Sample records for stochastic computer simulation

  1. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    DTIC Science & Technology

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  2. Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations

    NASA Astrophysics Data System (ADS)

    Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying

    2010-09-01

    Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).

  3. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  4. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

    PubMed

    Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa

    2010-02-21

    We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

  5. Acceleration of discrete stochastic biochemical simulation using GPGPU.

    PubMed

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.

  6. Acceleration of discrete stochastic biochemical simulation using GPGPU

    PubMed Central

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130. PMID:25762936

  7. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  8. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  9. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

    PubMed

    Salis, Howard; Kaznessis, Yiannis

    2005-02-01

    The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.

  10. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Liu, Qing; Thompson, Jayne; Vedral, Vlatko; Gu, mile

    2017-10-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.

  11. Ultimate open pit stochastic optimization

    NASA Astrophysics Data System (ADS)

    Marcotte, Denis; Caron, Josiane

    2013-02-01

    Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.

  12. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Dongbin

    2017-03-03

    The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  13. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist

    PubMed Central

    Banerjee, Debjani; Bellesia, Giovanni; Daigle, Bernie J.; Douglas, Geoffrey; Gu, Mengyuan; Gupta, Anand; Hellander, Stefan; Horuk, Chris; Nath, Dibyendu; Takkar, Aviral; Lötstedt, Per; Petzold, Linda R.

    2016-01-01

    We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources and exchange models via a public model repository. We demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity. PMID:27930676

  14. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist

    DOE PAGES

    Drawert, Brian; Hellander, Andreas; Bales, Ben; ...

    2016-12-08

    We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources andmore » exchange models via a public model repository. We also demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity.« less

  15. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.

    PubMed

    Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C

    2006-02-28

    We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.

  16. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches.

    PubMed

    Pahle, Jürgen

    2009-01-01

    Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem.

  17. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches

    PubMed Central

    2009-01-01

    Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097

  18. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  19. Parallel stochastic simulation of macroscopic calcium currents.

    PubMed

    González-Vélez, Virginia; González-Vélez, Horacio

    2007-06-01

    This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.

  20. Time-ordered product expansions for computational stochastic system biology.

    PubMed

    Mjolsness, Eric

    2013-06-01

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.

  1. HRSSA - Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  2. Machine learning from computer simulations with applications in rail vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Taheri, Mehdi; Ahmadian, Mehdi

    2016-05-01

    The application of stochastic modelling for learning the behaviour of a multibody dynamics (MBD) models is investigated. Post-processing data from a simulation run are used to train the stochastic model that estimates the relationship between model inputs (suspension relative displacement and velocity) and the output (sum of suspension forces). The stochastic model can be used to reduce the computational burden of the MBD model by replacing a computationally expensive subsystem in the model (suspension subsystem). With minor changes, the stochastic modelling technique is able to learn the behaviour of a physical system and integrate its behaviour within MBD models. The technique is highly advantageous for MBD models where real-time simulations are necessary, or with models that have a large number of repeated substructures, e.g. modelling a train with a large number of railcars. The fact that the training data are acquired prior to the development of the stochastic model discards the conventional sampling plan strategies like Latin Hypercube sampling plans where simulations are performed using the inputs dictated by the sampling plan. Since the sampling plan greatly influences the overall accuracy and efficiency of the stochastic predictions, a sampling plan suitable for the process is developed where the most space-filling subset of the acquired data with ? number of sample points that best describes the dynamic behaviour of the system under study is selected as the training data.

  3. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  4. Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics.

    PubMed

    Marquez-Lago, Tatiana T; Burrage, Kevin

    2007-09-14

    In cell biology, cell signaling pathway problems are often tackled with deterministic temporal models, well mixed stochastic simulators, and/or hybrid methods. But, in fact, three dimensional stochastic spatial modeling of reactions happening inside the cell is needed in order to fully understand these cell signaling pathways. This is because noise effects, low molecular concentrations, and spatial heterogeneity can all affect the cellular dynamics. However, there are ways in which important effects can be accounted without going to the extent of using highly resolved spatial simulators (such as single-particle software), hence reducing the overall computation time significantly. We present a new coarse grained modified version of the next subvolume method that allows the user to consider both diffusion and reaction events in relatively long simulation time spans as compared with the original method and other commonly used fully stochastic computational methods. Benchmarking of the simulation algorithm was performed through comparison with the next subvolume method and well mixed models (MATLAB), as well as stochastic particle reaction and transport simulations (CHEMCELL, Sandia National Laboratories). Additionally, we construct a model based on a set of chemical reactions in the epidermal growth factor receptor pathway. For this particular application and a bistable chemical system example, we analyze and outline the advantages of our presented binomial tau-leap spatial stochastic simulation algorithm, in terms of efficiency and accuracy, in scenarios of both molecular homogeneity and heterogeneity.

  5. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less

  6. Digital hardware implementation of a stochastic two-dimensional neuron model.

    PubMed

    Grassia, F; Kohno, T; Levi, T

    2016-11-01

    This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The viability of ADVANTG deterministic method for synthetic radiography generation

    NASA Astrophysics Data System (ADS)

    Bingham, Andrew; Lee, Hyoung K.

    2018-07-01

    Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.

  8. Stochastic simulation of the spray formation assisted by a high pressure

    NASA Astrophysics Data System (ADS)

    Gorokhovski, M.; Chtab-Desportes, A.; Voloshina, I.; Askarova, A.

    2010-03-01

    The stochastic model of spray formation in the vicinity of the injector and in the far-field has been described and assessed by comparison with measurements in Diesel-like conditions. In the proposed mesh-free approach, the 3D configuration of continuous liquid core is simulated stochastically by ensemble of spatial trajectories of the specifically introduced stochastic particles. The parameters of the stochastic process are presumed from the physics of primary atomization. The spray formation model consists in computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region. This model is combined with KIVA II computation of atomizing Diesel spray in two-ways. First, simultaneously with the gas phase RANS computation, the ensemble of stochastic particles is tracking and the probability field of their positions is calculated, which is used for sampling of initial locations of primary blobs. Second, the velocity increment of the gas due to the liquid injection is computed from the mean volume fraction of the simulated liquid core. Two novelties are proposed in the secondary atomization modeling. The first one is due to unsteadiness of the injection velocity. When the injection velocity increment in time is decreasing, the supplementary breakup may be induced. Therefore the critical Weber number is based on such increment. Second, a new stochastic model of the secondary atomization is proposed, in which the intermittent turbulent stretching is taken into account as the main mechanism. The measurements reported by Arcoumanis et al. (time-history of the mean axial centre-line velocity of droplet, and of the centre-line Sauter Mean Diameter), are compared with computations.

  9. Hybrid stochastic simulations of intracellular reaction-diffusion systems.

    PubMed

    Kalantzis, Georgios

    2009-06-01

    With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

  10. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  11. Efficient Simulation of Tropical Cyclone Pathways with Stochastic Perturbations

    NASA Astrophysics Data System (ADS)

    Webber, R.; Plotkin, D. A.; Abbot, D. S.; Weare, J.

    2017-12-01

    Global Climate Models (GCMs) are known to statistically underpredict intense tropical cyclones (TCs) because they fail to capture the rapid intensification and high wind speeds characteristic of the most destructive TCs. Stochastic parametrization schemes have the potential to improve the accuracy of GCMs. However, current analysis of these schemes through direct sampling is limited by the computational expense of simulating a rare weather event at fine spatial gridding. The present work introduces a stochastically perturbed parametrization tendency (SPPT) scheme to increase simulated intensity of TCs. We adapt the Weighted Ensemble algorithm to simulate the distribution of TCs at a fraction of the computational effort required in direct sampling. We illustrate the efficiency of the SPPT scheme by comparing simulations at different spatial resolutions and stochastic parameter regimes. Stochastic parametrization and rare event sampling strategies have great potential to improve TC prediction and aid understanding of tropical cyclogenesis. Since rising sea surface temperatures are postulated to increase the intensity of TCs, these strategies can also improve predictions about climate change-related weather patterns. The rare event sampling strategies used in the current work are not only a novel tool for studying TCs, but they may also be applied to sampling any range of extreme weather events.

  12. New “Tau-Leap” Strategy for Accelerated Stochastic Simulation

    PubMed Central

    2015-01-01

    The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev’s inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. (J. Chem. Phys.2006, 124, 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys.2004, 121, 10356; Chatterjee et al. J. Chem. Phys.2005, 122, 024112; Peng et al. J. Chem. Phys.2007, 126, 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys.2001, 115, 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance. PMID:25620846

  13. New "Tau-Leap" Strategy for Accelerated Stochastic Simulation.

    PubMed

    Ramkrishna, Doraiswami; Shu, Che-Chi; Tran, Vu

    2014-12-10

    The "Tau-Leap" strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev's inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev's inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. ( J. Chem. Phys. 2006 , 124 , 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys. 2004 , 121 , 10356; Chatterjee et al. J. Chem. Phys. 2005 , 122 , 024112; Peng et al. J. Chem. Phys. 2007 , 126 , 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys. 2001 , 115 , 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.

  14. Adaptive hybrid simulations for multiscale stochastic reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less

  15. Adaptive hybrid simulations for multiscale stochastic reaction networks.

    PubMed

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.

  16. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    PubMed

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  17. GillesPy: A Python Package for Stochastic Model Building and Simulation

    PubMed Central

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2017-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888

  18. ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments

    NASA Astrophysics Data System (ADS)

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2010-09-01

    'ENVIRONMENT' is a computational platform that has been developed in the last few years with the aim to simulate stochastically the dynamics and stability of chemically reacting protocellular systems. Here we present and describe some of its main features, showing how the stochastic kinetics approach can be applied to study the time evolution of reaction networks in heterogeneous conditions, particularly when supramolecular lipid structures (micelles, vesicles, etc) coexist with aqueous domains. These conditions are of special relevance to understand the origins of cellular, self-reproducing compartments, in the context of prebiotic chemistry and evolution. We contrast our simulation results with real lab experiments, with the aim to bring together theoretical and experimental research on protocell and minimal artificial cell systems.

  19. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

    PubMed

    Drawert, Brian; Engblom, Stefan; Hellander, Andreas

    2012-06-22

    Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at an early stage of development. In this paper we demonstrate, in a series of examples with high relevance to the molecular systems biology community, that the proposed software framework is a useful tool for both practitioners and developers of spatial stochastic simulation algorithms. Through the combined efforts of algorithm development and improved modeling accuracy, increasingly complex biological models become feasible to study through computational methods. URDME is freely available at http://www.urdme.org.

  20. Conceptual Issues in Quantifying Unusualness and Conceiving Stochastic Experiments: Insights from Students' Experiences in Designing Sampling Simulations

    ERIC Educational Resources Information Center

    Saldanha, Luis

    2016-01-01

    This article reports on a classroom teaching experiment that engaged a group of high school students in designing sampling simulations within a computer microworld. The simulation-design activities aimed to foster students' abilities to conceive of contextual situations as stochastic experiments, and to engage them with the logic of hypothesis…

  1. Stochastic Evolutionary Algorithms for Planning Robot Paths

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard

    2006-01-01

    A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.

  2. Selected-node stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Duso, Lorenzo; Zechner, Christoph

    2018-04-01

    Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.

  3. The ISI distribution of the stochastic Hodgkin-Huxley neuron.

    PubMed

    Rowat, Peter F; Greenwood, Priscilla E

    2014-01-01

    The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.

  4. Distributed parallel computing in stochastic modeling of groundwater systems.

    PubMed

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  5. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  6. Estimating rare events in biochemical systems using conditional sampling.

    PubMed

    Sundar, V S

    2017-01-28

    The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.

  7. Using Equation-Free Computation to Accelerate Network-Free Stochastic Simulation of Chemical Kinetics.

    PubMed

    Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S

    2018-06-21

    The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.

  8. Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics.

    PubMed

    Erban, Radek

    2016-02-01

    Molecular dynamics (MD) simulations of ions (K + , Na + , Ca 2+ and Cl - ) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parametrized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.

  9. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1

  10. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks.

    PubMed

    Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G

    2007-05-24

    The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.

  11. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  12. Intrinsic noise analyzer: a software package for the exploration of stochastic biochemical kinetics using the system size expansion.

    PubMed

    Thomas, Philipp; Matuschek, Hannes; Grima, Ramon

    2012-01-01

    The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen's system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA's performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with circadian rhythms. The software iNA is freely available as executable binaries for Linux, MacOSX and Microsoft Windows, as well as the full source code under an open source license.

  13. Intrinsic Noise Analyzer: A Software Package for the Exploration of Stochastic Biochemical Kinetics Using the System Size Expansion

    PubMed Central

    Grima, Ramon

    2012-01-01

    The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen’s system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA’s performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with circadian rhythms. The software iNA is freely available as executable binaries for Linux, MacOSX and Microsoft Windows, as well as the full source code under an open source license. PMID:22723865

  14. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  15. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  16. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  17. Practical Unitary Simulator for Non-Markovian Complex Processes

    NASA Astrophysics Data System (ADS)

    Binder, Felix C.; Thompson, Jayne; Gu, Mile

    2018-06-01

    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.

  18. Stochastic simulation and analysis of biomolecular reaction networks

    PubMed Central

    Frazier, John M; Chushak, Yaroslav; Foy, Brent

    2009-01-01

    Background In recent years, several stochastic simulation algorithms have been developed to generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks. However, the effects of various stochastic simulation and data analysis conditions on the observed dynamics of complex biomolecular reaction networks have not recieved much attention. In order to investigate these issues, we employed a a software package developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the behavior of such systems. The behavior of a hypothetical two gene in vitro transcription-translation reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of the factors that influence the analysis and interpretation of these data. Results Specific issues affecting the analysis and interpretation of simulation data are investigated, including: (1) the effect of time interval on data presentation and time-weighted averaging of molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of number of simulations on precision of model predictions, and (4) implications of stochastic simulations on optimization procedures. Conclusion The two main factors affecting the analysis of stochastic simulations are: (1) the selection of time intervals to compute or average state variables and (2) the number of simulations generated to evaluate the system behavior. PMID:19534796

  19. Exact and approximate stochastic simulation of intracellular calcium dynamics.

    PubMed

    Wieder, Nicolas; Fink, Rainer H A; Wegner, Frederic von

    2011-01-01

    In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME) that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie's algorithm can be approximated via the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate equations (RRE). For complex multiscale systems, hybrid simulations are increasingly proposed to combine the advantages of stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac and skeletal muscle cells). The properties of these cells are well described and they express many common calcium-dependent signaling pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.

  20. Stochastic effects in a seasonally forced epidemic model

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  1. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  2. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  3. Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less

  4. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.

    PubMed

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  5. Marcus canonical integral for non-Gaussian processes and its computation: pathwise simulation and tau-leaping algorithm.

    PubMed

    Li, Tiejun; Min, Bin; Wang, Zhiming

    2013-03-14

    The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.

  6. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB.

    PubMed

    Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K

    2011-04-15

    The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information. klingbeil@maths.ox.ac.uk Supplementary data are available at Bioinformatics online.

  7. AESS: Accelerated Exact Stochastic Simulation

    NASA Astrophysics Data System (ADS)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution method: The Accelerated Exact Stochastic Simulation (AESS) tool provides implementations of a wide variety of popular variations on the Gillespie method. Users can select the specific algorithm considered most appropriate. Comparisons between the methods and with other available implementations indicate that AESS provides the fastest known implementation of Gillespie's method for a variety of test models. Users may wish to execute ensembles of simulations to sweep parameters or to obtain better statistical results, so AESS supports acceleration of ensembles of simulation using parallel processing with MPI, SSE vector units on x86 processors, and/or using NVIDIA GPUs with CUDA.

  8. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    PubMed

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  9. Further studies using matched filter theory and stochastic simulation for gust loads prediction

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii

    1993-01-01

    This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.

  10. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  11. Dynamics of non-holonomic systems with stochastic transport

    NASA Astrophysics Data System (ADS)

    Holm, D. D.; Putkaradze, V.

    2018-01-01

    This paper formulates a variational approach for treating observational uncertainty and/or computational model errors as stochastic transport in dynamical systems governed by action principles under non-holonomic constraints. For this purpose, we derive, analyse and numerically study the example of an unbalanced spherical ball rolling under gravity along a stochastic path. Our approach uses the Hamilton-Pontryagin variational principle, constrained by a stochastic rolling condition, which we show is equivalent to the corresponding stochastic Lagrange-d'Alembert principle. In the example of the rolling ball, the stochasticity represents uncertainty in the observation and/or error in the computational simulation of the angular velocity of rolling. The influence of the stochasticity on the deterministically conserved quantities is investigated both analytically and numerically. Our approach applies to a wide variety of stochastic, non-holonomically constrained systems, because it preserves the mathematical properties inherited from the variational principle.

  12. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    NASA Astrophysics Data System (ADS)

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2014-10-01

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.

  13. Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques.

    PubMed

    Kilinc, Deniz; Demir, Alper

    2017-08-01

    The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.

  14. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less

  15. Non-intrusive uncertainty quantification of computational fluid dynamics simulations: notes on the accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher

    2017-11-01

    Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.

  16. Multiscale Hy3S: hybrid stochastic simulation for supercomputers.

    PubMed

    Salis, Howard; Sotiropoulos, Vassilios; Kaznessis, Yiannis N

    2006-02-24

    Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users create biological systems and analyze data. We demonstrate the accuracy and efficiency of Hy3S with examples, including a large-scale system benchmark and a complex bistable biochemical network with positive feedback. The software itself is open-sourced under the GPL license and is modular, allowing users to modify it for their own purposes. Hy3S is a powerful suite of simulation programs for simulating the stochastic dynamics of networks of biochemical reactions. Its first public version enables computational biologists to more efficiently investigate the dynamics of realistic biological systems.

  17. Stochastic Investigation of Natural Frequency for Functionally Graded Plates

    NASA Astrophysics Data System (ADS)

    Karsh, P. K.; Mukhopadhyay, T.; Dey, S.

    2018-03-01

    This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.

  18. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation. PMID:28239346

  19. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers.

    PubMed

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.

  20. Variance decomposition in stochastic simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Maître, O. P., E-mail: olm@limsi.fr; Knio, O. M., E-mail: knio@duke.edu; Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance.more » Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.« less

  1. Reliable results from stochastic simulation models

    Treesearch

    Donald L., Jr. Gochenour; Leonard R. Johnson

    1973-01-01

    Development of a computer simulation model is usually done without fully considering how long the model should run (e.g. computer time) before the results are reliable. However construction of confidence intervals (CI) about critical output parameters from the simulation model makes it possible to determine the point where model results are reliable. If the results are...

  2. Computational study on UV curing characteristics in nanoimprint lithography: Stochastic simulation

    NASA Astrophysics Data System (ADS)

    Koyama, Masanori; Shirai, Masamitsu; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki

    2017-06-01

    A computational simulation model of UV curing in nanoimprint lithography based on a simplified stochastic approach is proposed. The activated unit reacts with a randomly selected monomer within a critical reaction radius. Cluster units are chained to each other. Then, another monomer is activated and the next chain reaction occurs. This process is repeated until a virgin monomer disappears within the reaction radius or until the activated monomers react with each other. The simulation model well describes the basic UV curing characteristics, such as the molecular weight distributions of the reacted monomers and the effect of the initiator concentration on the conversion ratio. The effects of film thickness on UV curing characteristics are also studied by the simulation.

  3. Stochastic hybrid systems for studying biochemical processes.

    PubMed

    Singh, Abhyudai; Hespanha, João P

    2010-11-13

    Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.

  4. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

  5. CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

    PubMed Central

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  6. Stochastic simulation of biological reactions, and its applications for studying actin polymerization.

    PubMed

    Ichikawa, Kazuhisa; Suzuki, Takashi; Murata, Noboru

    2010-11-30

    Molecular events in biological cells occur in local subregions, where the molecules tend to be small in number. The cytoskeleton, which is important for both the structural changes of cells and their functions, is also a countable entity because of its long fibrous shape. To simulate the local environment using a computer, stochastic simulations should be run. We herein report a new method of stochastic simulation based on random walk and reaction by the collision of all molecules. The microscopic reaction rate P(r) is calculated from the macroscopic rate constant k. The formula involves only local parameters embedded for each molecule. The results of the stochastic simulations of simple second-order, polymerization, Michaelis-Menten-type and other reactions agreed quite well with those of deterministic simulations when the number of molecules was sufficiently large. An analysis of the theory indicated a relationship between variance and the number of molecules in the system, and results of multiple stochastic simulation runs confirmed this relationship. We simulated Ca²(+) dynamics in a cell by inward flow from a point on the cell surface and the polymerization of G-actin forming F-actin. Our results showed that this theory and method can be used to simulate spatially inhomogeneous events.

  7. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento

    2014-10-07

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concretemore » biological models.« less

  8. Parallel replica dynamics method for bistable stochastic reaction networks: Simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Plecháč, Petr

    2017-12-01

    Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

  9. A computational model for telomere-dependent cell-replicative aging.

    PubMed

    Portugal, R D; Land, M G P; Svaiter, B F

    2008-01-01

    Telomere shortening provides a molecular basis for the Hayflick limit. Recent data suggest that telomere shortening also influence mitotic rate. We propose a stochastic growth model of this phenomena, assuming that cell division in each time interval is a random process which probability decreases linearly with telomere shortening. Computer simulations of the proposed stochastic telomere-regulated model provides good approximation of the qualitative growth of cultured human mesenchymal stem cells.

  10. An adaptive multi-level simulation algorithm for stochastic biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less

  11. Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications

    DTIC Science & Technology

    2016-10-17

    finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16

  12. Complex Systems Simulation and Optimization | Computational Science | NREL

    Science.gov Websites

    account. Stochastic Optimization and Control: Formulation and implementation of advanced optimization and account uncertainty. Contact Wesley Jones Group Manager, Complex Systems Simulation and Optimiziation

  13. An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Ilie, Silvana

    2017-12-01

    Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.

  14. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  15. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  16. Stochastic modelling of microstructure formation in solidification processes

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu; Stefanescu, Doru M.

