Stochastic Game Analysis and Latency Awareness for Self-Adaptation
2014-01-01
this paper, we introduce a formal analysis technique based on model checking of stochastic multiplayer games (SMGs) that enables us to quantify the...Additional Key Words and Phrases: Proactive adaptation, Stochastic multiplayer games , Latency 1. INTRODUCTION When planning how to adapt, self-adaptive...contribution of this paper is twofold: (1) A novel analysis technique based on model checking of stochastic multiplayer games (SMGs) that enables us to
Analysis of the stochastic excitability in the flow chemical reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkirtseva, Irina
2015-11-30
A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.
Analysis of the stochastic excitability in the flow chemical reactor
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina
2015-11-01
A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.
Stochastic-field cavitation model
NASA Astrophysics Data System (ADS)
Dumond, J.; Magagnato, F.; Class, A.
2013-07-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
A cavitation model based on Eulerian stochastic fields
NASA Astrophysics Data System (ADS)
Magagnato, F.; Dumond, J.
2013-12-01
Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Stochastic-field cavitation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumond, J., E-mail: julien.dumond@areva.com; AREVA GmbH, Erlangen, Paul-Gossen-Strasse 100, D-91052 Erlangen; Magagnato, F.
2013-07-15
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-fieldmore » cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.« less
Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates
NASA Astrophysics Data System (ADS)
Chang, Zhengbo; Meng, Xinzhu; Lu, Xiao
2017-04-01
This paper presents a stochastic SIRS epidemic model with two different nonlinear incidence rates and double epidemic asymmetrical hypothesis, and we devote to develop a mathematical method to obtain the threshold of the stochastic epidemic model. We firstly investigate the boundness and extinction of the stochastic system. Furthermore, we use Ito's formula, the comparison theorem and some new inequalities techniques of stochastic differential systems to discuss persistence in mean of two diseases on three cases. The results indicate that stochastic fluctuations can suppress the disease outbreak. Finally, numerical simulations about different noise disturbance coefficients are carried out to illustrate the obtained theoretical results.
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
Machine learning from computer simulations with applications in rail vehicle dynamics
NASA Astrophysics Data System (ADS)
Taheri, Mehdi; Ahmadian, Mehdi
2016-05-01
The application of stochastic modelling for learning the behaviour of a multibody dynamics (MBD) models is investigated. Post-processing data from a simulation run are used to train the stochastic model that estimates the relationship between model inputs (suspension relative displacement and velocity) and the output (sum of suspension forces). The stochastic model can be used to reduce the computational burden of the MBD model by replacing a computationally expensive subsystem in the model (suspension subsystem). With minor changes, the stochastic modelling technique is able to learn the behaviour of a physical system and integrate its behaviour within MBD models. The technique is highly advantageous for MBD models where real-time simulations are necessary, or with models that have a large number of repeated substructures, e.g. modelling a train with a large number of railcars. The fact that the training data are acquired prior to the development of the stochastic model discards the conventional sampling plan strategies like Latin Hypercube sampling plans where simulations are performed using the inputs dictated by the sampling plan. Since the sampling plan greatly influences the overall accuracy and efficiency of the stochastic predictions, a sampling plan suitable for the process is developed where the most space-filling subset of the acquired data with ? number of sample points that best describes the dynamic behaviour of the system under study is selected as the training data.
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.
2004-01-01
A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
NASA Astrophysics Data System (ADS)
Velarde, P.; Valverde, L.; Maestre, J. M.; Ocampo-Martinez, C.; Bordons, C.
2017-03-01
In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.
Compressible cavitation with stochastic field method
NASA Astrophysics Data System (ADS)
Class, Andreas; Dumond, Julien
2012-11-01
Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.
Stochastic analysis of a novel nonautonomous periodic SIRI epidemic system with random disturbances
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Meng, Xinzhu
2018-02-01
In this paper, a new stochastic nonautonomous SIRI epidemic model is formulated. Given that the incidence rates of diseases may change with the environment, we propose a novel type of transmission function. The main aim of this paper is to obtain the thresholds of the stochastic SIRI epidemic model. To this end, we investigate the dynamics of the stochastic system and establish the conditions for extinction and persistence in mean of the disease by constructing some suitable Lyapunov functions and using stochastic analysis technique. Furthermore, we show that the stochastic system has at least one nontrivial positive periodic solution. Finally, numerical simulations are introduced to illustrate our results.
Learning in Stochastic Bit Stream Neural Networks.
van Daalen, Max; Shawe-Taylor, John; Zhao, Jieyu
1996-08-01
This paper presents learning techniques for a novel feedforward stochastic neural network. The model uses stochastic weights and the "bit stream" data representation. It has a clean analysable functionality and is very attractive with its great potential to be implemented in hardware using standard digital VLSI technology. The design allows simulation at three different levels and learning techniques are described for each level. The lowest level corresponds to on-chip learning. Simulation results on three benchmark MONK's problems and handwritten digit recognition with a clean set of 500 16 x 16 pixel digits demonstrate that the new model is powerful enough for the real world applications. Copyright 1996 Elsevier Science Ltd
Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics
2017-01-01
We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256
Optimal Control Inventory Stochastic With Production Deteriorating
NASA Astrophysics Data System (ADS)
Affandi, Pardi
2018-01-01
In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Modeling animal movements using stochastic differential equations
Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie
2004-01-01
We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...
Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.
2018-02-01
In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.
Modeling stochasticity and robustness in gene regulatory networks.
Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis
2009-06-15
Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
Kilinc, Deniz; Demir, Alper
2017-08-01
The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
NASA Astrophysics Data System (ADS)
Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.
2017-12-01
An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.
Determining Reduced Order Models for Optimal Stochastic Reduced Order Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonney, Matthew S.; Brake, Matthew R.W.
2015-08-01
The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better representmore » the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.« less
Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties
NASA Astrophysics Data System (ADS)
Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong
2018-03-01
This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
Cash transportation vehicle routing and scheduling under stochastic travel times
NASA Astrophysics Data System (ADS)
Yan, Shangyao; Wang, Sin-Siang; Chang, Yu-Hsuan
2014-03-01
Stochastic disturbances occurring in real-world operations could have a significant influence on the planned routing and scheduling results of cash transportation vehicles. In this study, a time-space network flow technique is utilized to construct a cash transportation vehicle routing and scheduling model incorporating stochastic travel times. In addition, to help security carriers to formulate more flexible routes and schedules, a concept of the similarity of time and space for vehicle routing and scheduling is incorporated into the model. The test results show that the model could be useful for security carriers in actual practice.
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2017-04-01
How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.
Stochasticity in staged models of epidemics: quantifying the dynamics of whooping cough
Black, Andrew J.; McKane, Alan J.
2010-01-01
Although many stochastic models can accurately capture the qualitative epidemic patterns of many childhood diseases, there is still considerable discussion concerning the basic mechanisms generating these patterns; much of this stems from the use of deterministic models to try to understand stochastic simulations. We argue that a systematic method of analysing models of the spread of childhood diseases is required in order to consistently separate out the effects of demographic stochasticity, external forcing and modelling choices. Such a technique is provided by formulating the models as master equations and using the van Kampen system-size expansion to provide analytical expressions for quantities of interest. We apply this method to the susceptible–exposed–infected–recovered (SEIR) model with distributed exposed and infectious periods and calculate the form that stochastic oscillations take on in terms of the model parameters. With the use of a suitable approximation, we apply the formalism to analyse a model of whooping cough which includes seasonal forcing. This allows us to more accurately interpret the results of simulations and to make a more quantitative assessment of the predictions of the model. We show that the observed dynamics are a result of a macroscopic limit cycle induced by the external forcing and resonant stochastic oscillations about this cycle. PMID:20164086
Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-07-01
The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.
Model selection for integrated pest management with stochasticity.
Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel
2018-04-07
In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.
2012-05-01
In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.
Stochastic hybrid systems for studying biochemical processes.
Singh, Abhyudai; Hespanha, João P
2010-11-13
Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.
Inflow forecasting model construction with stochastic time series for coordinated dam operation
NASA Astrophysics Data System (ADS)
Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.
2014-12-01
Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations.
Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Rupp, Jonathan D; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W
2011-03-01
Placental abruption is the most common cause of fetal deaths in motor-vehicle crashes, but studies on the mechanical properties of human placenta are rare. This study presents a new method of developing a stochastic visco-hyperelastic material model of human placenta tissue using a combination of uniaxial tensile testing, specimen-specific finite element (FE) modeling, and stochastic optimization techniques. In our previous study, uniaxial tensile tests of 21 placenta specimens have been performed using a strain rate of 12/s. In this study, additional uniaxial tensile tests were performed using strain rates of 1/s and 0.1/s on 25 placenta specimens. Response corridors for the three loading rates were developed based on the normalized data achieved by test reconstructions of each specimen using specimen-specific FE models. Material parameters of a visco-hyperelastic model and their associated standard deviations were tuned to match both the means and standard deviations of all three response corridors using a stochastic optimization method. The results show a very good agreement between the tested and simulated response corridors, indicating that stochastic analysis can improve estimation of variability in material model parameters. The proposed method can be applied to develop stochastic material models of other biological soft tissues.
Elizabeth A. Freeman; Gretchen G. Moisen; John W. Coulston; Barry T. (Ty) Wilson
2015-01-01
As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF...
Doi-Peliti path integral methods for stochastic systems with partial exclusion
NASA Astrophysics Data System (ADS)
Greenman, Chris D.
2018-09-01
Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.
3D aquifer characterization using stochastic streamline calibration
NASA Astrophysics Data System (ADS)
Jang, Minchul
2007-03-01
In this study, a new inverse approach, stochastic streamline calibration is proposed. Using both a streamline concept and a stochastic technique, stochastic streamline calibration optimizes an identified field to fit in given observation data in a exceptionally fast and stable fashion. In the stochastic streamline calibration, streamlines are adopted as basic elements not only for describing fluid flow but also for identifying the permeability distribution. Based on the streamline-based inversion by Agarwal et al. [Agarwal B, Blunt MJ. Streamline-based method with full-physics forward simulation for history matching performance data of a North sea field. SPE J 2003;8(2):171-80], Wang and Kovscek [Wang Y, Kovscek AR. Streamline approach for history matching production data. SPE J 2000;5(4):353-62], permeability is modified rather along streamlines than at the individual gridblocks. Permeabilities in the gridblocks which a streamline passes are adjusted by being multiplied by some factor such that we can match flow and transport properties of the streamline. This enables the inverse process to achieve fast convergence. In addition, equipped with a stochastic module, the proposed technique supportively calibrates the identified field in a stochastic manner, while incorporating spatial information into the field. This prevents the inverse process from being stuck in local minima and helps search for a globally optimized solution. Simulation results indicate that stochastic streamline calibration identifies an unknown permeability exceptionally quickly. More notably, the identified permeability distribution reflected realistic geological features, which had not been achieved in the original work by Agarwal et al. with the limitations of the large modifications along streamlines for matching production data only. The constructed model by stochastic streamline calibration forecasted transport of plume which was similar to that of a reference model. By this, we can expect the proposed approach to be applied to the construction of an aquifer model and forecasting of the aquifer performances of interest.
NASA Astrophysics Data System (ADS)
Hozman, J.; Tichý, T.
2017-12-01
Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction
NASA Astrophysics Data System (ADS)
Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.
2005-03-01
We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.
NASA Astrophysics Data System (ADS)
Batté, Lauriane; Déqué, Michel
2016-06-01
Stochastic methods are increasingly used in global coupled model climate forecasting systems to account for model uncertainties. In this paper, we describe in more detail the stochastic dynamics technique introduced by Batté and Déqué (2012) in the ARPEGE-Climate atmospheric model. We present new results with an updated version of CNRM-CM using ARPEGE-Climate v6.1, and show that the technique can be used both as a means of analyzing model error statistics and accounting for model inadequacies in a seasonal forecasting framework.The perturbations are designed as corrections of model drift errors estimated from a preliminary weakly nudged re-forecast run over an extended reference period of 34 boreal winter seasons. A detailed statistical analysis of these corrections is provided, and shows that they are mainly made of intra-month variance, thereby justifying their use as in-run perturbations of the model in seasonal forecasts. However, the interannual and systematic error correction terms cannot be neglected. Time correlation of the errors is limited, but some consistency is found between the errors of up to 3 consecutive days.These findings encourage us to test several settings of the random draws of perturbations in seasonal forecast mode. Perturbations are drawn randomly but consistently for all three prognostic variables perturbed. We explore the impact of using monthly mean perturbations throughout a given forecast month in a first ensemble re-forecast (SMM, for stochastic monthly means), and test the use of 5-day sequences of perturbations in a second ensemble re-forecast (S5D, for stochastic 5-day sequences). Both experiments are compared in the light of a REF reference ensemble with initial perturbations only. Results in terms of forecast quality are contrasted depending on the region and variable of interest, but very few areas exhibit a clear degradation of forecasting skill with the introduction of stochastic dynamics. We highlight some positive impacts of the method, mainly on Northern Hemisphere extra-tropics. The 500 hPa geopotential height bias is reduced, and improvements project onto the representation of North Atlantic weather regimes. A modest impact on ensemble spread is found over most regions, which suggests that this method could be complemented by other stochastic perturbation techniques in seasonal forecasting mode.
Model transformations for state-space self-tuning control of multivariable stochastic systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.
1988-01-01
The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
Stochastic methods for analysis of power flow in electric networks
NASA Astrophysics Data System (ADS)
1982-09-01
The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
Dynamics of the stochastic low concentration trimolecular oscillatory chemical system with jumps
NASA Astrophysics Data System (ADS)
Wei, Yongchang; Yang, Qigui
2018-06-01
This paper is devoted to discern long time dynamics through the stochastic low concentration trimolecular oscillatory chemical system with jumps. By Lyapunov technique, this system is proved to have a unique global positive solution, and the asymptotic stability in mean square of such model is further established. Moreover, the existence of random attractor and Lyapunov exponents are obtained for the stochastic homeomorphism flow generated by the corresponding global positive solution. And some numerical simulations are given to illustrate the presented results.
Sensitivity analysis of consumption cycles
NASA Astrophysics Data System (ADS)
Jungeilges, Jochen; Ryazanova, Tatyana; Mitrofanova, Anastasia; Popova, Irina
2018-05-01
We study the special case of a nonlinear stochastic consumption model taking the form of a 2-dimensional, non-invertible map with an additive stochastic component. Applying the concept of the stochastic sensitivity function and the related technique of confidence domains, we establish the conditions under which the system's complex consumption attractor is likely to become observable. It is shown that the level of noise intensities beyond which the complex consumption attractor is likely to be observed depends on the weight given to past consumption in an individual's preference adjustment.
Groundwater management under uncertainty using a stochastic multi-cell model
NASA Astrophysics Data System (ADS)
Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.
2017-08-01
The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.
A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.
Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong
2016-01-01
We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.
NASA Astrophysics Data System (ADS)
Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming
2018-04-01
Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.
Backward-stochastic-differential-equation approach to modeling of gene expression
NASA Astrophysics Data System (ADS)
Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F.; Aguiar, Paulo
2017-03-01
In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).
Backward-stochastic-differential-equation approach to modeling of gene expression.
Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F; Aguiar, Paulo
2017-03-01
In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).
Pricing foreign equity option under stochastic volatility tempered stable Lévy processes
NASA Astrophysics Data System (ADS)
Gong, Xiaoli; Zhuang, Xintian
2017-10-01
Considering that financial assets returns exhibit leptokurtosis, asymmetry properties as well as clustering and heteroskedasticity effect, this paper substitutes the logarithm normal jumps in Heston stochastic volatility model by the classical tempered stable (CTS) distribution and normal tempered stable (NTS) distribution to construct stochastic volatility tempered stable Lévy processes (TSSV) model. The TSSV model framework permits infinite activity jump behaviors of return dynamics and time varying volatility consistently observed in financial markets through subordinating tempered stable process to stochastic volatility process, capturing leptokurtosis, fat tailedness and asymmetry features of returns. By employing the analytical characteristic function and fast Fourier transform (FFT) technique, the formula for probability density function (PDF) of TSSV returns is derived, making the analytical formula for foreign equity option (FEO) pricing available. High frequency financial returns data are employed to verify the effectiveness of proposed models in reflecting the stylized facts of financial markets. Numerical analysis is performed to investigate the relationship between the corresponding parameters and the implied volatility of foreign equity option.
Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
1988-01-01
A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.
Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C
2006-02-28
We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.
Cheema, Jitender Jit Singh; Sankpal, Narendra V; Tambe, Sanjeev S; Kulkarni, Bhaskar D
2002-01-01
This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing process operating conditions, is optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO formalisms possess certain unique advantages over the commonly used gradient-based optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid techniques is that process modeling and optimization can be performed exclusively from the process input-output data without invoking the detailed knowledge of the process phenomenology. The GP-GA and GP-SPSA techniques have been employed for modeling and optimization of the glucose to gluconic acid bioprocess, and the optimized process operating conditions obtained thereby have been compared with those obtained using two other hybrid modeling-optimization paradigms integrating artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall optimized operating conditions given by the GP-GA method, when verified experimentally resulted in a significant improvement in the gluconic acid yield. The hybrid strategies presented here are generic in nature and can be employed for modeling and optimization of a wide variety of batch and continuous bioprocesses.
NASA Technical Reports Server (NTRS)
Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.
1997-01-01
Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.
Mixed Poisson distributions in exact solutions of stochastic autoregulation models.
Iyer-Biswas, Srividya; Jayaprakash, C
2014-11-01
In this paper we study the interplay between stochastic gene expression and system design using simple stochastic models of autoactivation and autoinhibition. Using the Poisson representation, a technique whose particular usefulness in the context of nonlinear gene regulation models we elucidate, we find exact results for these feedback models in the steady state. Further, we exploit this representation to analyze the parameter spaces of each model, determine which dimensionless combinations of rates are the shape determinants for each distribution, and thus demarcate where in the parameter space qualitatively different behaviors arise. These behaviors include power-law-tailed distributions, bimodal distributions, and sub-Poisson distributions. We also show how these distribution shapes change when the strength of the feedback is tuned. Using our results, we reexamine how well the autoinhibition and autoactivation models serve their conventionally assumed roles as paradigms for noise suppression and noise exploitation, respectively.
Stochastic models for regulatory networks of the genetic toggle switch.
Tian, Tianhai; Burrage, Kevin
2006-05-30
Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Stochastic models for regulatory networks of the genetic toggle switch
Tian, Tianhai; Burrage, Kevin
2006-01-01
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385
NASA Astrophysics Data System (ADS)
Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.
2002-11-01
Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja
We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to thosemore » studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.« less
Multivariate moment closure techniques for stochastic kinetic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less
Methods of Stochastic Analysis of Complex Regimes in the 3D Hindmarsh-Rose Neuron Model
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryashko, Lev; Slepukhina, Evdokia
A problem of the stochastic nonlinear analysis of neuronal activity is studied by the example of the Hindmarsh-Rose (HR) model. For the parametric region of tonic spiking oscillations, it is shown that random noise transforms the spiking dynamic regime into the bursting one. This stochastic phenomenon is specified by qualitative changes in distributions of random trajectories and interspike intervals (ISIs). For a quantitative analysis of the noise-induced bursting, we suggest a constructive semi-analytical approach based on the stochastic sensitivity function (SSF) technique and the method of confidence domains that allows us to describe geometrically a distribution of random states around the deterministic attractors. Using this approach, we develop a new algorithm for estimation of critical values for the noise intensity corresponding to the qualitative changes in stochastic dynamics. We show that the obtained estimations are in good agreement with the numerical results. An interplay between noise-induced bursting and transitions from order to chaos is discussed.
An uncertainty model of acoustic metamaterials with random parameters
NASA Astrophysics Data System (ADS)
He, Z. C.; Hu, J. Y.; Li, Eric
2018-01-01
Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
PyMC: Bayesian Stochastic Modelling in Python
Patil, Anand; Huard, David; Fonnesbeck, Christopher J.
2010-01-01
This user guide describes a Python package, PyMC, that allows users to efficiently code a probabilistic model and draw samples from its posterior distribution using Markov chain Monte Carlo techniques. PMID:21603108
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Moroz, I.; Palmer, T.
2015-12-01
It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic ensemble forecasts, and a number of different techniques have been proposed for this purpose. Stochastic convection parameterization schemes use random numbers to represent the difference between a deterministic parameterization scheme and the true atmosphere, accounting for the unresolved sub grid-scale variability associated with convective clouds. An alternative approach varies the values of poorly constrained physical parameters in the model to represent the uncertainty in these parameters. This study presents new perturbed parameter schemes for use in the European Centre for Medium Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parametrisation scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are changed between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, Stochastically Perturbed Parametrisation Tendencies (SPPT), and to a model which does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parametrisation in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skilful representations of model uncertainty due to convection parametrisation. Reference: H. M. Christensen, I. M. Moroz, and T. N. Palmer, 2015: Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization. J. Atmos. Sci., 72, 2525-2544.
Modeling and stochastic analysis of dynamic mechanisms of the perception
NASA Astrophysics Data System (ADS)
Pisarchik, A.; Bashkirtseva, I.; Ryashko, L.
2017-10-01
Modern studies in physiology and cognitive neuroscience consider a noise as an important constructive factor of the brain functionality. Under the adequate noise, the brain can rapidly access different ordered states, and provide decision-making by preventing deadlocks. Bistable dynamic models are often used for the study of the underlying mechanisms of the visual perception. In the present paper, we consider a bistable energy model subject to both additive and parametric noise. Using the catastrophe theory formalism and stochastic sensitivity functions technique, we analyze a response of the equilibria to noise, and study noise-induced transitions between equilibria. We demonstrate and analyse the effect of hysteresis squeezing when the intensity of noise is increased. Stochastic bifurcations connected with the suppression of oscillations by parametric noises are discussed.
Bayesian inference for the spatio-temporal invasion of alien species.
Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin
2007-08-01
In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel
2004-01-01
Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.
Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.
Sheng, Yin; Zeng, Zhigang
2018-07-01
This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Del Giudice, Dario; Löwe, Roland; Madsen, Henrik; Mikkelsen, Peter Steen; Rieckermann, Jörg
2015-07-01
In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can provide probabilistic predictions of wastewater discharge in a similarly reliable way, both for periods ranging from a few hours up to more than 1 week ahead of time. The EBD produces more accurate predictions on long horizons but relies on computationally heavy MCMC routines for parameter inferences. These properties make it more suitable for off-line applications. The IND can help in diagnosing the causes of output errors and is computationally inexpensive. It produces best results on short forecast horizons that are typical for online applications.
NASA Astrophysics Data System (ADS)
Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra
2016-02-01
In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.
Low-complexity stochastic modeling of wall-bounded shear flows
NASA Astrophysics Data System (ADS)
Zare, Armin
Turbulent flows are ubiquitous in nature and they appear in many engineering applications. Transition to turbulence, in general, increases skin-friction drag in air/water vehicles compromising their fuel-efficiency and reduces the efficiency and longevity of wind turbines. While traditional flow control techniques combine physical intuition with costly experiments, their effectiveness can be significantly enhanced by control design based on low-complexity models and optimization. In this dissertation, we develop a theoretical and computational framework for the low-complexity stochastic modeling of wall-bounded shear flows. Part I of the dissertation is devoted to the development of a modeling framework which incorporates data-driven techniques to refine physics-based models. We consider the problem of completing partially known sample statistics in a way that is consistent with underlying stochastically driven linear dynamics. Neither the statistics nor the dynamics are precisely known. Thus, our objective is to reconcile the two in a parsimonious manner. To this end, we formulate optimization problems to identify the dynamics and directionality of input excitation in order to explain and complete available covariance data. For problem sizes that general-purpose solvers cannot handle, we develop customized optimization algorithms based on alternating direction methods. The solution to the optimization problem provides information about critical directions that have maximal effect in bringing model and statistics in agreement. In Part II, we employ our modeling framework to account for statistical signatures of turbulent channel flow using low-complexity stochastic dynamical models. We demonstrate that white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics and develop models for colored-in-time forcing of the linearized Navier-Stokes equations. We also examine the efficacy of stochastically forced linearized NS equations and their parabolized equivalents in the receptivity analysis of velocity fluctuations to external sources of excitation as well as capturing the effect of the slowly-varying base flow on streamwise streaks and Tollmien-Schlichting waves. In Part III, we develop a model-based approach to design surface actuation of turbulent channel flow in the form of streamwise traveling waves. This approach is capable of identifying the drag reducing trends of traveling waves in a simulation-free manner. We also use the stochastically forced linearized NS equations to examine the Reynolds number independent effects of spanwise wall oscillations on drag reduction in turbulent channel flows. This allows us to extend the predictive capability of our simulation-free approach to high Reynolds numbers.
Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers
Stratis, Paris N.; Karatzas, George P.; Papadopoulou, Elena P.; Zakynthinaki, Maria S.; Saridakis, Yiannis G.
2016-01-01
The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time, protecting the aquifer from saltwater intrusion. In the direction of dealing with this problem in real time, the ALOPEX stochastic optimization method is used, to optimize the pumping rates of the wells, coupled with a penalty-based strategy that keeps the saltwater front at a safe distance from the wells. Several numerical optimization results, that simulate a known real aquifer case, are presented. The results explore the computational performance of the chosen stochastic optimization method as well as its abilities to manage freshwater pumping in real aquifer environments. PMID:27689362
Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunyuan; Stevens, Andrew J.; Chen, Changyou
2016-08-10
Learning the representation of shape cues in 2D & 3D objects for recognition is a fundamental task in computer vision. Deep neural networks (DNNs) have shown promising performance on this task. Due to the large variability of shapes, accurate recognition relies on good estimates of model uncertainty, ignored in traditional training of DNNs, typically learned via stochastic optimization. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (SG-MCMC) to learn weight uncertainty in DNNs. It yields principled Bayesian interpretations for the commonly used Dropout/DropConnect techniques and incorporates them into the SG-MCMC framework. Extensive experiments on 2D &more » 3D shape datasets and various DNN models demonstrate the superiority of the proposed approach over stochastic optimization. Our approach yields higher recognition accuracy when used in conjunction with Dropout and Batch-Normalization.« less
Tipping point analysis of atmospheric oxygen concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.
2015-03-15
We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.
Stochastic Models of Polymer Systems
2016-01-01
SECURITY CLASSIFICATION OF: The stochastic gradient decent algorithm is the now the "algorithm of choice" for very large machine learning problems...information about the behavior of the algorithm. At the same time, we were also able to formulate various acceleration techniques in precise math terms... gradient decent, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir
Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Errormore » analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.« less
NASA Technical Reports Server (NTRS)
Wiswell, E. R.; Cooper, G. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com
Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less
NASA Astrophysics Data System (ADS)
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.
Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes
NASA Astrophysics Data System (ADS)
Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd
2016-04-01
In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.
Models and techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1977-01-01
Models, measures and techniques were developed for evaluating the effectiveness of aircraft computing systems. The concept of effectiveness involves aspects of system performance, reliability and worth. Specifically done was a detailed development of model hierarchy at mission, functional task, and computational task levels. An appropriate class of stochastic models was investigated which served as bottom level models in the hierarchial scheme. A unified measure of effectiveness called 'performability' was defined and formulated.
NASA Astrophysics Data System (ADS)
Gholizadeh Doonechaly, N.; Rahman, S. S.
2012-05-01
Simulation of naturally fractured reservoirs offers significant challenges due to the lack of a methodology that can utilize field data. To date several methods have been proposed by authors to characterize naturally fractured reservoirs. Among them is the unfolding/folding method which offers some degree of accuracy in estimating the probability of the existence of fractures in a reservoir. Also there are statistical approaches which integrate all levels of field data to simulate the fracture network. This approach, however, is dependent on the availability of data sources, such as seismic attributes, core descriptions, well logs, etc. which often make it difficult to obtain field wide. In this study a hybrid tectono-stochastic simulation is proposed to characterize a naturally fractured reservoir. A finite element based model is used to simulate the tectonic event of folding and unfolding of a geological structure. A nested neuro-stochastic technique is used to develop the inter-relationship between the data and at the same time it utilizes the sequential Gaussian approach to analyze field data along with fracture probability data. This approach has the ability to overcome commonly experienced discontinuity of the data in both horizontal and vertical directions. This hybrid technique is used to generate a discrete fracture network of a specific Australian gas reservoir, Palm Valley in the Northern Territory. Results of this study have significant benefit in accurately describing fluid flow simulation and well placement for maximal hydrocarbon recovery.
A Framework for the Optimization of Discrete-Event Simulation Models
NASA Technical Reports Server (NTRS)
Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.
1996-01-01
With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.
NASA Astrophysics Data System (ADS)
Contreras, Arturo Javier
This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
A unified model of the hierarchical and stochastic theories of gastric cancer
Song, Yanjing; Wang, Yao; Tong, Chuan; Xi, Hongqing; Zhao, Xudong; Wang, Yi; Chen, Lin
2017-01-01
Gastric cancer (GC) is a life-threatening disease worldwide. Despite remarkable advances in treatments for GC, it is still fatal to many patients due to cancer progression, recurrence and metastasis. Regarding the development of novel therapeutic techniques, many studies have focused on the biological mechanisms that initiate tumours and cause treatment resistance. Tumours have traditionally been considered to result from somatic mutations, either via clonal evolution or through a stochastic model. However, emerging evidence has characterised tumours using a hierarchical organisational structure, with cancer stem cells (CSCs) at the apex. Both stochastic and hierarchical models are reasonable systems that have been hypothesised to describe tumour heterogeneity. Although each model alone inadequately explains tumour diversity, the two models can be integrated to provide a more comprehensive explanation. In this review, we discuss existing evidence supporting a unified model of gastric CSCs, including the regulatory mechanisms of this unified model in addition to the current status of stemness-related targeted therapy in GC patients. PMID:28301871
Stochastic series expansion simulation of the t -V model
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Troyer, Matthias
2016-04-01
We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.
NASA Astrophysics Data System (ADS)
Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.
2014-04-01
In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.
Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique
NASA Astrophysics Data System (ADS)
Mahootchi, M.; Fattahi, M.; Khakbazan, E.
2011-11-01
This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.
Reconstructing the hidden states in time course data of stochastic models.
Zimmer, Christoph
2015-11-01
Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
A Method for Analyzing Survivability in the Context of a One-on-One Engagement
2003-07-01
stochastic duel . To construct our duel , we first consider one platform engaging a passive target and model that process via the techniques of renewal...Contents Report Documentation Page ii Summary 1 1. Introduction 2 2. A Brief View of Renewal Theory 3 3. Stochastic Duels : The Components as Renewal...11 4. The Fundamental Duel as a Competing Risk Problem 14 5. Analytical
Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)
NASA Technical Reports Server (NTRS)
Williams, B. G.
1988-01-01
An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
2016-08-21
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less
Stochastic modeling for time series InSAR: with emphasis on atmospheric effects
NASA Astrophysics Data System (ADS)
Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai
2018-02-01
Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.
Control of stochastic sensitivity in a stabilization problem for gas discharge system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashkirtseva, Irina
2015-11-30
We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.
Normal forms for reduced stochastic climate models
Majda, Andrew J.; Franzke, Christian; Crommelin, Daan
2009-01-01
The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H
2018-03-29
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
NASA Technical Reports Server (NTRS)
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Filippas, T. A.
1971-01-01
An algorithm employing a modified sequential random perturbation, or creeping random search, was applied to the problem of optimizing the parameters of a high-energy beam transport system. The stochastic solution of the mathematical model for first-order magnetic-field expansion allows the inclusion of state-variable constraints, and the inclusion of parameter constraints allowed by the method of algorithm application eliminates the possibility of infeasible solutions. The mathematical model and the algorithm were programmed for a real-time simulation facility; thus, two important features are provided to the beam designer: (1) a strong degree of man-machine communication (even to the extent of bypassing the algorithm and applying analog-matching techniques), and (2) extensive graphics for displaying information concerning both algorithm operation and transport-system behavior. Chromatic aberration was also included in the mathematical model and in the optimization process. Results presented show this method as yielding better solutions (in terms of resolutions) to the particular problem than those of a standard analog program as well as demonstrating flexibility, in terms of elements, constraints, and chromatic aberration, allowed by user interaction with both the algorithm and the stochastic model. Example of slit usage and a limited comparison of predicted results and actual results obtained with a 600 MeV cyclotron are given.
Investment portfolio of a pension fund: Stochastic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch-Princep, M.; Fontanals-Albiol, H.
1994-12-31
This paper presents a stochastic programming model that aims at getting the optimal investment portfolio of a Pension Funds. The model has been designed bearing in mind the liabilities of the Funds to its members. The essential characteristic of the objective function and the constraints is the randomness of the coefficients and the right hand side of the constraints, so it`s necessary to use techniques of stochastic mathematical programming to get information about the amount of money that should be assigned to each sort of investment. It`s important to know the risky attitude of the person that has to takemore » decisions towards running risks. It incorporates the relation between the different coefficients of the objective function and constraints of each period of temporal horizon, through lineal and discrete random processes. Likewise, it includes the hypotheses that are related to Spanish law concerning the subject of Pension Funds.« less
On the molecular mechanisms driving pain perception and emergent collective behaviors
NASA Astrophysics Data System (ADS)
Di Patti, F.; Fanelli, D.
2010-05-01
A stochastic model to investigate the microscopic processes which trigger the sensation of pain is considered. The model, presented in Di Patti and Fanelli [Di Patti F, Fanelli D. Can a microscopic stochastic model explain the emergence of pain cycles in patients? J Stat Mech 2009. doi:10.1088/1742-5468/2009/01/P01004], accounts for the action of analgesic drug and introduces an effect of competition with the inactive species populating the bloodstream. Regular oscillations in the amount of bound receptors are detected, following a resonant amplification of the stochastic component intrinsic to the system. The condition for such oscillations to occur are here studied, resorting to combined numerical and analytical techniques. Extended and connected patches of the admissible parameters space are detected which do correspond to the oscillatory behaviors. These findings are discussed with reference to the existing literature on patients' response to the analgesic treatment.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
A Learning Framework for Winner-Take-All Networks with Stochastic Synapses.
Mostafa, Hesham; Cauwenberghs, Gert
2018-06-01
Many recent generative models make use of neural networks to transform the probability distribution of a simple low-dimensional noise process into the complex distribution of the data. This raises the question of whether biological networks operate along similar principles to implement a probabilistic model of the environment through transformations of intrinsic noise processes. The intrinsic neural and synaptic noise processes in biological networks, however, are quite different from the noise processes used in current abstract generative networks. This, together with the discrete nature of spikes and local circuit interactions among the neurons, raises several difficulties when using recent generative modeling frameworks to train biologically motivated models. In this letter, we show that a biologically motivated model based on multilayer winner-take-all circuits and stochastic synapses admits an approximate analytical description. This allows us to use the proposed networks in a variational learning setting where stochastic backpropagation is used to optimize a lower bound on the data log likelihood, thereby learning a generative model of the data. We illustrate the generality of the proposed networks and learning technique by using them in a structured output prediction task and a semisupervised learning task. Our results extend the domain of application of modern stochastic network architectures to networks where synaptic transmission failure is the principal noise mechanism.
Cardiovascular oscillations: in search of a nonlinear parametric model
NASA Astrophysics Data System (ADS)
Bandrivskyy, Andriy; Luchinsky, Dmitry; McClintock, Peter V.; Smelyanskiy, Vadim; Stefanovska, Aneta; Timucin, Dogan
2003-05-01
We suggest a fresh approach to the modeling of the human cardiovascular system. Taking advantage of a new Bayesian inference technique, able to deal with stochastic nonlinear systems, we show that one can estimate parameters for models of the cardiovascular system directly from measured time series. We present preliminary results of inference of parameters of a model of coupled oscillators from measured cardiovascular data addressing cardiorespiratory interaction. We argue that the inference technique offers a very promising tool for the modeling, able to contribute significantly towards the solution of a long standing challenge -- development of new diagnostic techniques based on noninvasive measurements.
Essays on variational approximation techniques for stochastic optimization problems
NASA Astrophysics Data System (ADS)
Deride Silva, Julio A.
This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence of estimators, and a problem for creating probabilistic scenarios on renewable energies estimation. In Chapter 7 we re-visited one of the "folk theorems" in statistics, where a family of Bayes estimators under 0-1 loss functions is claimed to converge to the maximum a posteriori estimator. This assertion is studied under the scope of the hypo-convergence theory, and the density functions are included in the class of upper semicontinuous functions. We conclude this chapter with an example in which the convergence does not hold true, and we provided sufficient conditions that guarantee convergence. The last chapter, Chapter 8, addresses the important topic of creating probabilistic scenarios for solar power generation. Scenarios are a fundamental input for the stochastic optimization problem of energy dispatch, especially when incorporating renewables. We proposed a model designed to capture the constraints induced by physical characteristics of the variables based on the application of an epi-spline density estimation along with a copula estimation, in order to account for partial correlations between variables.
MONALISA for stochastic simulations of Petri net models of biochemical systems.
Balazki, Pavel; Lindauer, Klaus; Einloft, Jens; Ackermann, Jörg; Koch, Ina
2015-07-10
The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.
The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...
Noise-induced shifts in the population model with a weak Allee effect
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryashko, Lev
2018-02-01
We consider the Truscott-Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey-predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov-Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.
Crises, noise, and tipping in the Hassell population model
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina
2018-03-01
We consider a problem of the analysis of the noise-induced tipping in population systems. To study this phenomenon, we use Hassell-type system with Allee effect as a conceptual model. A mathematical investigation of the tipping is connected with the analysis of the crisis bifurcations, both boundary and interior. In the parametric study of the abrupt changes in dynamics related to the noise-induced extinction and transition from order to chaos, the stochastic sensitivity function technique and confidence domains are used. The effectiveness of the suggested approach to detect early warnings of critical stochastic transitions is demonstrated.
Distributed delays in a hybrid model of tumor-immune system interplay.
Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto
2013-02-01
A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
Etiology and treatment of hematological neoplasms: stochastic mathematical models.
Radivoyevitch, Tomas; Li, Huamin; Sachs, Rainer K
2014-01-01
Leukemias are driven by stemlike cancer cells (SLCC), whose initiation, growth, response to treatment, and posttreatment behavior are often "stochastic", i.e., differ substantially even among very similar patients for reasons not observable with present techniques. We review the probabilistic mathematical methods used to analyze stochastics and give two specific examples. The first example concerns a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We argue mathematically that, if independent SLCC are growing stochastically during prolonged treatment, then, other things being equal, front-loading doses are more effective for tumor eradication than back loading. We also argue that the interacting SLCC dynamics during treatment is often best modeled by considering SLCC in microenvironmental niches, with SLCC-SLCC interactions occurring only among SLCC within the same niche, and we present a stochastic dynamics formalism, involving "Poissonization," applicable in such situations. Interactions at a distance due to partial control of total cell numbers are also considered. The second half of this chapter concerns chromosomal aberrations, lesions known to cause some leukemias. A specific example is the induction of a Philadelphia chromosome by ionizing radiation, subsequent development of chronic myeloid leukemia (CML), CML treatment, and treatment outcome. This time evolution involves a coordinated sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular, macromolecular, cellular, tissue, and population scales, with corresponding time scales ranging from picoseconds to decades. We discuss models of these steps and progress in integrating models across scales.
Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems.
Williams, Richard A; Timmis, Jon; Qwarnstrom, Eva E
2016-01-01
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.
Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems
Timmis, Jon; Qwarnstrom, Eva E.
2016-01-01
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model. PMID:27571414
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
Restoring the encoding properties of a stochastic neuron model by an exogenous noise
Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela
2015-01-01
Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed. PMID:25999845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagiannis, Georgios; Lin, Guang
2014-02-15
Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesianmore » model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.« less
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.
1999-01-01
This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Hybrid Stochastic Models for Remaining Lifetime Prognosis
2004-08-01
literature for techniques and comparisons. Os- ogami and Harchol-Balter [70], Perros [73], Johnson [36], and Altiok [5] provide excellent summaries of...and type of PH-distribution approximation for c2 > 0.5 is not as obvious. In order to use the minimum distance estimation, Perros [73] indicated that...moment-matching techniques. Perros [73] indicated that the maximum likelihood and minimum distance techniques require nonlinear optimization. Johnson
Some bivariate distributions for modeling the strength properties of lumber
Richard A. Johnson; James W. Evans; David W. Green
Accurate modeling of the joint stochastic nature of the strength properties of dimension lumber is essential to the determination of reliability-based design safety factors. This report reviews the major techniques for obtaining bivariate distributions and then discusses bivariate distributions whose marginal distributions suggest they might be useful for modeling the...
Prognosis model for stand development
Albert R. Stage
1973-01-01
Describes a set of computer programs for developing prognoses of the development of existing stand under alternative regimes of management. Calibration techniques, modeling procedures, and a procedure for including stochastic variation are described. Implementation of the system for lodgepole pine, including assessment of losses attributed to an infestation of mountain...
Variable diffusion in stock market fluctuations
NASA Astrophysics Data System (ADS)
Hua, Jia-Chen; Chen, Lijian; Falcon, Liberty; McCauley, Joseph L.; Gunaratne, Gemunu H.
2015-02-01
We analyze intraday fluctuations in several stock indices to investigate the underlying stochastic processes using techniques appropriate for processes with nonstationary increments. The five most actively traded stocks each contains two time intervals during the day where the variance of increments can be fit by power law scaling in time. The fluctuations in return within these intervals follow asymptotic bi-exponential distributions. The autocorrelation function for increments vanishes rapidly, but decays slowly for absolute and squared increments. Based on these results, we propose an intraday stochastic model with linear variable diffusion coefficient as a lowest order approximation to the real dynamics of financial markets, and to test the effects of time averaging techniques typically used for financial time series analysis. We find that our model replicates major stylized facts associated with empirical financial time series. We also find that ensemble averaging techniques can be used to identify the underlying dynamics correctly, whereas time averages fail in this task. Our work indicates that ensemble average approaches will yield new insight into the study of financial markets' dynamics. Our proposed model also provides new insight into the modeling of financial markets dynamics in microscopic time scales.
Enhanced algorithms for stochastic programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, Alamuru S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less
Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Abdullah, Sharifah Mastura Syed; El-Shafie, Ahmed
2018-05-01
Efficacious operation for dam and reservoir system could guarantee not only a defenselessness policy against natural hazard but also identify rule to meet the water demand. Successful operation of dam and reservoir systems to ensure optimal use of water resources could be unattainable without accurate and reliable simulation models. According to the highly stochastic nature of hydrologic parameters, developing accurate predictive model that efficiently mimic such a complex pattern is an increasing domain of research. During the last two decades, artificial intelligence (AI) techniques have been significantly utilized for attaining a robust modeling to handle different stochastic hydrological parameters. AI techniques have also shown considerable progress in finding optimal rules for reservoir operation. This review research explores the history of developing AI in reservoir inflow forecasting and prediction of evaporation from a reservoir as the major components of the reservoir simulation. In addition, critical assessment of the advantages and disadvantages of integrated AI simulation methods with optimization methods has been reported. Future research on the potential of utilizing new innovative methods based AI techniques for reservoir simulation and optimization models have also been discussed. Finally, proposal for the new mathematical procedure to accomplish the realistic evaluation of the whole optimization model performance (reliability, resilience, and vulnerability indices) has been recommended.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotios; Nardari, Raphael; Li, Yu-Hung; Wang, Pengchuan; Chang, Fu-Kuo
2016-04-01
In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bioinspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors, including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embedded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system identification techniques based on time series models and statistical parameter estimation are employed in order to accurately interpret the sensing data and extract real-time information on the coupled air flow-structural dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of the "global" coupled airflow-structural dynamics of the wing and their correlation with dynamic utter and stall. The obtained results demonstrate the successful system-level integration and effectiveness of the stochastic identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the next generation of "fly-by-fee" UAVs.
On the numbers of images of two stochastic gravitational lensing models
NASA Astrophysics Data System (ADS)
Wei, Ang
2017-02-01
We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.
Stochastic analysis of concentration field in a wake region.
Yassin, Mohamed F; Elmi, Abdirashid A
2011-02-01
Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control. Stochastic analysis is a powerful tool that can be used for estimating concentration fluctuation in plume dispersion in a wake region around buildings. Only few studies have been devoted to evaluate applications of stochastic analysis to pollutant dispersion in an urban area. This study was designed to investigate the concentration fields in the wake region using obstacle model such as an isolated building model. We measured concentration fluctuations at centerline of various downwind distances from the source, and different heights with the frequency of 1 KHz. Concentration fields were analyzed stochastically, using the probability density functions (pdf). Stochastic analysis was performed on the concentration fluctuation and the pdf of mean concentration, fluctuation intensity, and crosswind mean-plume dispersion. The pdf of the concentration fluctuation data have shown a significant non-Gaussian behavior. The lognormal distribution appeared to be the best fit to the shape of concentration measured in the boundary layer. We observed that the plume dispersion pdf near the source was shorter than the plume dispersion far from the source. Our findings suggest that the use of stochastic technique in complex building environment can be a powerful tool to help understand the distribution and location of air pollutants.
Random noise effects in pulse-mode digital multilayer neural networks.
Kim, Y C; Shanblatt, M A
1995-01-01
A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.
Stochastic layer scaling in the two-wire model for divertor tokamaks
NASA Astrophysics Data System (ADS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2009-06-01
The question of magnetic field structure in the vicinity of the separatrix in divertor tokamaks is studied. The authors have investigated this problem earlier in a series of papers, using various mathematical techniques. In the present paper, the two-wire model (TWM) [Reiman, A. 1996 Phys. Plasmas 3, 906] is considered. It is noted that, in the TWM, it is useful to consider an extra equation expressing magnetic flux conservation. This equation does not add any more information to the TWM, since the equation is derived from the TWM. This equation is useful for controlling the step size in the numerical integration of the TWM equations. The TWM with the extra equation is called the flux-preserving TWM. Nevertheless, the technique is apparently still plagued by numerical inaccuracies when the perturbation level is low, resulting in an incorrect scaling of the stochastic layer width. The stochastic broadening of the separatrix in the flux-preserving TWM is compared with that in the low mn (poloidal mode number m and toroidal mode number n) map (LMN) [Ali, H., Punjabi, A., Boozer, A. and Evans, T. 2004 Phys. Plasmas 11, 1908]. The flux-preserving TWM and LMN both give Boozer-Rechester 0.5 power scaling of the stochastic layer width with the amplitude of magnetic perturbation when the perturbation is sufficiently large [Boozer, A. and Rechester, A. 1978, Phys. Fluids 21, 682]. The flux-preserving TWM gives a larger stochastic layer width when the perturbation is low, while the LMN gives correct scaling in the low perturbation region. Area-preserving maps such as the LMN respect the Hamiltonian structure of field line trajectories, and have the added advantage of computational efficiency. Also, for a $1\\frac12$ degree of freedom Hamiltonian system such as field lines, maps do not give Arnold diffusion.
NASA Astrophysics Data System (ADS)
Zemenkova, M. Y.; Shabarov, A.; Shatalov, A.; Puldas, L.
2018-05-01
The problem of the pore space description and the calculation of relative phase permeabilities (RPP) for two-phase filtration is considered. A technique for constructing a pore-network structure for constant and variable channel diameters is proposed. A description of the design model of RPP based on the capillary pressure curves is presented taking into account the variability of diameters along the length of pore channels. By the example of the calculation analysis for the core samples of the Urnenskoye and Verkhnechonskoye deposits, the possibilities of calculating RPP are shown when using the stochastic distribution of pores by diameters and medium-flow diameters.
