Sample records for stochastic nonlinear dynamic

  1. Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadtke, J.B.; Bulsara, A.

    These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)

  2. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    NASA Astrophysics Data System (ADS)

    Zhu, Z. W.; Zhang, W. D.; Xu, J.

    2014-03-01

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  3. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin; Zhang, W. D., E-mail: zhangwenditju@126.com

    2014-03-15

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposedmore » in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.« less

  4. Multivariate moment closure techniques for stochastic kinetic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less

  5. Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations

    Treesearch

    Patrick C. Tobin; Ottar N. Bjornstad

    2005-01-01

    Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...

  6. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  7. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations.

    PubMed

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  8. Toward Control of Universal Scaling in Critical Dynamics

    DTIC Science & Technology

    2016-01-27

    program that aims to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Uwe Tauber Uwe C. T? uber , Michel Pleimling, Daniel J. Stilwell 611102 c. THIS PAGE The public reporting burden...to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems, namely

  9. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  10. Mastodon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin Leigh; Veeraraghavan, Swetha; Bolisetti, Chandrakanth

    MASTODON has the capability to model stochastic nonlinear soil-structure interaction (NLSSI) in a dynamic probabilistic risk assessment framework. The NLSSI simulations include structural dynamics, time integration, dynamic porous media flow, nonlinear hysteretic soil constitutive models, geometric nonlinearities (gapping, sliding, and uplift). MASTODON is also the MOOSE based master application for dynamic PRA of external hazards.

  11. Stochastic nonlinear dynamics pattern formation and growth models

    PubMed Central

    Yaroslavsky, Leonid P

    2007-01-01

    Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341

  12. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  13. A quantum-classical theory with nonlinear and stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.

    2014-12-01

    The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.

  14. A data driven nonlinear stochastic model for blood glucose dynamics.

    PubMed

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.

    PubMed

    Venturi, D; Karniadakis, G E

    2014-06-08

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.

  16. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems

    PubMed Central

    Venturi, D.; Karniadakis, G. E.

    2014-01-01

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519

  17. Finite-time H∞ filtering for non-linear stochastic systems

    NASA Astrophysics Data System (ADS)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  18. Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics.

    PubMed

    Li, Yongming; Sui, Shuai; Tong, Shaocheng

    2017-02-01

    This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

  19. An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros

    2007-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.

  20. Analysis of stochastic model for non-linear volcanic dynamics

    NASA Astrophysics Data System (ADS)

    Alexandrov, D.; Bashkirtseva, I.; Ryashko, L.

    2014-12-01

    Motivated by important geophysical applications we consider a dynamic model of the magma-plug system previously derived by Iverson et al. (2006) under the influence of stochastic forcing. Due to strong nonlinearity of the friction force for solid plug along its margins, the initial deterministic system exhibits impulsive oscillations. Two types of dynamic behavior of the system under the influence of the parametric stochastic forcing have been found: random trajectories are scattered on both sides of the deterministic cycle or grouped on its internal side only. It is shown that dispersions are highly inhomogeneous along cycles in the presence of noises. The effects of noise-induced shifts, pressure stabilization and localization of random trajectories have been revealed with increasing the noise intensity. The plug velocity, pressure and displacement are highly dependent of noise intensity as well. These new stochastic phenomena are related with the nonlinear peculiarities of the deterministic phase portrait. It is demonstrated that the repetitive stick-slip motions of the magma-plug system in the case of stochastic forcing can be connected with drumbeat earthquakes.

  1. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  2. Stochastic hybrid delay population dynamics: well-posed models and extinction.

    PubMed

    Yuan, Chenggui; Mao, Xuerong; Lygeros, John

    2009-01-01

    Nonlinear differential equations have been used for decades for studying fluctuations in the populations of species, interactions of species with the environment, and competition and symbiosis between species. Over the years, the original non-linear models have been embellished with delay terms, stochastic terms and more recently discrete dynamics. In this paper, we investigate stochastic hybrid delay population dynamics (SHDPD), a very general class of population dynamics that comprises all of these phenomena. For this class of systems, we provide sufficient conditions to ensure that SHDPD have global positive, ultimately bounded solutions, a minimum requirement for a realistic, well-posed model. We then study the question of extinction and establish conditions under which an ecosystem modelled by SHDPD is doomed.

  3. Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.

    PubMed

    Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong

    2014-12-01

    In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.

  4. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  6. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    PubMed

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Li, X. M., E-mail: lixinmiaotju@163.com; Xu, J., E-mail: xujia-ld@163.com

    A kind of magnetic shape memory alloy (MSMA) microgripper is proposed in this paper, and its nonlinear dynamic characteristics are studied when the stochastic perturbation is considered. Nonlinear differential items are introduced to explain the hysteretic phenomena of MSMA, and the constructive relationships among strain, stress, and magnetic field intensity are obtained by the partial least-square regression method. The nonlinear dynamic model of a MSMA microgripper subjected to in-plane stochastic excitation is developed. The stationary probability density function of the system’s response is obtained, the transition sets of the system are determined, and the conditions of stochastic bifurcation are obtained.more » The homoclinic and heteroclinic orbits of the system are given, and the boundary of the system’s safe basin is obtained by stochastic Melnikov integral method. The numerical and experimental results show that the system’s motion depends on its parameters, and stochastic Hopf bifurcation appears in the variation of the parameters; the area of the safe basin decreases with the increase of the stochastic excitation, and the boundary of the safe basin becomes fractal. The results of this paper are helpful for the application of MSMA microgripper in engineering fields.« less

  8. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    PubMed

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  9. FITTING NONLINEAR ORDINARY DIFFERENTIAL EQUATION MODELS WITH RANDOM EFFECTS AND UNKNOWN INITIAL CONDITIONS USING THE STOCHASTIC APPROXIMATION EXPECTATION–MAXIMIZATION (SAEM) ALGORITHM

    PubMed Central

    Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew

    2014-01-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456

  10. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  11. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    PubMed

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.

  12. Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings

    NASA Astrophysics Data System (ADS)

    Cunha, Americo; Soize, Christian; Sampaio, Rubens

    2015-11-01

    This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.

  13. Elegant anti-disturbance control for discrete-time stochastic systems with nonlinearity and multiple disturbances

    NASA Astrophysics Data System (ADS)

    Wei, Xinjiang; Sun, Shixiang

    2018-03-01

    An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.

  14. Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    PubMed Central

    Diwadkar, Amit; Vaidya, Umesh

    2016-01-01

    The synchronization of nonlinear systems connected over large-scale networks has gained popularity in a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear systems with stochastic linear interactions over large-scale networks. This sufficient condition, expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, and the variance and location of the stochastic uncertainty, allows us to define a synchronization margin. We provide an analytical characterization of important trade-offs between the internal nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour networks, the existence of an optimal number of neighbours with a maximum synchronization margin is demonstrated. An analytical formula for the optimal gain that produces the maximum synchronization margin allows us to compare the synchronization properties of various complex network topologies. PMID:27067994

  15. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  16. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  17. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  18. Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.

    2004-01-01

    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.

  19. Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.

    2017-12-01

    We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  20. Stochastic modular analysis for gene circuits: interplay among retroactivity, nonlinearity, and stochasticity.

    PubMed

    Kim, Kyung Hyuk; Sauro, Herbert M

    2015-01-01

    This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.

  1. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  2. Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir

    2017-11-01

    In this paper, a stochastic delayed HIV-1 infection model with nonlinear incidence is proposed and investigated. First of all, we prove that there is a unique global positive solution as desired in any population dynamics. Then by constructing some suitable Lyapunov functions, we show that if the basic reproduction number R0 ≤ 1, then the solution of the stochastic system oscillates around the infection-free equilibrium E0, while if R0 > 1, then the solution of the stochastic system fluctuates around the infective equilibrium E∗. Sufficient conditions of these results are established. Finally, we give some examples and a series of numerical simulations to illustrate the analytical results.