    1997-07-01

    To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'

  17. The Validity of Quasi-Steady-State Approximations in Discrete Stochastic Simulations

    PubMed Central

    Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R.

    2014-01-01

    In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the nonelementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales. PMID:25099817

  18. Solving the problem of negative populations in approximate accelerated stochastic simulations using the representative reaction approach.

    PubMed

    Kadam, Shantanu; Vanka, Kumar

    2013-02-15

    Methods based on the stochastic formulation of chemical kinetics have the potential to accurately reproduce the dynamical behavior of various biochemical systems of interest. However, the computational expense makes them impractical for the study of real systems. Attempts to render these methods practical have led to the development of accelerated methods, where the reaction numbers are modeled by Poisson random numbers. However, for certain systems, such methods give rise to physically unrealistic negative numbers for species populations. The methods which make use of binomial variables, in place of Poisson random numbers, have since become popular, and have been partially successful in addressing this problem. In this manuscript, the development of two new computational methods, based on the representative reaction approach (RRA), has been discussed. The new methods endeavor to solve the problem of negative numbers, by making use of tools like the stochastic simulation algorithm and the binomial method, in conjunction with the RRA. It is found that these newly developed methods perform better than other binomial methods used for stochastic simulations, in resolving the problem of negative populations. Copyright © 2012 Wiley Periodicals, Inc.

  19. The development of an interim generalized gate logic software simulator

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.; Nemeroff, S.

    1985-01-01

    A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate Logic Software Simulator) was developed and is discussed. The simulator engine was designed to perform stochastic estimation of self test coverage (fault-detection latency times) of digital computers or systems. A major attribute of the IGGLOSS is its high-speed simulation: 9.5 x 1,000,000 gates/cpu sec for nonfaulted circuits and 4.4 x 1,000,000 gates/cpu sec for faulted circuits on a VAX 11/780 host computer.

  20. Global behavior analysis for stochastic system of 1,3-PD continuous fermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Kliemann, Wolfgang; Li, Chunfa; Feng, Enmin; Xiu, Zhilong

    2017-12-01

    Global behavior for stochastic system of continuous fermentation in glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae is analyzed in this paper. This bioprocess cannot avoid the stochastic perturbation caused by internal and external disturbance which reflect on the growth rate. These negative factors can limit and degrade the achievable performance of controlled systems. Based on multiplicity phenomena, the equilibriums and bifurcations of the deterministic system are analyzed. Then, a stochastic model is presented by a bounded Markov diffusion process. In order to analyze the global behavior, we compute the control sets for the associated control system. The probability distributions of relative supports are also computed. The simulation results indicate that how the disturbed biosystem tend to stationary behavior globally.

  1. The relationship between stochastic and deterministic quasi-steady state approximations.

    PubMed

    Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R

    2015-11-23

    The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.

  2. Accelerating the Gillespie Exact Stochastic Simulation Algorithm using hybrid parallel execution on graphics processing units.

    PubMed

    Komarov, Ivan; D'Souza, Roshan M

    2012-01-01

    The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.

  3. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    PubMed

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.

    PubMed

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung

    2017-04-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.

  5. Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization

    PubMed Central

    Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung

    2017-01-01

    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617

  6. Multivariate moment closure techniques for stochastic kinetic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less

  7. Experimentally modeling stochastic processes with less memory by the use of a quantum processor

    PubMed Central

    Palsson, Matthew S.; Gu, Mile; Ho, Joseph; Wiseman, Howard M.; Pryde, Geoff J.

    2017-01-01

    Computer simulation of observable phenomena is an indispensable tool for engineering new technology, understanding the natural world, and studying human society. However, the most interesting systems are often so complex that simulating their future behavior demands storing immense amounts of information regarding how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process’ statistical complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more complex systems. PMID:28168218

  8. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  9. Ensemble modeling of stochastic unsteady open-channel flow in terms of its time-space evolutionary probability distribution - Part 1: theoretical development

    NASA Astrophysics Data System (ADS)

    Dib, Alain; Kavvas, M. Levent

    2018-03-01

    The Saint-Venant equations are commonly used as the governing equations to solve for modeling the spatially varied unsteady flow in open channels. The presence of uncertainties in the channel or flow parameters renders these equations stochastic, thus requiring their solution in a stochastic framework in order to quantify the ensemble behavior and the variability of the process. While the Monte Carlo approach can be used for such a solution, its computational expense and its large number of simulations act to its disadvantage. This study proposes, explains, and derives a new methodology for solving the stochastic Saint-Venant equations in only one shot, without the need for a large number of simulations. The proposed methodology is derived by developing the nonlocal Lagrangian-Eulerian Fokker-Planck equation of the characteristic form of the stochastic Saint-Venant equations for an open-channel flow process, with an uncertain roughness coefficient. A numerical method for its solution is subsequently devised. The application and validation of this methodology are provided in a companion paper, in which the statistical results computed by the proposed methodology are compared against the results obtained by the Monte Carlo approach.

  10. On the use of reverse Brownian motion to accelerate hybrid simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakarji, Joseph; Tartakovsky, Daniel M., E-mail: tartakovsky@stanford.edu

    Multiscale and multiphysics simulations are two rapidly developing fields of scientific computing. Efficient coupling of continuum (deterministic or stochastic) constitutive solvers with their discrete (stochastic, particle-based) counterparts is a common challenge in both kinds of simulations. We focus on interfacial, tightly coupled simulations of diffusion that combine continuum and particle-based solvers. The latter employs the reverse Brownian motion (rBm), a Monte Carlo approach that allows one to enforce inhomogeneous Dirichlet, Neumann, or Robin boundary conditions and is trivially parallelizable. We discuss numerical approaches for improving the accuracy of rBm in the presence of inhomogeneous Neumann boundary conditions and alternative strategiesmore » for coupling the rBm solver with its continuum counterpart. Numerical experiments are used to investigate the convergence, stability, and computational efficiency of the proposed hybrid algorithm.« less

  11. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed

    Palmer, T N

    2014-06-28

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.

  12. Combat Simulation Using Breach Computer Language

    DTIC Science & Technology

    1979-09-01

    simulation and weapon system analysis computer language Two types of models were constructed: a stochastic duel and a dynamic engagement model The... duel model validates the BREACH approach by comparing results with mathematical solutions. The dynamic model shows the capability of the BREACH...BREACH 2 Background 2 The Language 3 Static Duel 4 Background and Methodology 4 Validation 5 Results 8 Tank Duel Simulation 8 Dynamic Assault Model

  13. MOSES: A Matlab-based open-source stochastic epidemic simulator.

    PubMed

    Varol, Huseyin Atakan

    2016-08-01

    This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.

  14. Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating.

    PubMed

    Schmandt, Nicolaus T; Galán, Roberto F

    2012-09-14

    Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.

  15. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  16. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE PAGES

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...

    2016-10-03

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  17. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.

    PubMed

    Dhar, Amrit; Minin, Vladimir N

    2017-05-01

    Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.

  18. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time

    PubMed Central

    Dhar, Amrit

    2017-01-01

    Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780

  19. A Framework for the Optimization of Discrete-Event Simulation Models

    NASA Technical Reports Server (NTRS)

    Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.

    1996-01-01

    With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.

  20. Simulation of probabilistic wind loads and building analysis

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Probabilistic wind loads likely to occur on a structure during its design life are predicted. Described here is a suitable multifactor interactive equation (MFIE) model and its use in the Composite Load Spectra (CLS) computer program to simulate the wind pressure cumulative distribution functions on four sides of a building. The simulated probabilistic wind pressure load was applied to a building frame, and cumulative distribution functions of sway displacements and reliability against overturning were obtained using NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), a stochastic finite element computer code. The geometry of the building and the properties of building members were also considered as random in the NESSUS analysis. The uncertainties of wind pressure, building geometry, and member section property were qualified in terms of their respective sensitivities on the structural response.

  1. Ensemble modeling of stochastic unsteady open-channel flow in terms of its time-space evolutionary probability distribution - Part 2: numerical application

    NASA Astrophysics Data System (ADS)

    Dib, Alain; Kavvas, M. Levent

    2018-03-01

    The characteristic form of the Saint-Venant equations is solved in a stochastic setting by using a newly proposed Fokker-Planck Equation (FPE) methodology. This methodology computes the ensemble behavior and variability of the unsteady flow in open channels by directly solving for the flow variables' time-space evolutionary probability distribution. The new methodology is tested on a stochastic unsteady open-channel flow problem, with an uncertainty arising from the channel's roughness coefficient. The computed statistical descriptions of the flow variables are compared to the results obtained through Monte Carlo (MC) simulations in order to evaluate the performance of the FPE methodology. The comparisons show that the proposed methodology can adequately predict the results of the considered stochastic flow problem, including the ensemble averages, variances, and probability density functions in time and space. Unlike the large number of simulations performed by the MC approach, only one simulation is required by the FPE methodology. Moreover, the total computational time of the FPE methodology is smaller than that of the MC approach, which could prove to be a particularly crucial advantage in systems with a large number of uncertain parameters. As such, the results obtained in this study indicate that the proposed FPE methodology is a powerful and time-efficient approach for predicting the ensemble average and variance behavior, in both space and time, for an open-channel flow process under an uncertain roughness coefficient.

  2. Analytical approximations for spatial stochastic gene expression in single cells and tissues

    PubMed Central

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2016-01-01

    Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686

  3. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks

    PubMed Central

    Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.

    2015-01-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406

  4. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  5. An efficient distribution method for nonlinear transport problems in highly heterogeneous stochastic porous media

    NASA Astrophysics Data System (ADS)

    Ibrahima, Fayadhoi; Meyer, Daniel; Tchelepi, Hamdi

    2016-04-01

    Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are crucial to explore possible scenarios and assess risks in subsurface problems. In particular, nonlinear two-phase flows in porous media are essential, yet challenging, in reservoir simulation and hydrology. Adding highly heterogeneous and uncertain input, such as the permeability and porosity fields, transforms the estimation of the flow response into a tough stochastic problem for which computationally expensive Monte Carlo (MC) simulations remain the preferred option.We propose an alternative approach to evaluate the probability distribution of the (water) saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the (water) saturation. The distribution method draws inspiration from a Lagrangian approach of the stochastic transport problem and expresses the saturation PDF and CDF essentially in terms of a deterministic mapping and the distribution and statistics of scalar random fields. In a large class of applications these random fields can be estimated at low computational costs (few MC runs), thus making the distribution method attractive. Even though the method relies on a key assumption of fixed streamlines, we show that it performs well for high input variances, which is the case of interest. Once the saturation distribution is determined, any one-point statistics thereof can be obtained, especially the saturation average and standard deviation. Moreover, the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be efficiently derived from the distribution method. These statistics can then be used for risk assessment, as well as data assimilation and uncertainty reduction in the prior knowledge of input distributions. We provide various examples and comparisons with MC simulations to illustrate the performance of the method.

  6. Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.

    PubMed

    Thanh, Vo Hong; Zunino, Roberto; Priami, Corrado

    2017-01-01

    Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.

  7. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less

  8. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    PubMed Central

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  9. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang

    2015-12-15

    Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less

  10. Design Of Combined Stochastic Feedforward/Feedback Control

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  11. Stochastic DT-MRI connectivity mapping on the GPU.

    PubMed

    McGraw, Tim; Nadar, Mariappan

    2007-01-01

    We present a method for stochastic fiber tract mapping from diffusion tensor MRI (DT-MRI) implemented on graphics hardware. From the simulated fibers we compute a connectivity map that gives an indication of the probability that two points in the dataset are connected by a neuronal fiber path. A Bayesian formulation of the fiber model is given and it is shown that the inversion method can be used to construct plausible connectivity. An implementation of this fiber model on the graphics processing unit (GPU) is presented. Since the fiber paths can be stochastically generated independently of one another, the algorithm is highly parallelizable. This allows us to exploit the data-parallel nature of the GPU fragment processors. We also present a framework for the connectivity computation on the GPU. Our implementation allows the user to interactively select regions of interest and observe the evolving connectivity results during computation. Results are presented from the stochastic generation of over 250,000 fiber steps per iteration at interactive frame rates on consumer-grade graphics hardware.

  12. A non-stochastic iterative computational method to model light propagation in turbid media

    NASA Astrophysics Data System (ADS)

    McIntyre, Thomas J.; Zemp, Roger J.

    2015-03-01

    Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.

  13. Inexact hardware for modelling weather & climate

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; McNamara, Hugh; Palmer, Tim

    2014-05-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing exact calculations in exchange for improvements in performance and potentially accuracy and a reduction in power consumption. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud resolving atmospheric modelling. The impact of both, hardware induced faults and low precision arithmetic is tested in the dynamical core of a global atmosphere model. Our simulations show that both approaches to inexact calculations do not substantially affect the quality of the model simulations, provided they are restricted to act only on smaller scales. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations.

  14. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  15. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  16. Random noise effects in pulse-mode digital multilayer neural networks.

    PubMed

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  17. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spill, Fabian, E-mail: fspill@bu.edu; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Guerrero, Pilar

    2015-10-15

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and smallmore » in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Andrew, E-mail: a.duncan@imperial.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Zygalakis, Konstantinos, E-mail: k.zygalakis@ed.ac.uk

    Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when onemore » or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.« less

  19. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  20. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE PAGES

    Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...

    2017-12-28

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  1. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jae; Manuel, Lance; Churchfield, Matthew

    Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less

  2. Stochastic Simulation of Complex Fluid Flows

    DTIC Science & Technology

    The PI has developed novel numerical algorithms and computational codes to simulate the Brownian motion of rigidparticles immersed in a viscous fluid...processes and to the design of novel nanofluid materials. Therandom Brownian motion of particles in fluid can be accounted for in fluid-structure

  3. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of predicted leakage rates towards higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios. This implies that, neglecting uncertainty can be a strong simplification for modeling CO2 injection, and the consequences can be stronger than when neglecting several physical phenomena (e.g. phase transition, convective mixing, capillary forces etc.). The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart. Keywords: polynomial chaos; CO2 storage; multiphase flow; porous media; risk assessment; uncertainty; integrative response surfaces

  4. On the physical realizability of quantum stochastic walks

    NASA Astrophysics Data System (ADS)

    Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank

    Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.

  5. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    PubMed

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  6. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    PubMed

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  7. Quantum decision-maker theory and simulation

    NASA Astrophysics Data System (ADS)

    Zak, Michail; Meyers, Ronald E.; Deacon, Keith S.

    2000-07-01

    A quantum device simulating the human decision making process is introduced. It consists of quantum recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information by an internal knowledge- base stored in the mental model in the form of probability distributions. As a result, the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease entropy without an external source of information. Applications to common sense based decisions as well as to evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are considered.

  8. Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers

    PubMed Central

    Stratis, Paris N.; Karatzas, George P.; Papadopoulou, Elena P.; Zakynthinaki, Maria S.; Saridakis, Yiannis G.

    2016-01-01

    The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time, protecting the aquifer from saltwater intrusion. In the direction of dealing with this problem in real time, the ALOPEX stochastic optimization method is used, to optimize the pumping rates of the wells, coupled with a penalty-based strategy that keeps the saltwater front at a safe distance from the wells. Several numerical optimization results, that simulate a known real aquifer case, are presented. The results explore the computational performance of the chosen stochastic optimization method as well as its abilities to manage freshwater pumping in real aquifer environments. PMID:27689362

  9. Hybrid stochastic and deterministic simulations of calcium blips.

    PubMed

    Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M

    2007-09-15

    Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.

  10. A resilient and efficient CFD framework: Statistical learning tools for multi-fidelity and heterogeneous information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-09-01

    Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in exascale simulations.

  11. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.

    PubMed

    Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H

    2006-11-15

    The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.

  12. A computer simulation of aircraft evacuation with fire

    NASA Technical Reports Server (NTRS)

    Middleton, V. E.

    1983-01-01

    A computer simulation was developed to assess passenger survival during the post-crash evacuation of a transport category aircraft when fire is a major threat. The computer code, FIREVAC, computes individual passenger exit paths and times to exit, taking into account delays and congestion caused by the interaction among the passengers and changing cabin conditions. Simple models for the physiological effects of the toxic cabin atmosphere are included with provision for including more sophisticated models as they become available. Both wide-body and standard-body aircraft may be simulated. Passenger characteristics are assigned stochastically from experimentally derived distributions. Results of simulations of evacuation trials and hypothetical evacuations under fire conditions are presented.

  13. A Two-Step Approach to Uncertainty Quantification of Core Simulators

    DOE PAGES

    Yankov, Artem; Collins, Benjamin; Klein, Markus; ...

    2012-01-01

    For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor andmore » in the core power distribution was examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.« less

  14. Final Technical Report for DOE Award SC0006616

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew

    2015-08-01

    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less

  15. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp; Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realisticmore » biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.« less

  16. Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case

    NASA Astrophysics Data System (ADS)

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.

    2010-06-01

    Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.

  17. Computational study of noise in a large signal transduction network.

    PubMed

    Intosalmi, Jukka; Manninen, Tiina; Ruohonen, Keijo; Linne, Marja-Leena

    2011-06-21

    Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies. © 2011 Intosalmi et al; licensee BioMed Central Ltd.

  18. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  19. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  20. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    PubMed

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  1. Applying GIS and high performance agent-based simulation for managing an Old World Screwworm fly invasion of Australia.

    PubMed

    Welch, M C; Kwan, P W; Sajeev, A S M

    2014-10-01

    Agent-based modelling has proven to be a promising approach for developing rich simulations for complex phenomena that provide decision support functions across a broad range of areas including biological, social and agricultural sciences. This paper demonstrates how high performance computing technologies, namely General-Purpose Computing on Graphics Processing Units (GPGPU), and commercial Geographic Information Systems (GIS) can be applied to develop a national scale, agent-based simulation of an incursion of Old World Screwworm fly (OWS fly) into the Australian mainland. The development of this simulation model leverages the combination of massively data-parallel processing capabilities supported by NVidia's Compute Unified Device Architecture (CUDA) and the advanced spatial visualisation capabilities of GIS. These technologies have enabled the implementation of an individual-based, stochastic lifecycle and dispersal algorithm for the OWS fly invasion. The simulation model draws upon a wide range of biological data as input to stochastically determine the reproduction and survival of the OWS fly through the different stages of its lifecycle and dispersal of gravid females. Through this model, a highly efficient computational platform has been developed for studying the effectiveness of control and mitigation strategies and their associated economic impact on livestock industries can be materialised. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  2. Multithreaded Stochastic PDES for Reactions and Diffusions in Neurons.

    PubMed

    Lin, Zhongwei; Tropper, Carl; Mcdougal, Robert A; Patoary, Mohammand Nazrul Ishlam; Lytton, William W; Yao, Yiping; Hines, Michael L

    2017-07-01

    Cells exhibit stochastic behavior when the number of molecules is small. Hence a stochastic reaction-diffusion simulator capable of working at scale can provide a more accurate view of molecular dynamics within the cell. This paper describes a parallel discrete event simulator, Neuron Time Warp-Multi Thread (NTW-MT), developed for the simulation of reaction diffusion models of neurons. To the best of our knowledge, this is the first parallel discrete event simulator oriented towards stochastic simulation of chemical reactions in a neuron. The simulator was developed as part of the NEURON project. NTW-MT is optimistic and thread-based, which attempts to capitalize on multi-core architectures used in high performance machines. It makes use of a multi-level queue for the pending event set and a single roll-back message in place of individual anti-messages to disperse contention and decrease the overhead of processing rollbacks. Global Virtual Time is computed asynchronously both within and among processes to get rid of the overhead for synchronizing threads. Memory usage is managed in order to avoid locking and unlocking when allocating and de-allocating memory and to maximize cache locality. We verified our simulator on a calcium buffer model. We examined its performance on a calcium wave model, comparing it to the performance of a process based optimistic simulator and a threaded simulator which uses a single priority queue for each thread. Our multi-threaded simulator is shown to achieve superior performance to these simulators. Finally, we demonstrated the scalability of our simulator on a larger CICR model and a more detailed CICR model.

  3. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  4. The use of imprecise processing to improve accuracy in weather & climate prediction

    NASA Astrophysics Data System (ADS)

    Düben, Peter D.; McNamara, Hugh; Palmer, T. N.

    2014-08-01

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost.

  5. Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations.

    PubMed

    Dematté, Lorenzo

    2012-01-01

    Space is a very important aspect in the simulation of biochemical systems; recently, the need for simulation algorithms able to cope with space is becoming more and more compelling. Complex and detailed models of biochemical systems need to deal with the movement of single molecules and particles, taking into consideration localized fluctuations, transportation phenomena, and diffusion. A common drawback of spatial models lies in their complexity: models can become very large, and their simulation could be time consuming, especially if we want to capture the systems behavior in a reliable way using stochastic methods in conjunction with a high spatial resolution. In order to deliver the promise done by systems biology to be able to understand a system as whole, we need to scale up the size of models we are able to simulate, moving from sequential to parallel simulation algorithms. In this paper, we analyze Smoldyn, a widely diffused algorithm for stochastic simulation of chemical reactions with spatial resolution and single molecule detail, and we propose an alternative, innovative implementation that exploits the parallelism of Graphics Processing Units (GPUs). The implementation executes the most computational demanding steps (computation of diffusion, unimolecular, and bimolecular reaction, as well as the most common cases of molecule-surface interaction) on the GPU, computing them in parallel on each molecule of the system. The implementation offers good speed-ups and real time, high quality graphics output

  6. Stochastic Simulation of Biomolecular Networks in Dynamic Environments

    PubMed Central

    Voliotis, Margaritis; Thomas, Philipp; Grima, Ramon; Bowsher, Clive G.

    2016-01-01

    Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate—using decision-making by a large population of quorum sensing bacteria—that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits. PMID:27248512

  7. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation.

    PubMed

    Zimmer, Christoph

    2016-01-01

    Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.