An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca
2016-03-15
Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less
NASA Astrophysics Data System (ADS)
Kearsey, Tim; Williams, John; Finlayson, Andrew; Williamson, Paul; Dobbs, Marcus; Kingdon, Andrew; Campbell, Diarmad
2014-05-01
Geological maps and 3D models usually depict lithostragraphic units which can comprise of many different types of sediment (lithologies). The lithostratigraphic units shown on maps and 3D models of glacial and post glacial deposits in Glasgow are substantially defined by the method of the formation and age of the unit rather than its lithological composition. Therefore, a simple assumption that the dominant lithology is the most common constituent of any stratigraphic unit is erroneous and is only 58% predictive of the actual sediment types seen in a borehole. This is problematic for non-geologist such as planners, regulators and engineers attempting to use these models to inform their decisions and can lead to such users viewing maps and models as of limited use in such decision making. We explore the extent to which stochastic modelling can help to make geological models more predictive of lithology in heterolithic units. Stochastic modelling techniques are commonly used to model facies variations in oil field models. The techniques have been applied to an area containing >4000 coded boreholes to investigate the glacial and fluvial deposits in the centre of the city of Glasgow. We test the predictions from this method by deleting percentages of the control data and re-running the simulations to determine how predictability varies with data density. We also explore the best way of displaying such stochastic models to and suggest that displaying the data as probability maps rather than a single definitive answer better illustrates the uncertainties inherent in the input data. Finally we address whether is it possible truly to be able to predict lithology in such geological facies. The innovative Accessing Subsurface Knowledge (ASK) network was recently established in the Glasgow are by the British Geological Survey and Glasgow City Council to deliver and exchange subsurface data and knowledge. This provides an idea opportunity to communicate and test a range of models and to assess their usefulness and impact on a vibrant community of public and private sector partners and decision makers.
Gustafsson, Leif; Sternad, Mikael
2007-10-01
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.
NASA Astrophysics Data System (ADS)
Walkden, N. R.; Wynn, A.; Militello, F.; Lipschultz, B.; Matthews, G.; Guillemaut, C.; Harrison, J.; Moulton, D.; Contributors, JET
2017-08-01
This paper presents the use of a novel modelling technique based around intermittent transport due to filament motion, to interpret experimental profile and fluctuation data in the scrape-off layer (SOL) of JET during the onset and evolution of a density profile shoulder. A baseline case is established, prior to shoulder formation, and the stochastic model is shown to be capable of simultaneously matching the time averaged profile measurement as well as the PDF shape and autocorrelation function from the ion-saturation current time series at the outer wall. Aspects of the stochastic model are then varied with the aim of producing a profile shoulder with statistical measurements consistent with experiment. This is achieved through a strong localised reduction in the density sink acting on the filaments within the model. The required reduction of the density sink occurs over a highly localised region with the timescale of the density sink increased by a factor of 25. This alone is found to be insufficient to model the expansion and flattening of the shoulder region as the density increases, which requires additional changes within the stochastic model. An example is found which includes both a reduction in the density sink and filament acceleration and provides a consistent match to the experimental data as the shoulder expands, though the uniqueness of this solution can not be guaranteed. Within the context of the stochastic model, this implies that the localised reduction in the density sink can trigger shoulder formation, but additional physics is required to explain the subsequent evolution of the profile.
Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data
NASA Astrophysics Data System (ADS)
Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.
2013-12-01
An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).
Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks
Hallen, Mark; Li, Bochong; Tanouchi, Yu; Tan, Cheemeng; West, Mike; You, Lingchong
2011-01-01
Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry. PMID:22022252
Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion
NASA Astrophysics Data System (ADS)
Li, Z.; Ghaith, M.
2017-12-01
Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.
Multiple-scale stochastic processes: Decimation, averaging and beyond
NASA Astrophysics Data System (ADS)
Bo, Stefano; Celani, Antonio
2017-02-01
The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.
An extended stochastic method for seismic hazard estimation
NASA Astrophysics Data System (ADS)
Abd el-aal, A. K.; El-Eraki, M. A.; Mostafa, S. I.
2015-12-01
In this contribution, we developed an extended stochastic technique for seismic hazard assessment purposes. This technique depends on the hypothesis of stochastic technique of Boore (2003) "Simulation of ground motion using the stochastic method. Appl. Geophy. 160:635-676". The essential characteristics of extended stochastic technique are to obtain and simulate ground motion in order to minimize future earthquake consequences. The first step of this technique is defining the seismic sources which mostly affect the study area. Then, the maximum expected magnitude is defined for each of these seismic sources. It is followed by estimating the ground motion using an empirical attenuation relationship. Finally, the site amplification is implemented in calculating the peak ground acceleration (PGA) at each site of interest. We tested and applied this developed technique at Cairo, Suez, Port Said, Ismailia, Zagazig and Damietta cities to predict the ground motion. Also, it is applied at Cairo, Zagazig and Damietta cities to estimate the maximum peak ground acceleration at actual soil conditions. In addition, 0.5, 1, 5, 10 and 20 % damping median response spectra are estimated using the extended stochastic simulation technique. The calculated highest acceleration values at bedrock conditions are found at Suez city with a value of 44 cm s-2. However, these acceleration values decrease towards the north of the study area to reach 14.1 cm s-2 at Damietta city. This comes in agreement with the results of previous studies of seismic hazards in northern Egypt and is found to be comparable. This work can be used for seismic risk mitigation and earthquake engineering purposes.
A Stochastic Seismic Model for the European Arctic
NASA Astrophysics Data System (ADS)
Hauser, J.; Dyer, K.; Pasyanos, M. E.; Bungum, H.; Faleide, J. I.; Clark, S. A.
2009-12-01
The development of three-dimensional seismic models for the crust and upper mantle has traditionally focused on finding one model that provides the best fit to the data, while observing some regularization constraints. Such deterministic models however ignore a fundamental property of many inverse problems in geophysics, non-uniqueness, that is, if a model can be found to satisfy given datasets an infinite number of alternative models will exist that satisfy the datasets equally well. The solution to the inverse problem presented here is therefore a stochastic model, an ensemble of models that satisfy all available data to the same degree, the posterior distribution. It is based on two sources of information, (1) the data, in this work surface-wave group velocities, regional body-wave travel times, gravity data, compiled 1D velocity models, and thickness relationships between sedimentary rocks and underlying crystalline rocks, and (2) prior information, which is independent from the data. A Monte Carlo Markov Chain (MCMC) algorithm allows us to sample models from the prior distribution and test them against the data to generate the posterior distribution. While being computationally much more expensive, such a stochastic inversion provides a more complete picture of solution space and allows to seamlessly combine various datasets. The resulting stochastic model gives an overview of the different structures that can explain the observed datasets while taking the uncertainties in the data into account. Stochastic models are important for improving seismic monitoring capabilities as they allow to not only predict new observables but also their uncertainties. The model introduced here for the crust and upper mantle structure of the European Arctic is parametrized by a series of 8 layers in an equidistant mesh. Within each layer the seismic parameters (Vp, Vs and density) can vary linearly with depth. This allows to model changes of seismic parameters within the sediments and the crystalline crust without introducing artificial discontinuities that would result from parametrizing the structure using layers with constant seismic parameters. The complex geology of the region, encompassing oceanic crust, continental shelf regions, rift basins and old cratonic crust, and the non-uniform coverage of the region by data with varying levels of uncertainty makes the European Arctic a challenging setting for any imaging technique and therefore an ideal environment for demonstrating the practical advantages of a stochastic model. Maps of sediment thickness and thickness of the crystalline crust derived from the posterior distribution are in good agreement with knowledge of the regional tectonic setting. The predicted uncertainties, which are more important than the absolute values, correlate well with the variation in data coverage and data quality in the region. This indicates that the technique behaves as expected, thus we are properly tuning the methodology by allowing the Markov Chain adequate time to fully sample the model space.
Chen, Cong; Zhu, Ying; Zeng, Xueting; Huang, Guohe; Li, Yongping
2018-07-15
Contradictions of increasing carbon mitigation pressure and electricity demand have been aggravated significantly. A heavy emphasis is placed on analyzing the carbon mitigation potential of electric energy systems via tradable green certificates (TGC). This study proposes a tradable green certificate (TGC)-fractional fuzzy stochastic robust optimization (FFSRO) model through integrating fuzzy possibilistic, two-stage stochastic and stochastic robust programming techniques into a linear fractional programming framework. The framework can address uncertainties expressed as stochastic and fuzzy sets, and effectively deal with issues of multi-objective tradeoffs between the economy and environment. The proposed model is applied to the major economic center of China, the Beijing-Tianjin-Hebei region. The generated results of proposed model indicate that a TGC mechanism is a cost-effective pathway to cope with carbon reduction and support the sustainable development pathway of electric energy systems. In detail, it can: (i) effectively promote renewable power development and reduce fossil fuel use; (ii) lead to higher CO 2 mitigation potential than non-TGC mechanism; and (iii) greatly alleviate financial pressure on the government to provide renewable energy subsidies. The TGC-FFSRO model can provide a scientific basis for making related management decisions of electric energy systems. Copyright © 2017 Elsevier B.V. All rights reserved.
A comparison of two- and three-dimensional stochastic models of regional solute movement
Shapiro, A.M.; Cvetkovic, V.D.
1990-01-01
Recent models of solute movement in porous media that are based on a stochastic description of the porous medium properties have been dedicated primarily to a three-dimensional interpretation of solute movement. In many practical problems, however, it is more convenient and consistent with measuring techniques to consider flow and solute transport as an areal, two-dimensional phenomenon. The physics of solute movement, however, is dependent on the three-dimensional heterogeneity in the formation. A comparison of two- and three-dimensional stochastic interpretations of solute movement in a porous medium having a statistically isotropic hydraulic conductivity field is investigated. To provide an equitable comparison between the two- and three-dimensional analyses, the stochastic properties of the transmissivity are defined in terms of the stochastic properties of the hydraulic conductivity. The variance of the transmissivity is shown to be significantly reduced in comparison to that of the hydraulic conductivity, and the transmissivity is spatially correlated over larger distances. These factors influence the two-dimensional interpretations of solute movement by underestimating the longitudinal and transverse growth of the solute plume in comparison to its description as a three-dimensional phenomenon. Although this analysis is based on small perturbation approximations and the special case of a statistically isotropic hydraulic conductivity field, it casts doubt on the use of a stochastic interpretation of the transmissivity in describing regional scale movement. However, by assuming the transmissivity to be the vertical integration of the hydraulic conductivity field at a given position, the stochastic properties of the hydraulic conductivity can be estimated from the stochastic properties of the transmissivity and applied to obtain a more accurate interpretation of solute movement. ?? 1990 Kluwer Academic Publishers.
A Nondeterministic Resource Planning Model in Education
ERIC Educational Resources Information Center
Yoda, Koji
1977-01-01
Discusses a simple technique for stochastic resource planning that, when computerized, can assist educational managers in the process of quantifying the future uncertainty, thereby, helping them make better decisions. The example used is a school lunch program. (Author/IRT)
Huang, Haiying; Du, Qiaosheng; Kang, Xibing
2013-11-01
In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less
Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey
NASA Astrophysics Data System (ADS)
Mandal, Partha Sarathi
2018-04-01
In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.
System theoretic models for high density VLSI structures
NASA Astrophysics Data System (ADS)
Dickinson, Bradley W.; Hopkins, William E., Jr.
This research project involved the development of mathematical models for analysis, synthesis, and simulation of large systems of interacting devices. The work was motivated by problems that may become important in high density VLSI chips with characteristic feature sizes less than 1 micron: it is anticipated that interactions of neighboring devices will play an important role in the determination of circuit properties. It is hoped that the combination of high device densities and such local interactions can somehow be exploited to increase circuit speed and to reduce power consumption. To address these issues from the point of view of system theory, research was pursued in the areas of nonlinear and stochastic systems and into neural network models. Statistical models were developed to characterize various features of the dynamic behavior of interacting systems. Random process models for studying the resulting asynchronous modes of operation were investigated. The local interactions themselves may be modeled as stochastic effects. The resulting behavior was investigated through the use of various scaling limits, and by a combination of other analytical and simulation techniques. Techniques arising in a variety of disciplines where models of interaction were formulated and explored were considered and adapted for use.
Computational model of chromosome aberration yield induced by high- and low-LET radiation exposures.
Ponomarev, Artem L; George, Kerry; Cucinotta, Francis A
2012-06-01
We present a computational model for calculating the yield of radiation-induced chromosomal aberrations in human cells based on a stochastic Monte Carlo approach and calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. A previously developed DNA-fragmentation model for high- and low-LET radiation called the NASARadiationTrackImage model was enhanced to simulate a stochastic process of the formation of chromosomal aberrations from DNA fragments. The current version of the model gives predictions of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G(0)/G(1) cell cycle phase during the first cell division after irradiation. As the model can predict smaller-sized deletions and rings (<3 Mbp) that are below the resolution limits of current cytogenetic analysis techniques, we present predictions of hypothesized small deletions that may be produced as a byproduct of properly repaired DNA double-strand breaks (DSB) by nonhomologous end-joining. Additionally, the model was used to scale chromosomal exchanges in two or three chromosomes that were obtained from whole-chromosome FISH painting analysis techniques to whole-genome equivalent values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Samuel S. P.
2013-09-01
The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been an interdisciplinary collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen). The motivation and long-term goal underlying this work is the utilization of stochastic radiative transfer theory (Lane-Veron and Somerville, 2004; Lane et al., 2002) to develop a new class of parametric representations of cloud-radiation interactions and closely related processes for atmospheric models. The theoretical advantage of the stochastic approach is that it can accurately calculate the radiative heating rates through a broken cloud layer without requiring an exact description of the cloud geometry.« less
Stochastic Analysis and Design of Heterogeneous Microstructural Materials System
NASA Astrophysics Data System (ADS)
Xu, Hongyi
Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.
NASA Astrophysics Data System (ADS)
Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.
2015-03-01
This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.
2018-05-01
As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M
2018-07-01
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
2016-04-01
environment. Modeling is suitable for well- characterized parts, and stochastic modeling techniques can be used for sensitivity analysis and generating a...large cohort of trials to spot unusual cases. However, deployment repeatability is inherently a nonlinear phenomenon, which makes modeling difficult...recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. 1. Test the flight model
Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.
2016-01-01
The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagiannis, Georgios, E-mail: georgios.karagiannis@pnnl.gov; Lin, Guang, E-mail: guang.lin@pnnl.gov
2014-02-15
Generalized polynomial chaos (gPC) expansions allow us to represent the solution of a stochastic system using a series of polynomial chaos basis functions. The number of gPC terms increases dramatically as the dimension of the random input variables increases. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs when the corresponding deterministic solver is computationally expensive, evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solutions, in both spatial and random domains, bymore » coupling Bayesian model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spatial points, via (1) the Bayesian model average (BMA) or (2) the median probability model, and their construction as spatial functions on the spatial domain via spline interpolation. The former accounts for the model uncertainty and provides Bayes-optimal predictions; while the latter provides a sparse representation of the stochastic solutions by evaluating the expansion on a subset of dominating gPC bases. Moreover, the proposed methods quantify the importance of the gPC bases in the probabilistic sense through inclusion probabilities. We design a Markov chain Monte Carlo (MCMC) sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed methods are suitable for, but not restricted to, problems whose stochastic solutions are sparse in the stochastic space with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the accuracy and performance of the proposed methods and make comparisons with other approaches on solving elliptic SPDEs with 1-, 14- and 40-random dimensions.« less
Fast smooth second-order sliding mode control for stochastic systems with enumerable coloured noises
NASA Astrophysics Data System (ADS)
Yang, Peng-fei; Fang, Yang-wang; Wu, You-li; Zhang, Dan-xu; Xu, Yang
2018-01-01
A fast smooth second-order sliding mode control is presented for a class of stochastic systems driven by enumerable Ornstein-Uhlenbeck coloured noises with time-varying coefficients. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the control. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Then the prescribed sliding variable dynamic is presented. The sufficient condition guaranteeing its finite-time convergence is given and proved using stochastic Lyapunov-like techniques. The proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are given comparing with smooth second-order sliding mode control to validate the analysis.
Stochastic models for inferring genetic regulation from microarray gene expression data.
Tian, Tianhai
2010-03-01
Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.
Stochastic flux analysis of chemical reaction networks
2013-01-01
Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153
Stochastic flux analysis of chemical reaction networks.
Kahramanoğulları, Ozan; Lynch, James F
2013-12-07
Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.
Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors
NASA Astrophysics Data System (ADS)
Mehanna Ismail, Mohammed Ali
The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the implementation of time splitting, variable stochastic fluid particle mass control, and a second order time accurate (predictor-corrector) scheme used for solving the stochastic differential equations governing the particles evolution. The model compared well against experimental data found in the literature for two different configurations: bluff body and swirl stabilized combustors. The generalized stochastic reactor is a newly developed model. This model relies on the generalization of the concept of the classical stochastic reactor theory in the sense that it accounts for both finite micro- and macro-mixing processes. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Watson, Cameron S.; Carrivick, Jonathan; Quincey, Duncan
2015-10-01
Modelling glacial lake outburst floods (GLOFs) or 'jökulhlaups', necessarily involves the propagation of large and often stochastic uncertainties throughout the source to impact process chain. Since flood routing is primarily a function of underlying topography, communication of digital elevation model (DEM) uncertainty should accompany such modelling efforts. Here, a new stochastic first-pass assessment technique was evaluated against an existing GIS-based model and an existing 1D hydrodynamic model, using three DEMs with different spatial resolution. The analysis revealed the effect of DEM uncertainty and model choice on several flood parameters and on the prediction of socio-economic impacts. Our new model, which we call MC-LCP (Monte Carlo Least Cost Path) and which is distributed in the supplementary information, demonstrated enhanced 'stability' when compared to the two existing methods, and this 'stability' was independent of DEM choice. The MC-LCP model outputs an uncertainty continuum within its extent, from which relative socio-economic risk can be evaluated. In a comparison of all DEM and model combinations, the Shuttle Radar Topography Mission (SRTM) DEM exhibited fewer artefacts compared to those with the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), and were comparable to those with a finer resolution Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) derived DEM. Overall, we contend that the variability we find between flood routing model results suggests that consideration of DEM uncertainty and pre-processing methods is important when assessing flow routing and when evaluating potential socio-economic implications of a GLOF event. Incorporation of a stochastic variable provides an illustration of uncertainty that is important when modelling and communicating assessments of an inherently complex process.
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Stochastic subspace identification for operational modal analysis of an arch bridge
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien
2012-04-01
In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.
Review of stochastic hybrid systems with applications in biological systems modeling and analysis.
Li, Xiangfang; Omotere, Oluwaseyi; Qian, Lijun; Dougherty, Edward R
2017-12-01
Stochastic hybrid systems (SHS) have attracted a lot of research interests in recent years. In this paper, we review some of the recent applications of SHS to biological systems modeling and analysis. Due to the nature of molecular interactions, many biological processes can be conveniently described as a mixture of continuous and discrete phenomena employing SHS models. With the advancement of SHS theory, it is expected that insights can be obtained about biological processes such as drug effects on gene regulation. Furthermore, combining with advanced experimental methods, in silico simulations using SHS modeling techniques can be carried out for massive and rapid verification or falsification of biological hypotheses. The hope is to substitute costly and time-consuming in vitro or in vivo experiments or provide guidance for those experiments and generate better hypotheses.
Stochastic effects in a discretized kinetic model of economic exchange
NASA Astrophysics Data System (ADS)
Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.
2017-04-01
Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.
NASA Technical Reports Server (NTRS)
Hsia, Wei-Shen
1986-01-01
In the Control Systems Division of the Systems Dynamics Laboratory of the NASA/MSFC, a Ground Facility (GF), in which the dynamics and control system concepts being considered for Large Space Structures (LSS) applications can be verified, was designed and built. One of the important aspects of the GF is to design an analytical model which will be as close to experimental data as possible so that a feasible control law can be generated. Using Hyland's Maximum Entropy/Optimal Projection Approach, a procedure was developed in which the maximum entropy principle is used for stochastic modeling and the optimal projection technique is used for a reduced-order dynamic compensator design for a high-order plant.
Systematization of a set of closure techniques.
Hausken, Kjell; Moxnes, John F
2011-11-01
Approximations in population dynamics are gaining popularity since stochastic models in large populations are time consuming even on a computer. Stochastic modeling causes an infinite set of ordinary differential equations for the moments. Closure models are useful since they recast this infinite set into a finite set of ordinary differential equations. This paper systematizes a set of closure approximations. We develop a system, which we call a power p closure of n moments, where 0≤p≤n. Keeling's (2000a,b) approximation with third order moments is shown to be an instantiation of this system which we call a power 3 closure of 3 moments. We present an epidemiological example and evaluate the system for third and fourth moments compared with Monte Carlo simulations. Copyright © 2011 Elsevier Inc. All rights reserved.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
NASA Astrophysics Data System (ADS)
Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher
2017-11-01
Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.
Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.
Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A
2007-10-01
In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.
Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.
Yeo, Leslie Y; Matar, Omar K; Perez de Ortiz, E Susana; Hewitt, Geoffrey F
2002-04-15
A speculative study on the conditions under which phase inversion occurs in agitated liquid-liquid dispersions is conducted using a Monte Carlo technique. The simulation is based on a stochastic model, which accounts for fundamental physical processes such as drop deformation, breakup, and coalescence, and utilizes the minimization of interfacial energy as a criterion for phase inversion. Profiles of the interfacial energy indicate that a steady-state equilibrium is reached after a sufficiently large number of random moves and that predictions are insensitive to initial drop conditions. The calculated phase inversion holdup is observed to increase with increasing density and viscosity ratio, and to decrease with increasing agitation speed for a fixed viscosity ratio. It is also observed that, for a fixed viscosity ratio, the phase inversion holdup remains constant for large enough agitation speeds. The proposed model is therefore capable of achieving reasonable qualitative agreement with general experimental trends and of reproducing key features observed experimentally. The results of this investigation indicate that this simple stochastic method could be the basis upon which more advanced models for predicting phase inversion behavior can be developed.
Paninski, Liam; Haith, Adrian; Szirtes, Gabor
2008-02-01
We recently introduced likelihood-based methods for fitting stochastic integrate-and-fire models to spike train data. The key component of this method involves the likelihood that the model will emit a spike at a given time t. Computing this likelihood is equivalent to computing a Markov first passage time density (the probability that the model voltage crosses threshold for the first time at time t). Here we detail an improved method for computing this likelihood, based on solving a certain integral equation. This integral equation method has several advantages over the techniques discussed in our previous work: in particular, the new method has fewer free parameters and is easily differentiable (for gradient computations). The new method is also easily adaptable for the case in which the model conductance, not just the input current, is time-varying. Finally, we describe how to incorporate large deviations approximations to very small likelihoods.
Salgia, Ravi; Mambetsariev, Isa; Hewelt, Blake; Achuthan, Srisairam; Li, Haiqing; Poroyko, Valeriy; Wang, Yingyu; Sattler, Martin
2018-05-25
Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.
Forecasting stochastic neural network based on financial empirical mode decomposition.
Wang, Jie; Wang, Jun
2017-06-01
In an attempt to improve the forecasting accuracy of stock price fluctuations, a new one-step-ahead model is developed in this paper which combines empirical mode decomposition (EMD) with stochastic time strength neural network (STNN). The EMD is a processing technique introduced to extract all the oscillatory modes embedded in a series, and the STNN model is established for considering the weight of occurrence time of the historical data. The linear regression performs the predictive availability of the proposed model, and the effectiveness of EMD-STNN is revealed clearly through comparing the predicted results with the traditional models. Moreover, a new evaluated method (q-order multiscale complexity invariant distance) is applied to measure the predicted results of real stock index series, and the empirical results show that the proposed model indeed displays a good performance in forecasting stock market fluctuations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.
Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong
2017-10-01
This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.
Stochastic hyperfine interactions modeling library-Version 2
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2016-02-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Discrete and continuous models for tissue growth and shrinkage.
Yates, Christian A
2014-06-07
The incorporation of domain growth into stochastic models of biological processes is of increasing interest to mathematical modellers and biologists alike. In many situations, especially in developmental biology, the growth of the underlying tissue domain plays an important role in the redistribution of particles (be they cells or molecules) which may move and react atop the domain. Although such processes have largely been modelled using deterministic, continuum models there is an increasing appetite for individual-based stochastic models which can capture the fine details of the biological movement processes which are being elucidated by modern experimental techniques, and also incorporate the inherent stochasticity of such systems. In this work we study a simple stochastic model of domain growth. From a basic version of this model, Hywood et al. (2013) were able to derive a Fokker-Plank equation (FPE) (in this case an advection-diffusion partial differential equation on a growing domain) which describes the evolution of the probability density of some tracer particles on the domain. We extend their work so that a variety of different domain growth mechanisms can be incorporated and demonstrate a good agreement between the mean tracer density and the solution of the FPE in each case. In addition we incorporate domain shrinkage (via element death) into our individual-level model and demonstrate that we are able to derive coefficients for the FPE in this case as well. For situations in which the drift and diffusion coefficients are not readily available we introduce a numerical coefficient estimation approach and demonstrate the accuracy of this approach by comparing it with situations in which an analytical solution is obtainable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simplex-stochastic collocation method with improved scalability
NASA Astrophysics Data System (ADS)
Edeling, W. N.; Dwight, R. P.; Cinnella, P.