  3. The simulation of the non-Markovian behaviour of a two-level system

    NASA Astrophysics Data System (ADS)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  4. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  5. Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond

    PubMed Central

    Ge, Hao; Qian, Hong

    2011-01-01

    A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813

  6. Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise

    PubMed Central

    Zeng, Caibin; Yang, Qigui; Cao, Junfei

    2014-01-01

    This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB H(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903

  7. Chaos emerging in soil failure patterns observed during tillage: Normalized deterministic nonlinear prediction (NDNP) and its application.

    PubMed

    Sakai, Kenshi; Upadhyaya, Shrinivasa K; Andrade-Sanchez, Pedro; Sviridova, Nina V

    2017-03-01

    Real-world processes are often combinations of deterministic and stochastic processes. Soil failure observed during farm tillage is one example of this phenomenon. In this paper, we investigated the nonlinear features of soil failure patterns in a farm tillage process. We demonstrate emerging determinism in soil failure patterns from stochastic processes under specific soil conditions. We normalized the deterministic nonlinear prediction considering autocorrelation and propose it as a robust way of extracting a nonlinear dynamical system from noise contaminated motion. Soil is a typical granular material. The results obtained here are expected to be applicable to granular materials in general. From a global scale to nano scale, the granular material is featured in seismology, geotechnology, soil mechanics, and particle technology. The results and discussions presented here are applicable in these wide research areas. The proposed method and our findings are useful with respect to the application of nonlinear dynamics to investigate complex motions generated from granular materials.

  8. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  9. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    PubMed

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  10. A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.

    2014-12-01

    Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.

  11. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  12. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  13. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    PubMed

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  14. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.

    PubMed

    Gotoda, Hiroshi; Nikimoto, Hiroyuki; Miyano, Takaya; Tachibana, Shigeru

    2011-03-01

    We experimentally investigate the dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor from the viewpoint of nonlinear dynamics. A nonlinear time series analysis in combination with a surrogate data method clearly reveals that as the equivalence ratio increases, the dynamic behavior of the combustion instability undergoes a significant transition from stochastic fluctuation to periodic oscillation through low-dimensional chaotic oscillation. We also show that a nonlinear forecasting method is useful for predicting the short-term dynamic behavior of the combustion instability in a lean premixed gas-turbine combustor, which has not been addressed in the fields of combustion science and physics.

  15. Momentum Maps and Stochastic Clebsch Action Principles

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  16. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; Drummond, P. D.

    2013-04-01

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.

  17. Economic policy optimization based on both one stochastic model and the parametric control theory

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar; Borovskiy, Yuriy; Onalbekov, Mukhit

    2016-06-01

    A nonlinear dynamic stochastic general equilibrium model with financial frictions is developed to describe two interacting national economies in the environment of the rest of the world. Parameters of nonlinear model are estimated based on its log-linearization by the Bayesian approach. The nonlinear model is verified by retroprognosis, estimation of stability indicators of mappings specified by the model, and estimation the degree of coincidence for results of internal and external shocks' effects on macroeconomic indicators on the basis of the estimated nonlinear model and its log-linearization. On the base of the nonlinear model, the parametric control problems of economic growth and volatility of macroeconomic indicators of Kazakhstan are formulated and solved for two exchange rate regimes (free floating and managed floating exchange rates)

  18. A Markov model for the temporal dynamics of balanced random networks of finite size

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644

  19. Seasonally forced disease dynamics explored as switching between attractors

    NASA Astrophysics Data System (ADS)

    Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.

    2001-01-01

    Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.

  20. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opanchuk, B.; Drummond, P. D.

    2013-04-15

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such asmore » quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.« less

  1. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  2. Random attractor of non-autonomous stochastic Boussinesq lattice system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Min, E-mail: zhaomin1223@126.com; Zhou, Shengfan, E-mail: zhoushengfan@yahoo.com

    2015-09-15

    In this paper, we first consider the existence of tempered random attractor for second-order non-autonomous stochastic lattice dynamical system of nonlinear Boussinesq equations effected by time-dependent coupled coefficients and deterministic forces and multiplicative white noise. Then, we establish the upper semicontinuity of random attractors as the intensity of noise approaches zero.

  3. Nonlinear and Stochastic Dynamics in the Heart

    PubMed Central

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872

  4. Noise in Nonlinear Dynamical Systems 3 Volume Paperback Set

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2011-11-01

    Volume 1: List of contributors; Preface; Introduction to volume one; 1. Noise-activated escape from metastable states: an historical view Rolf Landauer; 2. Some Markov methods in the theory of stochastic processes in non-linear dynamical systems R. L. Stratonovich; 3. Langevin equations with coloured noise J. M. Sancho and M. San Miguel; 4. First passage time problems for non-Markovian processes Katja Lindenberg, Bruce J. West and Jaume Masoliver; 5. The projection approach to the Fokker-Planck equation: applications to phenomenological stochastic equations with coloured noises Paolo Grigolini; 6. Methods for solving Fokker-Planck equations with applications to bistable and periodic potentials H. Risken and H. D. Vollmer; 7. Macroscopic potentials, bifurcations and noise in dissipative systems Robert Graham; 8. Transition phenomena in multidimensional systems - models of evolution W. Ebeling and L. Schimansky-Geier; 9. Coloured noise in continuous dynamical systems: a functional calculus approach Peter Hanggi; Appendix. On the statistical treatment of dynamical systems L. Pontryagin, A. Andronov and A. Vitt; Index. Volume 2: List of contributors; Preface; Introduction to volume two; 1. Stochastic processes in quantum mechanical settings Ronald F. Fox; 2. Self-diffusion in non-Markovian condensed-matter systems Toyonori Munakata; 3. Escape from the underdamped potential well M. Buttiker; 4. Effect of noise on discrete dynamical systems with multiple attractors Edgar Knobloch and Jeffrey B. Weiss; 5. Discrete dynamics perturbed by weak noise Peter Talkner and Peter Hanggi; 6. Bifurcation behaviour under modulated control parameters M. Lucke; 7. Period doubling bifurcations: what good are they? Kurt Wiesenfeld; 8. Noise-induced transitions Werner Horsthemke and Rene Lefever; 9. Mechanisms for noise-induced transitions in chemical systems Raymond Kapral and Edward Celarier; 10. State selection dynamics in symmetry-breaking transitions Dilip K. Kondepudi; 11. Noise in a ring-laser gyroscope K. Vogel, H. Risken and W. Schleich; 12. Control of noise and applications to optical systems L. A. Lugiato, G. Broggi, M. Merri and M. A. Pernigo; 13. Transition probabilities and spectral density of fluctuations of noise driven bistable systems M. I. Dykman, M. A. Krivoglaz and S. M. Soskin; Index. Volume 3: List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  5. Stochastic description of quantum Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yun-An; Shao, Jiushu

    2016-08-01

    Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

  6. Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU

    NASA Astrophysics Data System (ADS)

    Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji

    2016-12-01

    Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.

  7. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell

    NASA Astrophysics Data System (ADS)

    Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.

  8. Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong

    The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.

  9. Sparse learning of stochastic dynamical equations

    NASA Astrophysics Data System (ADS)

    Boninsegna, Lorenzo; Nüske, Feliks; Clementi, Cecilia

    2018-06-01

    With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastic SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential and the projected dynamics of a two-dimensional diffusion process.

  10. Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.

    PubMed

    Si, Wenjie; Dong, Xunde; Yang, Feifei

    2018-03-01

    This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    PubMed

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  12. Delayed-feedback chimera states: Forced multiclusters and stochastic resonance

    NASA Astrophysics Data System (ADS)

    Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.