  8. Adaptive two-regime method: Application to front propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Flegg, Mark, E-mail: mark.flegg@monash.edu

    2014-03-28

    The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in termsmore » of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.« less

  9. Computational Methods for Predictive Simulation of Stochastic Turbulence Systems

    DTIC Science & Technology

    2015-11-05

    Science and Engineering, Venice , Italy, May 18-20, 2015, pp. 1261-1272. [21] Yong Li and P.D. Williams Analysis of the RAW Filter in Composite-Tendency...leapfrog scheme, Proceedings of the VI Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice , Italy, May 18-20

  10. Efficient simulation of intrinsic, extrinsic and external noise in biochemical systems

    PubMed Central

    Pischel, Dennis; Sundmacher, Kai; Flassig, Robert J.

    2017-01-01

    Abstract Motivation: Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most biochemical systems, approximate methods are used to obtain a solution. Results: In this study, a method to efficiently simulate the various sources of noise simultaneously is proposed and benchmarked on several examples. The method relies on the combination of the sigma point approach to describe extrinsic and external variability and the τ-leaping algorithm to account for the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo calculations demonstrates an immense computational advantage while losing an acceptable amount of accuracy. Additionally, the application to parameter optimization problems in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge computational burden. To give further insight, a MATLAB script is provided including the proposed method applied to a simple toy example of gene expression. Availability and implementation: MATLAB code is available at Bioinformatics online. Contact: flassig@mpi-magdeburg.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881987

  11. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  12. Optoelectronic analogs of self-programming neural nets - Architecture and methodologies for implementing fast stochastic learning by simulated annealing

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.

    1987-01-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  13. Numerical simulations in stochastic mechanics

    NASA Astrophysics Data System (ADS)

    McClendon, Marvin; Rabitz, Herschel

    1988-05-01

    The stochastic differential equation of Nelson's stochastic mechanics is integrated numerically for several simple quantum systems. The calculations are performed with use of Helfand and Greenside's method and pseudorandom numbers. The resulting trajectories are analyzed both individually and collectively to yield insight into momentum, uncertainty principles, interference, tunneling, quantum chaos, and common models of diatomic molecules from the stochastic quantization point of view. In addition to confirming Shucker's momentum theorem, these simulations illustrate, within the context of stochastic mechanics, the position-momentum and time-energy uncertainty relations, the two-slit diffraction pattern, exponential decay of an unstable system, and the greater degree of anticorrelation in a valence-bond model as compared with a molecular-orbital model of H2. The attempt to find exponential divergence of initially nearby trajectories, potentially useful as a criterion for quantum chaos, in a periodically forced oscillator is inconclusive. A way of computing excited energies from the ground-state motion is presented. In all of these studies the use of particle trajectories allows a more insightful interpretation of physical phenomena than is possible within traditional wave mechanics.

  14. SLUG - stochastically lighting up galaxies - III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Fumagalli, Michele; da Silva, Robert L.; Rendahl, Theodore; Parra, Jonathan

    2015-09-01

    Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also require consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include the following: a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes spectra and photometry for stochastically or deterministically sampled stellar populations with nearly arbitrary star formation histories, clustering properties, and initial mass functions; CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radiative transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included in the software. The complete package is available at http://www.slugsps.com.

  15. Three-dimensional plant architecture and sunlit-shaded patterns: a stochastic model of light dynamics in canopies.

    PubMed

    Retkute, Renata; Townsend, Alexandra J; Murchie, Erik H; Jensen, Oliver E; Preston, Simon P

    2018-05-25

    Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional. This necessitates development of more economical models for summarizing the data and for simulating realistic light patterns over the course of a day. High-resolution reconstructions of field-grown plants are assembled in various configurations to form canopies, and a forward ray-tracing algorithm is applied to the canopies to compute light dynamics at high (1 min) temporal resolution. From the ray-tracer output, the sunlit or shaded state for each patch on the plants is determined, and these data are used to develop a novel stochastic model for the sunlit-shaded patterns. The model is designed to be straightforward to fit to data using maximum likelihood estimation, and fast to simulate from. For a wide range of contrasting 3-D canopies, the stochastic model is able to summarize, and replicate in simulations, key features of the light dynamics. When light patterns simulated from the stochastic model are used as input to a model of photoinhibition, the predicted reduction in carbon gain is similar to that from calculations based on the (extremely costly) ray-tracer data. The model provides a way to summarize highly complex data in a small number of parameters, and a cost-effective way to simulate realistic light patterns. Simulations from the model will be particularly useful for feeding into larger-scale photosynthesis models for calculating how light dynamics affects the photosynthetic productivity of canopies.

  16. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly.

    PubMed

    Kumar, M Senthil; Schwartz, Russell

    2010-12-09

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  17. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, M.; Schwartz, Russell

    2010-12-01

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  18. An efficient distribution method for nonlinear transport problems in stochastic porous media

    NASA Astrophysics Data System (ADS)

    Ibrahima, F.; Tchelepi, H.; Meyer, D. W.

    2015-12-01

    Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are convenient to explore possible scenarios and assess risks in subsurface problems. In particular, understanding how uncertainties propagate in porous media with nonlinear two-phase flow is essential, yet challenging, in reservoir simulation and hydrology. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the water saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. The method draws inspiration from the streamline approach and expresses the distributions of interest essentially in terms of an analytically derived mapping and the distribution of the time of flight. In a large class of applications the latter can be estimated at low computational costs (even via conventional Monte Carlo). Once the water saturation distribution is determined, any one-point statistics thereof can be obtained, especially its average and standard deviation. Moreover, rarely available in other approaches, yet crucial information such as the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be derived from the method. We provide various examples and comparisons with Monte Carlo simulations to illustrate the performance of the method.

  19. SIApopr: a computational method to simulate evolutionary branching trees for analysis of tumor clonal evolution.

    PubMed

    McDonald, Thomas O; Michor, Franziska

    2017-07-15

    SIApopr (Simulating Infinite-Allele populations) is an R package to simulate time-homogeneous and inhomogeneous stochastic branching processes under a very flexible set of assumptions using the speed of C ++. The software simulates clonal evolution with the emergence of driver and passenger mutations under the infinite-allele assumption. The software is an application of the Gillespie Stochastic Simulation Algorithm expanded to a large number of cell types and scenarios, with the intention of allowing users to easily modify existing models or create their own. SIApopr is available as an R library on Github ( https://github.com/olliemcdonald/siapopr ). Supplementary data are available at Bioinformatics online. michor@jimmy.harvard.edu. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. A scalable moment-closure approximation for large-scale biochemical reaction networks

    PubMed Central

    Kazeroonian, Atefeh; Theis, Fabian J.; Hasenauer, Jan

    2017-01-01

    Abstract Motivation: Stochastic molecular processes are a leading cause of cell-to-cell variability. Their dynamics are often described by continuous-time discrete-state Markov chains and simulated using stochastic simulation algorithms. As these stochastic simulations are computationally demanding, ordinary differential equation models for the dynamics of the statistical moments have been developed. The number of state variables of these approximating models, however, grows at least quadratically with the number of biochemical species. This limits their application to small- and medium-sized processes. Results: In this article, we present a scalable moment-closure approximation (sMA) for the simulation of statistical moments of large-scale stochastic processes. The sMA exploits the structure of the biochemical reaction network to reduce the covariance matrix. We prove that sMA yields approximating models whose number of state variables depends predominantly on local properties, i.e. the average node degree of the reaction network, instead of the overall network size. The resulting complexity reduction is assessed by studying a range of medium- and large-scale biochemical reaction networks. To evaluate the approximation accuracy and the improvement in computational efficiency, we study models for JAK2/STAT5 signalling and NFκB signalling. Our method is applicable to generic biochemical reaction networks and we provide an implementation, including an SBML interface, which renders the sMA easily accessible. Availability and implementation: The sMA is implemented in the open-source MATLAB toolbox CERENA and is available from https://github.com/CERENADevelopers/CERENA. Contact: jan.hasenauer@helmholtz-muenchen.de or atefeh.kazeroonian@tum.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881983

  1. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  2. Mesoscopic modelling and simulation of soft matter.

    PubMed

    Schiller, Ulf D; Krüger, Timm; Henrich, Oliver

    2017-12-20

    The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.

  3. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.

    PubMed

    Mino, Hiroyuki; Grill, Warren M

    2002-06-01

    The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.

  4. Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Curran, Thomas; Denner, Fabian; van Wachem, Berend

    2017-11-01

    The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.

  5. Stochastic Estimation and Control of Queues Within a Computer Network

    DTIC Science & Technology

    2009-03-01

    3]. And NS-2 is a network simulator developed at UC Berkely and is a well known, free, powerful network simulator tool. As will be more discussed...HA011118931033.aspx 7. James Trulove , “Broadband Networking”, CRC Press, 2nd edition, 2000 8. Jonathan Pengelly “MONTE CARLO METHODS” University of Otago

  6. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.

    PubMed

    Bell, John B; Garcia, Alejandro L; Williams, Sarah A

    2007-07-01

    The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack's two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk of a standing shock wave, are considered and results from the stochastic LLNS solver are compared with theory, when available, and with molecular simulations using a direct simulation Monte Carlo algorithm.

  7. Coupled stochastic soil moisture simulation-optimization model of deficit irrigation

    NASA Astrophysics Data System (ADS)

    Alizadeh, Hosein; Mousavi, S. Jamshid

    2013-07-01

    This study presents an explicit stochastic optimization-simulation model of short-term deficit irrigation management for large-scale irrigation districts. The model which is a nonlinear nonconvex program with an economic objective function is built on an agrohydrological simulation component. The simulation component integrates (1) an explicit stochastic model of soil moisture dynamics of the crop-root zone considering interaction of stochastic rainfall and irrigation with shallow water table effects, (2) a conceptual root zone salt balance model, and 3) the FAO crop yield model. Particle Swarm Optimization algorithm, linked to the simulation component, solves the resulting nonconvex program with a significantly better computational performance compared to a Monte Carlo-based implicit stochastic optimization model. The model has been tested first by applying it in single-crop irrigation problems through which the effects of the severity of water deficit on the objective function (net benefit), root-zone water balance, and irrigation water needs have been assessed. Then, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. While the maximum net benefit has been obtained for a stress-avoidance (SA) irrigation policy, the highest water profitability has been resulted when only about 60% of the water used in the SA policy is applied. The DAID with respectively 33% of total cultivated area and 37% of total applied water has produced only 14% of the total net benefit due to low-valued crops and adverse soil and shallow water table conditions.

  8. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.

    PubMed

    Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H

    2018-03-29

    Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao

    2017-10-18

    Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less

  10. Efficient coarse simulation of a growing avascular tumor

    PubMed Central

    Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.

    2013-01-01

    The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. PMID:22587128

  11. A hierarchical exact accelerated stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Orendorff, David; Mjolsness, Eric

    2012-12-01

    A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.

  12. A Hybrid of the Chemical Master Equation and the Gillespie Algorithm for Efficient Stochastic Simulations of Sub-Networks.

    PubMed

    Albert, Jaroslav

    2016-01-01

    Modeling stochastic behavior of chemical reaction networks is an important endeavor in many aspects of chemistry and systems biology. The chemical master equation (CME) and the Gillespie algorithm (GA) are the two most fundamental approaches to such modeling; however, each of them has its own limitations: the GA may require long computing times, while the CME may demand unrealistic memory storage capacity. We propose a method that combines the CME and the GA that allows one to simulate stochastically a part of a reaction network. First, a reaction network is divided into two parts. The first part is simulated via the GA, while the solution of the CME for the second part is fed into the GA in order to update its propensities. The advantage of this method is that it avoids the need to solve the CME or stochastically simulate the entire network, which makes it highly efficient. One of its drawbacks, however, is that most of the information about the second part of the network is lost in the process. Therefore, this method is most useful when only partial information about a reaction network is needed. We tested this method against the GA on two systems of interest in biology--the gene switch and the Griffith model of a genetic oscillator--and have shown it to be highly accurate. Comparing this method to four different stochastic algorithms revealed it to be at least an order of magnitude faster than the fastest among them.

  13. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation

    PubMed Central

    Zimmer, Christoph

    2016-01-01

    Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802

  14. Algorithms and analyses for stochastic optimization for turbofan noise reduction using parallel reduced-order modeling

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Gunzburger, Max

    2017-06-01

    Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes can dramatically reduce the cost and time needed for experimental designs. Because uncertainties are inevitable in the design process, a stochastic optimization algorithm is posed based on the conditional value-at-risk measure so that an ideal acoustic liner impedance is determined that is robust in the presence of uncertainties. A parallel reduced-order modeling framework is developed that dramatically improves the computational efficiency of the stochastic optimization solver for a realistic nacelle geometry. The reduced stochastic optimization solver takes less than 500 seconds to execute. In addition, well-posedness and finite element error analyses of the state system and optimization problem are provided.

  15. Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Christensen, Hannah M.; Juricke, Stephan; Subramanian, Aneesh; Watson, Peter A. G.; Weisheimer, Antje; Palmer, Tim N.

    2017-03-01

    The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), together with coupled transient runs (1850-2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate - specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).

  16. Experimental study and simulation of space charge stimulated discharge

    NASA Astrophysics Data System (ADS)

    Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.

    2002-11-01

    The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.

  17. PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine

    NASA Astrophysics Data System (ADS)

    D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.

    2012-04-01

    PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three-dimensional graphical representation of the Italian territory within NAZCA. The other simulation parameters, namely wind speed and direction, number of simulations, computing grid size and temporal resolution, can be selected from within the program interface. The output of the simulation is showed in real-time during the simulation, and are also available off-line and on the DEWETRA system, a Web GIS-based system for environmental risk assessment, developed according to OGC-INSPIRE standards. The model execution is very fast, providing a full prevision for the scenario in few minutes, and can be useful for real-time active fire management and suppression.

  18. Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization

    NASA Astrophysics Data System (ADS)

    Lee, Kyungbook; Song, Seok Goo

    2017-09-01

    Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.

  19. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less

  20. Efficient simulation of intrinsic, extrinsic and external noise in biochemical systems.

    PubMed

    Pischel, Dennis; Sundmacher, Kai; Flassig, Robert J

    2017-07-15

    Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most biochemical systems, approximate methods are used to obtain a solution. In this study, a method to efficiently simulate the various sources of noise simultaneously is proposed and benchmarked on several examples. The method relies on the combination of the sigma point approach to describe extrinsic and external variability and the τ -leaping algorithm to account for the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo calculations demonstrates an immense computational advantage while losing an acceptable amount of accuracy. Additionally, the application to parameter optimization problems in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge computational burden. To give further insight, a MATLAB script is provided including the proposed method applied to a simple toy example of gene expression. MATLAB code is available at Bioinformatics online. flassig@mpi-magdeburg.mpg.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  1. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yishen; Zhou, Zhi; Liu, Cong

    2016-08-01

    As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides amore » reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.« less

  2. Revisions to some parameters used in stochastic-method simulations of ground motion

    USGS Publications Warehouse

    Boore, David; Thompson, Eric M.

    2015-01-01

    The stochastic method of ground‐motion simulation specifies the amplitude spectrum as a function of magnitude (M) and distance (R). The manner in which the amplitude spectrum varies with M and R depends on physical‐based parameters that are often constrained by recorded motions for a particular region (e.g., stress parameter, geometrical spreading, quality factor, and crustal amplifications), which we refer to as the seismological model. The remaining ingredient for the stochastic method is the ground‐motion duration. Although the duration obviously affects the character of the ground motion in the time domain, it also significantly affects the response of a single‐degree‐of‐freedom oscillator. Recently published updates to the stochastic method include a new generalized double‐corner‐frequency source model, a new finite‐fault correction, a new parameterization of duration, and a new duration model for active crustal regions. In this article, we augment these updates with a new crustal amplification model and a new duration model for stable continental regions. Random‐vibration theory (RVT) provides a computationally efficient method to compute the peak oscillator response directly from the ground‐motion amplitude spectrum and duration. Because the correction factor used to account for the nonstationarity of the ground motion depends on the ground‐motion amplitude spectrum and duration, we also present new RVT correction factors for both active and stable regions.

  3. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications.

    PubMed

    Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J

    2017-07-01

    A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Incorporating variability in simulations of seasonally forced phenology using integral projection models

    DOE PAGES

    Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.; ...

    2017-11-26

    Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills maturemore » pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less

  5. Incorporating variability in simulations of seasonally forced phenology using integral projection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.

    Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills maturemore » pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less

  6. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  7. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning.

    PubMed

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-13

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  8. Stochastic inference with spiking neurons in the high-conductance state

    NASA Astrophysics Data System (ADS)

    Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz

    2016-10-01

    The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.

  9. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.

  10. The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection

    DOE PAGES

    Romps, David M.

    2016-03-01

    Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less

  11. The Kolmogorov-Obukhov Statistical Theory of Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, Björn

    2013-08-01

    In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier-Stokes equation. The additive noise in the stochastic Navier-Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov-Obukhov 1962 scaling hypothesis with the She-Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier-Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov-Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.

  12. Subspace algorithms for identifying separable-in-denominator 2D systems with deterministic-stochastic inputs

    NASA Astrophysics Data System (ADS)

    Ramos, José A.; Mercère, Guillaume

    2016-12-01

    In this paper, we present an algorithm for identifying two-dimensional (2D) causal, recursive and separable-in-denominator (CRSD) state-space models in the Roesser form with deterministic-stochastic inputs. The algorithm implements the N4SID, PO-MOESP and CCA methods, which are well known in the literature on 1D system identification, but here we do so for the 2D CRSD Roesser model. The algorithm solves the 2D system identification problem by maintaining the constraint structure imposed by the problem (i.e. Toeplitz and Hankel) and computes the horizontal and vertical system orders, system parameter matrices and covariance matrices of a 2D CRSD Roesser model. From a computational point of view, the algorithm has been presented in a unified framework, where the user can select which of the three methods to use. Furthermore, the identification task is divided into three main parts: (1) computing the deterministic horizontal model parameters, (2) computing the deterministic vertical model parameters and (3) computing the stochastic components. Specific attention has been paid to the computation of a stabilised Kalman gain matrix and a positive real solution when required. The efficiency and robustness of the unified algorithm have been demonstrated via a thorough simulation example.

  13. NEXT GENERATION MULTIMEDIA/MULTIPATHWAY EXPOSURE MODELING

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation model for pesticides (SHEDS-Pesticides) supports the efforts of EPA to better understand human exposures and doses to multimedia, multipathway pollutants. It is a physically-based, probabilistic computer model that predicts, for u...

  14. A hybrid stochastic model of folate-mediated one-carbon metabolism: Effect of the common C677T MTHFR variant on de novo thymidylate biosynthesis.

    PubMed

    Misselbeck, Karla; Marchetti, Luca; Field, Martha S; Scotti, Marco; Priami, Corrado; Stover, Patrick J

    2017-04-11

    Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA.

  15. Simple stochastic simulation.

    PubMed

    Schilstra, Maria J; Martin, Stephen R

    2009-01-01

    Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.

  16. An imaging-based stochastic model for simulation of tumour vasculature

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2012-10-01

    A mathematical model which reconstructs the structure of existing vasculature using patient-specific anatomical, functional and molecular imaging as input was developed. The vessel structure is modelled according to empirical vascular parameters, such as the mean vessel branching angle. The model is calibrated such that the resultant oxygen map modelled from the simulated microvasculature stochastically matches the input oxygen map to a high degree of accuracy (R2 ≈ 1). The calibrated model was successfully applied to preclinical imaging data. Starting from the anatomical vasculature image (obtained from contrast-enhanced computed tomography), a representative map of the complete vasculature was stochastically simulated as determined by the oxygen map (obtained from hypoxia [64Cu]Cu-ATSM positron emission tomography). The simulated microscopic vasculature and the calculated oxygenation map successfully represent the imaged hypoxia distribution (R2 = 0.94). The model elicits the parameters required to simulate vasculature consistent with imaging and provides a key mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from providing an excellent framework for visualizing the imaging gap between the microscopic and macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics between the tumour and the vasculature in a patient-specific manner and has an application in the simulation of anti-angiogenic therapies.

  17. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  18. A stochastic chemostat model with an inhibitor and noise independent of population sizes

    NASA Astrophysics Data System (ADS)

    Sun, Shulin; Zhang, Xiaolu

    2018-02-01

    In this paper, a stochastic chemostat model with an inhibitor is considered, here the inhibitor is input from an external source and two organisms in chemostat compete for a nutrient. Firstly, we show that the system has a unique global positive solution. Secondly, by constructing some suitable Lyapunov functions, we investigate that the average in time of the second moment of the solutions of the stochastic model is bounded for a relatively small noise. That is, the asymptotic behaviors of the stochastic system around the equilibrium points of the deterministic system are studied. However, the sufficient large noise can make the microorganisms become extinct with probability one, although the solutions to the original deterministic model may be persistent. Finally, the obtained analytical results are illustrated by computer simulations.

  19. Self-organization of the magnetization in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Orlov, V. A.

    2017-10-01

    In this work we demonstrate the occurrence of the characteristic spatial scale in the distribution of magnetization unrelated to the domain wall or crystallite size with using computer simulation of magnetization in a polycrystalline ferromagnetic nanowire. This is the stochastic domain size. We show that this length is included in the spectral density of the pinning force of domain wall on inhomogeneities of the crystallographic anisotropy. The constant and distribution of easy axes directions of the effective anisotropy of stochastic domain, are analytically calculated.

  20. Multi-fidelity stochastic collocation method for computation of statistical moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu; Linebarger, Erin M., E-mail: aerinline@sci.utah.edu; Xiu, Dongbin, E-mail: xiu.16@osu.edu

    We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.

  1. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  2. Algorithms for adaptive stochastic control for a class of linear systems

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R. V.

    1977-01-01

    Control of linear, discrete time, stochastic systems with unknown control gain parameters is discussed. Two suboptimal adaptive control schemes are derived: one is based on underestimating future control and the other is based on overestimating future control. Both schemes require little on-line computation and incorporate in their control laws some information on estimation errors. The performance of these laws is studied by Monte Carlo simulations on a computer. Two single input, third order systems are considered, one stable and the other unstable, and the performance of the two adaptive control schemes is compared with that of the scheme based on enforced certainty equivalence and the scheme where the control gain parameters are known.

  3. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.

  4. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing

    2014-09-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.

  5. Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows.