2016-04-01
The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than 5. The main purpose of this paper is to identify bottlenecks, and to improve upon this bad scalability. In order to do so, we propose an alternative interpolation stencil technique based upon the Set-Covering problem, and we integrate the SSC method in the High-Dimensional Model-Reduction framework. In addition, we address the issue of ill-conditioned sample matrices, and we present an analytical map to facilitate uniformly-distributed simplex sampling.
Zaikin, Alexey; Míguez, Joaquín
2017-01-01
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087
Data-adaptive harmonic analysis and prediction of sea level change in North Atlantic region
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.; Chekroun, M.
2017-12-01
This study aims to characterize North Atlantic sea level variability across the temporal and spatial scales. We apply recently developed data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) stochastic modeling techniques [Chekroun and Kondrashov, 2017] to monthly 1993-2017 dataset of Combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM altimetry fields over North Atlantic region. The key numerical feature of the DAH relies on the eigendecomposition of a matrix constructed from time-lagged spatial cross-correlations. In particular, eigenmodes form an orthogonal set of oscillating data-adaptive harmonic modes (DAHMs) that come in pairs and in exact phase quadrature for a given temporal frequency. Furthermore, the pairs of data-adaptive harmonic coefficients (DAHCs), obtained by projecting the dataset onto associated DAHMs, can be very efficiently modeled by a universal parametric family of simple nonlinear stochastic models - coupled Stuart-Landau oscillators stacked per frequency, and synchronized across different frequencies by the stochastic forcing. Despite the short record of altimetry dataset, developed DAH-MSLM model provides for skillful prediction of key dynamical and statistical features of sea level variability. References M. D. Chekroun and D. Kondrashov, Data-adaptive harmonic spectra and multilayer Stuart-Landau models. HAL preprint, 2017, https://hal.archives-ouvertes.fr/hal-01537797
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Fumagalli, Michele; da Silva, Robert L.; Rendahl, Theodore; Parra, Jonathan
2015-09-01
Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also require consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include the following: a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes spectra and photometry for stochastically or deterministically sampled stellar populations with nearly arbitrary star formation histories, clustering properties, and initial mass functions; CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radiative transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included in the software. The complete package is available at http://www.slugsps.com.
Shot noise perturbations and mean first passage times between stable states.
Drury, Kevin L S
2007-08-01
Predicting crossings between stable states is a central issue in population biology. Crossings from low-density to high-density equilibria are often associated with pest outbreaks, while the opposite crossings are often associated with population collapse of harvested species. Here I use a simple, bistable model to demonstrate a technique for estimating mean first passage times (MFPT) of thresholds, including boundaries between stable equilibria. The approach is based on stochastic "shot-noise" perturbations to the population and the MFPTs compare favorably with mean crossing times from Monte Carlo numerical solutions of the stochastically perturbed model. This agreement suggests that MFPT approximations can be used to quantify expected effects of species manipulations, whether the goal is pest control or sustainable harvest.
Stochastic models for atomic clocks
NASA Technical Reports Server (NTRS)
Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.
1983-01-01
For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Proper orthogonal decomposition-based spectral higher-order stochastic estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baars, Woutijn J., E-mail: wbaars@unimelb.edu.au; Tinney, Charles E.
A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimationmore » (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.« less
NASA Astrophysics Data System (ADS)
Zammouri, Mounira; Ribeiro, Luis
2017-05-01
Groundwater flow model of the transboundary Saharan aquifer system is developed in 2003 and used for management and decision-making by Algeria, Tunisia and Libya. In decision-making processes, reliability plays a decisive role. This paper looks into the reliability assessment of the Saharan aquifers model. It aims to detect the shortcomings of the model considered properly calibrated. After presenting the calibration results of the effort modelling in 2003, the uncertainty in the model which arising from the lack of the groundwater level and the transmissivity data is analyzed using kriging technique and stochastic approach. The structural analysis of piezometry in steady state and logarithms of transmissivity were carried out for the Continental Intercalaire (CI) and the Complexe Terminal (CT) aquifers. The available data (piezometry and transmissivity) were compared to the calculated values, using geostatistics approach. Using a stochastic approach, 2500 realizations of a log-normal random transmissivity field of the CI aquifer has been performed to assess the errors of the model output, due to the uncertainty in transmissivity. Two types of bad calibration are shown. In some regions, calibration should be improved using the available data. In others areas, undertaking the model refinement requires gathering new data to enhance the aquifer system knowledge. Stochastic simulations' results showed that the calculated drawdowns in 2050 could be higher than the values predicted by the calibrated model.
Fast smooth second-order sliding mode control for systems with additive colored noises.
Yang, Pengfei; Fang, Yangwang; Wu, Youli; Liu, Yunxia; Zhang, Danxu
2017-01-01
In this paper, a fast smooth second-order sliding mode control is presented for a class of stochastic systems with enumerable Ornstein-Uhlenbeck colored noises. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the controller. The finite-time convergence of the prescribed sliding variable dynamics system is proved by using stochastic Lyapunov-like techniques. Then the proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are presented comparing with smooth second-order sliding mode control to validate the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yunlong; Wang, Hong; Guo, Lei
Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less
Liu, Yunlong; Wang, Hong; Guo, Lei
2018-03-26
Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less
USDA-ARS?s Scientific Manuscript database
This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Richard
2013-08-22
The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).« less
Efficient Matrix Models for Relational Learning
2009-10-01
74 4.5.3 Comparison to pLSI- pHITS . . . . . . . . . . . . . . . . . . . . 76 5 Hierarchical Bayesian Collective...Behaviour of Newton vs. Stochastic Newton on a three-factor model. 4.5.3 Comparison to pLSI- pHITS Caveat: Collective Matrix Factorization makes no guarantees...leads to better results; and another where a co-clustering model, pLSI- pHITS , has the advantage. pLSI- pHITS [24] is a relational clustering technique
A statistical nanomechanism of biomolecular patterning actuated by surface potential
NASA Astrophysics Data System (ADS)
Lin, Chih-Ting; Lin, Chih-Hao
2011-02-01
Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.
Hipp, John R.; Wang, Cheng; Butts, Carter T.; Jose, Rupa; Lakon, Cynthia M.
2015-01-01
Although stochastic actor based models (e.g., as implemented in the SIENA software program) are growing in popularity as a technique for estimating longitudinal network data, a relatively understudied issue is the consequence of missing network data for longitudinal analysis. We explore this issue in our research note by utilizing data from four schools in an existing dataset (the AddHealth dataset) over three time points, assessing the substantive consequences of using four different strategies for addressing missing network data. The results indicate that whereas some measures in such models are estimated relatively robustly regardless of the strategy chosen for addressing missing network data, some of the substantive conclusions will differ based on the missing data strategy chosen. These results have important implications for this burgeoning applied research area, implying that researchers should more carefully consider how they address missing data when estimating such models. PMID:25745276
Hipp, John R; Wang, Cheng; Butts, Carter T; Jose, Rupa; Lakon, Cynthia M
2015-05-01
Although stochastic actor based models (e.g., as implemented in the SIENA software program) are growing in popularity as a technique for estimating longitudinal network data, a relatively understudied issue is the consequence of missing network data for longitudinal analysis. We explore this issue in our research note by utilizing data from four schools in an existing dataset (the AddHealth dataset) over three time points, assessing the substantive consequences of using four different strategies for addressing missing network data. The results indicate that whereas some measures in such models are estimated relatively robustly regardless of the strategy chosen for addressing missing network data, some of the substantive conclusions will differ based on the missing data strategy chosen. These results have important implications for this burgeoning applied research area, implying that researchers should more carefully consider how they address missing data when estimating such models.
Data-driven Climate Modeling and Prediction
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.; Chekroun, M.
2016-12-01
Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.
Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.
Li, Haifeng; Shao, Jiushu; Wang, Shikuan
2011-11-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
Stochastic cooperative advertising in a manufacturer-retailer decentralized supply channel
NASA Astrophysics Data System (ADS)
Ezimadu, Peter E.; Nwozo, Chukwuma R.
2017-03-01
This work considers cooperative advertising in a manufacturer-retailer supply chain. While the manufacturer is the Stackelberg leader, the retailer is the follower. Using Sethi model it models the dynamic effect of the manufacturer and retailer's advertising efforts on sale. It uses optimal control technique and stochastic differential game theory to obtain the players' advertising strategies and the long-run value of the awareness share. Further, it models the relationship between the payoffs of both players and the awareness share. The work shows that with the provision of subsidy the retail advertising effort increases while the manufacturer's advertising effort reduces. It further shows that the total channel payoff is higher for subsidised retail advertising. However, the subsidy can only be possible if the rate of growth of the manufacturer's payoff is twice higher than that of the retailer.
NASA Astrophysics Data System (ADS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Stochastic availability analysis of operational data systems in the Deep Space Network
NASA Technical Reports Server (NTRS)
Issa, T. N.
1991-01-01
Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.
The development of the deterministic nonlinear PDEs in particle physics to stochastic case
NASA Astrophysics Data System (ADS)
Abdelrahman, Mahmoud A. E.; Sohaly, M. A.
2018-06-01
In the present work, accuracy method called, Riccati-Bernoulli Sub-ODE technique is used for solving the deterministic and stochastic case of the Phi-4 equation and the nonlinear Foam Drainage equation. Also, the control on the randomness input is studied for stability stochastic process solution.
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less
Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.
Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani
2017-03-27
Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and reliable tool to infer MINs and track their dynamics.
Dynamical Epidemic Suppression Using Stochastic Prediction and Control
2004-10-28
initial probability density function (PDF), p: D C R2 -- R, is defined by the stochastic Frobenius - Perron For deterministic systems, normal methods of...induced chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius - Perron operator [L. Billings et al., Phys. Rev. Lett...transition matrix describing the probability of transport from one region of phase space to another, which approximates the stochastic Frobenius - Perron
Komarov, Ivan; D'Souza, Roshan M
2012-01-01
The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.
Chang, Joshua; Paydarfar, David
2014-12-01
Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.
Sustainability of transport structures - some aspects of the nonlinear reliability assessment
NASA Astrophysics Data System (ADS)
Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír
2017-09-01
Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.
NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2017-01-01
The identification of a single global model for a stochastic dynamical system operating under various conditions is considered. Each operating condition is assumed to have a pseudo-static effect on the dynamics and be characterized by a single measurable scheduling variable. Identification is accomplished within a recently introduced Functionally Pooled (FP) framework, which offers a number of advantages over Linear Parameter Varying (LPV) identification techniques. The focus of the work is on the extension of the framework to include the important FP-ARMAX model case. Compared to their simpler FP-ARX counterparts, FP-ARMAX models are much more general and offer improved flexibility in describing various types of stochastic noise, but at the same time lead to a more complicated, non-quadratic, estimation problem. Prediction Error (PE), Maximum Likelihood (ML), and multi-stage estimation methods are postulated, and the PE estimator optimality, in terms of consistency and asymptotic efficiency, is analytically established. The postulated estimators are numerically assessed via Monte Carlo experiments, while the effectiveness of the approach and its superiority over its FP-ARX counterpart are demonstrated via an application case study pertaining to simulated railway vehicle suspension dynamics under various mass loading conditions.
Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua
2017-11-01
In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6 t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3 t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
On the Use of Kronecker Operators for the Solution of Generalized Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Ciardo, Gianfranco; Tilgner, Marco
1996-01-01
We discuss how to describe the Markov chain underlying a generalized stochastic Petri net using Kronecker operators on smaller matrices. We extend previous approaches by allowing both an extensive type of marking-dependent behavior for the transitions and the presence of immediate synchronizations. The derivation of the results is thoroughly formalized, including the use of Kronecker operators in the treatment of the vanishing markings and the computation of impulse-based reward measures. We use our techniques to analyze a model whose solution using conventional methods would fail because of the state-space explosion. In the conclusion, we point out ideas to parallelize our approach.
Application of IFT and SPSA to servo system control.
Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan
2011-12-01
This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.
Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue
NASA Astrophysics Data System (ADS)
Kree, P.; Soize, C.
The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.
Zeynoddin, Mohammad; Bonakdari, Hossein; Azari, Arash; Ebtehaj, Isa; Gharabaghi, Bahram; Riahi Madavar, Hossein
2018-09-15
A novel hybrid approach is presented that can more accurately predict monthly rainfall in a tropical climate by integrating a linear stochastic model with a powerful non-linear extreme learning machine method. This new hybrid method was then evaluated by considering four general scenarios. In the first scenario, the modeling process is initiated without preprocessing input data as a base case. While in other three scenarios, the one-step and two-step procedures are utilized to make the model predictions more precise. The mentioned scenarios are based on a combination of stationarization techniques (i.e., differencing, seasonal and non-seasonal standardization and spectral analysis), and normality transforms (i.e., Box-Cox, John and Draper, Yeo and Johnson, Johnson, Box-Cox-Mod, log, log standard, and Manly). In scenario 2, which is a one-step scenario, the stationarization methods are employed as preprocessing approaches. In scenario 3 and 4, different combinations of normality transform, and stationarization methods are considered as preprocessing techniques. In total, 61 sub-scenarios are evaluated resulting 11013 models (10785 linear methods, 4 nonlinear models, and 224 hybrid models are evaluated). The uncertainty of the linear, nonlinear and hybrid models are examined by Monte Carlo technique. The best preprocessing technique is the utilization of Johnson normality transform and seasonal standardization (respectively) (R 2 = 0.99; RMSE = 0.6; MAE = 0.38; RMSRE = 0.1, MARE = 0.06, UI = 0.03 &UII = 0.05). The results of uncertainty analysis indicated the good performance of proposed technique (d-factor = 0.27; 95PPU = 83.57). Moreover, the results of the proposed methodology in this study were compared with an evolutionary hybrid of adaptive neuro fuzzy inference system (ANFIS) with firefly algorithm (ANFIS-FFA) demonstrating that the new hybrid methods outperformed ANFIS-FFA method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.
Dhar, Amrit; Minin, Vladimir N
2017-05-01
Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time
Dhar, Amrit
2017-01-01
Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780
Chebouba, Lokmane; Boughaci, Dalila; Guziolowski, Carito
2018-06-04
The use of data issued from high throughput technologies in drug target problems is widely widespread during the last decades. This study proposes a meta-heuristic framework using stochastic local search (SLS) combined with random forest (RF) where the aim is to specify the most important genes and proteins leading to the best classification of Acute Myeloid Leukemia (AML) patients. First we use a stochastic local search meta-heuristic as a feature selection technique to select the most significant proteins to be used in the classification task step. Then we apply RF to classify new patients into their corresponding classes. The evaluation technique is to run the RF classifier on the training data to get a model. Then, we apply this model on the test data to find the appropriate class. We use as metrics the balanced accuracy (BAC) and the area under the receiver operating characteristic curve (AUROC) to measure the performance of our model. The proposed method is evaluated on the dataset issued from DREAM 9 challenge. The comparison is done with a pure random forest (without feature selection), and with the two best ranked results of the DREAM 9 challenge. We used three types of data: only clinical data, only proteomics data, and finally clinical and proteomics data combined. The numerical results show that the highest scores are obtained when using clinical data alone, and the lowest is obtained when using proteomics data alone. Further, our method succeeds in finding promising results compared to the methods presented in the DREAM challenge.
Robust lane detection and tracking using multiple visual cues under stochastic lane shape conditions
NASA Astrophysics Data System (ADS)
Huang, Zhi; Fan, Baozheng; Song, Xiaolin
2018-03-01
As one of the essential components of environment perception techniques for an intelligent vehicle, lane detection is confronted with challenges including robustness against the complicated disturbance and illumination, also adaptability to stochastic lane shapes. To overcome these issues, we proposed a robust lane detection method named classification-generation-growth-based (CGG) operator to the detected lines, whereby the linear lane markings are identified by synergizing multiple visual cues with the a priori knowledge and spatial-temporal information. According to the quality of linear lane fitting, the linear and linear-parabolic models are dynamically switched to describe the actual lane. The Kalman filter with adaptive noise covariance and the region of interests (ROI) tracking are applied to improve the robustness and efficiency. Experiments were conducted with images covering various challenging scenarios. The experimental results evaluate the effectiveness of the presented method for complicated disturbances, illumination, and stochastic lane shapes.
Large-deviation properties of Brownian motion with dry friction.
Chen, Yaming; Just, Wolfram
2014-10-01
We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.
On convergence of the unscented Kalman-Bucy filter using contraction theory
NASA Astrophysics Data System (ADS)
Maree, J. P.; Imsland, L.; Jouffroy, J.
2016-06-01
Contraction theory entails a theoretical framework in which convergence of a nonlinear system can be analysed differentially in an appropriate contraction metric. This paper is concerned with utilising stochastic contraction theory to conclude on exponential convergence of the unscented Kalman-Bucy filter. The underlying process and measurement models of interest are Itô-type stochastic differential equations. In particular, statistical linearisation techniques are employed in a virtual-actual systems framework to establish deterministic contraction of the estimated expected mean of process values. Under mild conditions of bounded process noise, we extend the results on deterministic contraction to stochastic contraction of the estimated expected mean of the process state. It follows that for the regions of contraction, a result on convergence, and thereby incremental stability, is concluded for the unscented Kalman-Bucy filter. The theoretical concepts are illustrated in two case studies.
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
NASA Astrophysics Data System (ADS)
Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying
2016-05-01
Health state estimation of inaccessible components in complex systems necessitates effective state estimation techniques using the observable variables of the system. The task becomes much complicated when the system is nonlinear/non-Gaussian and it receives stochastic input. In this work, a novel sequential state estimation framework is developed based on particle filtering (PF) scheme for state estimation of general class of nonlinear dynamical systems with stochastic input. Performance of the developed framework is then validated with simulation on a Bivariate Non-stationary Growth Model (BNGM) as a benchmark. In the next step, three-year operating data of an industrial gas turbine engine (GTE) are utilized to verify the effectiveness of the developed framework. A comprehensive thermodynamic model for the GTE is therefore developed to formulate the relation of the observable parameters and the dominant degradation symptoms of the turbine, namely, loss of isentropic efficiency and increase of the mass flow. The results confirm the effectiveness of the developed framework for simultaneous estimation of multiple degradation symptoms in complex systems with noisy measured inputs.
NASA Astrophysics Data System (ADS)
Gao, Peng
2018-06-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
NASA Astrophysics Data System (ADS)
Gao, Peng
2018-04-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Population density equations for stochastic processes with memory kernels
NASA Astrophysics Data System (ADS)
Lai, Yi Ming; de Kamps, Marc
2017-06-01
We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface.more » We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.« less
Forecasting irregular variations of UT1-UTC and LOD data caused by ENSO
NASA Astrophysics Data System (ADS)
Niedzielski, T.; Kosek, W.
2008-04-01
The research focuses on prediction of LOD and UT1-UTC time series up to one-year in the future with the particular emphasis on the prediction improvement during El Nĩ o or La Nĩ a n n events. The polynomial-harmonic least-squares model is applied to fit the deterministic function to LOD data. The stochastic residuals computed as the difference between LOD data and the polynomial- harmonic model reveal the extreme values driven by El Nĩ o or La Nĩ a. These peaks are modeled by the n n stochastic bivariate autoregressive prediction. This approach focuses on the auto- and cross-correlations between LOD and the axial component of the atmospheric angular momentum. This technique allows one to derive more accurate predictions than purely univariate forecasts, particularly during El Nĩ o/La n Nĩ a events. n
Stochastic Thermodynamics of a Particle in a Box.
Gong, Zongping; Lan, Yueheng; Quan, H T
2016-10-28
The piston system (particles in a box) is the simplest paradigmatic model in traditional thermodynamics. However, the recently established framework of stochastic thermodynamics (ST) fails to apply to this model system due to the embedded singularity in the potential. In this Letter, we study the ST of a particle in a box by adopting a novel coordinate transformation technique. Through comparing with the exact solution of a breathing harmonic oscillator, we obtain analytical results of work distribution for an arbitrary protocol in the linear response regime and verify various predictions of the fluctuation-dissipation relation. When applying to the Brownian Szilard engine model, we obtain the optimal protocol λ_{t}=λ_{0}2^{t/τ} for a given sufficiently long total time τ. Our study not only establishes a paradigm for studying ST of a particle in a box but also bridges the long-standing gap in the development of ST.
Role of weakest links and system-size scaling in multiscale modeling of stochastic plasticity
NASA Astrophysics Data System (ADS)
Ispánovity, Péter Dusán; Tüzes, Dániel; Szabó, Péter; Zaiser, Michael; Groma, István
2017-02-01
Plastic deformation of crystalline and amorphous matter often involves intermittent local strain burst events. To understand the physical background of the phenomenon a minimal stochastic mesoscopic model was introduced, where details of the microstructure evolution are statistically represented in terms of a fluctuating local yield threshold. In the present paper we propose a method for determining the corresponding yield stress distribution for the case of crystal plasticity from lower scale discrete dislocation dynamics simulations which we combine with weakest link arguments. The success of scale linking is demonstrated by comparing stress-strain curves obtained from the resulting mesoscopic and the underlying discrete dislocation models in the microplastic regime. As shown by various scaling relations they are statistically equivalent and behave identically in the thermodynamic limit. The proposed technique is expected to be applicable to different microstructures and also to amorphous materials.
A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.
Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles
2013-07-24
Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.
A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems
Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles
2013-01-01
Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084
VLBI-derived troposphere parameters during CONT08
NASA Astrophysics Data System (ADS)
Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.
2011-07-01
Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.
Use of artificial landscapes to isolate controls on burn probability
Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney
2010-01-01
Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...
Oizumi, Ryo
2014-01-01
Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.
Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity
Oizumi, Ryo
2014-01-01
Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258
NASA Astrophysics Data System (ADS)
Miner, Nadine Elizabeth
1998-09-01
This dissertation presents a new wavelet-based method for synthesizing perceptually convincing, dynamic sounds using parameterized sound models. The sound synthesis method is applicable to a variety of applications including Virtual Reality (VR), multi-media, entertainment, and the World Wide Web (WWW). A unique contribution of this research is the modeling of the stochastic, or non-pitched, sound components. This stochastic-based modeling approach leads to perceptually compelling sound synthesis. Two preliminary studies conducted provide data on multi-sensory interaction and audio-visual synchronization timing. These results contributed to the design of the new sound synthesis method. The method uses a four-phase development process, including analysis, parameterization, synthesis and validation, to create the wavelet-based sound models. A patent is pending for this dynamic sound synthesis method, which provides perceptually-realistic, real-time sound generation. This dissertation also presents a battery of perceptual experiments developed to verify the sound synthesis results. These experiments are applicable for validation of any sound synthesis technique.
Option pricing for stochastic volatility model with infinite activity Lévy jumps
NASA Astrophysics Data System (ADS)
Gong, Xiaoli; Zhuang, Xintian
2016-08-01
The purpose of this paper is to apply the stochastic volatility model driven by infinite activity Lévy processes to option pricing which displays infinite activity jumps behaviors and time varying volatility that is consistent with the phenomenon observed in underlying asset dynamics. We specially pay attention to three typical Lévy processes that replace the compound Poisson jumps in Bates model, aiming to capture the leptokurtic feature in asset returns and volatility clustering effect in returns variance. By utilizing the analytical characteristic function and fast Fourier transform technique, the closed form formula of option pricing can be derived. The intelligent global optimization search algorithm called Differential Evolution is introduced into the above highly dimensional models for parameters calibration so as to improve the calibration quality of fitted option models. Finally, we perform empirical researches using both time series data and options data on financial markets to illustrate the effectiveness and superiority of the proposed method.
Assessment of wear dependence parameters in complex model of cutting tool wear
NASA Astrophysics Data System (ADS)
Antsev, A. V.; Pasko, N. I.; Antseva, N. V.
2018-03-01
This paper addresses wear dependence of the generic efficient life period of cutting tools taken as an aggregate of the law of tool wear rate distribution and dependence of parameters of this law's on the cutting mode, factoring in the random factor as exemplified by the complex model of wear. The complex model of wear takes into account the variance of cutting properties within one batch of tools, variance in machinability within one batch of workpieces, and the stochastic nature of the wear process itself. A technique of assessment of wear dependence parameters in a complex model of cutting tool wear is provided. The technique is supported by a numerical example.