    2016-07-01

    A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

  13. The nonlinear chemo-mechanic coupled dynamics of the F 1 -ATPase molecular motor.

    PubMed

    Xu, Lizhong; Liu, Fang

    2012-03-01

    The ATP synthase consists of two opposing rotary motors, F0 and F1, coupled to each other. When the F1 motor is not coupled to the F0 motor, it can work in the direction hydrolyzing ATP, as a nanomotor called F1-ATPase. It has been reported that the stiffness of the protein varies nonlinearly with increasing load. The nonlinearity has an important effect on the rotating rate of the F1-ATPase. Here, considering the nonlinearity of the γ shaft stiffness for the F1-ATPase, a nonlinear chemo-mechanical coupled dynamic model of F1 motor is proposed. Nonlinear vibration frequencies of the γ shaft and their changes along with the system parameters are investigated. The nonlinear stochastic response of the elastic γ shaft to thermal excitation is analyzed. The results show that the stiffness nonlinearity of the γ shaft causes an increase of the vibration frequency for the F1 motor, which increases the motor's rotation rate. When the concentration of ATP is relatively high and the load torque is small, the effects of the stiffness nonlinearity on the rotating rates of the F1 motor are obvious and should be considered. These results are useful for improving calculation of the rotating rate for the F1 motor and provide insight about the stochastic wave mechanics of F1-ATPase.

  14. Structured population dynamics: continuous size and discontinuous stage structures.

    PubMed

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  15. A stochastic differential equation analysis of cerebrospinal fluid dynamics.

    PubMed

    Raman, Kalyan

    2011-01-18

    Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  16. Stochasticity Favoring the Effects of the R&D Strategies of the Firms

    NASA Astrophysics Data System (ADS)

    Pinto, Alberto A.; Oliveira, Bruno M. P. M.; Ferreira, Fernanda A.; Ferreira, Flávio

    We present stochastic dynamics on the production costs of Cournot competitions, based on perfect Nash equilibria of nonlinear R&D investment strategies to reduce the production costs of the firms at every period of the game. We analyse the effects that the R&D investment strategies can have in the profits of the firms along the time. We observe that, in certain cases, the uncertainty can improve the effects of the R&D strategies in the profits of the firms due to the non-linearity of the profit functions and also of the R&D parameters.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin; Slaughter, Andrew; Veeraraghavan, Swetha

    Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON) is a finite element application that aims at analyzing the response of 3-D soil-structure systems to natural and man-made hazards such as earthquakes, floods and fire. MASTODON currently focuses on the simulation of seismic events and has the capability to perform extensive ‘source-to-site’ simulations including earthquake fault rupture, nonlinear wave propagation and nonlinear soil-structure interaction (NLSSI) analysis. MASTODON is being developed to be a dynamic probabilistic risk assessment framework that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment.

  18. On an aggregation in birth-and-death stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena

    2014-06-01

    We consider birth-and-death stochastic dynamics of particle systems with attractive interaction. The heuristic generator of the dynamics has a constant birth rate and density-dependent decreasing death rate. The corresponding statistical dynamics is constructed. Using the Vlasov-type scaling we derive the limiting mesoscopic evolution and prove that this evolution propagates chaos. We study a nonlinear non-local kinetic equation for the first correlation function (density of population). The existence of uniformly bounded solutions as well as solutions growing inside of a bounded domain and expanding in the space are shown. These solutions describe two regimes in the mesoscopic system: regulation and aggregation.

  19. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Duboscq, Romain

    2015-08-01

    GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

  20. How a small noise generates large-amplitude oscillations of volcanic plug and provides high seismicity

    NASA Astrophysics Data System (ADS)

    Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.

    2015-04-01

    A non-linear behavior of dynamic model of the magma-plug system under the action of N-shaped friction force and stochastic disturbances is studied. It is shown that the deterministic dynamics essentially depends on the mutual arrangement of an equilibrium point and the friction force branches. Variations of this arrangement imply bifurcations, birth and disappearance of stable limit cycles, changes of the stability of equilibria, system transformations between mono- and bistable regimes. A slope of the right increasing branch of the friction function is responsible for the formation of such regimes. In a bistable zone, the noise generates transitions between small and large amplitude stochastic oscillations. In a monostable zone with single stable equilibrium, a new dynamic phenomenon of noise-induced generation of large amplitude stochastic oscillations in the plug rate and pressure is revealed. A beat-type dynamics of the plug displacement under the influence of stochastic forcing is studied as well.

  1. A stochastic model for correlated protein motions

    NASA Astrophysics Data System (ADS)

    Karain, Wael I.; Qaraeen, Nael I.; Ajarmah, Basem

    2006-06-01

    A one-dimensional Langevin-type stochastic difference equation is used to find the deterministic and Gaussian contributions of time series representing the projections of a Bovine Pancreatic Trypsin Inhibitor (BPTI) protein molecular dynamics simulation along different eigenvector directions determined using principal component analysis. The deterministic part shows a distinct nonlinear behavior only for eigenvectors contributing significantly to the collective protein motion.

  2. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques.

    PubMed

    Parker, Matthew D; Jones, Lynette A; Hunter, Ian W; Taberner, A J; Nash, M P; Nielsen, P M F

    2017-01-01

    A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.

  3. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations

    NASA Astrophysics Data System (ADS)

    Dai, Quanqi; Harne, Ryan L.

    2018-01-01

    The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.

  4. Guidance and Control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.

    1989-01-01

    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.

  5. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

    PubMed

    Salis, Howard; Kaznessis, Yiannis

    2005-02-01

    The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.

  6. A Stochastic Super-Exponential Growth Model for Population Dynamics

    NASA Astrophysics Data System (ADS)

    Avila, P.; Rekker, A.

    2010-11-01

    A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.

  7. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    PubMed

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  8. Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

    PubMed

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2017-01-01

    This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

  9. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  10. Supercomputer optimizations for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang

    1991-01-01

    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.

  11. Simulation of stochastic wind action on transmission power lines

    NASA Astrophysics Data System (ADS)

    Wielgos, Piotr; Lipecki, Tomasz; Flaga, Andrzej

    2018-01-01

    The paper presents FEM analysis of the wind action on overhead transmission power lines. The wind action is based on a stochastic simulation of the wind field in several points of the structure and on the wind tunnel tests on aerodynamic coefficients of the single conductor consisting of three wires. In FEM calculations the section of the transmission power line composed of three spans is considered. Non-linear analysis with deadweight of the structure is performed first to obtain the deformed shape of conductors. Next, time-dependent wind forces are applied to respective points of conductors and non-linear dynamic analysis is carried out.

  12. Stochastic effects in a seasonally forced epidemic model

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnobaeva, L. A., E-mail: kla1983@mail.ru; Siberian State Medical University Moscowski Trakt 2, Tomsk, 634050; Shapovalov, A. V.

    Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA molecule is investigated. Such waves have an important role in the regulation of important biological processes in living systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the frameworkmore » of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker– Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution function. Expressions are derived for average value and variance of the momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of the kink momentum.« less

  14. Extinction in neutrally stable stochastic Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  15. Extinction in neutrally stable stochastic Lotka-Volterra models.

    PubMed

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  16. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    PubMed

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  17. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    ERIC Educational Resources Information Center

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  18. Structural stability of nonlinear population dynamics.

    PubMed

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  19. Structural stability of nonlinear population dynamics

    NASA Astrophysics Data System (ADS)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  20. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part III extensions and applications to kinetic theory and transport

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.