    PubMed

    Dobramysl, U; Holcman, D

    2018-02-15

    Is it possible to recover the position of a source from the steady-state fluxes of Brownian particles to small absorbing windows located on the boundary of a domain? To address this question, we develop a numerical procedure to avoid tracking Brownian trajectories in the entire infinite space. Instead, we generate particles near the absorbing windows, computed from the analytical expression of the exit probability. When the Brownian particles are generated by a steady-state gradient at a single point, we compute asymptotically the fluxes to small absorbing holes distributed on the boundary of half-space and on a disk in two dimensions, which agree with stochastic simulations. We also derive an expression for the splitting probability between small windows using the matched asymptotic method. Finally, when there are more than two small absorbing windows, we show how to reconstruct the position of the source from the diffusion fluxes. The present approach provides a computational first principle for the mechanism of sensing a gradient of diffusing particles, a ubiquitous problem in cell biology.

  6. Integrated Multiscale Modeling of Molecular Computing Devices. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Schulze

    2012-11-01

    The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.

  7. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  8. Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression

    PubMed Central

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679

  9. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  10. Stochastic computing with biomolecular automata

    PubMed Central

    Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud

    2004-01-01

    Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure. PMID:15215499

  11. Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.

    PubMed

    Sheppard, C W.

    1969-03-01

    A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.

  12. Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Ray, Laura R.

    1991-01-01

    A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluations of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variation. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation.

  13. Multi-level methods and approximating distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.

    2016-07-15

    Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less

  14. Constrained approximation of effective generators for multiscale stochastic reaction networks and application to conditioned path sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Simon L., E-mail: simon.cotter@manchester.ac.uk

    2016-10-15

    Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is an ongoing area for research, and is the source of many theoretical and computational challenges. In this paper, we present a significant improvement to the constrained approach, which is a method for computing effective dynamics of slowly changing quantities in these systems, but which does not rely on the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems where the difference in timescales between the “fast” and “slow” variables is not so pronounced. This new application of the constrained approach allowsmore » us to compute the effective generator of the slow variables, without the need for expensive stochastic simulations. This is achieved by finding the null space of the generator of the constrained system. For complex systems where this is not possible, or where the constrained subsystem is itself multiscale, the constrained approach can then be applied iteratively. This results in breaking the problem down into finding the solutions to many small eigenvalue problems, which can be efficiently solved using standard methods. Since this methodology does not rely on the quasi steady-state assumption, the effective dynamics that are approximated are highly accurate, and in the case of systems with only monomolecular reactions, are exact. We will demonstrate this with some numerics, and also use the effective generators to sample paths of the slow variables which are conditioned on their endpoints, a task which would be computationally intractable for the generator of the full system.« less

  15. Learning-based stochastic object models for characterizing anatomical variations

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fuke, E-mail: wufuke@mail.hust.edu.cn; Tian, Tianhai, E-mail: tianhai.tian@sci.monash.edu.au; Rawlings, James B., E-mail: james.rawlings@wisc.edu

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in themore » work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.« less

  17. Relative frequencies of constrained events in stochastic processes: An analytical approach.

    PubMed

    Rusconi, S; Akhmatskaya, E; Sokolovski, D; Ballard, N; de la Cal, J C

    2015-10-01

    The stochastic simulation algorithm (SSA) and the corresponding Monte Carlo (MC) method are among the most common approaches for studying stochastic processes. They relies on knowledge of interevent probability density functions (PDFs) and on information about dependencies between all possible events. Analytical representations of a PDF are difficult to specify in advance, in many real life applications. Knowing the shapes of PDFs, and using experimental data, different optimization schemes can be applied in order to evaluate probability density functions and, therefore, the properties of the studied system. Such methods, however, are computationally demanding, and often not feasible. We show that, in the case where experimentally accessed properties are directly related to the frequencies of events involved, it may be possible to replace the heavy Monte Carlo core of optimization schemes with an analytical solution. Such a replacement not only provides a more accurate estimation of the properties of the process, but also reduces the simulation time by a factor of order of the sample size (at least ≈10(4)). The proposed analytical approach is valid for any choice of PDF. The accuracy, computational efficiency, and advantages of the method over MC procedures are demonstrated in the exactly solvable case and in the evaluation of branching fractions in controlled radical polymerization (CRP) of acrylic monomers. This polymerization can be modeled by a constrained stochastic process. Constrained systems are quite common, and this makes the method useful for various applications.

  18. Modelling and simulation techniques for membrane biology.

    PubMed

    Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V

    2007-07-01

    One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.

  19. Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches.

    PubMed

    Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M

    2018-07-01

    Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).

  20. Reconstructing the hidden states in time course data of stochastic models.

    PubMed

    Zimmer, Christoph

    2015-11-01

    Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Probabilistic distribution and stochastic P-bifurcation of a hybrid energy harvester under colored noise

    NASA Astrophysics Data System (ADS)

    Mokem Fokou, I. S.; Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.

    2018-03-01

    In this manuscript, a hybrid energy harvesting system combining piezoelectric and electromagnetic transduction and subjected to colored noise is investigated. By using the stochastic averaging method, the stationary probability density functions of amplitudes are obtained and reveal interesting dynamics related to the long term behavior of the device. From stationary probability densities, we discuss the stochastic bifurcation through the qualitative change which shows that noise intensity, correlation time and other system parameters can be treated as bifurcation parameters. Numerical simulations are made for a comparison with analytical findings. The Mean first passage time (MFPT) is numerical provided in the purpose to investigate the system stability. By computing the Mean residence time (TMR), we explore the stochastic resonance phenomenon; we show how it is related to the correlation time of colored noise and high output power.

  2. Analytical approximation of a stochastic, spatial simulation model of fire and forest landscape dynamics

    Treesearch

    A.J. Tepley; E.A. Thomann

    2012-01-01

    Recent increases in computation power have prompted enormous growth in the use of simulation models in ecological research. These models are valued for their ability to account for much of the ecological complexity found in field studies, but this ability usually comes at the cost of losing transparency into how the models work. In order to foster greater understanding...

  3. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

    PubMed

    Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa

    2010-01-21

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

  4. Simulation of anaerobic digestion processes using stochastic algorithm.

    PubMed

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  5. Hybrid stochastic simplifications for multiscale gene networks.

    PubMed

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-09-07

    Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  6. Anisotropic Stochastic Vortex Structure Method for Simulating Particle Collision in Turbulent Shear Flows

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing

    2017-11-01

    Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.

  7. Incorporating variability in simulations of seasonally forced phenology using integral projection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.

    Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography.Our derivation, which is based on the rate-summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees.more » This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less

  8. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    PubMed Central

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  9. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    PubMed

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  10. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  11. A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Chen, Xianshun; Feng, Liang; Ong, Yew Soon

    2012-07-01

    In this article, we proposed a self-adaptive memeplex robust search (SAMRS) for finding robust and reliable solutions that are less sensitive to stochastic behaviours of customer demands and have low probability of route failures, respectively, in vehicle routing problem with stochastic demands (VRPSD). In particular, the contribution of this article is three-fold. First, the proposed SAMRS employs the robust solution search scheme (RS 3) as an approximation of the computationally intensive Monte Carlo simulation, thus reducing the computation cost of fitness evaluation in VRPSD, while directing the search towards robust and reliable solutions. Furthermore, a self-adaptive individual learning based on the conceptual modelling of memeplex is introduced in the SAMRS. Finally, SAMRS incorporates a gene-meme co-evolution model with genetic and memetic representation to effectively manage the search for solutions in VRPSD. Extensive experimental results are then presented for benchmark problems to demonstrate that the proposed SAMRS serves as an efficable means of generating high-quality robust and reliable solutions in VRPSD.

  12. A stochastic hybrid systems based framework for modeling dependent failure processes

    PubMed Central

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313

  13. A stochastic hybrid systems based framework for modeling dependent failure processes.

    PubMed

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.

  14. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less

  15. Modeling and Simulation of High Dimensional Stochastic Multiscale PDE Systems at the Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevrekidis, Ioannis

    2017-03-22

    The thrust of the proposal was to exploit modern data-mining tools in a way that will create a systematic, computer-assisted approach to the representation of random media -- and also to the representation of the solutions of an array of important physicochemical processes that take place in/on such media. A parsimonious representation/parametrization of the random media links directly (via uncertainty quantification tools) to good sampling of the distribution of random media realizations. It also links directly to modern multiscale computational algorithms (like the equation-free approach that has been developed in our group) and plays a crucial role in accelerating themore » scientific computation of solutions of nonlinear PDE models (deterministic or stochastic) in such media – both solutions in particular realizations of the random media, and estimation of the statistics of the solutions over multiple realizations (e.g. expectations).« less

  16. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  17. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  18. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  19. A stochastic thermostat algorithm for coarse-grained thermomechanical modeling of large-scale soft matters: Theory and application to microfilaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less

  20. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.

    PubMed

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  1. ODECS -- A computer code for the optimal design of S.I. engine control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsie, I.; Pianese, C.; Rizzo, G.

    1996-09-01

    The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less

  2. Simulation of stochastic diffusion via first exit times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lötstedt, Per, E-mail: perl@it.uu.se; Meinecke, Lina, E-mail: lina.meinecke@it.uu.se

    2015-11-01

    In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic model we partition a biological cell into unstructured subvolumes. In each subvolume the number of molecules is recorded at each time step and molecules can jump between neighboring subvolumes to model diffusion. The jump rates can be computed by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor quality, due to a complicated cell geometry, standard discretization methods can generate negative jump coefficients, which no longer allows the interpretation as the probability to jump between the subvolumes. We propose a methodmore » based on the mean first exit time of a molecule from a subvolume, which guarantees positive jump coefficients. Two approaches to exit times, a global and a local one, are presented and tested in simulations on meshes of different quality in two and three dimensions.« less

  3. Simulation of stochastic diffusion via first exit times

    PubMed Central

    Lötstedt, Per; Meinecke, Lina

    2015-01-01

    In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic model we partition a biological cell into unstructured subvolumes. In each subvolume the number of molecules is recorded at each time step and molecules can jump between neighboring subvolumes to model diffusion. The jump rates can be computed by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor quality, due to a complicated cell geometry, standard discretization methods can generate negative jump coefficients, which no longer allows the interpretation as the probability to jump between the subvolumes. We propose a method based on the mean first exit time of a molecule from a subvolume, which guarantees positive jump coefficients. Two approaches to exit times, a global and a local one, are presented and tested in simulations on meshes of different quality in two and three dimensions. PMID:26600600

  4. Stochastic simulation of ecohydrological interactions between vegetation and groundwater

    NASA Astrophysics Data System (ADS)

    Dwelle, M. C.; Ivanov, V. Y.; Sargsyan, K.

    2017-12-01

    The complex interactions between groundwater and vegetation in the Amazon rainforest may yield vital ecophysiological interactions in specific landscape niches such as buffering plant water stress during dry season or suppression of water uptake due to anoxic conditions. Representation of such processes is greatly impacted by both external and internal sources of uncertainty: inaccurate data and subjective choice of model representation. The models that can simulate these processes are complex and computationally expensive, and therefore make it difficult to address uncertainty using traditional methods. We use the ecohydrologic model tRIBS+VEGGIE and a novel uncertainty quantification framework applied to the ZF2 watershed near Manaus, Brazil. We showcase the capability of this framework for stochastic simulation of vegetation-hydrology dynamics. This framework is useful for simulation with internal and external stochasticity, but this work will focus on internal variability of groundwater depth distribution and model parameterizations. We demonstrate the capability of this framework to make inferences on uncertain states of groundwater depth from limited in situ data, and how the realizations of these inferences affect the ecohydrological interactions between groundwater dynamics and vegetation function. We place an emphasis on the probabilistic representation of quantities of interest and how this impacts the understanding and interpretation of the dynamics at the groundwater-vegetation interface.

  5. Separating the optical contributions to line-edge roughness in EUV lithography using stochastic simulations

    NASA Astrophysics Data System (ADS)

    Chunder, Anindarupa; Latypov, Azat; Chen, Yulu; Biafore, John J.; Levinson, Harry J.; Bailey, Todd

    2017-03-01

    Minimization and control of line-edge roughness (LER) and contact-edge roughness (CER) is one of the current challenges limiting EUV line-space and contact hole printability. One significant contributor to feature roughness and CD variability in EUV is photon shot noise (PSN); others are the physical and chemical processes in photoresists, known as resist stochastic effect. Different approaches are available to mitigate each of these contributions. In order to facilitate this mitigation, it is important to assess the magnitude of each of these contributions separately from others. In this paper, we present and test a computational approach based on the concept of an `ideal resist'. An ideal resist is assumed to be devoid of all resist stochastic effects. Hence, such an ideal resist can only be simulated as an `ideal resist model' (IRM) through explicit utilization of the Poisson statistics of PSN2 or direct Monte Carlo simulation of photon absorption in resist. LER estimated using IRM, thus quantifies the exclusive contribution of PSN to LER. The result of the simulation study done using IRM indicates higher magnitude of contribution (60%) from PSN to LER with respect to total or final LER for a sufficiently optimized high dose `state of the art' EUV chemically amplified resist (CAR) model.

  6. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    PubMed

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  7. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics

    PubMed Central

    Yates, Christian A.

    2016-01-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171

  8. Mechanisms of stochastic focusing and defocusing in biological reaction networks: insight from accurate chemical master equation (ACME) solutions.

    PubMed

    Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang

    2016-08-01

    Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.

  9. Stochastic simulation of spatially correlated geo-processes

    USGS Publications Warehouse

    Christakos, G.

    1987-01-01

    In this study, developments in the theory of stochastic simulation are discussed. The unifying element is the notion of Radon projection in Euclidean spaces. This notion provides a natural way of reconstructing the real process from a corresponding process observable on a reduced dimensionality space, where analysis is theoretically easier and computationally tractable. Within this framework, the concept of space transformation is defined and several of its properties, which are of significant importance within the context of spatially correlated processes, are explored. The turning bands operator is shown to follow from this. This strengthens considerably the theoretical background of the geostatistical method of simulation, and some new results are obtained in both the space and frequency domains. The inverse problem is solved generally and the applicability of the method is extended to anisotropic as well as integrated processes. Some ill-posed problems of the inverse operator are discussed. Effects of the measurement error and impulses at origin are examined. Important features of the simulated process as described by geomechanical laws, the morphology of the deposit, etc., may be incorporated in the analysis. The simulation may become a model-dependent procedure and this, in turn, may provide numerical solutions to spatial-temporal geologic models. Because the spatial simu??lation may be technically reduced to unidimensional simulations, various techniques of generating one-dimensional realizations are reviewed. To link theory and practice, an example is computed in detail. ?? 1987 International Association for Mathematical Geology.

  10. Intrinsic map dynamics exploration for uncharted effective free-energy landscapes

    PubMed Central

    Covino, Roberto; Coifman, Ronald R.; Gear, C. William; Georgiou, Anastasia S.; Kevrekidis, Ioannis G.

    2017-01-01

    We describe and implement a computer-assisted approach for accelerating the exploration of uncharted effective free-energy surfaces (FESs). More generally, the aim is the extraction of coarse-grained, macroscopic information from stochastic or atomistic simulations, such as molecular dynamics (MD). The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator toward unexplored phase-space regions by exploiting the smoothness of the gradually revealed intrinsic low-dimensional geometry of the FES. PMID:28634293

  11. Stochastic Computations in Cortical Microcircuit Models

    PubMed Central

    Maass, Wolfgang

    2013-01-01

    Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving. PMID:24244126

  12. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  13. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  14. Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States

    PubMed Central

    Orio, Patricio; Soudry, Daniel

    2012-01-01

    Background The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. Main Contributions We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used. PMID:22629320

  15. Fundamentals and Recent Developments in Approximate Bayesian Computation

    PubMed Central

    Lintusaari, Jarno; Gutmann, Michael U.; Dutta, Ritabrata; Kaski, Samuel; Corander, Jukka

    2017-01-01

    Abstract Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation; Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-based models.] PMID:28175922

  16. A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens

    PubMed Central

    Bouhaddou, Mehdi; Koch, Rick J.; DiStefano, Matthew S.; Tan, Annie L.; Mertz, Alex E.

    2018-01-01

    Most cancer cells harbor multiple drivers whose epistasis and interactions with expression context clouds drug and drug combination sensitivity prediction. We constructed a mechanistic computational model that is context-tailored by omics data to capture regulation of stochastic proliferation and death by pan-cancer driver pathways. Simulations and experiments explore how the coordinated dynamics of RAF/MEK/ERK and PI-3K/AKT kinase activities in response to synergistic mitogen or drug combinations control cell fate in a specific cellular context. In this MCF10A cell context, simulations suggest that synergistic ERK and AKT inhibitor-induced death is likely mediated by BIM rather than BAD, which is supported by prior experimental studies. AKT dynamics explain S-phase entry synergy between EGF and insulin, but simulations suggest that stochastic ERK, and not AKT, dynamics seem to drive cell-to-cell proliferation variability, which in simulations is predictable from pre-stimulus fluctuations in C-Raf/B-Raf levels. Simulations suggest MEK alteration negligibly influences transformation, consistent with clinical data. Tailoring the model to an alternate cell expression and mutation context, a glioma cell line, allows prediction of increased sensitivity of cell death to AKT inhibition. Our model mechanistically interprets context-specific landscapes between driver pathways and cell fates, providing a framework for designing more rational cancer combination therapy. PMID:29579036

  17. Sustainability of transport structures - some aspects of the nonlinear reliability assessment

    NASA Astrophysics Data System (ADS)

    Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír

    2017-09-01

    Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.

  18. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.

    PubMed

    Fiore, Andrew M; Swan, James W

    2018-01-28

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material.

  19. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    PubMed

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  20. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.

  1. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVille, R.E.L., E-mail: rdeville@illinois.edu; Riemer, N., E-mail: nriemer@illinois.edu; West, M., E-mail: mwest@illinois.edu

    2011-09-20

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangianmore » trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.« less

  2. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    NASA Astrophysics Data System (ADS)

    DeVille, R. E. L.; Riemer, N.; West, M.

    2011-09-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  3. Multilevel Monte Carlo and improved timestepping methods in atmospheric dispersion modelling

    NASA Astrophysics Data System (ADS)

    Katsiolides, Grigoris; Müller, Eike H.; Scheichl, Robert; Shardlow, Tony; Giles, Michael B.; Thomson, David J.

    2018-02-01

    A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an efficient numerical method is particularly important in operational emergency-response applications, such as tracking radioactive clouds from nuclear accidents or predicting the impact of volcanic ash clouds on international aviation, where accurate and timely predictions are essential. In this paper, we investigate the application of the Multilevel Monte Carlo (MLMC) method to simulate the propagation of particles in a representative one-dimensional dispersion scenario in the atmospheric boundary layer. MLMC can be shown to result in asymptotically superior computational complexity and reduced computational cost when compared to the Standard Monte Carlo (StMC) method, which is currently used in atmospheric dispersion modelling. To reduce the absolute cost of the method also in the non-asymptotic regime, it is equally important to choose the best possible numerical timestepping method on each level. To investigate this, we also compare the standard symplectic Euler method, which is used in many operational models, with two improved timestepping algorithms based on SDE splitting methods.

  4. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  5. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

    PubMed

    Salis, Howard; Kaznessis, Yiannis N

    2005-12-01

    Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

  6. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  7. A brief introduction to computer-intensive methods, with a view towards applications in spatial statistics and stereology.

    PubMed

    Mattfeldt, Torsten

    2011-04-01

    Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  8. Parallel discrete-event simulation of FCFS stochastic queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  9. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  10. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Duboscq, Romain

    2015-08-01

    GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

  11. More efficient optimization of long-term water supply portfolios

    NASA Astrophysics Data System (ADS)

    Kirsch, Brian R.; Characklis, Gregory W.; Dillard, Karen E. M.; Kelley, C. T.

    2009-03-01

    The use of temporary transfers, such as options and leases, has grown as utilities attempt to meet increases in demand while reducing dependence on the expansion of costly infrastructure capacity (e.g., reservoirs). Earlier work has been done to construct optimal portfolios comprising firm capacity and transfers, using decision rules that determine the timing and volume of transfers. However, such work has only focused on the short-term (e.g., 1-year scenarios), which limits the utility of these planning efforts. Developing multiyear portfolios can lead to the exploration of a wider range of alternatives but also increases the computational burden. This work utilizes a coupled hydrologic-economic model to simulate the long-term performance of a city's water supply portfolio. This stochastic model is linked with an optimization search algorithm that is designed to handle the high-frequency, low-amplitude noise inherent in many simulations, particularly those involving expected values. This noise is detrimental to the accuracy and precision of the optimized solution and has traditionally been controlled by investing greater computational effort in the simulation. However, the increased computational effort can be substantial. This work describes the integration of a variance reduction technique (control variate method) within the simulation/optimization as a means of more efficiently identifying minimum cost portfolios. Random variation in model output (i.e., noise) is moderated using knowledge of random variations in stochastic input variables (e.g., reservoir inflows, demand), thereby reducing the computing time by 50% or more. Using these efficiency gains, water supply portfolios are evaluated over a 10-year period in order to assess their ability to reduce costs and adapt to demand growth, while still meeting reliability goals. As a part of the evaluation, several multiyear option contract structures are explored and compared.

  12. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    NASA Astrophysics Data System (ADS)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.

  13. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less

  14. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation

    PubMed Central

    Ramirez, Samuel A.; Elston, Timothy C.

    2018-01-01

    Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our knowledge, our work represents the first particle-based simulations of a model for yeast polarization that is based on a Turing mechanism. PMID:29529021

  15. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less

  16. Materials by numbers: Computations as tools of discovery

    PubMed Central

    Landman, Uzi

    2005-01-01

    Current issues pertaining to theoretical simulations of materials, with a focus on systems of nanometer-scale dimensions, are discussed. The use of atomistic simulations as high-resolution numerical experiments, enabling and guiding formulation and testing of analytic theoretical descriptions, is demonstrated through studies of the generation and breakup of nanojets, which have led to the derivation of a stochastic hydrodynamic description. Subsequently, I illustrate the use of computations and simulations as tools of discovery, with examples that include the self-organized formation of nanowires, the surprising nanocatalytic activity of small aggregates of gold that, in the bulk form, is notorious for being chemically inert, and the emergence of rotating electron molecules in two-dimensional quantum dots. I conclude with a brief discussion of some key challenges in nanomaterials simulations. PMID:15870210

  17. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.