Application of remote sensing to hydrology. [for the formulation of watershed behavior models
NASA Technical Reports Server (NTRS)
Ambaruch, R.; Simmons, J. W.
1973-01-01
Streamflow forecasting and hydrologic modelling are considered in a feasibility assessment of using the data produced by remote observation from space and/or aircraft to reduce the time and expense normally involved in achieving the ability to predict the hydrological behavior of an ungaged watershed. Existing watershed models are described, and both stochastic and parametric techniques are discussed towards the selection of a suitable simulation model. Technical progress and applications are reported and recommendations are made for additional research.
Modeling the Webgraph: How Far We Are
NASA Astrophysics Data System (ADS)
Donato, Debora; Laura, Luigi; Leonardi, Stefano; Millozzi, Stefano
The following sections are included: * Introduction * Preliminaries * WebBase * In-degree and out-degree * PageRank * Bipartite cliques * Strongly connected components * Stochastic models of the webgraph * Models of the webgraph * A multi-layer model * Large scale simulation * Algorithmic techniques for generating and measuring webgraphs * Data representation and multifiles * Generating webgraphs * Traversal with two bits for each node * Semi-external breadth first search * Semi-external depth first search * Computation of the SCCs * Computation of the bow-tie regions * Disjoint bipartite cliques * PageRank * Summary and outlook
Utility indifference pricing of insurance catastrophe derivatives.
Eichler, Andreas; Leobacher, Gunther; Szölgyenyi, Michaela
2017-01-01
We propose a model for an insurance loss index and the claims process of a single insurance company holding a fraction of the total number of contracts that captures both ordinary losses and losses due to catastrophes. In this model we price a catastrophe derivative by the method of utility indifference pricing. The associated stochastic optimization problem is treated by techniques for piecewise deterministic Markov processes. A numerical study illustrates our results.
Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides
2009-01-01
STOCHASTIC LANCHESTER AIR-TO-AIR CAMPAIGN MODEL MODEL DESCRIPTION AND USERS GUIDES—2009 REPORT PA702T1 Rober t V. Hemm Jr. Dav id A . Lee...LMI © 2009. ALL RIGHTS RESERVED. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides—2009 PA702T1/JANUARY...2009 Executive Summary This report documents the latest version of the Stochastic Lanchester Air-to-Air Campaign Model (SLAACM), developed by LMI for
System identification and model reduction using modulating function techniques
NASA Technical Reports Server (NTRS)
Shen, Yan
1993-01-01
Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.
Stochastic Multi-Timescale Power System Operations With Variable Wind Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongyu; Krad, Ibrahim; Florita, Anthony
This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less
Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats
2015-05-01
Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.
Clustering network layers with the strata multilayer stochastic block model.
Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J
2016-01-01
Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
El-Diasty, Mohammed; Pagiatakis, Spiros
2009-01-01
In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.
NASA Astrophysics Data System (ADS)
Smid, Marek; Costa, Ana; Pebesma, Edzer; Granell, Carlos; Bhattacharya, Devanjan
2016-04-01
Human kind is currently predominantly urban based, and the majority of ever continuing population growth will take place in urban agglomerations. Urban systems are not only major drivers of climate change, but also the impact hot spots. Furthermore, climate change impacts are commonly managed at city scale. Therefore, assessing climate change impacts on urban systems is a very relevant subject of research. Climate and its impacts on all levels (local, meso and global scale) and also the inter-scale dependencies of those processes should be a subject to detail analysis. While global and regional projections of future climate are currently available, local-scale information is lacking. Hence, statistical downscaling methodologies represent a potentially efficient way to help to close this gap. In general, the methodological reviews of downscaling procedures cover the various methods according to their application (e.g. downscaling for the hydrological modelling). Some of the most recent and comprehensive studies, such as the ESSEM COST Action ES1102 (VALUE), use the concept of Perfect Prog and MOS. Other examples of classification schemes of downscaling techniques consider three main categories: linear methods, weather classifications and weather generators. Downscaling and climate modelling represent a multidisciplinary field, where researchers from various backgrounds intersect their efforts, resulting in specific terminology, which may be somewhat confusing. For instance, the Polynomial Regression (also called the Surface Trend Analysis) is a statistical technique. In the context of the spatial interpolation procedures, it is commonly classified as a deterministic technique, and kriging approaches are classified as stochastic. Furthermore, the terms "statistical" and "stochastic" (frequently used as names of sub-classes in downscaling methodological reviews) are not always considered as synonymous, even though both terms could be seen as identical since they are referring to methods handling input modelling factors as variables with certain probability distributions. In addition, the recent development is going towards multi-step methodologies containing deterministic and stochastic components. This evolution leads to the introduction of new terms like hybrid or semi-stochastic approaches, which makes the efforts to systematically classifying downscaling methods to the previously defined categories even more challenging. This work presents a review of statistical downscaling procedures, which classifies the methods in two steps. In the first step, we describe several techniques that produce a single climatic surface based on observations. The methods are classified into two categories using an approximation to the broadest consensual statistical terms: linear and non-linear methods. The second step covers techniques that use simulations to generate alternative surfaces, which correspond to different realizations of the same processes. Those simulations are essential because there is a limited number of real observational data, and such procedures are crucial for modelling extremes. This work emphasises the link between statistical downscaling methods and the research of climate change impacts at city scale.
Stochastic effects in a seasonally forced epidemic model
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.
2010-10-01
The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
NASA Astrophysics Data System (ADS)
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
Agent based reasoning for the non-linear stochastic models of long-range memory
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Gontis, V.
2012-02-01
We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.
A path integral approach to the Hodgkin-Huxley model
NASA Astrophysics Data System (ADS)
Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando
2017-11-01
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel
2016-10-01
A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less
NASA Astrophysics Data System (ADS)
Kloss, Sebastian; Schuetze, Niels; Schmitz, Gerd H.
2010-05-01
The strong competition for fresh water in order to fulfill the increased demand for food worldwide has led to a renewed interest in techniques to improve water use efficiency (WUE) such as controlled deficit irrigation. Furthermore, as the implementation of crop models into complex decision support systems becomes more and more common, it is imperative to reliably predict the WUE as ratio of water consumption and yield. The objective of this paper is the assessment of the problems the crop models - such as FAO-33, DAISY, and APSIM in this study - face when maximizing the WUE. We applied these crop models for calculating the risk in yield reduction in view of different sources of uncertainty (e.g. climate) employing a stochastic framework for decision support for the planning of water supply in irrigation. The stochastic framework consists of: (i) a weather generator for simulating regional impacts of climate change; (ii) a new tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (iii) the above mentioned models for simulating water transport and crop growth in a sound manner. The results present stochastic crop water production functions (SCWPF) for different crops which can be used as basic tools for assessing the impact of climate variability on the risk for the potential yield. Case studies from India, Oman, Malawi, and France are presented to assess the differences in modeling water stress and yield response for the different crop models.
Liu, Meng; Wang, Ke
2010-12-07
This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hybrid approaches for multiple-species stochastic reaction–diffusion models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spill, Fabian, E-mail: fspill@bu.edu; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Guerrero, Pilar
2015-10-15
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and smallmore » in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.« less
Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations
NASA Astrophysics Data System (ADS)
Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying
2010-09-01
Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).
NASA Astrophysics Data System (ADS)
Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina
2017-09-01
A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.
Fluctuating hyperfine interactions: an updated computational implementation
NASA Astrophysics Data System (ADS)
Zacate, M. O.; Evenson, W. E.
2015-04-01
The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.
Bayesian parameter estimation for stochastic models of biological cell migration
NASA Astrophysics Data System (ADS)
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
Solution of the finite Milne problem in stochastic media with RVT Technique
NASA Astrophysics Data System (ADS)
Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.
2017-12-01
This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed
2017-03-01
In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.
NASA Astrophysics Data System (ADS)
Dodov, B.
2017-12-01
Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon seasons implemented in a flood risk model for Japan.
Vandenberg, Wim; Duwé, Sam; Leutenegger, Marcel; Moeyaert, Benjamien; Krajnik, Bartosz; Lasser, Theo; Dedecker, Peter
2016-01-01
Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each position. Compared to other techniques, SOFI works well under conditions of low signal-to-noise, high background, or high emitter densities. However, it can be difficult to unambiguously determine the reliability of images produced by any superresolution imaging technique. In this work we present a strategy that enables the estimation of the variance or uncertainty associated with each pixel in the SOFI image. In addition to estimating the image quality or reliability, we show that this can be used to optimize the signal-to-noise ratio (SNR) of SOFI images by including multiple pixel combinations in the cumulant calculation. We present an algorithm to perform this optimization, which automatically takes all relevant instrumental, sample, and probe parameters into account. Depending on the optical magnification of the system, this strategy can be used to improve the SNR of a SOFI image by 40% to 90%. This gain in information is entirely free, in the sense that it does not require additional efforts or complications. Alternatively our approach can be applied to reduce the number of fluorescence images to meet a particular quality level by about 30% to 50%, strongly improving the temporal resolution of SOFI imaging. PMID:26977356
Numerical modeling for dilute and dense sprays
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.
1992-01-01
We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.
Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W
2008-08-01
We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.
Gompertzian stochastic model with delay effect to cervical cancer growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah
2015-02-03
In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.
NASA Astrophysics Data System (ADS)
Proskurov, S.; Darbyshire, O. R.; Karabasov, S. A.
2017-12-01
The present work discusses modifications to the stochastic Fast Random Particle Mesh (FRPM) method featuring both tonal and broadband noise sources. The technique relies on the combination of incorporated vortex-shedding resolved flow available from Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with the fine-scale turbulence FRPM solution generated via the stochastic velocity fluctuations in the context of vortex sound theory. In contrast to the existing literature, our method encompasses a unified treatment for broadband and tonal acoustic noise sources at the source level, thus, accounting for linear source interference as well as possible non-linear source interaction effects. When sound sources are determined, for the sound propagation, Acoustic Perturbation Equations (APE-4) are solved in the time-domain. Results of the method's application for two aerofoil benchmark cases, with both sharp and blunt trailing edges are presented. In each case, the importance of individual linear and non-linear noise sources was investigated. Several new key features related to the unsteady implementation of the method were tested and brought into the equation. Encouraging results have been obtained for benchmark test cases using the new technique which is believed to be potentially applicable to other airframe noise problems where both tonal and broadband parts are important.
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.
Sheppard, C W.
1969-03-01
A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.
Study of High Temperature Failure Mechanisms in Ceramics
1988-06-01
The major experimental 4 techniques employed in the program are the use of small- angle neutron scattering to characterize cavity nucleation and growth...creep crackgrowth. Of particular interest are the development of a stochastic model of grainboundary sliding and a micromechanical model that relates...Accession For NTIS GF.A&I DTIC T,’ IDi st ribut Ion’ ;i Avillii~diii l l= (~~ I. RESEARCH OBJECTIVES I. Utilize small- angle neutron scattering to
A Hybrid Method of Moment Equations and Rate Equations to Modeling Gas-Grain Chemistry
NASA Astrophysics Data System (ADS)
Pei, Y.; Herbst, E.
2011-05-01
Grain surfaces play a crucial role in catalyzing many important chemical reactions in the interstellar medium (ISM). The deterministic rate equation (RE) method has often been used to simulate the surface chemistry. But this method becomes inaccurate when the number of reacting particles per grain is typically less than one, which can occur in the ISM. In this condition, stochastic approaches such as the master equations are adopted. However, these methods have mostly been constrained to small chemical networks due to the large amounts of processor time and computer power required. In this study, we present a hybrid method consisting of the moment equation approximation to the stochastic master equation approach and deterministic rate equations to treat a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In this model, we use the standard OSU gas phase network (version OSU2006V3) which involves 458 gas phase species and more than 4000 reactions, and treat it by deterministic rate equations. A medium-sized surface reaction network which consists of 21 species and 19 reactions accounts for the productions of stable molecules such as H_2O, CO, CO_2, H_2CO, CH_3OH, NH_3 and CH_4. These surface reactions are treated by a hybrid method of moment equations (Barzel & Biham 2007) and rate equations: when the abundance of a surface species is lower than a specific threshold, say one per grain, we use the ``stochastic" moment equations to simulate the evolution; when its abundance goes above this threshold, we use the rate equations. A continuity technique is utilized to secure a smooth transition between these two methods. We have run chemical simulations for a time up to 10^8 yr at three temperatures: 10 K, 15 K, and 20 K. The results will be compared with those generated from (1) a completely deterministic model that uses rate equations for both gas phase and grain surface chemistry, (2) the method of modified rate equations (Garrod 2008), which partially takes into account the stochastic effect for surface reactions, and (3) the master equation approach solved using a Monte Carlo technique. At 10 K and standard grain sizes, our model results agree well with the above three methods, while discrepancies appear at higher temperatures and smaller grain sizes.
Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.
Mino, Hiroyuki; Grill, Warren M
2002-06-01
The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.
A validation study of a stochastic model of human interaction
NASA Astrophysics Data System (ADS)
Burchfield, Mitchel Talmadge
The purpose of this dissertation is to validate a stochastic model of human interactions which is part of a developmentalism paradigm. Incorporating elements of ancient and contemporary philosophy and science, developmentalism defines human development as a progression of increasing competence and utilizes compatible theories of developmental psychology, cognitive psychology, educational psychology, social psychology, curriculum development, neurology, psychophysics, and physics. To validate a stochastic model of human interactions, the study addressed four research questions: (a) Does attitude vary over time? (b) What are the distributional assumptions underlying attitudes? (c) Does the stochastic model, {-}N{intlimitssbsp{-infty}{infty}}varphi(chi,tau)\\ Psi(tau)dtau, have utility for the study of attitudinal distributions and dynamics? (d) Are the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein theories applicable to human groups? Approximately 25,000 attitude observations were made using the Semantic Differential Scale. Positions of individuals varied over time and the logistic model predicted observed distributions with correlations between 0.98 and 1.0, with estimated standard errors significantly less than the magnitudes of the parameters. The results bring into question the applicability of Fisherian research designs (Fisher, 1922, 1928, 1938) for behavioral research based on the apparent failure of two fundamental assumptions-the noninteractive nature of the objects being studied and normal distribution of attributes. The findings indicate that individual belief structures are representable in terms of a psychological space which has the same or similar properties as physical space. The psychological space not only has dimension, but individuals interact by force equations similar to those described in theoretical physics models. Nonlinear regression techniques were used to estimate Fermi-Dirac parameters from the data. The model explained a high degree of the variance in each probability distribution. The correlation between predicted and observed probabilities ranged from a low of 0.955 to a high value of 0.998, indicating that humans behave in psychological space as Fermions behave in momentum space.
Optimal estimation of parameters and states in stochastic time-varying systems with time delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-08-01
In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.
Pedro, Sansao A.; Abelman, Shirley; Tonnang, Henri E. Z.
2016-01-01
Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15 years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which transmit the virus to their eggs leading to disease persistence during unfavourable seasons. Here we formulate and analyse a full stochastic host-vector model with two routes of transmission: vertical and horizontal. By applying branching process theory we establish novel relationships between the basic reproduction number, R0, vertical transmission and the invasion and extinction probabilities. Optimum climatic conditions and presence of mosquitoes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our model without seasonality and applying van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how outbreaks multi-year periodicity varies with the vertical transmission. Our theory predicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends on the efficiency of vertical transmission. Our predictions are then compared to temporal patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that interaction between nonlinearity, stochasticity and vertical transmission provides a simple but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we argue that while rainfall might be the major determinant for the onset and switch-off of an outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena that is correlated to vertical transmission efficiency. PMID:28002417
Pedro, Sansao A; Abelman, Shirley; Tonnang, Henri E Z
2016-12-01
Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15 years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which transmit the virus to their eggs leading to disease persistence during unfavourable seasons. Here we formulate and analyse a full stochastic host-vector model with two routes of transmission: vertical and horizontal. By applying branching process theory we establish novel relationships between the basic reproduction number, R0, vertical transmission and the invasion and extinction probabilities. Optimum climatic conditions and presence of mosquitoes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our model without seasonality and applying van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how outbreaks multi-year periodicity varies with the vertical transmission. Our theory predicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends on the efficiency of vertical transmission. Our predictions are then compared to temporal patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that interaction between nonlinearity, stochasticity and vertical transmission provides a simple but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we argue that while rainfall might be the major determinant for the onset and switch-off of an outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena that is correlated to vertical transmission efficiency.
Mean field analysis of a spatial stochastic model of a gene regulatory network.
Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J
2015-10-01
A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.
Clustering network layers with the strata multilayer stochastic block model
Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J.
2016-01-01
Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project. PMID:28435844
Beer bottle whistling: a stochastic Hopf bifurcation
NASA Astrophysics Data System (ADS)
Boujo, Edouard; Bourquard, Claire; Xiong, Yuan; Noiray, Nicolas
2017-11-01
Blowing in a bottle to produce sound is a popular and yet intriguing entertainment. We reproduce experimentally the common observation that the bottle ``whistles'', i.e. produces a distinct tone, for large enough blowing velocity and over a finite interval of blowing angle. For a given set of parameters, the whistling frequency stays constant over time while the acoustic pressure amplitude fluctuates. Transverse oscillations of the shear layer in the bottle's neck are clearly identified with time-resolved particle image velocimetry (PIV) and proper orthogonal decomposition (POD). To account for these observations, we develop an analytical model of linear acoustic oscillator (the air in the bottle) subject to nonlinear stochastic forcing (the turbulent jet impacting the bottle's neck). We derive a stochastic differential equation and, from the associated Fokker-Planck equation and the measured acoustic pressure signals, we identify the model's parameters with an adjoint optimization technique. Results are further validated experimentally, and allow us to explain (i) the occurrence of whistling in terms of linear instability, and (ii) the amplitude of the limit cycle as a competition between linear growth rate, noise intensity, and nonlinear saturation. E. B. and N. N. acknowledge support by Repower and the ETH Zurich Foundation.
Stochastic Human Exposure and Dose Simulation Model for Pesticides
SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...
ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
TURNER, JOSEPH A.
2005-11-30
The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction
2016-02-25
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
Unsupervised Detection of Planetary Craters by a Marked Point Process
NASA Technical Reports Server (NTRS)
Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.
2011-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.
Phenomenology of stochastic exponential growth
NASA Astrophysics Data System (ADS)
Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya
2017-06-01
Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.
Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise
NASA Astrophysics Data System (ADS)
Chen, Can; Kang, Yanmei
2017-01-01
A stochastic multi-strain SIS epidemic model is formulated by introducing Lévy noise into the disease transmission rate of each strain. First, we prove that the stochastic model admits a unique global positive solution, and, by the comparison theorem, we show that the solution remains within a positively invariant set almost surely. Next we investigate stochastic stability of the disease-free equilibrium, including stability in probability and pth moment asymptotic stability. Then sufficient conditions for persistence in the mean of the disease are established. Finally, based on an Euler scheme for Lévy-driven stochastic differential equations, numerical simulations for a stochastic two-strain model are carried out to verify the theoretical results. Moreover, numerical comparison results of the stochastic two-strain model and the deterministic version are also given. Lévy noise can cause the two strains to become extinct almost surely, even though there is a dominant strain that persists in the deterministic model. It can be concluded that the introduction of Lévy noise reduces the disease extinction threshold, which indicates that Lévy noise may suppress the disease outbreak.
Modelling and simulation techniques for membrane biology.
Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V
2007-07-01
One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
Predicting Lg Coda Using Synthetic Seismograms and Media With Stochastic Heterogeneity
NASA Astrophysics Data System (ADS)
Tibuleac, I. M.; Stroujkova, A.; Bonner, J. L.; Mayeda, K.
2005-12-01
Recent examinations of the characteristics of coda-derived Sn and Lg spectra for yield estimation have shown that the spectral peak of Nevada Test Site (NTS) explosion spectra is depth-of-burial dependent, and that this peak is shifted to higher frequencies for Lop Nor explosions at the same depths. To confidently use coda-based yield formulas, we need to understand and predict coda spectral shape variations with depth, source media, velocity structure, topography, and geological heterogeneity. We present results of a coda modeling study to predict Lg coda. During the initial stages of this research, we have acquired and parameterized a deterministic 6 deg. x 6 deg. velocity and attenuation model centered on the Nevada Test Site. Near-source data are used to constrain density and attenuation profiles for the upper five km. The upper crust velocity profiles are quilted into a background velocity profile at depths greater than five km. The model is parameterized for use in a modified version of the Generalized Fourier Method in two dimensions (GFM2D). We modify this model to include stochastic heterogeneities of varying correlation lengths within the crust. Correlation length, Hurst number and fractional velocity perturbation of the heterogeneities are used to construct different realizations of the random media. We use nuclear explosion and earthquake cluster waveform analysis, as well as well log and geological information to constrain the stochastic parameters for a path between the NTS and the seismic stations near Mina, Nevada. Using multiple runs, we quantify the effects of variations in the stochastic parameters, of heterogeneity location in the crust and attenuation on coda amplitude and spectral characteristics. We calibrate these parameters by matching synthetic earthquake Lg coda envelopes to coda envelopes of local earthquakes with well-defined moments and mechanisms. We generate explosion synthetics for these calibrated deterministic and stochastic models. Secondary effects, including a compensated linear vector dipole source, are superposed on the synthetics in order to adequately characterize the Lg generation. We use this technique to characterize the effects of depth of burial on the coda spectral shapes.
Mokhtari, Amirhossein; Christopher Frey, H; Zheng, Junyu
2006-11-01
Sensitivity analyses of exposure or risk models can help identify the most significant factors to aid in risk management or to prioritize additional research to reduce uncertainty in the estimates. However, sensitivity analysis is challenged by non-linearity, interactions between inputs, and multiple days or time scales. Selected sensitivity analysis methods are evaluated with respect to their applicability to human exposure models with such features using a testbed. The testbed is a simplified version of a US Environmental Protection Agency's Stochastic Human Exposure and Dose Simulation (SHEDS) model. The methods evaluated include the Pearson and Spearman correlation, sample and rank regression, analysis of variance, Fourier amplitude sensitivity test (FAST), and Sobol's method. The first five methods are known as "sampling-based" techniques, wheras the latter two methods are known as "variance-based" techniques. The main objective of the test cases was to identify the main and total contributions of individual inputs to the output variance. Sobol's method and FAST directly quantified these measures of sensitivity. Results show that sensitivity of an input typically changed when evaluated under different time scales (e.g., daily versus monthly). All methods provided similar insights regarding less important inputs; however, Sobol's method and FAST provided more robust insights with respect to sensitivity of important inputs compared to the sampling-based techniques. Thus, the sampling-based methods can be used in a screening step to identify unimportant inputs, followed by application of more computationally intensive refined methods to a smaller set of inputs. The implications of time variation in sensitivity results for risk management are briefly discussed.
Stochastic dynamics of melt ponds and sea ice-albedo climate feedback
NASA Astrophysics Data System (ADS)
Sudakov, Ivan
Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.
Effects of Stochastic Traffic Flow Model on Expected System Performance
2012-12-01
NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs
Sathiyaraj, T; Balasubramaniam, P
2017-11-30
This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Time-Frequency Approach for Stochastic Signal Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Ripul; Akula, Aparna; Kumar, Satish
2011-10-20
The detection of events in a stochastic signal has been a subject of great interest. One of the oldest signal processing technique, Fourier Transform of a signal contains information regarding frequency content, but it cannot resolve the exact onset of changes in the frequency, all temporal information is contained in the phase of the transform. On the other hand, Spectrogram is better able to resolve temporal evolution of frequency content, but has a trade-off in time resolution versus frequency resolution in accordance with the uncertainty principle. Therefore, time-frequency representations are considered for energetic characterisation of the non-stationary signals. Wigner Villemore » Distribution (WVD) is the most prominent quadratic time-frequency signal representation and used for analysing frequency variations in signals.WVD allows for instantaneous frequency estimation at each data point, for a typical temporal resolution of fractions of a second. This paper through simulations describes the way time frequency models are applied for the detection of event in a stochastic signal.« less
Time-Frequency Approach for Stochastic Signal Detection
NASA Astrophysics Data System (ADS)
Ghosh, Ripul; Akula, Aparna; Kumar, Satish; Sardana, H. K.