  1. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  2. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., valuesmore » and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.« less

  4. Chatter detection in turning using persistent homology

    NASA Astrophysics Data System (ADS)

    Khasawneh, Firas A.; Munch, Elizabeth

    2016-03-01

    This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

  5. Methods of Stochastic Analysis of Complex Regimes in the 3D Hindmarsh-Rose Neuron Model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev; Slepukhina, Evdokia

    A problem of the stochastic nonlinear analysis of neuronal activity is studied by the example of the Hindmarsh-Rose (HR) model. For the parametric region of tonic spiking oscillations, it is shown that random noise transforms the spiking dynamic regime into the bursting one. This stochastic phenomenon is specified by qualitative changes in distributions of random trajectories and interspike intervals (ISIs). For a quantitative analysis of the noise-induced bursting, we suggest a constructive semi-analytical approach based on the stochastic sensitivity function (SSF) technique and the method of confidence domains that allows us to describe geometrically a distribution of random states around the deterministic attractors. Using this approach, we develop a new algorithm for estimation of critical values for the noise intensity corresponding to the qualitative changes in stochastic dynamics. We show that the obtained estimations are in good agreement with the numerical results. An interplay between noise-induced bursting and transitions from order to chaos is discussed.

  6. Fast smooth second-order sliding mode control for stochastic systems with enumerable coloured noises

    NASA Astrophysics Data System (ADS)

    Yang, Peng-fei; Fang, Yang-wang; Wu, You-li; Zhang, Dan-xu; Xu, Yang

    2018-01-01

    A fast smooth second-order sliding mode control is presented for a class of stochastic systems driven by enumerable Ornstein-Uhlenbeck coloured noises with time-varying coefficients. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the control. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Then the prescribed sliding variable dynamic is presented. The sufficient condition guaranteeing its finite-time convergence is given and proved using stochastic Lyapunov-like techniques. The proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are given comparing with smooth second-order sliding mode control to validate the analysis.

  7. Detecting nonlinearity and chaos in epidemic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellner, S.; Gallant, A.R.; Theiler, J.

    1993-08-01

    Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude ofmore » epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.« less

  8. EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less

  9. Nonlinear dynamics; Proceedings of the International Conference, New York, NY, December 17-21, 1979

    NASA Technical Reports Server (NTRS)

    Helleman, R. H. G.

    1980-01-01

    Papers were presented on turbulence, ergodic and integrable behavior, chaotic maps and flows, chemical and fully developed turbulence, and strange attractors. Specific attention was given to measures describing a turbulent flow, stochastization and collapse of vortex systems, a subharmonic route to turbulent convection, and weakly nonlinear turbulence in a rotating convection layer. The Korteweg-de Vries and Hill equations, plasma transport in three dimensions, a horseshoe in the dynamics of a forced beam, and the explosion of strange attractors exhibited by Duffing's equation were also considered.

  10. Sequential state estimation of nonlinear/non-Gaussian systems with stochastic input for turbine degradation estimation

    NASA Astrophysics Data System (ADS)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying

    2016-05-01

    Health state estimation of inaccessible components in complex systems necessitates effective state estimation techniques using the observable variables of the system. The task becomes much complicated when the system is nonlinear/non-Gaussian and it receives stochastic input. In this work, a novel sequential state estimation framework is developed based on particle filtering (PF) scheme for state estimation of general class of nonlinear dynamical systems with stochastic input. Performance of the developed framework is then validated with simulation on a Bivariate Non-stationary Growth Model (BNGM) as a benchmark. In the next step, three-year operating data of an industrial gas turbine engine (GTE) are utilized to verify the effectiveness of the developed framework. A comprehensive thermodynamic model for the GTE is therefore developed to formulate the relation of the observable parameters and the dominant degradation symptoms of the turbine, namely, loss of isentropic efficiency and increase of the mass flow. The results confirm the effectiveness of the developed framework for simultaneous estimation of multiple degradation symptoms in complex systems with noisy measured inputs.

  11. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  12. Stochastic lattice model of synaptic membrane protein domains.

    PubMed

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  13. Parameter-induced stochastic resonance with a periodic signal

    NASA Astrophysics Data System (ADS)

    Li, Jian-Long; Xu, Bo-Hou

    2006-12-01

    In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter-induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.

  14. Fast smooth second-order sliding mode control for systems with additive colored noises.

    PubMed

    Yang, Pengfei; Fang, Yangwang; Wu, Youli; Liu, Yunxia; Zhang, Danxu

    2017-01-01

    In this paper, a fast smooth second-order sliding mode control is presented for a class of stochastic systems with enumerable Ornstein-Uhlenbeck colored noises. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the controller. The finite-time convergence of the prescribed sliding variable dynamics system is proved by using stochastic Lyapunov-like techniques. Then the proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are presented comparing with smooth second-order sliding mode control to validate the analysis.

  15. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  16. Effect of nonlinear friction on the motion of an object on solid surface induced by external vibration

    NASA Astrophysics Data System (ADS)

    Gooh Pattader, Partho Sarathi

    There are enumerable examples of natural processes which fall in the class of non-equilibrium stochastic dynamics. In the literature it is prescribed that such a process can be described completely using transition probability that satisfy the Fokker Planck equation. The analytical solutions of transition probability density function are difficult to obtain and are available for linear systems along with few first order nonlinear systems. We studied such nonlinear stochastic systems and tried to identify the important parameters associated with the dynamics and energy dissipative mechanism using statistical tools. We present experimental study of macroscopic systems driven away far from equilibrium with an applied bias and external mechanical noise. This includes sliding of small solid object, gliding of a liquid drop or a rolling of a rigid sphere. We demonstrated that the displacement statistics are non-Gaussian at short observation time, but they tend towards a Gaussian behavior at long time scale. We also found that, the drift velocity increases sub-linearly, but the diffusivity increases super-linearly with the strength of the noise. These observations reflect that the underlying non-linear friction controls the stochastic dynamics in each of these cases. We established a new statistical approach to determine the underlying friction law and identified the operating range of linear and nonlinear friction regime. In all these experiments source of the noise and the origin of the energy dissipation mechanism (i.e. friction) are decoupled. Naturally question arises whether the stochastic dynamics of these athermal systems are amenable to Einstein's Fluctuation dissipation theorem which is valid strictly for a closed thermodynamic system. We addressed these issues by comparing Einstein's ratio of Diffusivity and mobility which are measurable quantities in our experimental systems. As all our experimental systems exhibit substantial negative fluctuations of displacement that diminishes with observation time scale, we used another approach of integrated fluctuation theorem to identify athermal temperature of the system by characterizing a persistence time of negative fluctuations in terms of the measurable quantity. Specific experiments have also been designed to study the crossing of a small object over a physical barrier assisted by an external noise and a bias force. These results mimic the classical Arrhenius behavior from which another effective temperature may be deduced. All these studies confer that the nonlinear system does not possess any unique temperature. Detachment of a solid sphere as well as a liquid drop from a structured rubber surface during subcritical motion in presence of external noise was examined in the light of Arrhenius' activated rate equation. Drift velocity of small drops of water-glycerin solution behaves nonlinearly with viscosity which is reminiscence of Kramers' turn over theory of activated rate. In a designed experiment of barrier crossing of liquid drops we satisfactorily verified the Kramers' formalism of activated rate at the low friction limit.

  17. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state ofmore » the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.« less

  18. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Kafka, Gene

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  19. Modeling heart rate variability by stochastic feedback

    NASA Technical Reports Server (NTRS)

    Amaral, L. A.; Goldberger, A. L.; Stanley, H. E.

    1999-01-01

    We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate nonlinear dynamics.