  18. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  19. Coupled stochastic spatial and non-spatial simulations of ErbB1 signaling pathways demonstrate the importance of spatial organization in signal transduction.

    PubMed

    Costa, Michelle N; Radhakrishnan, Krishnan; Wilson, Bridget S; Vlachos, Dionisios G; Edwards, Jeremy S

    2009-07-23

    The ErbB family of receptors activates intracellular signaling pathways that control cellular proliferation, growth, differentiation and apoptosis. Given these central roles, it is not surprising that overexpression of the ErbB receptors is often associated with carcinogenesis. Therefore, extensive laboratory studies have been devoted to understanding the signaling events associated with ErbB activation. Systems biology has contributed significantly to our current understanding of ErbB signaling networks. However, although computational models have grown in complexity over the years, little work has been done to consider the spatial-temporal dynamics of receptor interactions and to evaluate how spatial organization of membrane receptors influences signaling transduction. Herein, we explore the impact of spatial organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of downstream signaling. We describe the development of an algorithm that couples a spatial stochastic model of membrane receptors with a nonspatial stochastic model of the reactions and interactions in the cytosol. This novel algorithm provides a computationally efficient method to evaluate the effects of spatial heterogeneity on the coupling of receptors to cytosolic signaling partners. Mathematical models of signal transduction rarely consider the contributions of spatial organization due to high computational costs. A hybrid stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling and, as an example, demonstrates that receptor clustering contributes significantly to the efficiency of signal propagation from ligand-engaged growth factor receptors.

  20. Optimization of an electromagnetic linear actuator using a network and a finite element model

    NASA Astrophysics Data System (ADS)

    Neubert, Holger; Kamusella, Alfred; Lienig, Jens

    2011-03-01

    Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.

  1. Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data

    NASA Astrophysics Data System (ADS)

    Dorrestijn, Jesse; Crommelin, Daan T.; Siebesma, A. Pier.; Jonker, Harm J. J.

    2013-02-01

    In this paper, we report on the development of a methodology for stochastic parameterization of convective transport by shallow cumulus convection in weather and climate models. We construct a parameterization based on Large-Eddy Simulation (LES) data. These simulations resolve the turbulent fluxes of heat and moisture and are based on a typical case of non-precipitating shallow cumulus convection above sea in the trade-wind region. Using clustering, we determine a finite number of turbulent flux pairs for heat and moisture that are representative for the pairs of flux profiles observed in these simulations. In the stochastic parameterization scheme proposed here, the convection scheme jumps randomly between these pre-computed pairs of turbulent flux profiles. The transition probabilities are estimated from the LES data, and they are conditioned on the resolved-scale state in the model column. Hence, the stochastic parameterization is formulated as a data-inferred conditional Markov chain (CMC), where each state of the Markov chain corresponds to a pair of turbulent heat and moisture fluxes. The CMC parameterization is designed to emulate, in a statistical sense, the convective behaviour observed in the LES data. The CMC is tested in single-column model (SCM) experiments. The SCM is able to reproduce the ensemble spread of the temperature and humidity that was observed in the LES data. Furthermore, there is a good similarity between time series of the fractions of the discretized fluxes produced by SCM and observed in LES.

  2. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  3. A stochastic multi-scale method for turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Cha, Chong M.

    2002-11-01

    The stochastic chemistry algorithm of Bunker et al. and Gillespie is used to perform the chemical reactions in a transported probability density function (PDF) modeling approach of turbulent combustion. Recently, Kraft & Wagner have demonstrated a 100-fold gain in computational speed (for a 100 species mechanism) using the stochastic approach over the conventional, direct integration method of solving for the chemistry. Here, the stochastic chemistry algorithm is applied to develop a new transported PDF model of turbulent premixed combustion. The methodology relies on representing the relevant spatially dependent physical processes as queuing events. The canonical problem of a one-dimensional premixed flame is used for validation. For the laminar case, molecular diffusion is described by a random walk. For the turbulent case, one of two different material transport submodels can provide the necessary closure: Taylor dispersion or Kerstein's one-dimensional turbulence approach. The former exploits ``eddy diffusivity'' and hence would be much more computationally tractable for practical applications. Various validation studies are performed. Results from the Monte Carlo simulations compare well to asymptotic solutions of laminar premixed flames, both with and without high activation temperatures. The correct scaling of the turbulent burning velocity is predicted in both Damköhler's small- and large-scale turbulence limits. The effect of applying the eddy diffusivity concept in the various regimes is discussed.

  4. Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming.

    PubMed

    Alvarado, Michelle; Ntaimo, Lewis

    2018-03-01

    Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.

  5. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  6. Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes

    PubMed Central

    Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.

    2016-01-01

    The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733

  7. Distinguishing humans from computers in the game of go: A complex network approach

    NASA Astrophysics Data System (ADS)

    Coquidé, C.; Georgeot, B.; Giraud, O.

    2017-08-01

    We compare complex networks built from the game of go and obtained from databases of human-played games with those obtained from computer-played games. Our investigations show that statistical features of the human-based networks and the computer-based networks differ, and that these differences can be statistically significant on a relatively small number of games using specific estimators. We show that the deterministic or stochastic nature of the computer algorithm playing the game can also be distinguished from these quantities. This can be seen as a tool to implement a Turing-like test for go simulators.

  8. Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties

    NASA Astrophysics Data System (ADS)

    Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong

    2018-03-01

    This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.

  9. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  10. Angle-of-arrival variance of waves and rays in strong atmospheric scattering: split-step simulation results

    NASA Astrophysics Data System (ADS)

    Voelz, David; Wijerathna, Erandi; Xiao, Xifeng; Muschinski, Andreas

    2017-09-01

    The analysis of optical propagation through both deterministic and stochastic refractive-index fields may be substantially simplified if diffraction effects can be neglected. With regard to simplification, it is known that certain geometricaloptics predictions often agree well with field observations but it is not always clear why this is so. Here, a new investigation of this issue is presented involving wave optics and geometrical (ray) optics computer simulations of a beam of visible light propagating through fully turbulent, homogeneous and isotropic refractive-index fields. We compare the computationally simulated, aperture-averaged angle-of-arrival variances (for aperture diameters ranging from 0.5 to 13 Fresnel lengths) with theoretical predictions based on the Rytov theory.

  11. Advanced reliability modeling of fault-tolerant computer-based systems

    NASA Technical Reports Server (NTRS)

    Bavuso, S. J.

    1982-01-01

    Two methodologies for the reliability assessment of fault tolerant digital computer based systems are discussed. The computer-aided reliability estimation 3 (CARE 3) and gate logic software simulation (GLOSS) are assessment technologies that were developed to mitigate a serious weakness in the design and evaluation process of ultrareliable digital systems. The weak link is based on the unavailability of a sufficiently powerful modeling technique for comparing the stochastic attributes of one system against others. Some of the more interesting attributes are reliability, system survival, safety, and mission success.

  12. Lazy Updating of hubs can enable more realistic models by speeding up stochastic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlert, Kurt; Loewe, Laurence, E-mail: loewe@wisc.edu; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715

    2014-11-28

    To respect the nature of discrete parts in a system, stochastic simulation algorithms (SSAs) must update for each action (i) all part counts and (ii) each action's probability of occurring next and its timing. This makes it expensive to simulate biological networks with well-connected “hubs” such as ATP that affect many actions. Temperature and volume also affect many actions and may be changed significantly in small steps by the network itself during fever and cell growth, respectively. Such trends matter for evolutionary questions, as cell volume determines doubling times and fever may affect survival, both key traits for biological evolution.more » Yet simulations often ignore such trends and assume constant environments to avoid many costly probability updates. Such computational convenience precludes analyses of important aspects of evolution. Here we present “Lazy Updating,” an add-on for SSAs designed to reduce the cost of simulating hubs. When a hub changes, Lazy Updating postpones all probability updates for reactions depending on this hub, until a threshold is crossed. Speedup is substantial if most computing time is spent on such updates. We implemented Lazy Updating for the Sorting Direct Method and it is easily integrated into other SSAs such as Gillespie's Direct Method or the Next Reaction Method. Testing on several toy models and a cellular metabolism model showed >10× faster simulations for its use-cases—with a small loss of accuracy. Thus we see Lazy Updating as a valuable tool for some special but important simulation problems that are difficult to address efficiently otherwise.« less

  13. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  14. Modeling stochasticity and robustness in gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  15. Generalized binomial τ-leap method for biochemical kinetics incorporating both delay and intrinsic noise

    NASA Astrophysics Data System (ADS)

    Leier, André; Marquez-Lago, Tatiana T.; Burrage, Kevin

    2008-05-01

    The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol. 2, 117(E) (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ-DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.

  16. Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm.

    PubMed

    Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li

    2017-03-01

    The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

  17. Stochastic Seismic Inversion and Migration for Offshore Site Investigation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Son, J.; Medina-Cetina, Z.

    2017-12-01

    We discuss the comparison between deterministic and stochastic optimization approaches to the nonlinear geophysical full-waveform inverse problem, based on the seismic survey data from Mississippi Canyon in the Northern Gulf of Mexico. Since the subsea engineering and offshore construction projects actively require reliable ground models from various site investigations, the primary goal of this study is to reconstruct the accurate subsurface information of the soil and rock material profiles under the seafloor. The shallow sediment layers have naturally formed heterogeneous formations which may cause unwanted marine landslides or foundation failures of underwater infrastructure. We chose the quasi-Newton and simulated annealing as deterministic and stochastic optimization algorithms respectively. Seismic forward modeling based on finite difference method with absorbing boundary condition implements the iterative simulations in the inverse modeling. We briefly report on numerical experiments using a synthetic data as an offshore ground model which contains shallow artificial target profiles of geomaterials under the seafloor. We apply the seismic migration processing and generate Voronoi tessellation on two-dimensional space-domain to improve the computational efficiency of the imaging stratigraphical velocity model reconstruction. We then report on the detail of a field data implementation, which shows the complex geologic structures in the Northern Gulf of Mexico. Lastly, we compare the new inverted image of subsurface site profiles in the space-domain with the previously processed seismic image in the time-domain at the same location. Overall, stochastic optimization for seismic inversion with migration and Voronoi tessellation show significant promise to improve the subsurface imaging of ground models and improve the computational efficiency required for the full waveform inversion. We anticipate that by improving the inversion process of shallow layers from geophysical data will better support the offshore site investigation.

  18. Identification of gene regulation models from single-cell data

    NASA Astrophysics Data System (ADS)

    Weber, Lisa; Raymond, William; Munsky, Brian

    2018-09-01

    In quantitative analyses of biological processes, one may use many different scales of models (e.g. spatial or non-spatial, deterministic or stochastic, time-varying or at steady-state) or many different approaches to match models to experimental data (e.g. model fitting or parameter uncertainty/sloppiness quantification with different experiment designs). These different analyses can lead to surprisingly different results, even when applied to the same data and the same model. We use a simplified gene regulation model to illustrate many of these concerns, especially for ODE analyses of deterministic processes, chemical master equation and finite state projection analyses of heterogeneous processes, and stochastic simulations. For each analysis, we employ MATLAB and PYTHON software to consider a time-dependent input signal (e.g. a kinase nuclear translocation) and several model hypotheses, along with simulated single-cell data. We illustrate different approaches (e.g. deterministic and stochastic) to identify the mechanisms and parameters of the same model from the same simulated data. For each approach, we explore how uncertainty in parameter space varies with respect to the chosen analysis approach or specific experiment design. We conclude with a discussion of how our simulated results relate to the integration of experimental and computational investigations to explore signal-activated gene expression models in yeast (Neuert et al 2013 Science 339 584–7) and human cells (Senecal et al 2014 Cell Rep. 8 75–83)5.

  19. A Comparative Analysis of a Generalized Lanchester Equation Model and a Stochastic Computer Simulation Model.

    DTIC Science & Technology

    1987-03-01

    model is one in which words or numerical descriptions are used to represent an entity or process. An example of a symbolic model is a mathematical ...are the third type of model used in modeling combat attrition. Analytical models are symbolic models which use mathematical symbols and equations to...simplicity and the ease of tracing through the mathematical computations. In this section I will discuss some of the shortcoming which have been

  20. A continuous stochastic model for non-equilibrium dense gases

    NASA Astrophysics Data System (ADS)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are compared with respect to benchmark simulations, where good agreement is found for the flow field along with the transport properties.

  1. Development and validation of a generic finite element vehicle buck model for the analysis of driver rib fractures in real life nearside oblique frontal crashes.

    PubMed

    Iraeus, Johan; Lindquist, Mats

    2016-10-01

    Frontal crashes still account for approximately half of all fatalities in passenger cars, despite several decades of crash-related research. For serious injuries in this crash mode, several authors have listed the thorax as the most important. Computer simulation provides an effective tool to study crashes and evaluate injury mechanisms, and using stochastic input data, whole populations of crashes can be studied. The aim of this study was to develop a generic buck model and to validate this model on a population of real-life frontal crashes in terms of the risk of rib fracture. The study was conducted in four phases. In the first phase, real-life validation data were derived by analyzing NASS/CDS data to find the relationship between injury risk and crash parameters. In addition, available statistical distributions for the parameters were collected. In the second phase, a generic parameterized finite element (FE) model of a vehicle interior was developed based on laser scans from the A2MAC1 database. In the third phase, model parameters that could not be found in the literature were estimated using reverse engineering based on NCAP tests. Finally, in the fourth phase, the stochastic FE model was used to simulate a population of real-life crashes, and the result was compared to the validation data from phase one. The stochastic FE simulation model overestimates the risk of rib fracture, more for young occupants and less for senior occupants. However, if the effect of underestimation of rib fractures in the NASS/CDS material is accounted for using statistical simulations, the risk of rib fracture based on the stochastic FE model matches the risk based on the NASS/CDS data for senior occupants. The current version of the stochastic model can be used to evaluate new safety measures using a population of frontal crashes for senior occupants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.

  3. Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu

    2015-11-01

    An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less

  4. Computationally-efficient stochastic cluster dynamics method for modeling damage accumulation in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter

    2015-11-01

    An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.

  5. Computer simulation of the probability that endangered whales will interact with oil spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, M.; Jayko, K.; Bowles, A.

    1987-03-01

    A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration and diving-surfacing models, and an oil-spill trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The movement of a whale point is governed by a random walk algorithm which stochastically follows a migratory pathway. The oil-spill model, developed under a series of other contracts, accounts for transport and spreading behavior in open water and in the presence of sea ice.more » Historical wind records and heavy, normal, or light ice cover data sets are selected at random to provide stochastic oil-spill scenarios for whale-oil interaction simulations.« less

  6. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  7. MCdevelop - a universal framework for Stochastic Simulations

    NASA Astrophysics Data System (ADS)

    Slawinska, M.; Jadach, S.

    2011-03-01

    We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 136 No. of bytes in distributed program, including test data, etc.: 355 698 Distribution format: tar.gz Programming language: ANSI C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system. Operating system: Most UNIX systems, Linux. The application programs were thoroughly tested under Ubuntu 7.04, 8.04 and CERN Scientific Linux 5. Has the code been vectorised or parallelised?: Tools (scripts) for optional parallelisation on a PC farm are included. RAM: 500 bytes Classification: 11.3 External routines: ROOT package version 5.0 or higher ( http://root.cern.ch/drupal/). Nature of problem: Developing any type of stochastic simulation program for high energy physics and other areas. Solution method: Object Oriented programming in C++ with added persistency mechanism, batch scripts for running on PC farms and Autotools.

  8. An accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems using gradient-based diffusion and tau-leaping.

    PubMed

    Koh, Wonryull; Blackwell, Kim T

    2011-04-21

    Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.

  9. Low-rank separated representation surrogates of high-dimensional stochastic functions: Application in Bayesian inference

    NASA Astrophysics Data System (ADS)

    Validi, AbdoulAhad

    2014-03-01

    This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.

  10. Approximation and inference methods for stochastic biochemical kinetics—a tutorial review

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2017-03-01

    Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.

  11. A Framework to Analyze the Performance of Load Balancing Schemes for Ensembles of Stochastic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Tae-Hyuk; Sandu, Adrian; Watson, Layne T.

    2015-08-01

    Ensembles of simulations are employed to estimate the statistics of possible future states of a system, and are widely used in important applications such as climate change and biological modeling. Ensembles of runs can naturally be executed in parallel. However, when the CPU times of individual simulations vary considerably, a simple strategy of assigning an equal number of tasks per processor can lead to serious work imbalances and low parallel efficiency. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms for ensembles of simulations where many tasks are mapped onto each processor, andmore » where the individual compute times vary considerably among tasks. Four load balancing strategies are discussed: most-dividing, all-redistribution, random-polling, and neighbor-redistribution. Simulation results with a stochastic budding yeast cell cycle model are consistent with the theoretical analysis. It is especially significant that there is a provable global decrease in load imbalance for the local rebalancing algorithms due to scalability concerns for the global rebalancing algorithms. The overall simulation time is reduced by up to 25 %, and the total processor idle time by 85 %.« less

  12. FERN - a Java framework for stochastic simulation and evaluation of reaction networks.

    PubMed

    Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf

    2008-08-29

    Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new systems biology applications. Finally, complex scenarios requiring intervention during the simulation progress can be modelled easily with FERN.

  13. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    NASA Astrophysics Data System (ADS)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  14. Stochastic population dynamics under resource constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavane, Ajinkya S., E-mail: ajinkyagavane@gmail.com; Nigam, Rahul, E-mail: rahul.nigam@hyderabad.bits-pilani.ac.in

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations formore » such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.« less

  15. Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks

    PubMed Central

    Hallen, Mark; Li, Bochong; Tanouchi, Yu; Tan, Cheemeng; West, Mike; You, Lingchong

    2011-01-01

    Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry. PMID:22022252

  16. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  17. Computational design of RNA parts, devices, and transcripts with kinetic folding algorithms implemented on multiprocessor clusters.

    PubMed

    Thimmaiah, Tim; Voje, William E; Carothers, James M

    2015-01-01

    With progress toward inexpensive, large-scale DNA assembly, the demand for simulation tools that allow the rapid construction of synthetic biological devices with predictable behaviors continues to increase. By combining engineered transcript components, such as ribosome binding sites, transcriptional terminators, ligand-binding aptamers, catalytic ribozymes, and aptamer-controlled ribozymes (aptazymes), gene expression in bacteria can be fine-tuned, with many corollaries and applications in yeast and mammalian cells. The successful design of genetic constructs that implement these kinds of RNA-based control mechanisms requires modeling and analyzing kinetically determined co-transcriptional folding pathways. Transcript design methods using stochastic kinetic folding simulations to search spacer sequence libraries for motifs enabling the assembly of RNA component parts into static ribozyme- and dynamic aptazyme-regulated expression devices with quantitatively predictable functions (rREDs and aREDs, respectively) have been described (Carothers et al., Science 334:1716-1719, 2011). Here, we provide a detailed practical procedure for computational transcript design by illustrating a high throughput, multiprocessor approach for evaluating spacer sequences and generating functional rREDs. This chapter is written as a tutorial, complete with pseudo-code and step-by-step instructions for setting up a computational cluster with an Amazon, Inc. web server and performing the large numbers of kinefold-based stochastic kinetic co-transcriptional folding simulations needed to design functional rREDs and aREDs. The method described here should be broadly applicable for designing and analyzing a variety of synthetic RNA parts, devices and transcripts.

  18. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  19. System reliability of randomly vibrating structures: Computational modeling and laboratory testing

    NASA Astrophysics Data System (ADS)

    Sundar, V. S.; Ammanagi, S.; Manohar, C. S.

    2015-09-01

    The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.

  20. Computational Simulation of Thermal and Spattering Phenomena and Microstructure in Selective Laser Melting of Inconel 625

    NASA Astrophysics Data System (ADS)

    Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.

    Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.

  1. Perspective: Stochastic magnetic devices for cognitive computing

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sengupta, Abhronil; Shim, Yong

    2018-06-01

    Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.

  2. Quantum simulation of a quantum stochastic walk

    NASA Astrophysics Data System (ADS)

    Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.

    2017-03-01

    The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.

  3. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design--part I. Model development.

    PubMed

    He, L; Huang, G H; Lu, H W

    2010-04-15

    Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.

  4. Modeling the Webgraph: How Far We Are

    NASA Astrophysics Data System (ADS)

    Donato, Debora; Laura, Luigi; Leonardi, Stefano; Millozzi, Stefano

    The following sections are included: * Introduction * Preliminaries * WebBase * In-degree and out-degree * PageRank * Bipartite cliques * Strongly connected components * Stochastic models of the webgraph * Models of the webgraph * A multi-layer model * Large scale simulation * Algorithmic techniques for generating and measuring webgraphs * Data representation and multifiles * Generating webgraphs * Traversal with two bits for each node * Semi-external breadth first search * Semi-external depth first search * Computation of the SCCs * Computation of the bow-tie regions * Disjoint bipartite cliques * PageRank * Summary and outlook

  5. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed Central

    Palmer, T. N.

    2014-01-01

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic–dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only. PMID:24842038

  6. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints

    NASA Astrophysics Data System (ADS)

    Fiore, Andrew M.; Swan, James W.