2011-10-01
The detection of events in a stochastic signal has been a subject of great interest. One of the oldest signal processing technique, Fourier Transform of a signal contains information regarding frequency content, but it cannot resolve the exact onset of changes in the frequency, all temporal information is contained in the phase of the transform. On the other hand, Spectrogram is better able to resolve temporal evolution of frequency content, but has a trade-off in time resolution versus frequency resolution in accordance with the uncertainty principle. Therefore, time-frequency representations are considered for energetic characterisation of the non-stationary signals. Wigner Ville Distribution (WVD) is the most prominent quadratic time-frequency signal representation and used for analysing frequency variations in signals.WVD allows for instantaneous frequency estimation at each data point, for a typical temporal resolution of fractions of a second. This paper through simulations describes the way time frequency models are applied for the detection of event in a stochastic signal.
Large Deviations for Nonlocal Stochastic Neural Fields
2014-01-01
We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers’ law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations. Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20. PMID:24742297
Tipping point analysis of ocean acoustic noise
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen
2018-02-01
We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Jin, Wei; Su, Huan
2018-04-01
This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
NASA Astrophysics Data System (ADS)
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M
2016-12-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.
The relationship between stochastic and deterministic quasi-steady state approximations.
Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R
2015-11-23
The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.
Stochastic competitive learning in complex networks.
Silva, Thiago Christiano; Zhao, Liang
2012-03-01
Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning..
NASA Astrophysics Data System (ADS)
Fatichi, S.; Ivanov, V. Y.; Caporali, E.
2013-04-01
This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000-2009, 2046-2065 and 2081-2100, using the period of 1962-1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000-2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.
Design Of Combined Stochastic Feedforward/Feedback Control
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1989-01-01
Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.
Zhang, Kejiang; Achari, Gopal; Li, Hua
2009-11-03
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.
Extending the Multi-level Method for the Simulation of Stochastic Biological Systems.
Lester, Christopher; Baker, Ruth E; Giles, Michael B; Yates, Christian A
2016-08-01
The multi-level method for discrete-state systems, first introduced by Anderson and Higham (SIAM Multiscale Model Simul 10(1):146-179, 2012), is a highly efficient simulation technique that can be used to elucidate statistical characteristics of biochemical reaction networks. A single point estimator is produced in a cost-effective manner by combining a number of estimators of differing accuracy in a telescoping sum, and, as such, the method has the potential to revolutionise the field of stochastic simulation. In this paper, we present several refinements of the multi-level method which render it easier to understand and implement, and also more efficient. Given the substantial and complex nature of the multi-level method, the first part of this work reviews existing literature, with the aim of providing a practical guide to the use of the multi-level method. The second part provides the means for a deft implementation of the technique and concludes with a discussion of a number of open problems.
Combining Earth Orientation Measurements Using a Kalman Filter
NASA Technical Reports Server (NTRS)
Gross, R.
2000-01-01
A Kalman filter has many properties that make it an attractive choice as a technique for combining Earth orientation measurements. It allows the full accuracy of the measurements to be used, whether the measurements are degenerate or are of full rank, are irregularly or regularly spaced in time, or are corrupted by systematic or other errors that can be described by stochastic models.
Expectation Maximization and its Application in Modeling, Segmentation and Anomaly Detection
2008-05-01
ocomplNc <la!a rrot>lcm,. ",., i’lCOll\\l>lc,c,ICSS of Ihc dala mayan "" IIuc lu missing dala. (J,,,,,,.,ed di,nibu!ions . elc . 0"" such c • ..- is a...Estimation Techniques in Computer Huiyan, Z., Yongfeng, C., Wen, Y. SAR Image Segmentation Using MPM Constrained Stochastic Relaxation. Civil Engineering
Integrated Multiscale Modeling of Molecular Computing Devices. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Schulze
2012-11-01
The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.
Stochastic Petri Net extension of a yeast cell cycle model.
Mura, Ivan; Csikász-Nagy, Attila
2008-10-21
This paper presents the definition, solution and validation of a stochastic model of the budding yeast cell cycle, based on Stochastic Petri Nets (SPN). A specific family of SPNs is selected for building a stochastic version of a well-established deterministic model. We describe the procedure followed in defining the SPN model from the deterministic ODE model, a procedure that can be largely automated. The validation of the SPN model is conducted with respect to both the results provided by the deterministic one and the experimental results available from literature. The SPN model catches the behavior of the wild type budding yeast cells and a variety of mutants. We show that the stochastic model matches some characteristics of budding yeast cells that cannot be found with the deterministic model. The SPN model fine-tunes the simulation results, enriching the breadth and the quality of its outcome.
Stochasticity and determinism in models of hematopoiesis.
Kimmel, Marek
2014-01-01
This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.
Hybrid ODE/SSA methods and the cell cycle model
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, M.; Cao, Y.
2017-07-01
Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.
p-adic stochastic hidden variable model
NASA Astrophysics Data System (ADS)
Khrennikov, Andrew
1998-03-01
We propose stochastic hidden variables model in which hidden variables have a p-adic probability distribution ρ(λ) and at the same time conditional probabilistic distributions P(U,λ), U=A,A',B,B', are ordinary probabilities defined on the basis of the Kolmogorov measure-theoretical axiomatics. A frequency definition of p-adic probability is quite similar to the ordinary frequency definition of probability. p-adic frequency probability is defined as the limit of relative frequencies νn but in the p-adic metric. We study a model with p-adic stochastics on the level of the hidden variables description. But, of course, responses of macroapparatuses have to be described by ordinary stochastics. Thus our model describes a mixture of p-adic stochastics of the microworld and ordinary stochastics of macroapparatuses. In this model probabilities for physical observables are the ordinary probabilities. At the same time Bell's inequality is violated.
Analysis of randomly time varying systems by gaussian closure technique
NASA Astrophysics Data System (ADS)
Dash, P. K.; Iyengar, R. N.
1982-07-01
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Study on individual stochastic model of GNSS observations for precise kinematic applications
NASA Astrophysics Data System (ADS)
Próchniewicz, Dominik; Szpunar, Ryszard
2015-04-01
The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.
Uncertainty analysis of geothermal energy economics
NASA Astrophysics Data System (ADS)
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.
Portfolio Optimization with Stochastic Dividends and Stochastic Volatility
ERIC Educational Resources Information Center
Varga, Katherine Yvonne
2015-01-01
We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…
Seasonally forced disease dynamics explored as switching between attractors
NASA Astrophysics Data System (ADS)
Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.
2001-01-01
Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Fisher-Wright model with deterministic seed bank and selection.
Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel
2017-04-01
Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1984-01-01
A methodology was developed a assess the upset susceptibility/reliability of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general purpose microprocessor were studied. The upset tests involved the random input of analog transients which model lightning induced signals onto interface lines of an 8080 based microcomputer from which upset error data was recorded. The program code on the microprocessor during tests is designed to exercise all of the machine cycles and memory addressing techniques implemented in the 8080 central processing unit. A statistical analysis is presented in which possible correlations are established between the probability of upset occurrence and transient signal inputs during specific processing states and operations. A stochastic upset susceptibility model for the 8080 microprocessor is presented. The susceptibility of this microprocessor to upset, once analog transients have entered the system, is determined analytically by calculating the state probabilities of the stochastic model.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2006-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis-Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
Some Stochastic-Duel Models of Combat.
1983-03-01
AD-R127 879 SOME STOCHASTIC- DUEL MODELS OF CONBAT(U) NAVAL - / POSTGRADUATE SCHOOL MONTEREY CA J S CHOE MAR 83 UNCLASSiIED FC1/Ehhh1; F/ 12/ ,iE...SCHOOL Monterey, California DTIC ELECTE :MAY 10 1983 "T !H ES IS SOME STOCHASTIC- DUEL MODELS OF COMBAT by Jum Soo Choe March 1983 Thesis Advisor: J. G...TYPE OF RETORT a PERIOD COVIOCe Master’s Thesis Some Stochastic- Duel Models of Combat March 1983 S. PERFORINGi *no. 44POOi umet 7. AUTHORW.) a
Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi
2014-08-15
We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.
Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability
NASA Astrophysics Data System (ADS)
Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.
2017-12-01
We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.
Comparison of stochastic lung deposition fractions with experimental data.
Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate
2012-04-01
Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-01-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-06-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Acting Irrationally to Improve Performance in Stochastic Worlds
NASA Astrophysics Data System (ADS)
Belavkin, Roman V.
Despite many theories and algorithms for decision-making, after estimating the utility function the choice is usually made by maximising its expected value (the max EU principle). This traditional and 'rational' conclusion of the decision-making process is compared in this paper with several 'irrational' techniques that make choice in Monte-Carlo fashion. The comparison is made by evaluating the performance of simple decision-theoretic agents in stochastic environments. It is shown that not only the random choice strategies can achieve performance comparable to the max EU method, but under certain conditions the Monte-Carlo choice methods perform almost two times better than the max EU. The paper concludes by quoting evidence from recent cognitive modelling works as well as the famous decision-making paradoxes.
BOOK REVIEW: Statistical Mechanics of Turbulent Flows
NASA Astrophysics Data System (ADS)
Cambon, C.
2004-10-01
This is a handbook for a computational approach to reacting flows, including background material on statistical mechanics. In this sense, the title is somewhat misleading with respect to other books dedicated to the statistical theory of turbulence (e.g. Monin and Yaglom). In the present book, emphasis is placed on modelling (engineering closures) for computational fluid dynamics. The probabilistic (pdf) approach is applied to the local scalar field, motivated first by the nonlinearity of chemical source terms which appear in the transport equations of reacting species. The probabilistic and stochastic approaches are also used for the velocity field and particle position; nevertheless they are essentially limited to Lagrangian models for a local vector, with only single-point statistics, as for the scalar. Accordingly, conventional techniques, such as single-point closures for RANS (Reynolds-averaged Navier-Stokes) and subgrid-scale models for LES (large-eddy simulations), are described and in some cases reformulated using underlying Langevin models and filtered pdfs. Even if the theoretical approach to turbulence is not discussed in general, the essentials of probabilistic and stochastic-processes methods are described, with a useful reminder concerning statistics at the molecular level. The book comprises 7 chapters. Chapter 1 briefly states the goals and contents, with a very clear synoptic scheme on page 2. Chapter 2 presents definitions and examples of pdfs and related statistical moments. Chapter 3 deals with stochastic processes, pdf transport equations, from Kramer-Moyal to Fokker-Planck (for Markov processes), and moments equations. Stochastic differential equations are introduced and their relationship to pdfs described. This chapter ends with a discussion of stochastic modelling. The equations of fluid mechanics and thermodynamics are addressed in chapter 4. Classical conservation equations (mass, velocity, internal energy) are derived from their counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS, (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point corelations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-epsilon to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled `The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics results from both non-linearity and non-locality of Navier-Stokes equations, the latter coming from, e.g., the nonlocal relationship of velocity and pressure in the quasi-incompressible case. These two aspects are often intricately linked. It is well known that non-linearity alone is not responsible for the `problem', as evidenced by 1D turbulence without pressure (`Burgulence' from the Burgers equation) and probably 3D (cosmological gas). A local description in terms of pdf for the velocity can resolve the `non-linear' problem, which instead yields an infinite hierarchy of equations in terms of moments. On the other hand, non-locality yields a hierarchy of unclosed equations, with the single-point pdf equation for velocity derived from NS incompressible equations involving a two-point pdf, and so on. The general relationship was given by Lundgren (1967, Phys. Fluids 10 (5), 969-975), with the equation for pdf at n points involving the pdf at n+1 points. The nonlocal problem appears in various statistical models which are not discussed in the book. The simplest example is full RST or ASM models, in which the closure of pressure-strain correlations is pivotal (their counterpart ought to be identified and discussed in equations (5-21) and the following ones). The book does not address more sophisticated non-local approaches, such as two-point (or spectral) non-linear closure theories and models, `rapid distortion theory' for linear regimes, not to mention scaling and intermittency based on two-point structure functions, etc. The book sometimes mixes theoretical modelling and pure empirical relationships, the empirical character coming from the lack of a nonlocal (two-point) approach.) In short, the book is orientated more towards applications than towards turbulence theory; it is written clearly and concisely and should be useful to a large community, interested either in the underlying stochastic formalism or in CFD applications.
Dung Tuan Nguyen
2012-01-01
Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...
A spatial stochastic programming model for timber and core area management under risk of fires
Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval
2014-01-01
Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...
NASA Astrophysics Data System (ADS)
Ibraheem, Omveer, Hasan, N.
2010-10-01
A new hybrid stochastic search technique is proposed to design of suboptimal AGC regulator for a two area interconnected non reheat thermal power system incorporating DC link in parallel with AC tie-line. In this technique, we are proposing the hybrid form of Genetic Algorithm (GA) and simulated annealing (SA) based regulator. GASA has been successfully applied to constrained feedback control problems where other PI based techniques have often failed. The main idea in this scheme is to seek a feasible PI based suboptimal solution at each sampling time. The feasible solution decreases the cost function rather than minimizing the cost function.
A new model to predict weak-lensing peak counts. II. Parameter constraint strategies
NASA Astrophysics Data System (ADS)
Lin, Chieh-An; Kilbinger, Martin
2015-11-01
Context. Peak counts have been shown to be an excellent tool for extracting the non-Gaussian part of the weak lensing signal. Recently, we developed a fast stochastic forward model to predict weak-lensing peak counts. Our model is able to reconstruct the underlying distribution of observables for analysis. Aims: In this work, we explore and compare various strategies for constraining a parameter using our model, focusing on the matter density Ωm and the density fluctuation amplitude σ8. Methods: First, we examine the impact from the cosmological dependency of covariances (CDC). Second, we perform the analysis with the copula likelihood, a technique that makes a weaker assumption than does the Gaussian likelihood. Third, direct, non-analytic parameter estimations are applied using the full information of the distribution. Fourth, we obtain constraints with approximate Bayesian computation (ABC), an efficient, robust, and likelihood-free algorithm based on accept-reject sampling. Results: We find that neglecting the CDC effect enlarges parameter contours by 22% and that the covariance-varying copula likelihood is a very good approximation to the true likelihood. The direct techniques work well in spite of noisier contours. Concerning ABC, the iterative process converges quickly to a posterior distribution that is in excellent agreement with results from our other analyses. The time cost for ABC is reduced by two orders of magnitude. Conclusions: The stochastic nature of our weak-lensing peak count model allows us to use various techniques that approach the true underlying probability distribution of observables, without making simplifying assumptions. Our work can be generalized to other observables where forward simulations provide samples of the underlying distribution.
NASA Astrophysics Data System (ADS)
Wang, Sheng; Wang, Linshan; Wei, Tengda
2018-04-01
This paper concerns the dynamics of a stochastic predator-prey system with Markovian switching and Lévy noise. First, the existence and uniqueness of global positive solution to the system is proved. Then, by combining stochastic analytical techniques with M-matrix analysis, sufficient conditions of stochastic permanence and extinction are obtained. Furthermore, for the stochastic permanence case, by means of four constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems, both the superior limit and the inferior limit of the average in time of the sample path of the solution are estimated. Finally, our conclusions are illustrated through an example.
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Adamo, Angela; Fumagalli, Michele; Wofford, Aida; Calzetti, Daniela; Lee, Janice C.; Whitmore, Bradley C.; Bright, Stacey N.; Grasha, Kathryn; Gouliermis, Dimitrios A.; Kim, Hwihyun; Nair, Preethi; Ryon, Jenna E.; Smith, Linda J.; Thilker, David; Ubeda, Leonardo; Zackrisson, Erik
2015-10-01
We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.
2016-01-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915
Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.
2016-01-01
Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
Inglis, Stephen; Melko, Roger G
2013-01-01
We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.
Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature
NASA Astrophysics Data System (ADS)
Hassan, Zulkarnain; Shamsudin, Supiah; Harun, Sobri
2014-04-01
Climate change is believed to have significant impacts on the water basin and region, such as in a runoff and hydrological system. However, impact studies on the water basin and region are difficult, since general circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily series rainfall and temperature for hydrological modeling. There is a technique named as "downscaling techniques", which can derive reliable hour of daily series rainfall and temperature due to climate scenarios from the GCMs output. In this study, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia. The models are: (1) statistical downscaling model (SDSM) that utilized the regression models and stochastic weather generators and (2) Long Ashton research station weather generator (LARS-WG) that only utilized the stochastic weather generators. The LARS-WG and SDSM models obviously are feasible methods to be used as tools in quantifying effects of climate change condition in a local scale. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general increasing trend in the mean daily temperature values. Meanwhile, the trend of the daily rainfall is not similar to each other, with SDSM giving a relatively higher change of annual rainfall compared to LARS-WG.
A comparison of LOD and UT1-UTC forecasts by different combined prediction techniques
NASA Astrophysics Data System (ADS)
Kosek, W.; Kalarus, M.; Johnson, T. J.; Wooden, W. H.; McCarthy, D. D.; Popiński, W.
Stochastic prediction techniques including autocovariance, autoregressive, autoregressive moving average, and neural networks were applied to the UT1-UTC and Length of Day (LOD) International Earth Rotation and Reference Systems Servive (IERS) EOPC04 time series to evaluate the capabilities of each method. All known effects such as leap seconds and solid Earth zonal tides were first removed from the observed values of UT1-UTC and LOD. Two combination procedures were applied to predict the resulting LODR time series: 1) the combination of the least-squares (LS) extrapolation with a stochastic predition method, and 2) the combination of the discrete wavelet transform (DWT) filtering and a stochastic prediction method. The results of the combination of the LS extrapolation with different stochastic prediction techniques were compared with the results of the UT1-UTC prediction method currently used by the IERS Rapid Service/Prediction Centre (RS/PC). It was found that the prediction accuracy depends on the starting prediction epochs, and for the combined forecast methods, the mean prediction errors for 1 to about 70 days in the future are of the same order as those of the method used by the IERS RS/PC.
Liu, Meng; Wang, Ke
2010-06-07
A new single-species model disturbed by both white noise and colored noise in a polluted environment is developed and analyzed. Sufficient criteria for extinction, stochastic nonpersistence in the mean, stochastic weak persistence in the mean, stochastic strong persistence in the mean and stochastic permanence of the species are established. The threshold between stochastic weak persistence in the mean and extinction is obtained. The results show that both white and colored environmental noises have sufficient effect to the survival results. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Hauptmann, C; Roulet, J-C; Niederhauser, J J; Döll, W; Kirlangic, M E; Lysyansky, B; Krachkovskyi, V; Bhatti, M A; Barnikol, U B; Sasse, L; Bührle, C P; Speckmann, E-J; Götz, M; Sturm, V; Freund, H-J; Schnell, U; Tass, P A
2009-12-01
In the past decade deep brain stimulation (DBS)-the application of electrical stimulation to specific target structures via implanted depth electrodes-has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.
Recent Advances in Voltammetry
Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela
2015-01-01
Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984
A Scheduling Algorithm for Replicated Real-Time Tasks
NASA Technical Reports Server (NTRS)
Yu, Albert C.; Lin, Kwei-Jay
1991-01-01
We present an algorithm for scheduling real-time periodic tasks on a multiprocessor system under fault-tolerant requirement. Our approach incorporates both the redundancy and masking technique and the imprecise computation model. Since the tasks in hard real-time systems have stringent timing constraints, the redundancy and masking technique are more appropriate than the rollback techniques which usually require extra time for error recovery. The imprecise computation model provides flexible functionality by trading off the quality of the result produced by a task with the amount of processing time required to produce it. It therefore permits the performance of a real-time system to degrade gracefully. We evaluate the algorithm by stochastic analysis and Monte Carlo simulations. The results show that the algorithm is resilient under hardware failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotalczyk, G., E-mail: Gregor.Kotalczyk@uni-due.de; Kruis, F.E.
Monte Carlo simulations based on weighted simulation particles can solve a variety of population balance problems and allow thus to formulate a solution-framework for many chemical engineering processes. This study presents a novel concept for the calculation of coagulation rates of weighted Monte Carlo particles by introducing a family of transformations to non-weighted Monte Carlo particles. The tuning of the accuracy (named ‘stochastic resolution’ in this paper) of those transformations allows the construction of a constant-number coagulation scheme. Furthermore, a parallel algorithm for the inclusion of newly formed Monte Carlo particles due to nucleation is presented in the scope ofmore » a constant-number scheme: the low-weight merging. This technique is found to create significantly less statistical simulation noise than the conventional technique (named ‘random removal’ in this paper). Both concepts are combined into a single GPU-based simulation method which is validated by comparison with the discrete-sectional simulation technique. Two test models describing a constant-rate nucleation coupled to a simultaneous coagulation in 1) the free-molecular regime or 2) the continuum regime are simulated for this purpose.« less
Analysis of novel stochastic switched SILI epidemic models with continuous and impulsive control
NASA Astrophysics Data System (ADS)
Gao, Shujing; Zhong, Deming; Zhang, Yan
2018-04-01
In this paper, we establish two new stochastic switched epidemic models with continuous and impulsive control. The stochastic perturbations are considered for the natural death rate in each equation of the models. Firstly, a stochastic switched SILI model with continuous control schemes is investigated. By using Lyapunov-Razumikhin method, the sufficient conditions for extinction in mean are established. Our result shows that the disease could be die out theoretically if threshold value R is less than one, regardless of whether the disease-free solutions of the corresponding subsystems are stable or unstable. Then, a stochastic switched SILI model with continuous control schemes and pulse vaccination is studied. The threshold value R is derived. The global attractivity of the model is also obtained. At last, numerical simulations are carried out to support our results.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Stochastic and deterministic models for agricultural production networks.
Bai, P; Banks, H T; Dediu, S; Govan, A Y; Last, M; Lloyd, A L; Nguyen, H K; Olufsen, M S; Rempala, G; Slenning, B D
2007-07-01
An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.
Benefits of an ultra large and multiresolution ensemble for estimating available wind power
NASA Astrophysics Data System (ADS)
Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik
2016-04-01
In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.
2005-11-01
walk (Markovian in position) techniques to perform these simulations ( Breivik et al, 2004; Spaulding and Howlett, 1996; Spaulding and Jayko, 1991; ASA...studies. Model 1 is used in most search and rescue models to make trajectory predictions ( Breivik et al, 2004; Spaulding and Howlett, 1996; Spaulding...ocean gyres: Part II hierarchy of stochastic models, Journal of Physical Oceanography, Vol. 32, 797-830. March 2002. Breivik , O., A. Allen, C. Wettre
From Complex to Simple: Interdisciplinary Stochastic Models
ERIC Educational Resources Information Center
Mazilu, D. A.; Zamora, G.; Mazilu, I.
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…
One-Week Module on Stochastic Groundwater Modeling
ERIC Educational Resources Information Center
Mays, David C.
2010-01-01
This article describes a one-week introduction to stochastic groundwater modeling, intended for the end of a first course on groundwater hydrology, or the beginning of a second course on stochastic hydrogeology or groundwater modeling. The motivation for this work is to strengthen groundwater education, which has been identified among the factors…
A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.
Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S
2017-09-01
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.
Stochastic Watershed Models for Risk Based Decision Making
NASA Astrophysics Data System (ADS)
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
NASA Astrophysics Data System (ADS)
Henley, B. J.; Thyer, M. A.; Kuczera, G. A.
2012-12-01
A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. To characterize long-term variability for the first level of the hierarchy, paleoclimate and instrumental data describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yrs is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run-lengths, with 90% between 3 and 33 yr and a mean of 15 yr. Model selection techniques were used to determine a suitable stochastic model to simulate these run-lengths. The Markov chain model, previously used to simulate oscillating wet/dry climate states, was found to underestimate the probability of wet/dry periods >5 yr, and was rejected in favor of a gamma distribution. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. Application to two high-quality rainfall sites close to water supply reservoirs found that mean seasonal rainfall in the IPO-PDO dry state was 15%-28% lower than the wet state. The model was able to replicate observed statistics such as seasonal and multi-year accumulated rainfall distributions and interannual autocorrelations for the case study sites. In comparison, an annual lag-one autoregressive AR(1) model was unable to adequately capture the observed rainfall distribution within separate IPO-PDO states. Furthermore, analysis of the impact of the CIMSS framework on drought risk analysis found that short-term drought risks conditional on IPO/PDO state were considerably higher than the traditional AR(1) model.hort-term conditional water supply drought risks for the CIMSS and AR(1) models for the dry IPO-PDO scenario with a range of initial storage levels expressed as a proportion of the annual demand (yield).