  20. A parallel time integrator for noisy nonlinear oscillatory systems

    NASA Astrophysics Data System (ADS)

    Subber, Waad; Sarkar, Abhijit

    2018-06-01

    In this paper, we adapt a parallel time integration scheme to track the trajectories of noisy non-linear dynamical systems. Specifically, we formulate a parallel algorithm to generate the sample path of nonlinear oscillator defined by stochastic differential equations (SDEs) using the so-called parareal method for ordinary differential equations (ODEs). The presence of Wiener process in SDEs causes difficulties in the direct application of any numerical integration techniques of ODEs including the parareal algorithm. The parallel implementation of the algorithm involves two SDEs solvers, namely a fine-level scheme to integrate the system in parallel and a coarse-level scheme to generate and correct the required initial conditions to start the fine-level integrators. For the numerical illustration, a randomly excited Duffing oscillator is investigated in order to study the performance of the stochastic parallel algorithm with respect to a range of system parameters. The distributed implementation of the algorithm exploits Massage Passing Interface (MPI).

  1. A nonlinear dynamic age-structured model of e-commerce in spain: Stability analysis of the equilibrium by delay and stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Burgos, C.; Cortés, J.-C.; Shaikhet, L.; Villanueva, R.-J.

    2018-11-01

    First, we propose a deterministic age-structured epidemiological model to study the diffusion of e-commerce in Spain. Afterwards, we determine the parameters (death, birth and growth rates) of the underlying demographic model as well as the parameters (transmission of the use of e-commerce rates) of the proposed epidemiological model that best fit real data retrieved from the Spanish National Statistical Institute. Motivated by the two following facts: first the dynamics of acquiring the use of a new technology as e-commerce is mainly driven by the feedback after interacting with our peers (family, friends, mates, mass media, etc.), hence having a certain delay, and second the inherent uncertainty of sampled real data and the social complexity of the phenomena under analysis, we introduce aftereffect and stochastic perturbations in the initial deterministic model. This leads to a delayed stochastic model for e-commerce. We then investigate sufficient conditions in order to guarantee the stability in probability of the equilibrium point of the dynamic e-commerce delayed stochastic model. Our theoretical findings are numerically illustrated using real data.

  2. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  3. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Control mechanisms for stochastic biochemical systems via computation of reachable sets.

    PubMed

    Lakatos, Eszter; Stumpf, Michael P H

    2017-08-01

    Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters.

  5. Control mechanisms for stochastic biochemical systems via computation of reachable sets

    PubMed Central

    Lakatos, Eszter

    2017-01-01

    Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters. PMID:28878957

  6. Nonlinear modeling of chaotic time series: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casdagli, M.; Eubank, S.; Farmer, J.D.

    1990-01-01

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifyingmore » and quantifying low-dimensional chaotic behavior. During the past few years methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics and human speech. 162 refs., 13 figs.« less

  7. Stochastic dynamics and combinatorial optimization

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Wang, Kang L.

    2017-11-01

    Natural dynamics is often dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, etc., that exhibit scale-free statistics much in the spirit of the logarithmic Ritcher scale for earthquake magnitudes. On phase diagrams, stochastic dynamical systems (DSs) exhibiting this type of dynamics belong to the finite-width phase (N-phase for brevity) that precedes ordinary chaotic behavior and that is known under such names as noise-induced chaos, self-organized criticality, dynamical complexity, etc. Within the recently proposed supersymmetric theory of stochastic dynamics, the N-phase can be roughly interpreted as the noise-induced “overlap” between integrable and chaotic deterministic dynamics. As a result, the N-phase dynamics inherits the properties of the both. Here, we analyze this unique set of properties and conclude that the N-phase DSs must naturally be the most efficient optimizers: on one hand, N-phase DSs have integrable flows with well-defined attractors that can be associated with candidate solutions and, on the other hand, the noise-induced attractor-to-attractor dynamics in the N-phase is effectively chaotic or aperiodic so that a DS must avoid revisiting solutions/attractors thus accelerating the search for the best solution. Based on this understanding, we propose a method for stochastic dynamical optimization using the N-phase DSs. This method can be viewed as a hybrid of the simulated and chaotic annealing methods. Our proposition can result in a new generation of hardware devices for efficient solution of various search and/or combinatorial optimization problems.

  8. Growing complex network of citations of scientific papers: Modeling and measurements

    NASA Astrophysics Data System (ADS)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  9. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Errormore » analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.« less

  10. Testing for unit root bilinearity in the Brazilian stock market

    NASA Astrophysics Data System (ADS)

    Tabak, Benjamin M.

    2007-11-01

    In this paper a simple test for detecting bilinearity in a stochastic unit root process is used to test for the presence of nonlinear unit roots in Brazilian equity shares. The empirical evidence for a set of 53 individual stocks, after adjusting for GARCH effects, suggests that for more than 66%, the hypothesis of unit root bilinearity is accepted. Therefore, the dynamics of Brazilian share prices is in conformity with this type of nonlinearity. These nonlinearities in spot prices may emerge due to the sophistication of the derivatives market.

  11. Test-electron analysis of the magnetic reconnection topology

    NASA Astrophysics Data System (ADS)

    Borgogno, D.; Perona, A.; Grasso, D.

    2017-12-01

    Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.

  12. Stochastic Evolution of Augmented Born-Infeld Equations

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.

    2018-06-01

    This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely, the introduction of Stratonovich cylindrical noise into each of their Hamiltonian formulations introduces stochastic Lie transport into their dynamics in the same form for both theories. Moreover, the resulting stochastic partial differential equations retain their unperturbed form, except for an additional term representing induced Lie transport by the set of divergence-free vector fields associated with the spatial correlations of the cylindrical noise. The explanation for this remarkable similarity lies in the method of construction of the Hamiltonian for the Stratonovich stochastic contribution to the motion in both cases, which is done via pairing spatial correlation eigenvectors for cylindrical noise with the momentum map for the deterministic motion. This momentum map is responsible for the well-known analogy between hydrodynamics and electromagnetism. The momentum map for the Maxwell and Born-Infeld theories of electromagnetism treated here is the 1-form density known as the Poynting vector. Two appendices treat the Hamiltonian structures underlying these results.

  13. "NONLINEAR DYNAMIC SYSTEMS RESPONSE TO NON-STATIONARY EXCITATION USING THE WAVELET TRANSFORM"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPANOS, POL D.

    2006-01-15

    The objective of this research project has been the development of techniques for estimating the power spectra of stochastic processes using wavelet transform, and the development of related techniques for determining the response of linear/nonlinear systems to excitations which are described via the wavelet transform. Both of the objectives have been achieved, and the research findings have been disseminated in papers in archival journals and technical conferences.

  14. Random-order fractional bistable system and its stochastic resonance

    NASA Astrophysics Data System (ADS)

    Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia

    2017-01-01

    In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.

  15. Stochastic resonance based on modulation instability in spatiotemporal chaos.

    PubMed

    Han, Jing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu

    2017-04-03

    A novel dynamic of stochastic resonance in spatiotemporal chaos is presented, which is based on modulation instability of perturbed partially coherent wave. The noise immunity of chaos can be reinforced through this effect and used to restore the coherent signal information buried in chaotic perturbation. A theoretical model with fluctuations term is derived from the complex Ginzburg-Landau equation via Wigner transform. It shows that through weakening the nonlinear threshold and triggering energy redistribution, the coherent component dominates the instability damped by incoherent component. The spatiotemporal output showing the properties of stochastic resonance may provide a potential application of signal encryption and restoration.

  16. Environmental Noise Could Promote Stochastic Local Stability of Behavioral Diversity Evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2018-05-01

    In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the fitness of a phenotype is an exponential function of its expected payoff following random pairwise interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a constant interior equilibrium can be promoted by the random environmental noise even if the system may display a complicated nonlinear dynamics. This result provides a new perspective for a better understanding of how environmental fluctuations may contribute to the evolution of behavioral diversity.

  17. Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States

    NASA Astrophysics Data System (ADS)

    Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.

