofmore » plants grown in a variety of environmental conditions including diurnal and circadian light/temperature conditions and under a variety of environmental conditions. We examined the transciptional responses of Brachypodium seedlings subjected to various abiotic stresses including heat, cold, salt, and high intensity light. We generated a gene expression atlas representing various organs and developmental stages. The results of these efforts including all microarray datasets are published and available at online public databases.« less

  13. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)

    PubMed Central

    Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; Cattolico, Rose Ann

    2015-01-01

    Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. PMID:26397803

  14. Visualization for genomics: the Microbial Genome Viewer.

    PubMed

    Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J

    2004-07-22

    A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV

  15. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.

  16. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    PubMed

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic adaptation in foxes. Similar to polar bears, fat metabolism seems to play a central role in adaptation of Arctic foxes to the cold climate, as has been identified in the polar bear, another arctic specialist.

  17. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea

    PubMed Central

    2014-01-01

    Background Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. Results We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. Conclusions Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes. PMID:24916971

  18. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    PubMed Central

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana. PMID:24743270

  19. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum.

    PubMed

    Bozdech, Zbynek; Llinás, Manuel; Pulliam, Brian Lee; Wong, Edith D; Zhu, Jingchun; DeRisi, Joseph L

    2003-10-01

    Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200-300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC) transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7) was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a "just-in-time" manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the intraerythrocytic development of P. falciparum and provide a resource for the identification of new chemotherapeutic and vaccine candidates.

  20. Violeta Sanchez i Nogue | NREL

    Science.gov Websites

    lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae," AMB Scheffersomyces stipitis growth and fermentation capacity in rich and inhibitory media," Bioresources and ;Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or

  1. Transcriptome Profiles of the Protoscoleces of Echinococcus granulosus Reveal that Excretory-Secretory Products Are Essential to Metabolic Adaptation

    PubMed Central

    Pan, Wei; Shen, Yujuan; Han, Xiuming; Wang, Ying; Liu, Hua; Jiang, Yanyan; Zhang, Yumei; Wang, Yanjuan; Xu, Yuxin; Cao, Jianping

    2014-01-01

    Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. PMID:25500817

  2. Improving transcriptome de novo assembly by using a reference genome of a related species: Translational genomics from oil palm to coconut.

    PubMed

    Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique

    2017-01-01

    The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).

  3. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction.

    PubMed

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A; Lyons, Russell E; Salin, Krishna R; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B

    2016-05-07

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world's most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.

  4. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction

    PubMed Central

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A.; Lyons, Russell E.; Salin, Krishna R.; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B.

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  5. Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery.

    PubMed

    Kang, Se Won; Patnaik, Bharat Bhusan; Hwang, Hee-Ju; Park, So Young; Chung, Jong Min; Song, Dae Kwon; Patnaik, Hongray Howrelia; Lee, Jae Bong; Kim, Changmu; Kim, Soonok; Park, Hong Seog; Park, Seung-Hwan; Park, Young-Su; Han, Yeon Soo; Lee, Jun Sang; Lee, Yong Seok

    2017-03-01

    Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. De Novo Assembly and Characterization of Two Transcriptomes Reveal Multiple Light-Mediated Functions in the Scallop Eye (Bivalvia: Pectinidae)

    PubMed Central

    Pairett, Autum N.; Serb, Jeanne M.

    2013-01-01

    Background The eye has evolved across 13 separate lineages of molluscs. Yet, there have been very few studies examining the molecular machinary underlying eye function of this group, which is due, in part, to a lack of genomic resources. The scallop (Bivalvia: Pectinidae) represents a compeling molluscan model to study photoreception due to its morphologically novel and separately evolved mirror-type eye. We sequenced the adult eye transcriptome of two scallop species to: 1) identify the phototransduction pathway components; 2) identify any additional light detection functions; and 3) test the hypothesis that molluscs possess genes not found in other animal lineages. Results A total of 3,039 contigs from the bay scallop, Argopecten irradians and 26,395 contigs from the sea scallop, Placopecten magellanicus were produced by 454 sequencing. Targeted BLAST searches and functional annotation using Gene Ontology (GO) terms and KEGG pathways identified transcripts from three light detection systems: two phototransduction pathways and the circadian clock, a previously unrecognized function of the scallop eye. By comparing the scallop transcriptomes to molluscan and non-molluscan genomes, we discovered that a large proportion of the transcripts (7,776 sequences) may be specific to the scallop lineage. Nearly one-third of these contain transmembrane protein domains, suggesting these unannotated transcripts may be sensory receptors. Conclusions Our data provide the most comprehensive transcriptomic resource currently available from a single molluscan eye type. Candidate genes potentially involved in sensory reception were identified, and are worthy of further investigation. This resource, combined with recent phylogenetic and genomic data, provides a strong foundation for future investigations of the function and evolution of molluscan photosensory systems in this morphologically and taxonomically diverse phylum. PMID:23922823

  7. Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique

    PubMed Central

    Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng

    2012-01-01

    Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809

  8. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton.