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less
Some variance reduction methods for numerical stochastic homogenization
Blanc, X.; Le Bris, C.; Legoll, F.
2016-01-01
We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. PMID:27002065
Cox process representation and inference for stochastic reaction-diffusion processes
NASA Astrophysics Data System (ADS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2016-05-01
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W
2014-01-01
A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morse, Brad S.; Pohll, Greg; Huntington, Justin; Rodriguez Castillo, Ramiro
2003-06-01
In 1992, Mexican researchers discovered concentrations of arsenic in excess of World Heath Organization (WHO) standards in several municipal wells in the Zimapan Valley of Mexico. This study describes a method to delineate a capture zone for one of the most highly contaminated wells to aid in future well siting. A stochastic approach was used to model the capture zone because of the high level of uncertainty in several input parameters. Two stochastic techniques were performed and compared: "standard" Monte Carlo analysis and the generalized likelihood uncertainty estimator (GLUE) methodology. The GLUE procedure differs from standard Monte Carlo analysis in that it incorporates a goodness of fit (termed a likelihood measure) in evaluating the model. This allows for more information (in this case, head data) to be used in the uncertainty analysis, resulting in smaller prediction uncertainty. Two likelihood measures are tested in this study to determine which are in better agreement with the observed heads. While the standard Monte Carlo approach does not aid in parameter estimation, the GLUE methodology indicates best fit models when hydraulic conductivity is approximately 10-6.5 m/s, with vertically isotropic conditions and large quantities of interbasin flow entering the basin. Probabilistic isochrones (capture zone boundaries) are then presented, and as predicted, the GLUE-derived capture zones are significantly smaller in area than those from the standard Monte Carlo approach.
Stochastic growth logistic model with aftereffect for batch fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Stochastic growth logistic model with aftereffect for batch fermentation process
NASA Astrophysics Data System (ADS)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Exact time-dependent solutions for a self-regulating gene.
Ramos, A F; Innocentini, G C P; Hornos, J E M
2011-06-01
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
Phase coupling in the cardiorespiratory interaction.
Bahraminasab, A; Kenwright, D; Stefanovska, A; Ghasemi, F; McClintock, P V E
2008-01-01
Markovian analysis is applied to derive nonlinear stochastic equations for the reconstruction of heart rate and respiration rate variability data. A model of their 'phase' interactions is obtained for the first time, thereby gaining new insights into the strength and direction of the cardiorespiratory phase coupling. The reconstructed model can reproduce synchronisation phenomena between the cardiac and the respiratory systems, including switches in synchronisation ratio. The technique is equally applicable to the extraction of the multi-dimensional couplings between many interacting subsystems.
ERIC Educational Resources Information Center
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Distributed parallel computing in stochastic modeling of groundwater systems.
Dong, Yanhui; Li, Guomin; Xu, Haizhen
2013-03-01
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Wu, Fei; Sioshansi, Ramteen
2017-05-25
Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less
Approximate Bayesian computation for spatial SEIR(S) epidemic models.
Brown, Grant D; Porter, Aaron T; Oleson, Jacob J; Hinman, Jessica A
2018-02-01
Approximate Bayesia n Computation (ABC) provides an attractive approach to estimation in complex Bayesian inferential problems for which evaluation of the kernel of the posterior distribution is impossible or computationally expensive. These highly parallelizable techniques have been successfully applied to many fields, particularly in cases where more traditional approaches such as Markov chain Monte Carlo (MCMC) are impractical. In this work, we demonstrate the application of approximate Bayesian inference to spatially heterogeneous Susceptible-Exposed-Infectious-Removed (SEIR) stochastic epidemic models. These models have a tractable posterior distribution, however MCMC techniques nevertheless become computationally infeasible for moderately sized problems. We discuss the practical implementation of these techniques via the open source ABSEIR package for R. The performance of ABC relative to traditional MCMC methods in a small problem is explored under simulation, as well as in the spatially heterogeneous context of the 2014 epidemic of Chikungunya in the Americas. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chien, T. T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.
Deterministic and stochastic CTMC models from Zika disease transmission
NASA Astrophysics Data System (ADS)
Zevika, Mona; Soewono, Edy
2018-03-01
Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.
NASA Astrophysics Data System (ADS)
Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Hybrid approaches for multiple-species stochastic reaction-diffusion models
NASA Astrophysics Data System (ADS)
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-10-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen
2015-10-15
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction–diffusion models
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-01-01
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. PMID:26478601
Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Dawson, A.; Palmer, T.
2017-12-01
Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.
Sato, Tatsuhiko; Furusawa, Yoshiya
2012-10-01
Estimation of the survival fractions of cells irradiated with various particles over a wide linear energy transfer (LET) range is of great importance in the treatment planning of charged-particle therapy. Two computational models were developed for estimating survival fractions based on the concept of the microdosimetric kinetic model. They were designated as the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models. The former model takes into account the stochastic natures of both domain and cell nucleus specific energies, whereas the latter model represents the stochastic nature of domain specific energy by its approximated mean value and variance to reduce the computational time. The probability densities of the domain and cell nucleus specific energies are the fundamental quantities for expressing survival fractions in these models. These densities are calculated using the microdosimetric and LET-estimator functions implemented in the Particle and Heavy Ion Transport code System (PHITS) in combination with the convolution or database method. Both the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models can reproduce the measured survival fractions for high-LET and high-dose irradiations, whereas a previously proposed microdosimetric kinetic model predicts lower values for these fractions, mainly due to intrinsic ignorance of the stochastic nature of cell nucleus specific energies in the calculation. The models we developed should contribute to a better understanding of the mechanism of cell inactivation, as well as improve the accuracy of treatment planning of charged-particle therapy.
Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang
2018-03-01
This paper is concerned with the distributed filtering problem for a class of discrete time-varying stochastic parameter systems with error variance constraints over a sensor network where the sensor outputs are subject to successive missing measurements. The phenomenon of the successive missing measurements for each sensor is modeled via a sequence of mutually independent random variables obeying the Bernoulli binary distribution law. To reduce the frequency of unnecessary data transmission and alleviate the communication burden, an event-triggered mechanism is introduced for the sensor node such that only some vitally important data is transmitted to its neighboring sensors when specific events occur. The objective of the problem addressed is to design a time-varying filter such that both the requirements and the variance constraints are guaranteed over a given finite-horizon against the random parameter matrices, successive missing measurements, and stochastic noises. By recurring to stochastic analysis techniques, sufficient conditions are established to ensure the existence of the time-varying filters whose gain matrices are then explicitly characterized in term of the solutions to a series of recursive matrix inequalities. A numerical simulation example is provided to illustrate the effectiveness of the developed event-triggered distributed filter design strategy.
Robust synthetic biology design: stochastic game theory approach.
Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching
2009-07-15
Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors
NASA Technical Reports Server (NTRS)
VanOverbeke, Thomas J.
1998-01-01
The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except for peak temperature and tangential velocity. The hybrid pdf method did take longer and required more memory, but has a theoretical basis to extend to many reaction steps which cannot be said of current turbulent combustion models.
NASA Astrophysics Data System (ADS)
Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo
2018-01-01
In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.
Modeling Stochastic Kinetics of Molecular Machines at Multiple Levels: From Molecules to Modules
Chowdhury, Debashish
2013-01-01
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. PMID:23746505
Avanzini, Francesco; Moro, Giorgio J
2018-03-15
The quantum molecular trajectory is the deterministic trajectory, arising from the Bohm theory, that describes the instantaneous positions of the nuclei of molecules by assuring the agreement with the predictions of quantum mechanics. Therefore, it provides the suitable framework for representing the geometry and the motions of molecules without neglecting their quantum nature. However, the quantum molecular trajectory is extremely demanding from the computational point of view, and this strongly limits its applications. To overcome such a drawback, we derive a stochastic representation of the quantum molecular trajectory, through projection operator techniques, for the degrees of freedom of an open quantum system. The resulting Fokker-Planck operator is parametrically dependent upon the reduced density matrix of the open system. Because of the pilot role played by the reduced density matrix, this stochastic approach is able to represent accurately the main features of the open system motions both at equilibrium and out of equilibrium with the environment. To verify this procedure, the predictions of the stochastic and deterministic representation are compared for a model system of six interacting harmonic oscillators, where one oscillator is taken as the open quantum system of interest. The undeniable advantage of the stochastic approach is that of providing a simplified and self-contained representation of the dynamics of the open system coordinates. Furthermore, it can be employed to study the out of equilibrium dynamics and the relaxation of quantum molecular motions during photoinduced processes, like photoinduced conformational changes and proton transfers.
Path probability of stochastic motion: A functional approach
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Abe, Sumiyoshi
2016-06-01
The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.
Tests of oceanic stochastic parameterisation in a seasonal forecast system.
NASA Astrophysics Data System (ADS)
Cooper, Fenwick; Andrejczuk, Miroslaw; Juricke, Stephan; Zanna, Laure; Palmer, Tim
2015-04-01
Over seasonal time scales, our aim is to compare the relative impact of ocean initial condition and model uncertainty, upon the ocean forecast skill and reliability. Over seasonal timescales we compare four oceanic stochastic parameterisation schemes applied in a 1x1 degree ocean model (NEMO) with a fully coupled T159 atmosphere (ECMWF IFS). The relative impacts upon the ocean of the resulting eddy induced activity, wind forcing and typical initial condition perturbations are quantified. Following the historical success of stochastic parameterisation in the atmosphere, two of the parameterisations tested were multiplicitave in nature: A stochastic variation of the Gent-McWilliams scheme and a stochastic diffusion scheme. We also consider a surface flux parameterisation (similar to that introduced by Williams, 2012), and stochastic perturbation of the equation of state (similar to that introduced by Brankart, 2013). The amplitude of the stochastic term in the Williams (2012) scheme was set to the physically reasonable amplitude considered in that paper. The amplitude of the stochastic term in each of the other schemes was increased to the limits of model stability. As expected, variability was increased. Up to 1 month after initialisation, ensemble spread induced by stochastic parameterisation is greater than that induced by the atmosphere, whilst being smaller than the initial condition perturbations currently used at ECMWF. After 1 month, the wind forcing becomes the dominant source of model ocean variability, even at depth.
Validation of the Poisson Stochastic Radiative Transfer Model
NASA Technical Reports Server (NTRS)
Zhuravleva, Tatiana; Marshak, Alexander
2004-01-01
A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.
Analytical pricing formulas for hybrid variance swaps with regime-switching
NASA Astrophysics Data System (ADS)
Roslan, Teh Raihana Nazirah; Cao, Jiling; Zhang, Wenjun
2017-11-01
The problem of pricing discretely-sampled variance swaps under stochastic volatility, stochastic interest rate and regime-switching is being considered in this paper. An extension of the Heston stochastic volatility model structure is done by adding the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. In addition, the parameters of the model are permitted to have transitions following a Markov chain process which is continuous and discoverable. This hybrid model can be used to illustrate certain macroeconomic conditions, for example the changing phases of business stages. The outcome of our regime-switching hybrid model is presented in terms of analytical pricing formulas for variance swaps.
Kumar, M Senthil; Schwartz, Russell
2010-12-09
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M.; Schwartz, Russell
2010-12-01
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-01-01
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-07-06
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Huang, Yongxi
Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.
Xie, Fei; Huang, Yongxi
2018-02-04
Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.
Stochastic von Bertalanffy models, with applications to fish recruitment.
Lv, Qiming; Pitchford, Jonathan W
2007-02-21
We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
A chance-constrained stochastic approach to intermodal container routing problems
Zhao, Yi; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389
A stochastic SIS epidemic model with vaccination
NASA Astrophysics Data System (ADS)
Cao, Boqiang; Shan, Meijing; Zhang, Qimin; Wang, Weiming
2017-11-01
In this paper, we investigate the basic features of an SIS type infectious disease model with varying population size and vaccinations in presence of environment noise. By applying the Markov semigroup theory, we propose a stochastic reproduction number R0s which can be seen as a threshold parameter to utilize in identifying the stochastic extinction and persistence: If R0s < 1, under some mild extra conditions, there exists a disease-free absorbing set for the stochastic epidemic model, which implies that disease dies out with probability one; while if R0s > 1, under some mild extra conditions, the SDE model has an endemic stationary distribution which results in the stochastic persistence of the infectious disease. The most interesting finding is that large environmental noise can suppress the outbreak of the disease.
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana
2018-01-01
A problem of mathematical modeling of complex stochastic processes in macroeconomics is discussed. For the description of dynamics of income and capital stock, the well-known Kaldor model of business cycles is used as a basic example. The aim of the paper is to give an overview of the variety of stochastic phenomena which occur in Kaldor model forced by additive and parametric random noise. We study a generation of small- and large-amplitude stochastic oscillations, and their mixed-mode intermittency. To analyze these phenomena, we suggest a constructive approach combining the study of the peculiarities of deterministic phase portrait, and stochastic sensitivity of attractors. We show how parametric noise can stabilize the unstable equilibrium and transform dynamics of Kaldor system from order to chaos.
A stochastic delay model for pricing debt and equity: Numerical techniques and applications
NASA Astrophysics Data System (ADS)
Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah
2015-01-01
Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.
Stochastic volatility of the futures prices of emission allowances: A Bayesian approach
NASA Astrophysics Data System (ADS)
Kim, Jungmu; Park, Yuen Jung; Ryu, Doojin
2017-01-01
Understanding the stochastic nature of the spot volatility of emission allowances is crucial for risk management in emissions markets. In this study, by adopting a stochastic volatility model with or without jumps to represent the dynamics of European Union Allowances (EUA) futures prices, we estimate the daily volatilities and model parameters by using the Markov Chain Monte Carlo method for stochastic volatility (SV), stochastic volatility with return jumps (SVJ) and stochastic volatility with correlated jumps (SVCJ) models. Our empirical results reveal three important features of emissions markets. First, the data presented herein suggest that EUA futures prices exhibit significant stochastic volatility. Second, the leverage effect is noticeable regardless of whether or not jumps are included. Third, the inclusion of jumps has a significant impact on the estimation of the volatility dynamics. Finally, the market becomes very volatile and large jumps occur at the beginning of a new phase. These findings are important for policy makers and regulators.
On stochastic control and optimal measurement strategies. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kramer, L. C.
1971-01-01
The control of stochastic dynamic systems is studied with particular emphasis on those which influence the quality or nature of the measurements which are made to effect control. Four main areas are discussed: (1) the meaning of stochastic optimality and the means by which dynamic programming may be applied to solve a combined control/measurement problem; (2) a technique by which it is possible to apply deterministic methods, specifically the minimum principle, to the study of stochastic problems; (3) the methods described are applied to linear systems with Gaussian disturbances to study the structure of the resulting control system; and (4) several applications are considered.
Some variance reduction methods for numerical stochastic homogenization.
Blanc, X; Le Bris, C; Legoll, F
2016-04-28
We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).
Uncertainty in clinical data and stochastic model for in vitro fertilization.
Yenkie, Kirti M; Diwekar, Urmila
2015-02-21
In vitro fertilization (IVF) is the most widely used technique in assisted reproductive technologies (ART). It has been divided into four stages; (i) superovulation, (ii) egg retrieval, (iii) insemination/fertilization and (iv) embryo transfer. The first stage of superovulation is a drug induced method to enable multiple ovulation, i.e., multiple follicle growth to oocytes or matured follicles in a single menstrual cycle. IVF being a medical procedure that aims at manipulating the biological functions in the human body is subjected to inherent sources of uncertainty and variability. Also, the interplay of hormones with the natural functioning of the ovaries to stimulate multiple ovulation as against single ovulation in a normal menstrual cycle makes the procedure dependent on several factors like the patient's condition in terms of cause of infertility, actual ovarian function, responsiveness to the medication, etc. The treatment requires continuous monitoring and testing and this can give rise to errors in observations and reports. These uncertainties are present in the form of measurement noise in the clinical data. Thus, it becomes essential to look at the process noise and account for it to build better representative models for follicle growth. The purpose of this work is to come up with a robust model which can project the superovulation cycle outcome based on the hormonal doses and patient response in a better way in presence of uncertainty. The stochastic model results in better projection of the cycle outcomes for the patients where the deterministic model has some deviations from the clinical observations and the growth term value is not within the range of '0.3-0.6'. It was found that the prediction accuracy was enhanced by more than 70% for two patients by using the stochastic model projections. Also, in patients where the prediction accuracy did not increase significantly, a better match with the trend of the clinical data was observed in case of the stochastic model projections as compared to their deterministic counterparts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less
Stochastic dynamic modeling of regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Aso, N.; Ando, R.; Ide, S.
2017-12-01
Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.
NASA Astrophysics Data System (ADS)
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Compressing random microstructures via stochastic Wang tilings.
Novák, Jan; Kučerová, Anna; Zeman, Jan
2012-10-01
This Rapid Communication presents a stochastic Wang tiling-based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multidimensional media.
NASA Astrophysics Data System (ADS)
Ranaie, Mehrdad; Soffianian, Alireza; Pourmanafi, Saeid; Mirghaffari, Noorollah; Tarkesh, Mostafa
2018-03-01
In recent decade, analyzing the remotely sensed imagery is considered as one of the most common and widely used procedures in the environmental studies. In this case, supervised image classification techniques play a central role. Hence, taking a high resolution Worldview-3 over a mixed urbanized landscape in Iran, three less applied image classification methods including Bagged CART, Stochastic gradient boosting model and Neural network with feature extraction were tested and compared with two prevalent methods: random forest and support vector machine with linear kernel. To do so, each method was run ten time and three validation techniques was used to estimate the accuracy statistics consist of cross validation, independent validation and validation with total of train data. Moreover, using ANOVA and Tukey test, statistical difference significance between the classification methods was significantly surveyed. In general, the results showed that random forest with marginal difference compared to Bagged CART and stochastic gradient boosting model is the best performing method whilst based on independent validation there was no significant difference between the performances of classification methods. It should be finally noted that neural network with feature extraction and linear support vector machine had better processing speed than other.
Data Analysis and Non-local Parametrization Strategies for Organized Atmospheric Convection
NASA Astrophysics Data System (ADS)
Brenowitz, Noah D.
The intrinsically multiscale nature of moist convective processes in the atmosphere complicates scientific understanding, and, as a result, current coarse-resolution climate models poorly represent convective variability in the tropics. This dissertation addresses this problem by 1) studying new cumulus convective closures in a pair of idealized models for tropical moist convection, and 2) developing innovative strategies for analyzing high-resolution numerical simulations of organized convection. The first two chapters of this dissertation revisit a historical controversy about the use of convective closures based on the large-scale wind field or moisture convergence. In the first chapter, a simple coarse resolution stochastic model for convective inhibition is designed which includes the non-local effects of wind-convergence on convective activity. This model is designed to replicate the convective dynamics of a typical coarse-resolution climate prediction model. The non-local convergence coupling is motivated by the phenomena of gregarious convection, whereby mesoscale convective systems emit gravity waves which can promote convection at a distant locations. Linearized analysis and nonlinear simulations show that this convergence coupling allows for increased interaction between cumulus convection and the large-scale circulation, but does not suffer from the deleterious behavior of traditional moisture-convergence closures. In the second chapter, the non-local convergence coupling idea is extended to an idealized stochastic multicloud model. This model allows for stochastic transitions between three distinct cloud types, and non-local convergence coupling is most beneficial when applied to the transition from shallow to deep convection. This is consistent with recent observational and numerical modeling evidence, and there is a growing body of work highlighting the importance of this transition in tropical meteorology. In a series of idealized Walker cell simulations, convergence coupling enhances the persistence of Kelvin wave analogs in dry regions of the domain while leaving the dynamics in moist regions largely unaltered. The final chapter of this dissertation presents a technique for analyzing the variability of a direct numerical simulation of Rayleigh-Benard convection at large aspect ratio, which is a basic prototype of convective organization. High resolution numerical models are an invaluable tool for studying atmospheric dynamics, but modern data analysis techniques struggle with the extreme size of the model outputs and the trivial symmetries of the underlying dynamical systems (e.g. shift-invariance). A new data analysis approach which is invariant to spatial symmetries is derived by combining a quasi-Lagrangian description of the data, time-lagged embedding, and manifold learning techniques. The quasi-Lagrangian description is obtained by a straightforward isothermal binning procedure, which compresses the data in a dynamically-aware fashion. A small number of orthogonal modes returned by this algorithm are able to explain the highly intermittent dynamics of the bulk heat transfer, as quantified by the Nusselt Number.
Modeling the lake eutrophication stochastic ecosystem and the research of its stability.
Wang, Bo; Qi, Qianqian
2018-06-01
In the reality, the lake system will be disturbed by stochastic factors including the external and internal factors. By adding the additive noise and the multiplicative noise to the right-hand sides of the model equation, the additive stochastic model and the multiplicative stochastic model are established respectively in order to reduce model errors induced by the absence of some physical processes. For both the two kinds of stochastic ecosystems, the authors studied the bifurcation characteristics with the FPK equation and the Lyapunov exponent method based on the Stratonovich-Khasminiskii stochastic average principle. Results show that, for the additive stochastic model, when control parameter (i.e., nutrient loading rate) falls into the interval [0.388644, 0.66003825], there exists bistability for the ecosystem and the additive noise intensities cannot make the bifurcation point drift. In the region of the bistability, the external stochastic disturbance which is one of the main triggers causing the lake eutrophication, may make the ecosystem unstable and induce a transition. When control parameter (nutrient loading rate) falls into the interval (0, 0.388644) and (0.66003825, 1.0), there only exists a stable equilibrium state and the additive noise intensity could not change it. For the multiplicative stochastic model, there exists more complex bifurcation performance and the multiplicative ecosystem will be broken by the multiplicative noise. Also, the multiplicative noise could reduce the extent of the bistable region, ultimately, the bistable region vanishes for sufficiently large noise. What's more, both the nutrient loading rate and the multiplicative noise will make the ecosystem have a regime shift. On the other hand, for the two kinds of stochastic ecosystems, the authors also discussed the evolution of the ecological variable in detail by using the Four-stage Runge-Kutta method of strong order γ=1.5. The numerical method was found to be capable of effectively explaining the regime shift theory and agreed with the realistic analyze. These conclusions also confirms the two paths for the system to move from one stable state to another proposed by Beisner et al. [3], which may help understand the occurrence mechanism related to the lake eutrophication from the view point of the stochastic model and mathematical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Multi-level methods and approximating distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E.
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparablemore » to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.« less
Importance of vesicle release stochasticity in neuro-spike communication.
Ramezani, Hamideh; Akan, Ozgur B
2017-07-01
Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Stochastic Modeling of Laminar-Turbulent Transition
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Choudhari, Meelan
2002-01-01
Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.
Estimation of correlation functions by stochastic approximation.
NASA Technical Reports Server (NTRS)
Habibi, A.; Wintz, P. A.
1972-01-01
Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.
Stochastic modeling of consumer preferences for health care institutions.
Malhotra, N K
1983-01-01
This paper proposes a stochastic procedure for modeling consumer preferences via LOGIT analysis. First, a simple, non-technical exposition of the use of a stochastic approach in health care marketing is presented. Second, a study illustrating the application of the LOGIT model in assessing consumer preferences for hospitals is given. The paper concludes with several implications of the proposed approach.
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
The threshold of a stochastic avian-human influenza epidemic model with psychological effect
NASA Astrophysics Data System (ADS)
Zhang, Fengrong; Zhang, Xinhong
2018-02-01
In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.
Coevolution Maintains Diversity in the Stochastic "Kill the Winner" Model
NASA Astrophysics Data System (ADS)
Xue, Chi; Goldenfeld, Nigel
2017-12-01
The "kill the winner" hypothesis is an attempt to address the problem of diversity in biology. It argues that host-specific predators control the population of each prey, preventing a winner from emerging and thus maintaining the coexistence of all species in the system. We develop a stochastic model for the kill the winner paradigm and show that the stable coexistence state of the deterministic kill the winner model is destroyed by demographic stochasticity, through a cascade of extinction events. We formulate an individual-level stochastic model in which predator-prey coevolution promotes the high diversity of the ecosystem by generating a persistent population flux of species.
Stochastic mixed-mode oscillations in a three-species predator-prey model
NASA Astrophysics Data System (ADS)
Sadhu, Susmita; Kuehn, Christian
2018-03-01
The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.