    2002-05-01

    We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager-Machlup theory in the SNS; a general Hamilton-Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton-Jacobi equation, we obtain a logically independent derivation of this result.

  18. Probabilistic dual heuristic programming-based adaptive critic

    NASA Astrophysics Data System (ADS)

    Herzallah, Randa

    2010-02-01

    Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.

  19. Semiconductor Laser Complex Dynamics: From Optical Neurons to Optical Rogue Waves

    DTIC Science & Technology

    2017-02-11

    laser dynamics for innovative applications. The results of the project were published in 5 high- impact journal papers and were presented as invited or...stochastic phenomena and ii) to exploit the laser dynamics for innovative applications. The results of the project were published in 5 high-impact...RESULTS AND DISCUSSION The results of our research were published in 5 articles in high-impact journals in the fields of photonics and nonlinear physics

  20. Proper orthogonal decomposition-based spectral higher-order stochastic estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, Woutijn J., E-mail: wbaars@unimelb.edu.au; Tinney, Charles E.

    A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimationmore » (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.« less

  1. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  2. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662

  3. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  4. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    PubMed Central

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-01-01

    Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems. PMID:17081289

  5. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.

    PubMed

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-11-02

    We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.

  6. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  7. Hybrid Differential Dynamic Programming with Stochastic Search

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  8. Quantum decision-maker theory and simulation

    NASA Astrophysics Data System (ADS)

    Zak, Michail; Meyers, Ronald E.; Deacon, Keith S.

    2000-07-01

    A quantum device simulating the human decision making process is introduced. It consists of quantum recurrent nets generating stochastic processes which represent the motor dynamics, and of classical neural nets describing the evolution of probabilities of these processes which represent the mental dynamics. The autonomy of the decision making process is achieved by a feedback from the mental to motor dynamics which changes the stochastic matrix based upon the probability distribution. This feedback replaces unavailable external information by an internal knowledge- base stored in the mental model in the form of probability distributions. As a result, the coupled motor-mental dynamics is described by a nonlinear version of Markov chains which can decrease entropy without an external source of information. Applications to common sense based decisions as well as to evolutionary games are discussed. An example exhibiting self-organization is computed using quantum computer simulation. Force on force and mutual aircraft engagements using the quantum decision maker dynamics are considered.

  9. Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events

    NASA Astrophysics Data System (ADS)

    Fürstenau, Norbert; Mittendorf, Monika

    2016-12-01

    We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations "Xaver" and "Christian", 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.

  10. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  11. Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar

    2018-07-01

    A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.

  12. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  13. Optimal growth trajectories with finite carrying capacity.

    PubMed

    Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  14. Optimal growth trajectories with finite carrying capacity

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  15. A new design of robust H∞ sliding mode control for uncertain stochastic T-S fuzzy time-delay systems.

    PubMed

    Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin

    2014-09-01

    In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.

  16. Critical slowing down in driven-dissipative Bose-Hubbard lattices

    NASA Astrophysics Data System (ADS)

    Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano

    2018-01-01

    We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.

  17. Swarming behaviors in multi-agent systems with nonlinear dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wenwu, E-mail: wenwuyu@gmail.com; School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001; Chen, Guanrong

    2013-12-15

    The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agentmore » is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.« less

  18. Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks

    PubMed Central

    Rosenfeld, Simon

    2009-01-01

    The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh-Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem) would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression. PMID:19838330

  19. The development of magnetic field line wander in gyrokinetic plasma turbulence: dependence on amplitude of turbulence

    NASA Astrophysics Data System (ADS)

    Bourouaine, Sofiane; Howes, Gregory G.

    2017-06-01

    The dynamics of a turbulent plasma not only manifests the transport of energy from large to small scales, but also can lead to a tangling of the magnetic field that threads through the plasma. The resulting magnetic field line wander can have a large impact on a number of other important processes, such as the propagation of energetic particles through the turbulent plasma. Here we explore the saturation of the turbulent cascade, the development of stochasticity due to turbulent tangling of the magnetic field lines and the separation of field lines through the turbulent dynamics using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many turbulent space and astrophysical plasma environments. We determine the characteristic time 2$ for the saturation of the turbulent perpendicular magnetic energy spectrum. We find that the turbulent magnetic field becomes completely stochastic at time 2$ for strong turbulence, and at 2$ for weak turbulence. However, when the nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of the turbulence, reaches a threshold value (within the regime of weak turbulence) the magnetic field stochasticity does not fully develop, at least within the evolution time interval 22$ . Finally, we quantify the mean square displacement of magnetic field lines in the turbulent magnetic field with a functional form 2\\rangle =A(z/L\\Vert )p$ ( \\Vert $ is the correlation length parallel to the magnetic background field \\mathbf{0}$ , is the distance along \\mathbf{0}$ direction), providing functional forms of the amplitude coefficient and power-law exponent as a function of the nonlinearity parameter.

  20. Constraints on Fluctuations in Sparsely Characterized Biological Systems.

    PubMed

    Hilfinger, Andreas; Norman, Thomas M; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-05

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  1. Constraints on Fluctuations in Sparsely Characterized Biological Systems

    NASA Astrophysics Data System (ADS)

    Hilfinger, Andreas; Norman, Thomas M.; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-01

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  2. Design Of Combined Stochastic Feedforward/Feedback Control

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  3. Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations

    NASA Astrophysics Data System (ADS)

    Subramani, D. N.; Haley, P., Jr.; Lermusiaux, P. F. J.

    2017-12-01

    The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex and intermittent with unstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. For efficient and rigorous quantification and prediction of these uncertainities, the stochastic Dynamically Orthogonal (DO) PDEs for a primitive equation ocean modeling system with a nonlinear free-surface are derived and numerical schemes for their space-time integration are obtained. Detailed numerical studies with idealized-to-realistic regional ocean dynamics are completed. These include consistency checks for the numerical schemes and comparisons with ensemble realizations. As an illustrative example, we simulate the 4-d multiscale uncertainty in the Middle Atlantic/New York Bight region during the months of Jan to Mar 2017. To provide intitial conditions for the uncertainty subspace, uncertainties in the region were objectively analyzed using historical data. The DO primitive equations were subsequently integrated in space and time. The probability distribution function (pdf) of the ocean fields is compared to in-situ, remote sensing, and opportunity data collected during the coincident POSYDON experiment. Results show that our probabilistic predictions had skill and are 3- to 4- orders of magnitude faster than classic ensemble schemes.

  4. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  5. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, M., E-mail: mamalik2000@gmail.com; Islam, R.; Faisal, M.

    2015-03-30

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal showsmore » that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.« less

  6. Two Studies of Complex Nonlinear Systems: Engineered Granular Crystals and Coarse-Graining Optimization Problems

    NASA Astrophysics Data System (ADS)

    Pozharskiy, Dmitry

    In recent years a nonlinear, acoustic metamaterial, named granular crystals, has gained prominence due to its high accessibility, both experimentally and computationally. The observation of a wide range of dynamical phenomena in the system, due to its inherent nonlinearities, has suggested its importance in many engineering applications related to wave propagation. In the first part of this dissertation, we explore the nonlinear dynamics of damped-driven granular crystals. In one case, we consider a highly nonlinear setting, also known as a sonic vacuum, and derive a nonlinear analogue of a linear spectrum, corresponding to resonant periodic propagation and antiresonances. Experimental studies confirm the computational findings and the assimilation of experimental data into a numerical model is demonstrated. In the second case, global bifurcations in a precompressed granular crystal are examined, and their involvement in the appearance of chaotic dynamics is demonstrated. Both results highlight the importance of exploring the nonlinear dynamics, to gain insight into how a granular crystal responds to different external excitations. In the second part, we borrow established ideas from coarse-graining of dynamical systems, and extend them to optimization problems. We combine manifold learning algorithms, such as Diffusion Maps, with stochastic optimization methods, such as Simulated Annealing, and show that we can retrieve an ensemble, of few, important parameters that should be explored in detail. This framework can lead to acceleration of convergence when dealing with complex, high-dimensional optimization, and could potentially be applied to design engineered granular crystals.