    PubMed

    Wu, Jianyong; Zhang, Meng; Zhang, Bingbing; Zhang, Xuexian; Guo, Liping; Qi, Tingxiang; Wang, Hailin; Zhang, Jinfa; Xing, Chaozhu

    2017-06-08

    Cytoplasmic male sterility (CMS) conferred by the cytoplasm from Gossypium harknessii (D2) is an important system for hybrid seed production in Upland cotton (G. hirsutum). The male sterility of CMS-D2 (i.e., A line) can be restored to fertility by a restorer (i.e., R line) carrying the restorer gene Rf1 transferred from the D2 nuclear genome. However, the molecular mechanisms of CMS-D2 and its restoration are poorly understood. In this study, a genome-wide comparative transcriptome analysis was performed to identify differentially expressed genes (DEGs) in flower buds among the isogenic fertile R line and sterile A line derived from a backcross population (BC 8 F 1 ) and the recurrent parent, i.e., the maintainer (B line). A total of 1464 DEGs were identified among the three isogenic lines, and the Rf1-carrying Chr_D05 and its homeologous Chr_A05 had more DEGs than other chromosomes. The results of GO and KEGG enrichment analysis showed differences in circadian rhythm between the fertile and sterile lines. Eleven DEGs were selected for validation using qRT-PCR, confirming the accuracy of the RNA-seq results. Through genome-wide comparative transcriptome analysis, the differential expression profiles of CMS-D2 and its maintainer and restorer lines in Upland cotton were identified. Our results provide an important foundation for further studies into the molecular mechanisms of the interactions between the restorer gene Rf1 and the CMS-D2 cytoplasm.

  9. Transcriptome Analysis of the Entomopathogenic Oomycete Lagenidium giganteum Reveals Putative Virulence Factors

    PubMed Central

    Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.

    2014-01-01

    A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973

  10. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features.

    PubMed

    Saulnier, Delphine M; Santos, Filipe; Roos, Stefan; Mistretta, Toni-Ann; Spinler, Jennifer K; Molenaar, Douwe; Teusink, Bas; Versalovic, James

    2011-04-29

    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a detailed genomic comparison of two breast milk-derived isolates representative of each group: an established probiotic strain (L. reuteri ATCC 55730) and a strain with promising probiotic features (L. reuteri ATCC PTA 6475). Transcriptomes of L. reuteri strains in different growth phases were monitored using strain-specific microarrays, and compared using a pan-metabolic model representing all known metabolic reactions present in these strains. Both strains contained candidate genes involved in the survival and persistence in the gut such as mucus-binding proteins and enzymes scavenging reactive oxygen species. A large operon predicted to encode the synthesis of an exopolysaccharide was identified in strain 55730. Both strains were predicted to produce health-promoting factors, including antimicrobial agents and vitamins (folate, vitamin B(12)). Additionally, a complete pathway for thiamine biosynthesis was predicted in strain 55730 for the first time in this species. Candidate genes responsible for immunomodulatory properties of each strain were identified by transcriptomic comparisons. The production of bioactive metabolites by human-derived probiotics may be predicted using metabolic modeling and transcriptomics. Such strategies may facilitate selection and optimization of probiotics for health promotion, disease prevention and amelioration.

  11. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    PubMed

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  12. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass.

    PubMed

    Ayyappan, Vasudevan; Saha, Malay C; Thimmapuram, Jyothi; Sripathi, Venkateswara R; Bhide, Ketaki P; Fiedler, Elizabeth; Hayford, Rita K; Kalavacharla, Venu Kal

    2017-01-01

    Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.