    2018-01-01

    Brownian Dynamics simulations are an important tool for modeling the dynamics of soft matter. However, accurate and rapid computations of the hydrodynamic interactions between suspended, microscopic components in a soft material are a significant computational challenge. Here, we present a new method for Brownian dynamics simulations of suspended colloidal scale particles such as colloids, polymers, surfactants, and proteins subject to a particular and important class of hydrodynamic constraints. The total computational cost of the algorithm is practically linear with the number of particles modeled and can be further optimized when the characteristic mass fractal dimension of the suspended particles is known. Specifically, we consider the so-called "stresslet" constraint for which suspended particles resist local deformation. This acts to produce a symmetric force dipole in the fluid and imparts rigidity to the particles. The presented method is an extension of the recently reported positively split formulation for Ewald summation of the Rotne-Prager-Yamakawa mobility tensor to higher order terms in the hydrodynamic scattering series accounting for force dipoles [A. M. Fiore et al., J. Chem. Phys. 146(12), 124116 (2017)]. The hydrodynamic mobility tensor, which is proportional to the covariance of particle Brownian displacements, is constructed as an Ewald sum in a novel way which guarantees that the real-space and wave-space contributions to the sum are independently symmetric and positive-definite for all possible particle configurations. This property of the Ewald sum is leveraged to rapidly sample the Brownian displacements from a superposition of statistically independent processes with the wave-space and real-space contributions as respective covariances. The cost of computing the Brownian displacements in this way is comparable to the cost of computing the deterministic displacements. The addition of a stresslet constraint to the over-damped particle equations of motion leads to a stochastic differential algebraic equation (SDAE) of index 1, which is integrated forward in time using a mid-point integration scheme that implicitly produces stochastic displacements consistent with the fluctuation-dissipation theorem for the constrained system. Calculations for hard sphere dispersions are illustrated and used to explore the performance of the algorithm. An open source, high-performance implementation on graphics processing units capable of dynamic simulations of millions of particles and integrated with the software package HOOMD-blue is used for benchmarking and made freely available in the supplementary material (ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-012805)

  7. Class of cooperative stochastic models: Exact and approximate solutions, simulations, and experiments using ionic self-assembly of nanoparticles.

    PubMed

    Mazilu, I; Mazilu, D A; Melkerson, R E; Hall-Mejia, E; Beck, G J; Nshimyumukiza, S; da Fonseca, Carlos M

    2016-03-01

    We present exact and approximate results for a class of cooperative sequential adsorption models using matrix theory, mean-field theory, and computer simulations. We validate our models with two customized experiments using ionically self-assembled nanoparticles on glass slides. We also address the limitations of our models and their range of applicability. The exact results obtained using matrix theory can be applied to a variety of two-state systems with cooperative effects.

  8. Designer: A Knowledge-Based Graphic Design Assistant.

    DTIC Science & Technology

    1986-07-01

    pro- pulsion. The system consists of a color graphics interface to a mathematical simulation. One can view and manipulate this simulation at a number of...valve vaive graph 50- mufi -plot graph 100 4 0 80 6.. 30 60 4 20 .... 40 2 10 V 20 0 2 4 6 8 10 0 20 40 60 80 100 FIGURE 4. Icon Sampler. This view...in Computing Systems. New York: ACM, 1983. 8306. Paul Smolensky. Harmony Theory: A Mathematical Framework for Stochastic Parallel Pro- cessing

  9. Fusion of Hard and Soft Information in Nonparametric Density Estimation

    DTIC Science & Technology

    2015-06-10

    and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for

  10. On the usage of ultrasound computational models for decision making under ambiguity

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Sexton, Samuel; Prowant, Matthew; Crawford, Susan; Diaz, Aaron

    2018-04-01

    Computer modeling and simulation is becoming pervasive within the non-destructive evaluation (NDE) industry as a convenient tool for designing and assessing inspection techniques. This raises a pressing need for developing quantitative techniques for demonstrating the validity and applicability of the computational models. Computational models provide deterministic results based on deterministic and well-defined input, or stochastic results based on inputs defined by probability distributions. However, computational models cannot account for the effects of personnel, procedures, and equipment, resulting in ambiguity about the efficacy of inspections based on guidance from computational models only. In addition, ambiguity arises when model inputs, such as the representation of realistic cracks, cannot be defined deterministically, probabilistically, or by intervals. In this work, Pacific Northwest National Laboratory demonstrates the ability of computational models to represent field measurements under known variabilities, and quantify the differences using maximum amplitude and power spectrum density metrics. Sensitivity studies are also conducted to quantify the effects of different input parameters on the simulation results.

  11. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2015-05-15

    The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Computer Simulation of Biological Ageing-A Bird's-Eye View

    NASA Astrophysics Data System (ADS)

    Dasgupta, Subinay

    For living organisms, the process of ageing consists of acquiring good and bad genetic mutations, which increase and decrease (respectively) the survival probability. When a child is born, the hereditary mutations of the parents are transmitted to the offspring. Such stochastic processes seem to be amenable to computer simulation. Over the last 10 years, simulation studies of this sort have been done in different parts of the globe to explain ageing. The objective of these studies have been to attempt an explanation of demographic data and of natural phenomena like preference of nature to the process of sexual reproduction (in comparison to the process of asexual reproduction). Here we shall attempt to discuss briefly the principles and the results of these works, with an emphasis on what is called Penna bit-string model.

  13. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Jaishree, J.; Haworth, D. C.

    2012-06-01

    Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method, while MEPDF is the most computationally efficient of the three methods. These and other findings are discussed in detail.

  14. Spreading dynamics on complex networks: a general stochastic approach.

    PubMed

    Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J

    2014-12-01

    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.

  15. Stochastic Model of Clogging in a Microfluidic Cell Sorter

    NASA Astrophysics Data System (ADS)

    Fai, Thomas; Rycroft, Chris

    2016-11-01

    Microfluidic devices for sorting cells by deformability show promise for various medical purposes, e.g. detecting sickle cell anemia and circulating tumor cells. One class of such devices consists of a two-dimensional array of narrow channels, each column containing several identical channels in parallel. Cells are driven through the device by an applied pressure or flow rate. Such devices allows for many cells to be sorted simultaneously, but cells eventually clog individual channels and change the device properties in an unpredictable manner. In this talk, we propose a stochastic model for the failure of such microfluidic devices by clogging and present preliminary theoretical and computational results. The model can be recast as an ODE that exhibits finite time blow-up under certain conditions. The failure time distribution is investigated analytically in certain limiting cases, and more realistic versions of the model are solved by computer simulation.

  16. Network-based stochastic semisupervised learning.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-03-01

    Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

  17. Stochastic competitive learning in complex networks.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-03-01

    Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning..

  18. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    PubMed

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  19. Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system

    PubMed Central

    2010-01-01

    Background The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system. Results In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Conclusions Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics. PMID:21143785

  20. Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system.

    PubMed

    Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajal K; Zhang, Chaoyang

    2010-12-01

    The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the "in silico" stochastic event based modeling approach to find the molecular dynamics of the system. In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.

  1. Constant-pH molecular dynamics using stochastic titration

    NASA Astrophysics Data System (ADS)

    Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.

    2002-09-01

    A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.

  2. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    NASA Astrophysics Data System (ADS)

    Witteveen, Jeroen A. S.; Bijl, Hester

    2009-10-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  3. Numerical simulation of biofilm growth in flow channels using a cellular automaton approach coupled with a macro flow computation.

    PubMed

    Yamamoto, Takehiro; Ueda, Shuya

    2013-01-01

    Biofilm is a slime-like complex aggregate of microorganisms and their products, extracellular polymer substances, that grows on a solid surface. The growth phenomenon of biofilm is relevant to the corrosion and clogging of water pipes, the chemical processes in a bioreactor, and bioremediation. In these phenomena, the behavior of the biofilm under flow has an important role. Therefore, controlling the biofilm behavior in each process is important. To provide a computational tool for analyzing biofilm growth, the present study proposes a computational model for the simulation of biofilm growth in flows. This model accounts for the growth, decay, detachment and adhesion of biofilms. The proposed model couples the computation of the surrounding fluid flow, using the finite volume method, with the simulation of biofilm growth, using the cellular automaton approach, a relatively low-computational-cost method. Furthermore, a stochastic approach for considering the adhesion process is proposed. Numerical simulations for the biofilm growth on a planar wall and that in an L-shaped rectangular channel were carried out. A variety of biofilm structures were observed depending on the strength of the flow. Moreover, the importance of the detachment and adhesion processes was confirmed.

  4. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  5. Computational Modeling and Numerical Methods for Spatiotemporal Calcium Cycling in Ventricular Myocytes

    PubMed Central

    Nivala, Michael; de Lange, Enno; Rovetti, Robert; Qu, Zhilin

    2012-01-01

    Intracellular calcium (Ca) cycling dynamics in cardiac myocytes is regulated by a complex network of spatially distributed organelles, such as sarcoplasmic reticulum (SR), mitochondria, and myofibrils. In this study, we present a mathematical model of intracellular Ca cycling and numerical and computational methods for computer simulations. The model consists of a coupled Ca release unit (CRU) network, which includes a SR domain and a myoplasm domain. Each CRU contains 10 L-type Ca channels and 100 ryanodine receptor channels, with individual channels simulated stochastically using a variant of Gillespie’s method, modified here to handle time-dependent transition rates. Both the SR domain and the myoplasm domain in each CRU are modeled by 5 × 5 × 5 voxels to maintain proper Ca diffusion. Advanced numerical algorithms implemented on graphical processing units were used for fast computational simulations. For a myocyte containing 100 × 20 × 10 CRUs, a 1-s heart time simulation takes about 10 min of machine time on a single NVIDIA Tesla C2050. Examples of simulated Ca cycling dynamics, such as Ca sparks, Ca waves, and Ca alternans, are shown. PMID:22586402

  6. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    ERIC Educational Resources Information Center

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  7. Uncertainty quantification for personalized analyses of human proximal femurs.

    PubMed

    Wille, Hagen; Ruess, Martin; Rank, Ernst; Yosibash, Zohar

    2016-02-29

    Computational models for the personalized analysis of human femurs contain uncertainties in bone material properties and loads, which affect the simulation results. To quantify the influence we developed a probabilistic framework based on polynomial chaos (PC) that propagates stochastic input variables through any computational model. We considered a stochastic E-ρ relationship and a stochastic hip contact force, representing realistic variability of experimental data. Their influence on the prediction of principal strains (ϵ1 and ϵ3) was quantified for one human proximal femur, including sensitivity and reliability analysis. Large variabilities in the principal strain predictions were found in the cortical shell of the femoral neck, with coefficients of variation of ≈40%. Between 60 and 80% of the variance in ϵ1 and ϵ3 are attributable to the uncertainty in the E-ρ relationship, while ≈10% are caused by the load magnitude and 5-30% by the load direction. Principal strain directions were unaffected by material and loading uncertainties. The antero-superior and medial inferior sides of the neck exhibited the largest probabilities for tensile and compression failure, however all were very small (pf<0.001). In summary, uncertainty quantification with PC has been demonstrated to efficiently and accurately describe the influence of very different stochastic inputs, which increases the credibility and explanatory power of personalized analyses of human proximal femurs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Novel patch modelling method for efficient simulation and prediction uncertainty analysis of multi-scale groundwater flow and transport processes

    NASA Astrophysics Data System (ADS)

    Sreekanth, J.; Moore, Catherine

    2018-04-01

    The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.

  9. MONALISA for stochastic simulations of Petri net models of biochemical systems.

    PubMed

    Balazki, Pavel; Lindauer, Klaus; Einloft, Jens; Ackermann, Jörg; Koch, Ina

    2015-07-10

    The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.

  10. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.

    PubMed

    Plehn, Thomas; May, Volkhard

    2017-01-21

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  11. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach

    NASA Astrophysics Data System (ADS)

    Plehn, Thomas; May, Volkhard

    2017-01-01

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  12. Hybrid ODE/SSA methods and the cell cycle model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  13. Boosting association rule mining in large datasets via Gibbs sampling.

    PubMed

    Qian, Guoqi; Rao, Calyampudi Radhakrishna; Sun, Xiaoying; Wu, Yuehua

    2016-05-03

    Current algorithms for association rule mining from transaction data are mostly deterministic and enumerative. They can be computationally intractable even for mining a dataset containing just a few hundred transaction items, if no action is taken to constrain the search space. In this paper, we develop a Gibbs-sampling-induced stochastic search procedure to randomly sample association rules from the itemset space, and perform rule mining from the reduced transaction dataset generated by the sample. Also a general rule importance measure is proposed to direct the stochastic search so that, as a result of the randomly generated association rules constituting an ergodic Markov chain, the overall most important rules in the itemset space can be uncovered from the reduced dataset with probability 1 in the limit. In the simulation study and a real genomic data example, we show how to boost association rule mining by an integrated use of the stochastic search and the Apriori algorithm.

  14. Optimal growth trajectories with finite carrying capacity.

    PubMed

    Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  15. Numerical Simulation and Quantitative Uncertainty Assessment of Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Debusschere, Bert; Najm, Habib; Knio, Omar; Matta, Alain; Ghanem, Roger; Le Maitre, Olivier

    2002-11-01

    This study investigates the effect of uncertainty in physical model parameters on computed electrokinetic flow of proteins in a microchannel with a potassium phosphate buffer. The coupled momentum, species transport, and electrostatic field equations give a detailed representation of electroosmotic and pressure-driven flow, including sample dispersion mechanisms. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. To quantify uncertainty, the governing equations are reformulated using a pseudo-spectral stochastic methodology, which uses polynomial chaos expansions to describe uncertain/stochastic model parameters, boundary conditions, and flow quantities. Integration of the resulting equations for the spectral mode strengths gives the evolution of all stochastic modes for all variables. Results show the spatiotemporal evolution of uncertainties in predicted quantities and highlight the dominant parameters contributing to these uncertainties during various flow phases. This work is supported by DARPA.

  16. Power Spectrum of a Noisy System Close to a Heteroclinic Orbit

    NASA Astrophysics Data System (ADS)

    Giner-Baldó, Jordi; Thomas, Peter J.; Lindner, Benjamin

    2017-07-01

    We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form Q˜ [ln (1/D)]^2. Our results are compared to numerical simulations of the respective Langevin equations.

  17. Optimal growth trajectories with finite carrying capacity

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  18. Multiscale stochastic simulations of chemical reactions with regulated scale separation

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros; Feigelman, Justin

    2013-07-01

    We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as τ and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.

  19. Signal-transfer Modeling for Regional Assessment of Forest Responses to Environmental Changes in the Southeastern United States

    Treesearch

    Robert J. Luxmoore; William W. Hargrove; M. Lynn Tharp; Wilfred M. Post; Michael W. Berry; Karen S. Minser; Wendell P. Cropper; Dale W. Johnson; Boris Zeide; Ralph L. Amateis; Harold E. Burkhart; V. Clark Baldwin; Kelly D. Peterson

    2000-01-01

    Stochastic transfer of information in a hierarchy of simulators is offered as a conceptual approach for assessing forest responses to changing climate and air quality across 13 southeastern states of the USA. This assessment approach combines geographic information system and Monte Carlo capabilities with several scales of computer modeling for southern pine species...

  20. Exact results of 1D traffic cellular automata: The low-density behavior of the Fukui-Ishibashi model

    NASA Astrophysics Data System (ADS)

    Salcido, Alejandro; Hernández-Zapata, Ernesto; Carreón-Sierra, Susana

    2018-03-01

    The maximum entropy states of the cellular automata models for traffic flow in a single-lane with no anticipation are presented and discussed. The exact analytical solutions for the low-density behavior of the stochastic Fukui-Ishibashi traffic model were obtained and compared with computer simulations of the model. An excellent agreement was found.

  1. Modeling disease transmission near eradication: An equation free approach

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Proctor, Joshua L.; Kutz, J. Nathan

    2015-01-01

    Although disease transmission in the near eradication regime is inherently stochastic, deterministic quantities such as the probability of eradication are of interest to policy makers and researchers. Rather than running large ensembles of discrete stochastic simulations over long intervals in time to compute these deterministic quantities, we create a data-driven and deterministic "coarse" model for them using the Equation Free (EF) framework. In lieu of deriving an explicit coarse model, the EF framework approximates any needed information, such as coarse time derivatives, by running short computational experiments. However, the choice of the coarse variables (i.e., the state of the coarse system) is critical if the resulting model is to be accurate. In this manuscript, we propose a set of coarse variables that result in an accurate model in the endemic and near eradication regimes, and demonstrate this on a compartmental model representing the spread of Poliomyelitis. When combined with adaptive time-stepping coarse projective integrators, this approach can yield over a factor of two speedup compared to direct simulation, and due to its lower dimensionality, could be beneficial when conducting systems level tasks such as designing eradication or monitoring campaigns.

  2. Simulation of dilute polymeric fluids in a three-dimensional contraction using a multiscale FENE model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de

    The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less

  3. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Elia, M.; Edwards, H. C.; Hu, J.

    Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less

  4. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    DOE PAGES

    D'Elia, M.; Edwards, H. C.; Hu, J.; ...

    2018-01-18

    Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less

  5. Learning-based stochastic object models for use in optimizing imaging systems

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    It is widely known that the optimization of imaging systems based on objective, or task-based, measures of image quality via computer-simulation requires use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in anatomy within a specified ensemble of patients remains a challenging task. Because they are established by use of image data corresponding a single patient, previously reported numerical anatomical models lack of the ability to accurately model inter- patient variations in anatomy. In certain applications, however, databases of high-quality volumetric images are available that can facilitate this task. In this work, a novel and tractable methodology for learning a SOM from a set of volumetric training images is developed. The proposed method is based upon geometric attribute distribution (GAD) models, which characterize the inter-structural centroid variations and the intra-structural shape variations of each individual anatomical structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations learned from training data. By use of the GAD models, random organ shapes and positions can be generated and integrated to form an anatomical phantom. The randomness in organ shape and position will reflect the variability of anatomy present in the training data. To demonstrate the methodology, a SOM corresponding to the pelvis of an adult male was computed and a corresponding ensemble of phantoms was created. Additionally, computer-simulated X-ray projection images corresponding to the phantoms were computed, from which tomographic images were reconstructed.

  6. Ordinal optimization and its application to complex deterministic problems

    NASA Astrophysics Data System (ADS)

    Yang, Mike Shang-Yu

    1998-10-01

    We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.

  7. Variable-free exploration of stochastic models: a gene regulatory network example.

    PubMed

    Erban, Radek; Frewen, Thomas A; Wang, Xiao; Elston, Timothy C; Coifman, Ronald; Nadler, Boaz; Kevrekidis, Ioannis G

    2007-04-21

    Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of complex, stochastic models of gene regulatory networks. This task involves (a) identifying observables that best describe the state of these complex systems and (b) characterizing the dynamics of the observables. In a previous paper [R. Erban et al., J. Chem. Phys. 124, 084106 (2006)] the authors assumed that good observables were known a priori, and presented an equation-free approach to approximate coarse-grained quantities (i.e., effective drift and diffusion coefficients) that characterize the long-time behavior of the observables. Here we use diffusion maps [R. Coifman et al., Proc. Natl. Acad. Sci. U.S.A. 102, 7426 (2005)] to extract appropriate observables ("reduction coordinates") in an automated fashion; these involve the leading eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We present lifting and restriction procedures for translating between physical variables and these data-based observables. These procedures allow us to perform equation-free, coarse-grained computations characterizing the long-term dynamics through the design and processing of short bursts of stochastic simulation initialized at appropriate values of the data-based observables.

  8. Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.

    2017-11-01

    Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.

  9. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  10. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGES

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  11. MarkoLAB: A simulator to study ionic channel's stochastic behavior.

    PubMed

    da Silva, Robson Rodrigues; Goroso, Daniel Gustavo; Bers, Donald M; Puglisi, José Luis

    2017-08-01

    Mathematical models of the cardiac cell have started to include markovian representations of the ionic channels instead of the traditional Hodgkin & Huxley formulations. There are many reasons for this: Markov models are not restricted to the idea of independent gates defining the channel, they allow more complex description with specific transitions between open, closed or inactivated states, and more importantly those states can be closely related to the underlying channel structure and conformational changes. We used the LabVIEW ® and MATLAB ® programs to implement the simulator MarkoLAB that allow a dynamical 3D representation of the markovian model of the channel. The Monte Carlo simulation was used to implement the stochastic transitions among states. The user can specify the voltage protocol by setting the holding potential, the step-to voltage and the duration of the stimuli. The most studied feature of a channel is the current flowing through it. This happens when the channel stays in the open state, but most of the time, as revealed by the low open probability values, the channel remains on the inactive or closed states. By focusing only when the channel enters or leaves the open state we are missing most of its activity. MarkoLAB proved to be quite useful to visualize the whole behavior of the channel and not only when the channel produces a current. Such dynamic representation provides more complete information about channel kinetics and will be a powerful tool to demonstrate the effect of gene mutations or drugs on the channel function. MarkoLAB provides an original way of visualizing the stochastic behavior of a channel. It clarifies concepts, such as recovery from inactivation, calcium- versus voltage-dependent inactivation, and tail currents. It is not restricted to ionic channels only but it can be extended to other transporters, such as exchangers and pumps. This program is intended as a didactical tool to illustrate the dynamical behavior of a channel. It has been implemented in two platforms MATLAB ® and LabVIEW ® to enhance the target users of this new didactical tool. The computational cost of implementing a stochastic simulation is within the range of a personal computer performance; making MarkoLAB suitable to be run during a lecture or presentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

    PubMed

    Sedwards, Sean; Mazza, Tommaso

    2007-10-15

    Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

  13. Two-part models with stochastic processes for modelling longitudinal semicontinuous data: Computationally efficient inference and modelling the overall marginal mean.

    PubMed

    Yiu, Sean; Tom, Brian Dm

    2017-01-01

    Several researchers have described two-part models with patient-specific stochastic processes for analysing longitudinal semicontinuous data. In theory, such models can offer greater flexibility than the standard two-part model with patient-specific random effects. However, in practice, the high dimensional integrations involved in the marginal likelihood (i.e. integrated over the stochastic processes) significantly complicates model fitting. Thus, non-standard computationally intensive procedures based on simulating the marginal likelihood have so far only been proposed. In this paper, we describe an efficient method of implementation by demonstrating how the high dimensional integrations involved in the marginal likelihood can be computed efficiently. Specifically, by using a property of the multivariate normal distribution and the standard marginal cumulative distribution function identity, we transform the marginal likelihood so that the high dimensional integrations are contained in the cumulative distribution function of a multivariate normal distribution, which can then be efficiently evaluated. Hence, maximum likelihood estimation can be used to obtain parameter estimates and asymptotic standard errors (from the observed information matrix) of model parameters. We describe our proposed efficient implementation procedure for the standard two-part model parameterisation and when it is of interest to directly model the overall marginal mean. The methodology is applied on a psoriatic arthritis data set concerning functional disability.

  14. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  15. Ligand-protein docking using a quantum stochastic tunneling optimization method.