  7. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    PubMed

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  8. An offline approach for output-only Bayesian identification of stochastic nonlinear systems using unscented Kalman filtering

    NASA Astrophysics Data System (ADS)

    Erazo, Kalil; Nagarajaiah, Satish

    2017-06-01

    In this paper an offline approach for output-only Bayesian identification of stochastic nonlinear systems is presented. The approach is based on a re-parameterization of the joint posterior distribution of the parameters that define a postulated state-space stochastic model class. In the re-parameterization the state predictive distribution is included, marginalized, and estimated recursively in a state estimation step using an unscented Kalman filter, bypassing state augmentation as required by existing online methods. In applications expectations of functions of the parameters are of interest, which requires the evaluation of potentially high-dimensional integrals; Markov chain Monte Carlo is adopted to sample the posterior distribution and estimate the expectations. The proposed approach is suitable for nonlinear systems subjected to non-stationary inputs whose realization is unknown, and that are modeled as stochastic processes. Numerical verification and experimental validation examples illustrate the effectiveness and advantages of the approach, including: (i) an increased numerical stability with respect to augmented-state unscented Kalman filtering, avoiding divergence of the estimates when the forcing input is unmeasured; (ii) the ability to handle arbitrary prior and posterior distributions. The experimental validation of the approach is conducted using data from a large-scale structure tested on a shake table. It is shown that the approach is robust to inherent modeling errors in the description of the system and forcing input, providing accurate prediction of the dynamic response when the excitation history is unknown.

  9. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  10. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  11. Fluctuations and correlations in modulation instability

    NASA Astrophysics Data System (ADS)

    Solli, D. R.; Herink, G.; Jalali, B.; Ropers, C.

    2012-07-01

    Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms. Technologically, a type of such self-amplification drives free-electron lasers and optical supercontinuum sources whose radiation qualities, however, suffer from the stochastic origins. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.

  12. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    PubMed

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Analysis of degree of nonlinearity and stochastic nature of HRV signal during meditation using delay vector variance method.

    PubMed

    Reddy, L Ram Gopal; Kuntamalla, Srinivas

    2011-01-01

    Heart rate variability analysis is fast gaining acceptance as a potential non-invasive means of autonomic nervous system assessment in research as well as clinical domains. In this study, a new nonlinear analysis method is used to detect the degree of nonlinearity and stochastic nature of heart rate variability signals during two forms of meditation (Chi and Kundalini). The data obtained from an online and widely used public database (i.e., MIT/BIH physionet database), is used in this study. The method used is the delay vector variance (DVV) method, which is a unified method for detecting the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. From the results it is clear that there is a significant change in the nonlinearity and stochastic nature of the signal before and during the meditation (p value > 0.01). During Chi meditation there is a increase in stochastic nature and decrease in nonlinear nature of the signal. There is a significant decrease in the degree of nonlinearity and stochastic nature during Kundalini meditation.

  14. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  15. Processes on the emergent landscapes of biochemical reaction networks and heterogeneous cell population dynamics: differentiation in living matters

    PubMed Central

    Li, Fangting

    2017-01-01

    The notion of an attractor has been widely employed in thinking about the nonlinear dynamics of organisms and biological phenomena as systems and as processes. The notion of a landscape with valleys and mountains encoding multiple attractors, however, has a rigorous foundation only for closed, thermodynamically non-driven, chemical systems, such as a protein. Recent advances in the theory of nonlinear stochastic dynamical systems and its applications to mesoscopic reaction networks, one reaction at a time, have provided a new basis for a landscape of open, driven biochemical reaction systems under sustained chemostat. The theory is equally applicable not only to intracellular dynamics of biochemical regulatory networks within an individual cell but also to tissue dynamics of heterogeneous interacting cell populations. The landscape for an individual cell, applicable to a population of isogenic non-interacting cells under the same environmental conditions, is defined on the counting space of intracellular chemical compositions x = (x1,x2, … ,xN) in a cell, where xℓ is the concentration of the ℓth biochemical species. Equivalently, for heterogeneous cell population dynamics xℓ is the number density of cells of the ℓth cell type. One of the insights derived from the landscape perspective is that the life history of an individual organism, which occurs on the hillsides of a landscape, is nearly deterministic and ‘programmed’, while population-wise an asynchronous non-equilibrium steady state resides mostly in the lowlands of the landscape. We argue that a dynamic ‘blue-sky’ bifurcation, as a representation of Waddington's landscape, is a more robust mechanism for a cell fate decision and subsequent differentiation than the widely pictured pitch-fork bifurcation. We revisit, in terms of the chemostatic driving forces upon active, living matter, the notions of near-equilibrium thermodynamic branches versus far-from-equilibrium states. The emergent landscape perspective permits a quantitative discussion of a wide range of biological phenomena as nonlinear, stochastic dynamics. PMID:28490602

  16. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.

    PubMed

    Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc

    2015-01-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  17. Control of Complex Dynamic Systems by Neural Networks

    NASA Technical Reports Server (NTRS)

    Spall, James C.; Cristion, John A.

    1993-01-01

    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.

  18. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    PubMed

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  19. Study of a Simulation Tool to Determine Achievable Control Dynamics and Control Power Requirements with Perfect Tracking

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.

  20. Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Sun, L.; Yu, X. Q.

    2010-01-15

    Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.

  1. Optimal estimation of recurrence structures from time series

    NASA Astrophysics Data System (ADS)

    beim Graben, Peter; Sellers, Kristin K.; Fröhlich, Flavio; Hutt, Axel

    2016-05-01

    Recurrent temporal dynamics is a phenomenon observed frequently in high-dimensional complex systems and its detection is a challenging task. Recurrence quantification analysis utilizing recurrence plots may extract such dynamics, however it still encounters an unsolved pertinent problem: the optimal selection of distance thresholds for estimating the recurrence structure of dynamical systems. The present work proposes a stochastic Markov model for the recurrent dynamics that allows for the analytical derivation of a criterion for the optimal distance threshold. The goodness of fit is assessed by a utility function which assumes a local maximum for that threshold reflecting the optimal estimate of the system's recurrence structure. We validate our approach by means of the nonlinear Lorenz system and its linearized stochastic surrogates. The final application to neurophysiological time series obtained from anesthetized animals illustrates the method and reveals novel dynamic features of the underlying system. We propose the number of optimal recurrence domains as a statistic for classifying an animals' state of consciousness.

  2. Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ku, R. T.

    1972-01-01

    The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.

  3. Nonlinear Markov Control Processes and Games

    DTIC Science & Technology

    2012-11-15

    the analysis of a new class of stochastic games , nonlinear Markov games , as they arise as a ( competitive ) controlled version of nonlinear Markov... competitive interests) a nonlinear Markov game that we are investigating. I 0. :::tUt::JJt:.l.. I I t:t11VI;:, nonlinear Markov game , nonlinear Markov...corresponding stochastic game Γ+(T, h). In a slightly different setting one can assume that changes in a competitive control process occur as a

  4. The development of the deterministic nonlinear PDEs in particle physics to stochastic case

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Mahmoud A. E.; Sohaly, M. A.

    2018-06-01

    In the present work, accuracy method called, Riccati-Bernoulli Sub-ODE technique is used for solving the deterministic and stochastic case of the Phi-4 equation and the nonlinear Foam Drainage equation. Also, the control on the randomness input is studied for stability stochastic process solution.

  5. Noise-induced shifts in the population model with a weak Allee effect

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2018-02-01

    We consider the Truscott-Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey-predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov-Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.