  13. Tapping the promise of genomics in species with complex, nonmodel genomes.

    PubMed

    Hirsch, Candice N; Buell, C Robin

    2013-01-01

    Genomics is enabling a renaissance in all disciplines of plant biology. However, many plant genomes are complex and remain recalcitrant to current genomic technologies. The complexities of these nonmodel plant genomes are attributable to gene and genome duplication, heterozygosity, ploidy, and/or repetitive sequences. Methods are available to simplify the genome and reduce these barriers, including inbreeding and genome reduction, making these species amenable to current sequencing and assembly methods. Some, but not all, of the complexities in nonmodel genomes can be bypassed by sequencing the transcriptome rather than the genome. Additionally, comparative genomics approaches, which leverage phylogenetic relatedness, can aid in the interpretation of complex genomes. Although there are limitations in accessing complex nonmodel plant genomes using current sequencing technologies, genome manipulation and resourceful analyses can allow access to even the most recalcitrant plant genomes.

  14. Characterization of Chiton Ischnochiton hakodadensis Foot Based on Transcriptome Sequencing

    NASA Astrophysics Data System (ADS)

    Dou, Huaiqian; Miao, Yan; Li, Yuli; Li, Yangping; Dai, Xiaoting; Zhang, Xiaokang; Liang, Pengyu; Liu, Weizhi; Wang, Shi; Bao, Zhenmin

    2018-06-01

    Chiton ( Ischnochiton hakodadensis) is one of marine mollusks well known for its eight separate shell plates. I. hakodadensis is important, which plays a vital role in the ecosystems it inhabits. So far, the genetic studies on the chiton are scarce due in part to insufficient genomic resources available for this species. In this study, we investigated the transcriptome of the chiton foot using Illumina sequencing technology. The reads were assembled and clustered into 256461 unigenes, of which 42247 were divided into diverse functional categories by Gene Ontology (GO) annotation terms, and 17256 mapped onto 365 pathways by KEGG pathway mapping. Meanwhile, a set of differentially expressed genes (DEGs) between distal and proximal muscles were identified as the foot adhesive locomotion associated, thus were useful for our future studies. Moreover, up to 679384 high-quality single nucleotide polymorphisms (SNPs) and 19814 simple sequence repeats (SSRs) were identified in this study, which are valuable for subsequent studies on genetic diversity and variation. The transcriptomic resource obtained in this study should aid to future genetic and genomic studies of chiton.

  15. A Single-Cell Approach to the Elusive Latent Human Cytomegalovirus Transcriptome.

    PubMed

    Goodrum, Felicia; McWeeney, Shannon

    2018-06-12

    Herpesvirus latency has been difficult to understand molecularly due to low levels of viral genomes and gene expression. In the case of the betaherpesvirus human cytomegalovirus (HCMV), this is further complicated by the heterogeneity inherent to hematopoietic subpopulations harboring genomes and, as a consequence, the various patterns of infection that simultaneously exist in a host, ranging from latent to lytic. Single-cell RNA sequencing (scRNA-seq) provides tremendous potential in measuring the gene expression profiles of heterogeneous cell populations for a wide range of applications, including in studies of cancer, immunology, and infectious disease. A recent study by Shnayder et al. (mBio 9:e00013-18, 2018, https://doi.org/10.1128/mBio.00013-18) utilized scRNA-seq to define transcriptomal characteristics of HCMV latency. They conclude that latency-associated gene expression is similar to the late lytic viral program but at lower levels of expression. The study highlights the numerous challenges, from the definition of latency to the analysis of scRNA-seq, that exist in defining a latent transcriptome. Copyright © 2018 Goodrum and McWeeney.

  16. [Progress in porky genes and transcriptome and discussion of relative issues].

    PubMed

    Zhu, Meng-Jin; Liu, Bang; Li, Kui

    2005-01-01

    To date, research on molecular base of porky molecular development was mainly involved in muscle growth and meat quality. Some functional genes including Hal gene and RN gene and some QTLs controlling or associated with porky growth and quality were detected through candidate gene approach and genome-wide scanning. Genic transcriptome pertinent to porcine muscle and adipose also came into study. At the same time, these researches have befallen some shortcomings to some extent. Research from molecular quantitative genetics showed shortcomings that single gene was devilishly emphasized and co-expression pattern of multi-genes was ignored. Research applying transcriptome analysis tool also met two of limitations, one was the singleness of type of molecular experimental techniques, and another was that genes of muscle and adipose were artificially divided into unattached two parts. Thus, porky genes were explored by parallel genetics based on systemic views and techniques to specially reveal the interactional mechanism of porky genes respectively controlling muscle and adipose, which would be important issues of genes and genome researches on porky development in the near future.

  17. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes.