Computationally efficient stochastic optimization using multiple realizations
NASA Astrophysics Data System (ADS)
Bayer, P.; Bürger, C. M.; Finkel, M.
2008-02-01
The presented study is concerned with computationally efficient methods for solving stochastic optimization problems involving multiple equally probable realizations of uncertain parameters. A new and straightforward technique is introduced that is based on dynamically ordering the stack of realizations during the search procedure. The rationale is that a small number of critical realizations govern the output of a reliability-based objective function. By utilizing a problem, which is typical to designing a water supply well field, several variants of this "stack ordering" approach are tested. The results are statistically assessed, in terms of optimality and nominal reliability. This study demonstrates that the simple ordering of a given number of 500 realizations while applying an evolutionary search algorithm can save about half of the model runs without compromising the optimization procedure. More advanced variants of stack ordering can, if properly configured, save up to more than 97% of the computational effort that would be required if the entire number of realizations were considered. The findings herein are promising for similar problems of water management and reliability-based design in general, and particularly for non-convex problems that require heuristic search techniques.
Tsunamis: stochastic models of occurrence and generation mechanisms
Geist, Eric L.; Oglesby, David D.
2014-01-01
The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.
Parameter Estimation for Geoscience Applications Using a Measure-Theoretic Approach
NASA Astrophysics Data System (ADS)
Dawson, C.; Butler, T.; Mattis, S. A.; Graham, L.; Westerink, J. J.; Vesselinov, V. V.; Estep, D.
2016-12-01
Effective modeling of complex physical systems arising in the geosciences is dependent on knowing parameters which are often difficult or impossible to measure in situ. In this talk we focus on two such problems, estimating parameters for groundwater flow and contaminant transport, and estimating parameters within a coastal ocean model. The approach we will describe, proposed by collaborators D. Estep, T. Butler and others, is based on a novel stochastic inversion technique based on measure theory. In this approach, given a probability space on certain observable quantities of interest, one searches for the sets of highest probability in parameter space which give rise to these observables. When viewed as mappings between sets, the stochastic inversion problem is well-posed in certain settings, but there are computational challenges related to the set construction. We will focus the talk on estimating scalar parameters and fields in a contaminant transport setting, and in estimating bottom friction in a complicated near-shore coastal application.
NASA Astrophysics Data System (ADS)
De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan
2016-11-01
A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.
NASA Astrophysics Data System (ADS)
Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter
2002-06-01
In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.
NASA Astrophysics Data System (ADS)
Aronica, G. T.; Candela, A.
2007-12-01
SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.
NASA Astrophysics Data System (ADS)
Wolff, J.; Jankov, I.; Beck, J.; Carson, L.; Frimel, J.; Harrold, M.; Jiang, H.
2016-12-01
It is well known that global and regional numerical weather prediction ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system for addressing the deficiencies in ensemble modeling is the use of stochastic physics to represent model-related uncertainty. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), Stochastic Perturbation of Physics Tendencies (SPPT), or some combination of all three. The focus of this study is to assess the model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) when using stochastic approaches. For this purpose, the test utilized a single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model, with ensemble members produced by employing stochastic methods. Parameter perturbations were employed in the Rapid Update Cycle (RUC) land surface model and Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer scheme. Results will be presented in terms of bias, error, spread, skill, accuracy, reliability, and sharpness using the Model Evaluation Tools (MET) verification package. Due to the high level of complexity of running a frequently updating (hourly), high spatial resolution (3 km), large domain (CONUS) ensemble system, extensive high performance computing (HPC) resources were needed to meet this objective. Supercomputing resources were provided through the National Center for Atmospheric Research (NCAR) Strategic Capability (NSC) project support, allowing for a more extensive set of tests over multiple seasons, consequently leading to more robust results. Through the use of these stochastic innovations and powerful supercomputing at NCAR, further insights and advancements in ensemble forecasting at convection-permitting scales will be possible.
Moisen, Gretchen G.; Freeman, E.A.; Blackard, J.A.; Frescino, T.S.; Zimmermann, N.E.; Edwards, T.C.
2006-01-01
Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's?? See5 and Cubist (for binary and continuous responses, respectively) are the tools of choice in many of these applications. These tools are widely used in large remote sensing applications, but are not easily interpretable, do not have ties with survey estimation methods, and use proprietary unpublished algorithms. Consequently, three alternative modelling techniques were compared for mapping presence and basal area of 13 species located in the mountain ranges of Utah, USA. The modelling techniques compared included the widely used See5/Cubist, generalized additive models (GAMs), and stochastic gradient boosting (SGB). Model performance was evaluated using independent test data sets. Evaluation criteria for mapping species presence included specificity, sensitivity, Kappa, and area under the curve (AUC). Evaluation criteria for the continuous basal area variables included correlation and relative mean squared error. For predicting species presence (setting thresholds to maximize Kappa), SGB had higher values for the majority of the species for specificity and Kappa, while GAMs had higher values for the majority of the species for sensitivity. In evaluating resultant AUC values, GAM and/or SGB models had significantly better results than the See5 models where significant differences could be detected between models. For nine out of 13 species, basal area prediction results for all modelling techniques were poor (correlations less than 0.5 and relative mean squared errors greater than 0.8), but SGB provided the most stable predictions in these instances. SGB and Cubist performed equally well for modelling basal area for three species with moderate prediction success, while all three modelling tools produced comparably good predictions (correlation of 0.68 and relative mean squared error of 0.56) for one species. ?? 2006 Elsevier B.V. All rights reserved.
The ISI distribution of the stochastic Hodgkin-Huxley neuron.
Rowat, Peter F; Greenwood, Priscilla E
2014-01-01
The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.
Weak Galilean invariance as a selection principle for coarse-grained diffusive models.
Cairoli, Andrea; Klages, Rainer; Baule, Adrian
2018-05-29
How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.
You can run, you can hide: The epidemiology and statistical mechanics of zombies
NASA Astrophysics Data System (ADS)
Alemi, Alexander A.; Bierbaum, Matthew; Myers, Christopher R.; Sethna, James P.
2015-11-01
We use a popular fictional disease, zombies, in order to introduce techniques used in modern epidemiology modeling, and ideas and techniques used in the numerical study of critical phenomena. We consider variants of zombie models, from fully connected continuous time dynamics to a full scale exact stochastic dynamic simulation of a zombie outbreak on the continental United States. Along the way, we offer a closed form analytical expression for the fully connected differential equation, and demonstrate that the single person per site two dimensional square lattice version of zombies lies in the percolation universality class. We end with a quantitative study of the full scale US outbreak, including the average susceptibility of different geographical regions.
NASA Astrophysics Data System (ADS)
Keshtpoor, M.; Carnacina, I.; Blair, A.; Yablonsky, R. M.
2017-12-01
Storm surge caused by Extratropical Cyclones (ETCs) has significantly impacted not only the life of private citizens but also the insurance and reinsurance industry in Great Britain. The storm surge risk assessment requires a larger dataset of storms than the limited recorded historical ETCs. Thus, historical ETCs were perturbed to generate a 10,000-year stochastic catalog that accounts for surge-generating ETCs in the study area with return periods from one year to 10,000 years. Delft3D-Flexible Mesh hydrodynamic model was used to numerically simulate the storm surge along the Great Britain coastline. A nested grid technique was used to increase the simulation grid resolution up to 200 m near the highly populated coastal areas. Coarse and fine mesh models were calibrated and validated using historical recorded water elevations. Then, numerical simulations were performed on a 10,000-year stochastic catalog. The 50-, 100-, and 500-year return period maps were generated for Great Britain coastal areas. The corresponding events with return periods of 50-, 100-, and 500-years in Humber Bay and Thames River coastal areas were identified, and simulated with the consideration of projected sea level rises to reveal the effect of rising sea levels on the inundation return period maps in two highly-populated coastal areas. Finally, the return period of Storm Xaver (2013) was determined with and without the effect of rising sea levels.
Dynamics of a stochastic HIV-1 infection model with logistic growth
NASA Astrophysics Data System (ADS)
Jiang, Daqing; Liu, Qun; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed; Xia, Peiyan
2017-03-01
This paper is concerned with a stochastic HIV-1 infection model with logistic growth. Firstly, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the HIV-1 infection model. Then we obtain sufficient conditions for extinction of the infection. The stationary distribution shows that the infection can become persistent in vivo.
2013-11-01
STOCHASTIC RADIATIVE TRANSFER MODEL FOR CONTAMINATED ROUGH SURFACES: A...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid ...COVERED (From - To) Jan 2013 - Sep 2013 4. TITLE AND SUBTITLE Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for
Schweiger, Regev; Fisher, Eyal; Rahmani, Elior; Shenhav, Liat; Rosset, Saharon; Halperin, Eran
2018-06-22
Estimation of heritability is an important task in genetics. The use of linear mixed models (LMMs) to determine narrow-sense single-nucleotide polymorphism (SNP)-heritability and related quantities has received much recent attention, due of its ability to account for variants with small effect sizes. Typically, heritability estimation under LMMs uses the restricted maximum likelihood (REML) approach. The common way to report the uncertainty in REML estimation uses standard errors (SEs), which rely on asymptotic properties. However, these assumptions are often violated because of the bounded parameter space, statistical dependencies, and limited sample size, leading to biased estimates and inflated or deflated confidence intervals (CIs). In addition, for larger data sets (e.g., tens of thousands of individuals), the construction of SEs itself may require considerable time, as it requires expensive matrix inversions and multiplications. Here, we present FIESTA (Fast confidence IntErvals using STochastic Approximation), a method for constructing accurate CIs. FIESTA is based on parametric bootstrap sampling, and, therefore, avoids unjustified assumptions on the distribution of the heritability estimator. FIESTA uses stochastic approximation techniques, which accelerate the construction of CIs by several orders of magnitude, compared with previous approaches as well as to the analytical approximation used by SEs. FIESTA builds accurate CIs rapidly, for example, requiring only several seconds for data sets of tens of thousands of individuals, making FIESTA a very fast solution to the problem of building accurate CIs for heritability for all data set sizes.
Advanced reliability modeling of fault-tolerant computer-based systems
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1982-01-01
Two methodologies for the reliability assessment of fault tolerant digital computer based systems are discussed. The computer-aided reliability estimation 3 (CARE 3) and gate logic software simulation (GLOSS) are assessment technologies that were developed to mitigate a serious weakness in the design and evaluation process of ultrareliable digital systems. The weak link is based on the unavailability of a sufficiently powerful modeling technique for comparing the stochastic attributes of one system against others. Some of the more interesting attributes are reliability, system survival, safety, and mission success.
Light, John M; Jason, Leonard A; Stevens, Edward B; Callahan, Sarah; Stone, Ariel
2016-03-01
The complex system conception of group social dynamics often involves not only changing individual characteristics, but also changing within-group relationships. Recent advances in stochastic dynamic network modeling allow these interdependencies to be modeled from data. This methodology is discussed within a context of other mathematical and statistical approaches that have been or could be applied to study the temporal evolution of relationships and behaviors within small- to medium-sized groups. An example model is presented, based on a pilot study of five Oxford House recovery homes, sober living environments for individuals following release from acute substance abuse treatment. This model demonstrates how dynamic network modeling can be applied to such systems, examines and discusses several options for pooling, and shows how results are interpreted in line with complex system concepts. Results suggest that this approach (a) is a credible modeling framework for studying group dynamics even with limited data, (b) improves upon the most common alternatives, and (c) is especially well-suited to complex system conceptions. Continuing improvements in stochastic models and associated software may finally lead to mainstream use of these techniques for the study of group dynamics, a shift already occurring in related fields of behavioral science.
Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.
Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong
2014-12-01
In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.
NASA Astrophysics Data System (ADS)
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.
2016-12-01
One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.
Stochastic Approaches Within a High Resolution Rapid Refresh Ensemble
NASA Astrophysics Data System (ADS)
Jankov, I.
2017-12-01
It is well known that global and regional numerical weather prediction (NWP) ensemble systems are under-dispersive, producing unreliable and overconfident ensemble forecasts. Typical approaches to alleviate this problem include the use of multiple dynamic cores, multiple physics suite configurations, or a combination of the two. While these approaches may produce desirable results, they have practical and theoretical deficiencies and are more difficult and costly to maintain. An active area of research that promotes a more unified and sustainable system is the use of stochastic physics. Stochastic approaches include Stochastic Parameter Perturbations (SPP), Stochastic Kinetic Energy Backscatter (SKEB), and Stochastic Perturbation of Physics Tendencies (SPPT). The focus of this study is to assess model performance within a convection-permitting ensemble at 3-km grid spacing across the Contiguous United States (CONUS) using a variety of stochastic approaches. A single physics suite configuration based on the operational High-Resolution Rapid Refresh (HRRR) model was utilized and ensemble members produced by employing stochastic methods. Parameter perturbations (using SPP) for select fields were employed in the Rapid Update Cycle (RUC) land surface model (LSM) and Mellor-Yamada-Nakanishi-Niino (MYNN) Planetary Boundary Layer (PBL) schemes. Within MYNN, SPP was applied to sub-grid cloud fraction, mixing length, roughness length, mass fluxes and Prandtl number. In the RUC LSM, SPP was applied to hydraulic conductivity and tested perturbing soil moisture at initial time. First iterative testing was conducted to assess the initial performance of several configuration settings (e.g. variety of spatial and temporal de-correlation lengths). Upon selection of the most promising candidate configurations using SPP, a 10-day time period was run and more robust statistics were gathered. SKEB and SPPT were included in additional retrospective tests to assess the impact of using all three stochastic approaches to address model uncertainty. Results from the stochastic perturbation testing were compared to a baseline multi-physics control ensemble. For probabilistic forecast performance the Model Evaluation Tools (MET) verification package was used.
Partial ASL extensions for stochastic programming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, David
2010-03-31
partially completed extensions for stochastic programming to the AMPL/solver interface library (ASL).modeling and experimenting with stochastic recourse problems. This software is not primarily for military applications
Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V
2013-04-01
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
NASA Astrophysics Data System (ADS)
Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.
2013-04-01
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
NASA Astrophysics Data System (ADS)
Darmon, David
2018-03-01
In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
2010-01-01
Background The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system. Results In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Conclusions Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics. PMID:21143785
Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajal K; Zhang, Chaoyang
2010-12-01
The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the "in silico" stochastic event based modeling approach to find the molecular dynamics of the system. In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.
Variational formulation for Black-Scholes equations in stochastic volatility models
NASA Astrophysics Data System (ADS)
Gyulov, Tihomir B.; Valkov, Radoslav L.
2012-11-01
In this note we prove existence and uniqueness of weak solutions to a boundary value problem arising from stochastic volatility models in financial mathematics. Our settings are variational in weighted Sobolev spaces. Nevertheless, as it will become apparent our variational formulation agrees well with the stochastic part of the problem.
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei; Chen, Xi; Lin, Xu-Dong; Tan, Ning
The mean first passage time (MFPT) in a phenomenological gene transcriptional regulatory model with non-Gaussian noise is analytically investigated based on the singular perturbation technique. The effect of the non-Gaussian noise on the phenomenon of stochastic resonance (SR) is then disclosed based on a new combination of adiabatic elimination and linear response approximation. Compared with the results in the Gaussian noise case, it is found that bounded non-Gaussian noise inhibits the transition between different concentrations of protein, while heavy-tailed non-Gaussian noise accelerates the transition. It is also found that the optimal noise intensity for SR in the heavy-tailed noise case is smaller, while the optimal noise intensity in the bounded noise case is larger. These observations can be explained by the heavy-tailed noise easing random transitions.
NASA Astrophysics Data System (ADS)
El-Diasty, M.; El-Rabbany, A.; Pagiatakis, S.
2007-11-01
We examine the effect of varying the temperature points on MEMS inertial sensors' noise models using Allan variance and least-squares spectral analysis (LSSA). Allan variance is a method of representing root-mean-square random drift error as a function of averaging times. LSSA is an alternative to the classical Fourier methods and has been applied successfully by a number of researchers in the study of the noise characteristics of experimental series. Static data sets are collected at different temperature points using two MEMS-based IMUs, namely MotionPakII and Crossbow AHRS300CC. The performance of the two MEMS inertial sensors is predicted from the Allan variance estimation results at different temperature points and the LSSA is used to study the noise characteristics and define the sensors' stochastic model parameters. It is shown that the stochastic characteristics of MEMS-based inertial sensors can be identified using Allan variance estimation and LSSA and the sensors' stochastic model parameters are temperature dependent. Also, the Kaiser window FIR low-pass filter is used to investigate the effect of de-noising stage on the stochastic model. It is shown that the stochastic model is also dependent on the chosen cut-off frequency.
A developmental basis for stochasticity in floral organ numbers
Kitazawa, Miho S.; Fujimoto, Koichi
2014-01-01
Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning. PMID:25404932
A Stochastic-Variational Model for Soft Mumford-Shah Segmentation
2006-01-01
In contemporary image and vision analysis, stochastic approaches demonstrate great flexibility in representing and modeling complex phenomena, while variational-PDE methods gain enormous computational advantages over Monte Carlo or other stochastic algorithms. In combination, the two can lead to much more powerful novel models and efficient algorithms. In the current work, we propose a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of mixture image patterns. Unlike the classical hard Mumford-Shah segmentation, the new model allows each pixel to belong to each image pattern with some probability. Soft segmentation could lead to hard segmentation, and hence is more general. The modeling procedure, mathematical analysis on the existence of optimal solutions, and computational implementation of the new model are explored in detail, and numerical examples of both synthetic and natural images are presented. PMID:23165059
Studying Resist Stochastics with the Multivariate Poisson Propagation Model
Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; ...
2014-01-01
Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.
A non-stochastic iterative computational method to model light propagation in turbid media
NASA Astrophysics Data System (ADS)
McIntyre, Thomas J.; Zemp, Roger J.
2015-03-01
Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.
Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.
NASA Astrophysics Data System (ADS)
Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.
2014-12-01
High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (ΔT(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-09-01
Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in exascale simulations.
Phase-Space Transport of Stochastic Chaos in Population Dynamics of Virus Spread
NASA Astrophysics Data System (ADS)
Billings, Lora; Bollt, Erik M.; Schwartz, Ira B.
2002-06-01
A general way to classify stochastic chaos is presented and applied to population dynamics models. A stochastic dynamical theory is used to develop an algorithmic tool to measure the transport across basin boundaries and predict the most probable regions of transport created by noise. The results of this tool are illustrated on a model of virus spread in a large population, where transport regions reveal how noise completes the necessary manifold intersections for the creation of emerging stochastic chaos.
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Aziz, H M Abdul; Young, Stan
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less
Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies
NASA Astrophysics Data System (ADS)
Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj
2016-04-01
In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.
Two-layer symbolic representation for stochastic models with phase-type distributed events
NASA Astrophysics Data System (ADS)
Longo, Francesco; Scarpa, Marco
2015-07-01
Among the techniques that have been proposed for the analysis of non-Markovian models, the state space expansion approach showed great flexibility in terms of modelling capacities.The principal drawback is the explosion of the state space. This paper proposes a two-layer symbolic method for efficiently storing the expanded reachability graph of a non-Markovian model in the case in which continuous phase-type distributions are associated with the firing times of system events, and different memory policies are considered. At the lower layer, the reachability graph is symbolically represented in the form of a set of Kronecker matrices, while, at the higher layer, all the information needed to correctly manage event memory is stored in a multi-terminal multi-valued decision diagram. Such an information is collected by applying a symbolic algorithm, which is based on a couple of theorems. The efficiency of the proposed approach, in terms of memory occupation and execution time, is shown by applying it to a set of non-Markovian stochastic Petri nets and comparing it with a classical explicit expansion algorithm. Moreover, a comparison with a classical symbolic approach is performed whenever possible.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; ...
2015-03-17
Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic mattermore » (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.« less
Modeling of stochastic motion of bacteria propelled spherical microbeads
NASA Astrophysics Data System (ADS)
Arabagi, Veaceslav; Behkam, Bahareh; Cheung, Eugene; Sitti, Metin
2011-06-01
This work proposes a stochastic dynamic model of bacteria propelled spherical microbeads as potential swimming microrobotic bodies. Small numbers of S. marcescens bacteria are attached with their bodies to surfaces of spherical microbeads. Average-behavior stochastic models that are normally adopted when studying such biological systems are generally not effective for cases in which a small number of agents are interacting in a complex manner, hence a stochastic model is proposed to simulate the behavior of 8-41 bacteria assembled on a curved surface. Flexibility of the flagellar hook is studied via comparing simulated and experimental results for scenarios of increasing bead size and the number of attached bacteria on a bead. Although requiring more experimental data to yield an exact, certain flagellar hook stiffness value, the examined results favor a stiffer flagella. The stochastic model is intended to be used as a design and simulation tool for future potential targeted drug delivery and disease diagnosis applications of bacteria propelled microrobots.
Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz
2015-01-01
Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (<0.5 Hz) and cannot reproduce the varying frequency content in the time domain. The spatial distribution of GMRotI50 residuals shows that there is no obvious pattern with distance in the simulation bias, but there is some azimuthal variability. The comparison between synthetics and GMPEs shows similar fall‐off with distance for all three models, comparable PGA and PSA amplitudes for the physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5 Hz).
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik
2009-06-01
The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.
Zou, Lei; Wang, Zidong; Gao, Huijun; Alsaadi, Fuad E
2017-03-31
This paper is concerned with the distributed H∞ consensus control problem for a discrete time-varying multiagent system with the stochastic communication protocol (SCP). A directed graph is used to characterize the communication topology of the multiagent network. The data transmission between each agent and the neighboring ones is implemented via a constrained communication channel where only one neighboring agent is allowed to transmit data at each time instant. The SCP is applied to schedule the signal transmission of the multiagent system. A sequence of random variables is utilized to capture the scheduling behavior of the SCP. By using the mapping technology combined with the Hadamard product, the closed-loop multiagent system is modeled as a time-varying system with a stochastic parameter matrix. The purpose of the addressed problem is to design a cooperative controller for each agent such that, for all probabilistic scheduling behaviors, the H∞ consensus performance is achieved over a given finite horizon for the closed-loop multiagent system. A necessary and sufficient condition is derived to ensure the H∞ consensus performance based on the completing squares approach and the stochastic analysis technique. Then, the controller parameters are obtained by solving two coupled backward recursive Riccati difference equations. Finally, a numerical example is given to illustrate the effectiveness of the proposed controller design scheme.
Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
Venturi, D; Karniadakis, G E
2014-06-08
Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.
Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems
Venturi, D.; Karniadakis, G. E.
2014-01-01
Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519
An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks
NASA Astrophysics Data System (ADS)
El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros
2007-12-01
The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.
On the usage of ultrasound computational models for decision making under ambiguity
NASA Astrophysics Data System (ADS)
Dib, Gerges; Sexton, Samuel; Prowant, Matthew; Crawford, Susan; Diaz, Aaron
2018-04-01
Computer modeling and simulation is becoming pervasive within the non-destructive evaluation (NDE) industry as a convenient tool for designing and assessing inspection techniques. This raises a pressing need for developing quantitative techniques for demonstrating the validity and applicability of the computational models. Computational models provide deterministic results based on deterministic and well-defined input, or stochastic results based on inputs defined by probability distributions. However, computational models cannot account for the effects of personnel, procedures, and equipment, resulting in ambiguity about the efficacy of inspections based on guidance from computational models only. In addition, ambiguity arises when model inputs, such as the representation of realistic cracks, cannot be defined deterministically, probabilistically, or by intervals. In this work, Pacific Northwest National Laboratory demonstrates the ability of computational models to represent field measurements under known variabilities, and quantify the differences using maximum amplitude and power spectrum density metrics. Sensitivity studies are also conducted to quantify the effects of different input parameters on the simulation results.
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...
2017-12-28
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jae; Manuel, Lance; Churchfield, Matthew
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase
NASA Astrophysics Data System (ADS)
Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.
2015-09-01
We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.
Juricke, Stephan; Jung, Thomas
2014-01-01
The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027
McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron
2011-03-01
Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.
3D Lunar Terrain Reconstruction from Apollo Images
NASA Technical Reports Server (NTRS)
Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.
2009-01-01
Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules.
Chowdhury, Debashish
2013-06-04
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Schilstra, Maria J; Martin, Stephen R
2009-01-01
Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.