    PubMed

    Mancera, Ricardo L; Källblad, Per; Todorov, Nikolay P

    2004-04-30

    A novel hybrid optimization method called quantum stochastic tunneling has been recently introduced. Here, we report its implementation within a new docking program called EasyDock and a validation with the CCDC/Astex data set of ligand-protein complexes using the PLP score to represent the ligand-protein potential energy surface and ScreenScore to score the ligand-protein binding energies. When taking the top energy-ranked ligand binding mode pose, we were able to predict the correct crystallographic ligand binding mode in up to 75% of the cases. By using this novel optimization method run times for typical docking simulations are significantly shortened. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 858-864, 2004

  16. Application of stochastic weighted algorithms to a multidimensional silica particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang

    2013-09-01

    Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less

  17. Intrusive Method for Uncertainty Quantification in a Multiphase Flow Solver

    NASA Astrophysics Data System (ADS)

    Turnquist, Brian; Owkes, Mark

    2016-11-01

    Uncertainty quantification (UQ) is a necessary, interesting, and often neglected aspect of fluid flow simulations. To determine the significance of uncertain initial and boundary conditions, a multiphase flow solver is being created which extends a single phase, intrusive, polynomial chaos scheme into multiphase flows. Reliably estimating the impact of input uncertainty on design criteria can help identify and minimize unwanted variability in critical areas, and has the potential to help advance knowledge in atomizing jets, jet engines, pharmaceuticals, and food processing. Use of an intrusive polynomial chaos method has been shown to significantly reduce computational cost over non-intrusive collocation methods such as Monte-Carlo. This method requires transforming the model equations into a weak form through substitution of stochastic (random) variables. Ultimately, the model deploys a stochastic Navier Stokes equation, a stochastic conservative level set approach including reinitialization, as well as stochastic normals and curvature. By implementing these approaches together in one framework, basic problems may be investigated which shed light on model expansion, uncertainty theory, and fluid flow in general. NSF Grant Number 1511325.

  18. IMPLICIT DUAL CONTROL BASED ON PARTICLE FILTERING AND FORWARD DYNAMIC PROGRAMMING.

    PubMed

    Bayard, David S; Schumitzky, Alan

    2010-03-01

    This paper develops a sampling-based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy-iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling-based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as an H-block. Practical suggestions are given for reducing computational loads within the H-block for real-time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed-loop performance with respect to other more common stochastic control approaches.

  19. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  20. Approximate Dynamic Programming and Aerial Refueling

    DTIC Science & Technology

    2007-06-01

    by two Army Air Corps de Havilland DH -4Bs (9). While crude by modern standards, the passing of hoses be- tween planes is effectively the same approach...incorporating stochastic data sets. . . . . . . . . . . 106 55 Total Cost Stochastically Trained Simulations versus Deterministically Trained Simulations...incorporating stochastic data sets. 106 To create meaningful results when testing stochastic data, the data sets are av- eraged so that conclusions are not

  1. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A novel Kinetic Monte Carlo algorithm for Non-Equilibrium Simulations

    NASA Astrophysics Data System (ADS)

    Jha, Prateek; Kuzovkov, Vladimir; Grzybowski, Bartosz; Olvera de La Cruz, Monica

    2012-02-01

    We have developed an off-lattice kinetic Monte Carlo simulation scheme for reaction-diffusion problems in soft matter systems. The definition of transition probabilities in the Monte Carlo scheme are taken identical to the transition rates in a renormalized master equation of the diffusion process and match that of the Glauber dynamics of Ising model. Our scheme provides several advantages over the Brownian dynamics technique for non-equilibrium simulations. Since particle displacements are accepted/rejected in a Monte Carlo fashion as opposed to moving particles following a stochastic equation of motion, nonphysical movements (e.g., violation of a hard core assumption) are not possible (these moves have zero acceptance). Further, the absence of a stochastic ``noise'' term resolves the computational difficulties associated with generating statistically independent trajectories with definitive mean properties. Finally, since the timestep is independent of the magnitude of the interaction forces, much longer time-steps can be employed than Brownian dynamics. We discuss the applications of this scheme for dynamic self-assembly of photo-switchable nanoparticles and dynamical problems in polymeric systems.

  3. Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    1988-01-01

    A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.

  4. Scale-Resolving simulations (SRS): How much resolution do we really need?

    NASA Astrophysics Data System (ADS)

    Pereira, Filipe M. S.; Girimaji, Sharath

    2017-11-01

    Scale-resolving simulations (SRS) are emerging as the computational approach of choice for many engineering flows with coherent structures. The SRS methods seek to resolve only the most important features of the coherent structures and model the remainder of the flow field with canonical closures. With reference to a typical Large-Eddy Simulation (LES), practical SRS methods aim to resolve a considerably narrower range of scales (reduced physical resolution) to achieve an adequate degree of accuracy at reasonable computational effort. While the objective of SRS is well-founded, the criteria for establishing the optimal degree of resolution required to achieve an acceptable level of accuracy are not clear. This study considers the canonical case of the flow around a circular cylinder to address the issue of `optimal' resolution. Two important criteria are developed. The first condition addresses the issue of adequate resolution of the flow field. The second guideline provides an assessment of whether the modeled field is canonical (stochastic) turbulence amenable to closure-based computations.

  5. A Computational Framework for Bioimaging Simulation.

    PubMed

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  6. A new version of the CADNA library for estimating round-off error propagation in Fortran programs

    NASA Astrophysics Data System (ADS)

    Jézéquel, Fabienne; Chesneaux, Jean-Marie; Lamotte, Jean-Luc

    2010-11-01

    The CADNA library enables one to estimate, using a probabilistic approach, round-off error propagation in any simulation program. CADNA provides new numerical types, the so-called stochastic types, on which round-off errors can be estimated. Furthermore CADNA contains the definition of arithmetic and relational operators which are overloaded for stochastic variables and the definition of mathematical functions which can be used with stochastic arguments. On 64-bit processors, depending on the rounding mode chosen, the mathematical library associated with the GNU Fortran compiler may provide incorrect results or generate severe bugs. Therefore the CADNA library has been improved to enable the numerical validation of programs on 64-bit processors. New version program summaryProgram title: CADNA Catalogue identifier: AEAT_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAT_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 28 488 No. of bytes in distributed program, including test data, etc.: 463 778 Distribution format: tar.gz Programming language: Fortran NOTE: A C++ version of this program is available in the Library as AEGQ_v1_0 Computer: PC running LINUX with an i686 or an ia64 processor, UNIX workstations including SUN, IBM Operating system: LINUX, UNIX Classification: 6.5 Catalogue identifier of previous version: AEAT_v1_0 Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 933 Does the new version supersede the previous version?: Yes Nature of problem: A simulation program which uses floating-point arithmetic generates round-off errors, due to the rounding performed at each assignment and at each arithmetic operation. Round-off error propagation may invalidate the result of a program. The CADNA library enables one to estimate round-off error propagation in any simulation program and to detect all numerical instabilities that may occur at run time. Solution method: The CADNA library [1-3] implements Discrete Stochastic Arithmetic [4,5] which is based on a probabilistic model of round-off errors. The program is run several times with a random rounding mode generating different results each time. From this set of results, CADNA estimates the number of exact significant digits in the result that would have been computed with standard floating-point arithmetic. Reasons for new version: On 64-bit processors, the mathematical library associated with the GNU Fortran compiler may provide incorrect results or generate severe bugs with rounding towards -∞ and +∞, which the random rounding mode is based on. Therefore a particular definition of mathematical functions for stochastic arguments has been included in the CADNA library to enable its use with the GNU Fortran compiler on 64-bit processors. Summary of revisions: If CADNA is used on a 64-bit processor with the GNU Fortran compiler, mathematical functions are computed with rounding to the nearest, otherwise they are computed with the random rounding mode. It must be pointed out that the knowledge of the accuracy of the stochastic argument of a mathematical function is never lost. Restrictions: CADNA requires a Fortran 90 (or newer) compiler. In the program to be linked with the CADNA library, round-off errors on complex variables cannot be estimated. Furthermore array functions such as product or sum must not be used. Only the arithmetic operators and the abs, min, max and sqrt functions can be used for arrays. Additional comments: In the library archive, users are advised to read the INSTALL file first. The doc directory contains a user guide named ug.cadna.pdf which shows how to control the numerical accuracy of a program using CADNA, provides installation instructions and describes test runs. The source code, which is located in the src directory, consists of one assembly language file (cadna_rounding.s) and eighteen Fortran language files. cadna_rounding.s is a symbolic link to the assembly file corresponding to the processor and the Fortran compiler used. This assembly file contains routines which are frequently called in the CADNA Fortran files to change the rounding mode. The Fortran language files contain the definition of the stochastic types on which the control of accuracy can be performed, CADNA specific functions (for instance to enable or disable the detection of numerical instabilities), the definition of arithmetic and relational operators which are overloaded for stochastic variables and the definition of mathematical functions which can be used with stochastic arguments. The examples directory contains seven test runs which illustrate the use of the CADNA library and the benefits of Discrete Stochastic Arithmetic. Running time: The version of a code which uses CADNA runs at least three times slower than its floating-point version. This cost depends on the computer architecture and can be higher if the detection of numerical instabilities is enabled. In this case, the cost may be related to the number of instabilities detected.

  7. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    NASA Astrophysics Data System (ADS)

    Dennis, Graham R.; Hope, Joseph J.; Johnsson, Mattias T.

    2013-01-01

    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code. Program summaryProgram title: XMDS2 Catalogue identifier: AENK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 872490 No. of bytes in distributed program, including test data, etc.: 45522370 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer with a Unix-like system, a C++ compiler and Python. Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux. RAM: Problem dependent (roughly 50 bytes per grid point) Classification: 4.3, 6.5. External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms (used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-FFT-based spectral methods). Nature of problem: General coupled initial-value stochastic partial differential equations. Solution method: Spectral method with method-of-lines integration Running time: Determined by the size of the problem

  8. A statistical mechanics approach to computing rare transitions in multi-stable turbulent geophysical flows

    NASA Astrophysics Data System (ADS)

    Laurie, J.; Bouchet, F.

    2012-04-01

    Many turbulent flows undergo sporadic random transitions, after long periods of apparent statistical stationarity. For instance, paths of the Kuroshio [1], the Earth's magnetic field reversal, atmospheric flows [2], MHD experiments [3], 2D turbulence experiments [4,5], 3D flows [6] show this kind of behavior. The understanding of this phenomena is extremely difficult due to the complexity, the large number of degrees of freedom, and the non-equilibrium nature of these turbulent flows. It is however a key issue for many geophysical problems. A straightforward study of these transitions, through a direct numerical simulation of the governing equations, is nearly always impracticable. This is mainly a complexity problem, due to the large number of degrees of freedom involved for genuine turbulent flows, and the extremely long time between two transitions. In this talk, we consider two-dimensional and geostrophic turbulent models, with stochastic forces. We consider regimes where two or more attractors coexist. As an alternative to direct numerical simulation, we propose a non-equilibrium statistical mechanics approach to the computation of this phenomenon. Our strategy is based on large deviation theory [7], derived from a path integral representation of the stochastic process. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable one. Moreover, we also determine the transition rates, and in which cases this most probable trajectory is a typical one. Interestingly, we prove that in the class of models we consider, a mechanism exists for diffusion over sets of connected attractors. For the type of stochastic forces that allows this diffusion, the transition between attractors is not a rare event. It is then very difficult to characterize the flow as bistable. However for another class of stochastic forces, this diffusion mechanism is prevented, and genuine bistability or multi-stability is observed. We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans.

  9. On the precision of aero-thermal simulations for TMT

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Thompson, Hugh

    2016-08-01

    Environmental effects on the Image Quality (IQ) of the Thirty Meter Telescope (TMT) are estimated by aero-thermal numerical simulations. These simulations utilize Computational Fluid Dynamics (CFD) to estimate, among others, thermal (dome and mirror) seeing as well as wind jitter and blur. As the design matures, guidance obtained from these numerical experiments can influence significant cost-performance trade-offs and even component survivability. The stochastic nature of environmental conditions results in the generation of a large computational solution matrix in order to statistically predict Observatory Performance. Moreover, the relative contribution of selected key subcomponents to IQ increases the parameter space and thus computational cost, while dictating a reduced prediction error bar. The current study presents the strategy followed to minimize prediction time and computational resources, the subsequent physical and numerical limitations and finally the approach to mitigate the issues experienced. In particular, the paper describes a mesh-independence study, the effect of interpolation of CFD results on the TMT IQ metric, and an analysis of the sensitivity of IQ to certain important heat sources and geometric features.

  10. Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda

    PubMed Central

    Andrianakis, Ioannis; Vernon, Ian R.; McCreesh, Nicky; McKinley, Trevelyan J.; Oakley, Jeremy E.; Nsubuga, Rebecca N.; Goldstein, Michael; White, Richard G.

    2015-01-01

    Advances in scientific computing have allowed the development of complex models that are being routinely applied to problems in disease epidemiology, public health and decision making. The utility of these models depends in part on how well they can reproduce empirical data. However, fitting such models to real world data is greatly hindered both by large numbers of input and output parameters, and by long run times, such that many modelling studies lack a formal calibration methodology. We present a novel method that has the potential to improve the calibration of complex infectious disease models (hereafter called simulators). We present this in the form of a tutorial and a case study where we history match a dynamic, event-driven, individual-based stochastic HIV simulator, using extensive demographic, behavioural and epidemiological data available from Uganda. The tutorial describes history matching and emulation. History matching is an iterative procedure that reduces the simulator's input space by identifying and discarding areas that are unlikely to provide a good match to the empirical data. History matching relies on the computational efficiency of a Bayesian representation of the simulator, known as an emulator. Emulators mimic the simulator's behaviour, but are often several orders of magnitude faster to evaluate. In the case study, we use a 22 input simulator, fitting its 18 outputs simultaneously. After 9 iterations of history matching, a non-implausible region of the simulator input space was identified that was times smaller than the original input space. Simulator evaluations made within this region were found to have a 65% probability of fitting all 18 outputs. History matching and emulation are useful additions to the toolbox of infectious disease modellers. Further research is required to explicitly address the stochastic nature of the simulator as well as to account for correlations between outputs. PMID:25569850

  11. Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling

    NASA Astrophysics Data System (ADS)

    Shen, W.; Zhong, Q.; Shi, B.

    2012-12-01

    Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.

  12. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Errormore » analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.« less

  13. Hybrid approaches for multiple-species stochastic reaction-diffusion models

    NASA Astrophysics Data System (ADS)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  14. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    PubMed

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen

    2015-10-15

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  15. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    PubMed Central

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-01-01

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. PMID:26478601

  16. Evolutionary Development of the Simulation by Logical Modeling System (SIBYL)

    NASA Technical Reports Server (NTRS)

    Wu, Helen

    1995-01-01

    Through the evolutionary development of the Simulation by Logical Modeling System (SIBYL) we have re-engineered the expensive and complex IBM mainframe based Long-term Hardware Projection Model (LHPM) to a robust cost-effective computer based mode that is easy to use. We achieved significant cost reductions and improved productivity in preparing long-term forecasts of Space Shuttle Main Engine (SSME) hardware. The LHPM for the SSME is a stochastic simulation model that projects the hardware requirements over 10 years. SIBYL is now the primary modeling tool for developing SSME logistics proposals and Program Operating Plan (POP) for NASA and divisional marketing studies.

  17. Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations

    NASA Astrophysics Data System (ADS)

    Gómez-Uribe, Carlos A.; Verghese, George C.

    2007-01-01

    The intrinsic stochastic effects in chemical reactions, and particularly in biochemical networks, may result in behaviors significantly different from those predicted by deterministic mass action kinetics (MAK). Analyzing stochastic effects, however, is often computationally taxing and complex. The authors describe here the derivation and application of what they term the mass fluctuation kinetics (MFK), a set of deterministic equations to track the means, variances, and covariances of the concentrations of the chemical species in the system. These equations are obtained by approximating the dynamics of the first and second moments of the chemical master equation. Apart from needing knowledge of the system volume, the MFK description requires only the same information used to specify the MAK model, and is not significantly harder to write down or apply. When the effects of fluctuations are negligible, the MFK description typically reduces to MAK. The MFK equations are capable of describing the average behavior of the network substantially better than MAK, because they incorporate the effects of fluctuations on the evolution of the means. They also account for the effects of the means on the evolution of the variances and covariances, to produce quite accurate uncertainty bands around the average behavior. The MFK computations, although approximate, are significantly faster than Monte Carlo methods for computing first and second moments in systems of chemical reactions. They may therefore be used, perhaps along with a few Monte Carlo simulations of sample state trajectories, to efficiently provide a detailed picture of the behavior of a chemical system.

  18. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  19. Parallel Fokker–Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-01-01

    A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisionalmore » scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.« less

  20. Remembrance of phases past: An autoregressive method for generating realistic atmospheres in simulations

    NASA Astrophysics Data System (ADS)

    Srinath, Srikar; Poyneer, Lisa A.; Rudy, Alexander R.; Ammons, S. M.

    2014-08-01

    The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.

  1. Developing Stochastic Models as Inputs for High-Frequency Ground Motion Simulations

    NASA Astrophysics Data System (ADS)

    Savran, William Harvey

    High-frequency ( 10 Hz) deterministic ground motion simulations are challenged by our understanding of the small-scale structure of the earth's crust and the rupture process during an earthquake. We will likely never obtain deterministic models that can accurately describe these processes down to the meter scale length required for broadband wave propagation. Instead, we can attempt to explain the behavior, in a statistical sense, by including stochastic models defined by correlations observed in the natural earth and through physics based simulations of the earthquake rupture process. Toward this goal, we develop stochastic models to address both of the primary considerations for deterministic ground motion simulations: namely, the description of the material properties in the crust, and broadband earthquake source descriptions. Using borehole sonic log data recorded in Los Angeles basin, we estimate the spatial correlation structure of the small-scale fluctuations in P-wave velocities by determining the best-fitting parameters of a von Karman correlation function. We find that Hurst exponents, nu, between 0.0-0.2, vertical correlation lengths, az, of 15-150m, an standard deviation, sigma of about 5% characterize the variability in the borehole data. Usin these parameters, we generated a stochastic model of velocity and density perturbations and combined with leading seismic velocity models to perform a validation exercise for the 2008, Chino Hills, CA using heterogeneous media. We find that models of velocity and density perturbations can have significant effects on the wavefield at frequencies as low as 0.3 Hz, with ensemble median values of various ground motion metrics varying up to +/-50%, at certain stations, compared to those computed solely from the CVM. Finally, we develop a kinematic rupture generator based on dynamic rupture simulations on geometrically complex faults. We analyze 100 dynamic rupture simulations on strike-slip faults ranging from Mw 6.4-7.2. We find that our dynamic simulations follow empirical scaling relationships for inter-plate strike-slip events, and provide source spectra comparable with an o -2 model. Our rupture generator reproduces GMPE medians and intra-event standard deviations spectral accelerations for an ensemble of 10 Hz fully-deterministic ground motion simulations, as compared to NGA West2 GMPE relationships up to 0.2 seconds.

  2. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less

  3. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  4. A general moment expansion method for stochastic kinetic models

    NASA Astrophysics Data System (ADS)

    Ale, Angelique; Kirk, Paul; Stumpf, Michael P. H.

    2013-05-01

    Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are necessary to describe the dynamic properties of the system, which the linear noise approximation is unable to provide. Moreover, also for systems for which the mean does not have a strong dependence on higher order moments, moment approximation methods give information about higher order moments of the underlying probability distribution. We demonstrate the method using a dimerisation reaction, Michaelis-Menten kinetics and a model of an oscillating p53 system. We show that for the dimerisation reaction and Michaelis-Menten enzyme kinetics system higher order moments have limited influence on the estimation of the mean, while for the p53 system, the solution for the mean can require several moments to converge to the average obtained from many stochastic simulations. We also find that agreement between lower order moments does not guarantee that higher moments will agree. Compared to stochastic simulations, our approach is numerically highly efficient at capturing the behaviour of stochastic systems in terms of the average and higher moments, and we provide expressions for the computational cost for different system sizes and orders of approximation. We show how the moment expansion method can be employed to efficiently quantify parameter sensitivity. Finally we investigate the effects of using too few moments on parameter estimation, and provide guidance on how to estimate if the distribution can be accurately approximated using only a few moments.

  5. An agent-based stochastic Occupancy Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  6. An agent-based stochastic Occupancy Simulator

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    2017-06-01

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  7. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.

    PubMed

    Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M

    2017-05-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).

  8. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks

    PubMed Central

    Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.

    2017-01-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513

  9. Deterministic and stochastic models for middle east respiratory syndrome (MERS)

    NASA Astrophysics Data System (ADS)

    Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning

    2018-03-01

    World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.

  10. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    DOE PAGES

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less

  11. Empirical improvements for estimating earthquake response spectra with random‐vibration theory

    USGS Publications Warehouse

    Boore, David; Thompson, Eric M.

    2012-01-01

    The stochastic method of ground‐motion simulation is often used in combination with the random‐vibration theory to directly compute ground‐motion intensity measures, thereby bypassing the more computationally intensive time‐domain simulations. Key to the application of random‐vibration theory to simulate response spectra is determining the duration (Drms) used in computing the root‐mean‐square oscillator response. Boore and Joyner (1984) originally proposed an equation for Drms , which was improved upon by Liu and Pezeshk (1999). Though these equations are both substantial improvements over using the duration of the ground‐motion excitation for Drms , we document systematic differences between the ground‐motion intensity measures derived from the random‐vibration and time‐domain methods for both of these Drms equations. These differences are generally less than 10% for most magnitudes, distances, and periods of engineering interest. Given the systematic nature of the differences, however, we feel that improved equations are warranted. We empirically derive new equations from time‐domain simulations for eastern and western North America seismological models. The new equations improve the random‐vibration simulations over a wide range of magnitudes, distances, and oscillator periods.

  12. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems.

    PubMed

    Lampoudi, Sotiria; Gillespie, Dan T; Petzold, Linda R

    2009-03-07

    The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the stochastic simulation algorithm in which the spatially inhomogeneous volume of the system is divided into homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffusive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when the system is such that diffusive transfers occur much more frequently than chemical reactions. In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed to, on the one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on the other, to handle small reactant populations with greater accuracy than deterministic-stochastic hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately conditioned binomial random variables for representing the net numbers of molecules diffusing from any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the benefits of the algorithm.