    PubMed

    Ashrafi, Hamid; Hill, Theresa; Stoffel, Kevin; Kozik, Alexander; Yao, Jiqiang; Chin-Wo, Sebastian Reyes; Van Deynze, Allen

    2012-10-30

    Molecular breeding of pepper (Capsicum spp.) can be accelerated by developing DNA markers associated with transcriptomes in breeding germplasm. Before the advent of next generation sequencing (NGS) technologies, the majority of sequencing data were generated by the Sanger sequencing method. By leveraging Sanger EST data, we have generated a wealth of genetic information for pepper including thousands of SNPs and Single Position Polymorphic (SPP) markers. To complement and enhance these resources, we applied NGS to three pepper genotypes: Maor, Early Jalapeño and Criollo de Morelos-334 (CM334) to identify SNPs and SSRs in the assembly of these three genotypes. Two pepper transcriptome assemblies were developed with different purposes. The first reference sequence, assembled by CAP3 software, comprises 31,196 contigs from >125,000 Sanger-EST sequences that were mainly derived from a Korean F1-hybrid line, Bukang. Overlapping probes were designed for 30,815 unigenes to construct a pepper Affymetrix GeneChip® microarray for whole genome analyses. In addition, custom Python scripts were used to identify 4,236 SNPs in contigs of the assembly. A total of 2,489 simple sequence repeats (SSRs) were identified from the assembly, and primers were designed for the SSRs. Annotation of contigs using Blast2GO software resulted in information for 60% of the unigenes in the assembly. The second transcriptome assembly was constructed from more than 200 million Illumina Genome Analyzer II reads (80-120 nt) using a combination of Velvet, CLC workbench and CAP3 software packages. BWA, SAMtools and in-house Perl scripts were used to identify SNPs among three pepper genotypes. The SNPs were filtered to be at least 50 bp from any intron-exon junctions as well as flanking SNPs. More than 22,000 high-quality putative SNPs were identified. Using the MISA software, 10,398 SSR markers were also identified within the Illumina transcriptome assembly and primers were designed for the identified markers. The assembly was annotated by Blast2GO and 14,740 (12%) of annotated contigs were associated with functional proteins. Before availability of pepper genome sequence, assembling transcriptomes of this economically important crop was required to generate thousands of high-quality molecular markers that could be used in breeding programs. In order to have a better understanding of the assembled sequences and to identify candidate genes underlying QTLs, we annotated the contigs of Sanger-EST and Illumina transcriptome assemblies. These and other information have been curated in a database that we have dedicated for pepper project.

  18. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads.

    PubMed

    Lima, Leandro; Sinaimeri, Blerina; Sacomoto, Gustavo; Lopez-Maestre, Helene; Marchet, Camille; Miele, Vincent; Sagot, Marie-France; Lacroix, Vincent

    2017-01-01

    The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. The results of this work are threefold. First, we introduce a formal model for representing high copy-number and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous version of KisSplice (Sacomoto et al. in WABI, pp 99-111, 1), Trinity (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and Oases (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality of our work when compared to other transcriptome evaluation methods is that we use only the topology of the DBG, and not read nor coverage information. We show that our simple method gives better results than Rsem-Eval (Li et al. in Genome Biol 15(12):553, 4) and TransRate (Smith-Unna et al. in Genome Res 26(8):1134-1144, 5) on both real and simulated datasets for detecting chimeras, and therefore is able to capture assembly errors missed by these methods.

  19. An insight into cyanobacterial genomics--a perspective.

    PubMed

    Lakshmi, Palaniswamy Thanga Velan

    2007-05-20

    At the turn of the millennium, cyanobacteria deserve attention to be reviewed to understand the past, present and future. The advent of post genomic research, which encompasses functional genomics, structural genomics, transcriptomics, pharmacogenomics, proteomics and metabolomics that allows a systematic wide approach for biological system studies. Thus by exploiting genomic and associated protein information through computational analyses, the fledging information that are generated by biotechnological analyses, could be well extrapolated to fill in the lacuna of scarce information on cyanobacteria and as an effort this paper attempts to highlights the perspectives available and awakens researcher to concentrate in the field of cyanobacterial informatics.

  20. Genome of Drosophila suzukii, the Spotted Wing Drosophila

    PubMed Central

    Chiu, Joanna C.; Jiang, Xuanting; Zhao, Li; Hamm, Christopher A.; Cridland, Julie M.; Saelao, Perot; Hamby, Kelly A.; Lee, Ernest K.; Kwok, Rosanna S.; Zhang, Guojie; Zalom, Frank G.; Walton, Vaughn M.; Begun, David J.

    2013-01-01

    Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access. PMID:24142924

Top