  13. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    PubMed Central

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  14. A stochastic method for computing hadronic matrix elements

    DOE PAGES

    Alexandrou, Constantia; Constantinou, Martha; Dinter, Simon; ...

    2014-01-24

    In this study, we present a stochastic method for the calculation of baryon 3-point functions which is an alternative to the typically used sequential method offering more versatility. We analyze the scaling of the error of the stochastically evaluated 3-point function with the lattice volume and find a favorable signal to noise ratio suggesting that the stochastic method can be extended to large volumes providing an efficient approach to compute hadronic matrix elements and form factors.

  15. Simulation of rockfalls triggered by earthquakes

    USGS Publications Warehouse

    Kobayashi, Y.; Harp, E.L.; Kagawa, T.

    1990-01-01

    A computer program to simulate the downslope movement of boulders in rolling or bouncing modes has been developed and applied to actual rockfalls triggered by the Mammoth Lakes, California, earthquake sequence in 1980 and the Central Idaho earthquake in 1983. In order to reproduce a movement mode where bouncing predominated, we introduced an artificial unevenness to the slope surface by adding a small random number to the interpolated value of the mid-points between the adjacent surveyed points. Three hundred simulations were computed for each site by changing the random number series, which determined distances and bouncing intervals. The movement of the boulders was, in general, rather erratic depending on the random numbers employed, and the results could not be seen as deterministic but stochastic. The closest agreement between calculated and actual movements was obtained at the site with the most detailed and accurate topographic measurements. ?? 1990 Springer-Verlag.

  16. Computer software tool REALM for sustainable water allocation and management.

    PubMed

    Perera, B J C; James, B; Kularathna, M D U

    2005-12-01

    REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.

  17. Inverse Modeling Using Markov Chain Monte Carlo Aided by Adaptive Stochastic Collocation Method with Transformation

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Liao, Q.

    2016-12-01

    The Bayesian inference provides a convenient framework to solve statistical inverse problems. In this method, the parameters to be identified are treated as random variables. The prior knowledge, the system nonlinearity, and the measurement errors can be directly incorporated in the posterior probability density function (PDF) of the parameters. The Markov chain Monte Carlo (MCMC) method is a powerful tool to generate samples from the posterior PDF. However, since the MCMC usually requires thousands or even millions of forward simulations, it can be a computationally intensive endeavor, particularly when faced with large-scale flow and transport models. To address this issue, we construct a surrogate system for the model responses in the form of polynomials by the stochastic collocation method. In addition, we employ interpolation based on the nested sparse grids and takes into account the different importance of the parameters, under the condition of high random dimensions in the stochastic space. Furthermore, in case of low regularity such as discontinuous or unsmooth relation between the input parameters and the output responses, we introduce an additional transform process to improve the accuracy of the surrogate model. Once we build the surrogate system, we may evaluate the likelihood with very little computational cost. We analyzed the convergence rate of the forward solution and the surrogate posterior by Kullback-Leibler divergence, which quantifies the difference between probability distributions. The fast convergence of the forward solution implies fast convergence of the surrogate posterior to the true posterior. We also tested the proposed algorithm on water-flooding two-phase flow reservoir examples. The posterior PDF calculated from a very long chain with direct forward simulation is assumed to be accurate. The posterior PDF calculated using the surrogate model is in reasonable agreement with the reference, revealing a great improvement in terms of computational efficiency.

  18. Minimized state complexity of quantum-encoded cryptic processes

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.

    2016-05-01

    The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.

  19. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    NASA Astrophysics Data System (ADS)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  20. Fluctuations in protein synthesis from a single RNA template: stochastic kinetics of ribosomes.

    PubMed

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them--namely, the dwell time distribution--has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  1. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  2. Groundwater management under uncertainty using a stochastic multi-cell model

    NASA Astrophysics Data System (ADS)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  3. A moment-convergence method for stochastic analysis of biochemical reaction networks.

    PubMed

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  4. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems.

    PubMed

    Williams, Richard A; Timmis, Jon; Qwarnstrom, Eva E

    2016-01-01

    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.

  5. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems

    PubMed Central

    Timmis, Jon; Qwarnstrom, Eva E.

    2016-01-01

    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model. PMID:27571414

  6. GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA

    NASA Astrophysics Data System (ADS)

    Spiechowicz, J.; Kostur, M.; Machura, L.

    2015-06-01

    This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of a well known phenomenon of the noise induced transport of Brownian motors in periodic structures. As a source of fluctuations in the considered systems we selected the three most commonly occurring noises: the Gaussian white noise, the white Poissonian noise and the dichotomous process also known as a random telegraph signal. The detailed discussion on various aspects of the applied numerical schemes is also presented. The measured speedup can be of the astonishing order of about 3000 when compared to a typical CPU. This number significantly expands the range of problems solvable by use of stochastic simulations, allowing even an interactive research in some cases.

  7. Eliminating fast reactions in stochastic simulations of biochemical networks: A bistable genetic switch

    NASA Astrophysics Data System (ADS)

    Morelli, Marco J.; Allen, Rosalind J.; Tǎnase-Nicola, Sorin; ten Wolde, Pieter Rein

    2008-01-01

    In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove protein-DNA and/or protein-protein association-dissociation reactions from the reaction set using various coarse-graining strategies. We determine the effects on the steady-state probability distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA interactions may not. We also find that it is important to use the chemical master equation rather than macroscopic rate equations to compute effective propensity functions for the coarse-grained reactions.

  8. Matrix product algorithm for stochastic dynamics on networks applied to nonequilibrium Glauber dynamics

    NASA Astrophysics Data System (ADS)

    Barthel, Thomas; De Bacco, Caterina; Franz, Silvio

    2018-01-01

    We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.

  9. Nanoparticle Contrast Agents for Enhanced Microwave Imaging and Thermal Treatment of Breast Cancer

    DTIC Science & Technology

    2010-10-01

    continue to increase in step with de - creasing critical dimensions, electrodynamic effects directly influence high-frequency device performance, and...computational burden is significant. The Cellular Monte Carlo (CMC) method, originally de - veloped by Kometer et al. [50], was designed to reduce this...combination of a full-wave FDTD solver with a de - vice simulator based upon a stochastic transport kernel is conceptually straightforward, but the

  10. Integrals for IBS and beam cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; /Fermilab

    Simulation of beam cooling usually requires performing certain integral transformations every time step or so, which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are discussed.

  11. Integrals for IBS and Beam Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.

    Simulation of beam cooling usually requires performing certain integral transformations every time step or so, which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are discussed.

  12. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2017-07-01

    A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.

  13. Multi-Dimensional, Mesoscopic Monte Carlo Simulations of Inhomogeneous Reaction-Drift-Diffusion Systems on Graphics-Processing Units

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd

    2012-01-01

    For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001

  14. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  15. Stochastic models for inferring genetic regulation from microarray gene expression data.

    PubMed

    Tian, Tianhai

    2010-03-01

    Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.

  16. A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields

    DOE PAGES

    Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto

    2017-10-26

    In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less

  17. A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto

    In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less

  18. Finite state projection based bounds to compare chemical master equation models using single-cell data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less

  19. Extinction time of a stochastic predator-prey model by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Hu, Bing; Huang, Dongmei; Sun, Jian-Qiao

    2018-03-01

    The stochastic response and extinction time of a predator-prey model with Gaussian white noise excitations are studied by the generalized cell mapping (GCM) method based on the short-time Gaussian approximation (STGA). The methods for stochastic response probability density functions (PDFs) and extinction time statistics are developed. The Taylor expansion is used to deal with non-polynomial nonlinear terms of the model for deriving the moment equations with Gaussian closure, which are needed for the STGA in order to compute the one-step transition probabilities. The work is validated with direct Monte Carlo simulations. We have presented the transient responses showing the evolution from a Gaussian initial distribution to a non-Gaussian steady-state one. The effects of the model parameter and noise intensities on the steady-state PDFs are discussed. It is also found that the effects of noise intensities on the extinction time statistics are opposite to the effects on the limit probability distributions of the survival species.

  20. Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings

    NASA Astrophysics Data System (ADS)

    Cunha, Americo; Soize, Christian; Sampaio, Rubens

    2015-11-01

    This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.

  1. Systematic parameter inference in stochastic mesoscopic modeling

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  2. Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using a Weighted Ensemble of Trajectories

    PubMed Central

    Donovan, Rory M.; Tapia, Jose-Juan; Sullivan, Devin P.; Faeder, James R.; Murphy, Robert F.; Dittrich, Markus; Zuckerman, Daniel M.

    2016-01-01

    The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned weights and uses a statistical resampling strategy of replicating and pruning trajectories to focus computational effort on difficult-to-sample regions. The method can also generate unbiased estimates of non-equilibrium and equilibrium observables, sometimes with significantly less aggregate computing time than would be possible using standard parallelization. Here, we use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial geometry (e.g., of organelles, plasma membrane) and biochemical interactions among mobile molecular species. We study a series of models exhibiting spatial, temporal and biochemical complexity and show that although WE has important limitations, it can achieve performance significantly exceeding standard parallel simulation—by orders of magnitude for some observables. PMID:26845334

  3. Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation.

    PubMed

    Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai

    2006-09-08

    Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

  4. Stochastic and deterministic models for agricultural production networks.

    PubMed

    Bai, P; Banks, H T; Dediu, S; Govan, A Y; Last, M; Lloyd, A L; Nguyen, H K; Olufsen, M S; Rempala, G; Slenning, B D

    2007-07-01

    An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.

  5. IGMtransmission: Transmission curve computation

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  6. Stochastic Partial Differential Equation Solver for Hydroacoustic Modeling: Improvements to Paracousti Sound Propagation Solver

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2017-12-01

    Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  7. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    DOE PAGES

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...

    2017-01-25

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less

  8. Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Barua, A.; Zhou, M., E-mail: min.zhou@me.gatech.edu

    2014-05-07

    Accounting for the combined effect of multiple sources of stochasticity in material attributes, we develop an approach that computationally predicts the probability of ignition of polymer-bonded explosives (PBXs) under impact loading. The probabilistic nature of the specific ignition processes is assumed to arise from two sources of stochasticity. The first source involves random variations in material microstructural morphology; the second source involves random fluctuations in grain-binder interfacial bonding strength. The effect of the first source of stochasticity is analyzed with multiple sets of statistically similar microstructures and constant interfacial bonding strength. Subsequently, each of the microstructures in the multiple setsmore » is assigned multiple instantiations of randomly varying grain-binder interfacial strengths to analyze the effect of the second source of stochasticity. Critical hotspot size-temperature states reaching the threshold for ignition are calculated through finite element simulations that explicitly account for microstructure and bulk and interfacial dissipation to quantify the time to criticality (t{sub c}) of individual samples, allowing the probability distribution of the time to criticality that results from each source of stochastic variation for a material to be analyzed. Two probability superposition models are considered to combine the effects of the multiple sources of stochasticity. The first is a parallel and series combination model, and the second is a nested probability function model. Results show that the nested Weibull distribution provides an accurate description of the combined ignition probability. The approach developed here represents a general framework for analyzing the stochasticity in the material behavior that arises out of multiple types of uncertainty associated with the structure, design, synthesis and processing of materials.« less

  9. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  10. Characteristic effects of stochastic oscillatory forcing on neural firing: analytical theory and comparison to paddlefish electroreceptor data.

    PubMed

    Bauermeister, Christoph; Schwalger, Tilo; Russell, David F; Neiman, Alexander B; Lindner, Benjamin

    2013-01-01

    Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.

  11. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  12. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  13. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

    PubMed

    Cockrell, Chase; An, Gary

    2017-10-07

    Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation. Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods. The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we developed two novel methods for characterizing the behavior of a RDS: Probabilistic Basins of Attraction (PBoA) and Stochastic Trajectory Analysis (STA). Computationally generated behavioral landscapes demonstrated attractor structures around stochastic regions of behavior that could be described in a complementary fashion through use of PBoA and STA. The stochasticity of the boundaries of the attractors highlights the challenge for correlative attempts to characterize and classify clinical sepsis. HPC simulations of models like the IIRABM can be used to generate approximations of the behavior space of sepsis to both establish "boundaries of futility" with respect to existing investigatory approaches and apply system engineering principles to investigate the general dynamic properties of sepsis to provide a pathway for developing control strategies. The issues that bedevil the study and treatment of sepsis, namely clinical data sparseness and inadequate experimental sampling of system behavior space, are fundamental to nearly all biomedical research, manifesting in the "Crisis of Reproducibility" at all levels. HPC-augmented simulation-based research offers an investigatory strategy more consistent with that seen in the physical sciences (which combine experiment, theory and simulation), and an opportunity to utilize the leading advances in HPC, namely deep machine learning and evolutionary computing, to form the basis of an iterative scientific process to meet the full promise of Precision Medicine (right drug, right patient, right time). Copyright © 2017. Published by Elsevier Ltd.

  14. On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl

    2016-09-01

    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.

  15. Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control

    NASA Astrophysics Data System (ADS)

    Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.

    2016-02-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.

  16. Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation

    PubMed Central

    Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai

    2006-01-01

    Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein. PMID:16965175

  17. Task-based image quality assessment in radiation therapy: initial characterization and demonstration with CT simulation images

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    In current radiation therapy practice, image quality is still assessed subjectively or by utilizing physically-based metrics. Recently, a methodology for objective task-based image quality (IQ) assessment in radiation therapy was proposed by Barrett et al.1 In this work, we present a comprehensive implementation and evaluation of this new IQ assessment methodology. A modular simulation framework was designed to perform an automated, computer-simulated end-to-end radiation therapy treatment. A fully simulated framework was created that utilizes new learning-based stochastic object models (SOM) to obtain known organ boundaries, generates a set of images directly from the numerical phantoms created with the SOM, and automates the image segmentation and treatment planning steps of a radiation therapy work ow. By use of this computational framework, therapeutic operating characteristic (TOC) curves can be computed and the area under the TOC curve (AUTOC) can be employed as a figure-of-merit to guide optimization of different components of the treatment planning process. The developed computational framework is employed to optimize X-ray CT pre-treatment imaging. We demonstrate that use of the radiation therapy-based-based IQ measures lead to different imaging parameters than obtained by use of physical-based measures.

  18. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  19. Accelerating numerical solution of stochastic differential equations with CUDA

    NASA Astrophysics Data System (ADS)

    Januszewski, M.; Kostur, M.

    2010-01-01

    Numerical integration of stochastic differential equations is commonly used in many branches of science. In this paper we present how to accelerate this kind of numerical calculations with popular NVIDIA Graphics Processing Units using the CUDA programming environment. We address general aspects of numerical programming on stream processors and illustrate them by two examples: the noisy phase dynamics in a Josephson junction and the noisy Kuramoto model. In presented cases the measured speedup can be as high as 675× compared to a typical CPU, which corresponds to several billion integration steps per second. This means that calculations which took weeks can now be completed in less than one hour. This brings stochastic simulation to a completely new level, opening for research a whole new range of problems which can now be solved interactively. Program summaryProgram title: SDE Catalogue identifier: AEFG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu GPL v3 No. of lines in distributed program, including test data, etc.: 978 No. of bytes in distributed program, including test data, etc.: 5905 Distribution format: tar.gz Programming language: CUDA C Computer: any system with a CUDA-compatible GPU Operating system: Linux RAM: 64 MB of GPU memory Classification: 4.3 External routines: The program requires the NVIDIA CUDA Toolkit Version 2.0 or newer and the GNU Scientific Library v1.0 or newer. Optionally gnuplot is recommended for quick visualization of the results. Nature of problem: Direct numerical integration of stochastic differential equations is a computationally intensive problem, due to the necessity of calculating multiple independent realizations of the system. We exploit the inherent parallelism of this problem and perform the calculations on GPUs using the CUDA programming environment. The GPU's ability to execute hundreds of threads simultaneously makes it possible to speed up the computation by over two orders of magnitude, compared to a typical modern CPU. Solution method: The stochastic Runge-Kutta method of the second order is applied to integrate the equation of motion. Ensemble-averaged quantities of interest are obtained through averaging over multiple independent realizations of the system. Unusual features: The numerical solution of the stochastic differential equations in question is performed on a GPU using the CUDA environment. Running time: < 1 minute

  20. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models

    NASA Astrophysics Data System (ADS)

    Krupp, Armin; Griffiths, Ian; Please, Colin

    2016-11-01

    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  1. Supercritical Quasi-Conduction States in Stochastic Rayleigh-Benard Convection

    DTIC Science & Technology

    2011-09-15

    is 10 (see table 1). The sensitivity (in the sense of Sobol [39]) of the integrated Nusselt number with respect to the amplitude of the boundary...using a multi-element quadrature formula [32]. Following Sobol [39], we shall define global sensitivity indices as the ratio between the variance of...39] I. M. Sobol , Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Math. Comput. Simul. 55 (2001) 271

  2. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.

    PubMed

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  3. FASTPM: a new scheme for fast simulations of dark matter and haloes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Chu, Man-Yat; Seljak, Uroš; McDonald, Patrick

    2016-12-01

    We introduce FASTPM, a highly scalable approximated particle mesh (PM) N-body solver, which implements the PM scheme enforcing correct linear displacement (1LPT) evolution via modified kick and drift factors. Employing a two-dimensional domain decomposing scheme, FASTPM scales extremely well with a very large number of CPUs. In contrast to Comoving-Lagrangian (COLA) approach, we do not require to split the force or track separately the 2LPT solution, reducing the code complexity and memory requirements. We compare FASTPM with different number of steps (Ns) and force resolution factor (B) against three benchmarks: halo mass function from friends-of-friends halo finder; halo and dark matter power spectrum; and cross-correlation coefficient (or stochasticity), relative to a high-resolution TREEPM simulation. We show that the modified time stepping scheme reduces the halo stochasticity when compared to COLA with the same number of steps and force resolution. While increasing Ns and B improves the transfer function and cross-correlation coefficient, for many applications FASTPM achieves sufficient accuracy at low Ns and B. For example, Ns = 10 and B = 2 simulation provides a substantial saving (a factor of 10) of computing time relative to Ns = 40, B = 3 simulation, yet the halo benchmarks are very similar at z = 0. We find that for abundance matched haloes the stochasticity remains low even for Ns = 5. FASTPM compares well against less expensive schemes, being only 7 (4) times more expensive than 2LPT initial condition generator for Ns = 10 (Ns = 5). Some of the applications where FASTPM can be useful are generating a large number of mocks, producing non-linear statistics where one varies a large number of nuisance or cosmological parameters, or serving as part of an initial conditions solver.

  4. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries

    NASA Astrophysics Data System (ADS)

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  5. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  6. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty

    PubMed Central

    Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications. PMID:28961262

  7. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  8. Large scale Brownian dynamics of confined suspensions of rigid particles

    NASA Astrophysics Data System (ADS)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose height above the wall is set by a combination of thermal noise and active flows. We find the existence of two populations of active particles, slower ones closer to the bottom and faster ones above them, and demonstrate that our method provides quantitative accuracy even with relatively coarse resolutions of the particle geometry.

  9. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  10. Towards the evaluation of the pathological state of ascending thoracic aneurysms: integration of in-vivo measurements and hemodynamic simulations

    NASA Astrophysics Data System (ADS)

    Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria

    2016-11-01

    Ascending thoracic aortic aneurysms are cardiovascular diseases consisting in a dilation of the ascending thoracic aorta. Since indicating a weakness of the arterial wall, they can lead to major complications with significant mortality rate. Clinical decisions about surgery are currently based on the maximum aortic diameter, but this single index does not seem a reliable indicator of the pathological state of the aorta. Numerical simulations of the blood flow inside the aneurysm may give supplementary information by quantifying important indices that are difficult to be measured, like the wall shear stress. Our aim is to develop an efficient platform in which in-vivo measurements are used to perform the hemodynamic simulations on a patient-specific basis. In particular, we used real geometries of thoracic aorta and focused on the use of clinical information to impose accurate boundary conditions at the inlet/outlets of the computational model. Stochastic analysis was also performed, to evaluate how uncertainties in the boundary parameters affect the main hemodynamic indicators, by considering both rigid and deformable walls. Stochastic calibration of numerical parameters against clinical data is in progress and results will be possibly shown.

  11. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  12. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  13. Accelerating Sequential Gaussian Simulation with a constant path

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus

    2018-03-01

    Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.

  14. Computational methods for diffusion-influenced biochemical reactions.

    PubMed

    Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G

    2007-08-01

    We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/

  15. Down to the roughness scale assessment of piston-ring/liner contacts

    NASA Astrophysics Data System (ADS)

    Checo, H. M.; Jaramillo, A.; Ausas, R. F.; Jai, M.; Buscaglia, G. C.

    2017-02-01

    The effects of surface roughness in hydrodynamic bearings been accounted for through several approaches, the most widely used being averaging or stochastic techniques. With these the surface is not treated “as it is”, but by means of an assumed probability distribution for the roughness. The so called direct, deterministic or measured-surface simulation) solve the lubrication problem with realistic surfaces down to the roughness scale. This leads to expensive computational problems. Most researchers have tackled this problem considering non-moving surfaces and neglecting the ring dynamics to reduce the computational burden. What is proposed here is to solve the fully-deterministic simulation both in space and in time, so that the actual movement of the surfaces and the rings dynamics are taken into account. This simulation is much more complex than previous ones, as it is intrinsically transient. The feasibility of these fully-deterministic simulations is illustrated two cases: fully deterministic simulation of liner surfaces with diverse finishings (honed and coated bores) with constant piston velocity and load on the ring and also in real engine conditions.

  16. Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik

    The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis ismore » conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. In conclusion, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.« less

  17. Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik

    The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis ismore » conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. Finally, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.« less

  18. Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

    NASA Astrophysics Data System (ADS)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; Geraci, Gianluca; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.

    2018-03-01

    The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the systems stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

  19. Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

    DOE PAGES

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; ...

    2018-02-09

    The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis ismore » conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. In conclusion, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.« less

  20. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less

Top