  6. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

    PubMed

    Salis, Howard; Kaznessis, Yiannis N

    2005-12-01

    Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

  7. Emergence of diversity in homogeneous coupled Boolean networks

    NASA Astrophysics Data System (ADS)

    Kang, Chris; Aguilar, Boris; Shmulevich, Ilya

    2018-05-01

    The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems—coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.

  8. Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps

    NASA Astrophysics Data System (ADS)

    Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin

    2016-11-01

    In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 < 1, the disease may die out, and when R¯0 > 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.

  9. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  10. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  11. Modeling the demand-price relations in a high-frequency foreign exchange market

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly B.

    1999-09-01

    A stochastic nonlinear dynamics model is introduced in terms of observable variables (price and excess demand assumed to be proportional to the number of buyers) to describe a high-frequency foreign exchange market. It is shown how the fundamentalist and chartist patterns of the trader behavior affect the correlation between excess demand and exchange rates.

  12. The nature of combustion noise: Stochastic or chaotic?

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Lee, Min Chul; Li, Larry K. B.

    2016-11-01

    Combustion noise, which refers to irregular low-amplitude pressure oscillations, is conventionally thought to be stochastic. It has therefore been modeled using a stochastic term in the analysis of thermoacoustic systems. Recently, however, there has been a renewed interest in the validity of that stochastic assumption, with tests based on nonlinear dynamical theory giving seemingly contradictory results: some show combustion noise to be stochastic while others show it to be chaotic. In this study, we show that this contradiction arises because those tests cannot distinguish between noise amplification and chaos. We further show that although there are many similarities between noise amplification and chaos, there are also some subtle differences. It is these subtle differences, not the results of those tests, that should be the focus of analyses aimed at determining the true nature of combustion noise. Recognizing this is an important step towards improved understanding and modeling of combustion noise for the study of thermoacoustic instabilities. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  13. Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system

    NASA Astrophysics Data System (ADS)

    Yang, J. H.; Sanjuán, Miguel A. F.; Liu, H. G.; Litak, G.; Li, X.

    2016-12-01

    We investigate the stochastic response of a noisy bistable fractional-order system when the fractional-order lies in the interval (0, 2]. We focus mainly on the stochastic P-bifurcation and the phenomenon of the stochastic resonance. We compare the generalized Euler algorithm and the predictor-corrector approach which are commonly used for numerical calculations of fractional-order nonlinear equations. Based on the predictor-corrector approach, the stochastic P-bifurcation and the stochastic resonance are investigated. Both the fractional-order value and the noise intensity can induce an stochastic P-bifurcation. The fractional-order may lead the stationary probability density function to turn from a single-peak mode to a double-peak mode. However, the noise intensity may transform the stationary probability density function from a double-peak mode to a single-peak mode. The stochastic resonance is investigated thoroughly, according to the linear and the nonlinear response theory. In the linear response theory, the optimal stochastic resonance may occur when the value of the fractional-order is larger than one. In previous works, the fractional-order is usually limited to the interval (0, 1]. Moreover, the stochastic resonance at the subharmonic frequency and the superharmonic frequency are investigated respectively, by using the nonlinear response theory. When it occurs at the subharmonic frequency, the resonance may be strong and cannot be ignored. When it occurs at the superharmonic frequency, the resonance is weak. We believe that the results in this paper might be useful for the signal processing of nonlinear systems.

  14. Dual adaptive dynamic control of mobile robots using neural networks.

    PubMed

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  15. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs

    PubMed Central

    Truccolo, Wilson

    2017-01-01

    Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity. PMID:28234899

  16. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

    PubMed

    Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson

    2017-02-01

    Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity.

  17. A Bayesian estimation of a stochastic predator-prey model of economic fluctuations

    NASA Astrophysics Data System (ADS)

    Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.

    2007-06-01

    In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.

  18. Intrinsic map dynamics exploration for uncharted effective free-energy landscapes

    PubMed Central

    Covino, Roberto; Coifman, Ronald R.; Gear, C. William; Georgiou, Anastasia S.; Kevrekidis, Ioannis G.

    2017-01-01

    We describe and implement a computer-assisted approach for accelerating the exploration of uncharted effective free-energy surfaces (FESs). More generally, the aim is the extraction of coarse-grained, macroscopic information from stochastic or atomistic simulations, such as molecular dynamics (MD). The approach functionally links the MD simulator with nonlinear manifold learning techniques. The added value comes from biasing the simulator toward unexplored phase-space regions by exploiting the smoothness of the gradually revealed intrinsic low-dimensional geometry of the FES. PMID:28634293

  19. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model.

    PubMed

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional one appears to be illuminating.

  20. Proton imaging of stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Bott, A. F. A.; Graziani, C.; Tzeferacos, P.; White, T. G.; Lamb, D. Q.; Gregori, G.; Schekochihin, A. A.

    2017-12-01

    Recent laser-plasma experiments (Fox et al., Phys. Rev. Lett., vol. 111, 2013, 225002; Huntington et al., Nat. Phys., vol. 11(2), 2015, 173-176 Tzeferacos et al., Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacos et al., 2017b, arXiv:1702.03016 [physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This `Kugland image-flux relation' was previously derived (Kugland et al., Rev. Sci. Instrum. vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter s/{\\mathcal{M}}lB$ - which quantifies the relative size of the correlation length B$ of the stochastic field, proton displacements s$ due to magnetic deflections and the image magnification . For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and nonlinear injective regimes we show that the magnetic-energy spectrum can be obtained under a further statistical assumption of isotropy. This is not the case in the caustic or diffusive regimes. We discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, which can encompass many contrast regimes, as well as limitations currently placed by experimental capabilities on one's ability to extract magnetic-field statistics. The results presented in this paper are of consequence in providing a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of proton-flux images.

  1. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  2. Dynamical Imaging using Spatial Nonlinearity

    DTIC Science & Technology

    2014-01-29

    643. [5] R. Heintzmann, C. Cremer , Lateral modulated excitation microscopy: Improvement of resolution by using a diffraction grating, Proceedings...by stochastic optical reconstruction microscopy (STORM), Nat Methods, 3 ( 2006 ) 793-795. [14] E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser...Science, 313 ( 2006 ) 1642-1645. [15] W. Lukosz, M. Marchand, Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze, Optica

  3. Hopf bifurcation in a nonlocal nonlinear transport equation stemming from stochastic neural dynamics

    NASA Astrophysics Data System (ADS)

    Drogoul, Audric; Veltz, Romain

    2017-02-01

    In this work, we provide three different numerical evidences for the occurrence of a Hopf bifurcation in a recently derived [De Masi et al., J. Stat. Phys. 158, 866-902 (2015) and Fournier and löcherbach, Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)] mean field limit of a stochastic network of excitatory spiking neurons. The mean field limit is a challenging nonlocal nonlinear transport equation with boundary conditions. The first evidence relies on the computation of the spectrum of the linearized equation. The second stems from the simulation of the full mean field. Finally, the last evidence comes from the simulation of the network for a large number of neurons. We provide a "recipe" to find such bifurcation which nicely complements the works in De Masi et al. [J. Stat. Phys. 158, 866-902 (2015)] and Fournier and löcherbach [Ann. Inst. H. Poincaré Probab. Stat. 52, 1844-1876 (2016)]. This suggests in return to revisit theoretically these mean field equations from a dynamical point of view. Finally, this work shows how the noise level impacts the transition from asynchronous activity to partial synchronization in excitatory globally pulse-coupled networks.

  4. Stochastic flux freezing and magnetic dynamo.

    PubMed

    Eyink, Gregory L

    2011-05-01

    Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Pr(m)) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Pr(m)=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered. © 2011 American Physical Society

  5. Stochastic nonlinear mixed effects: a metformin case study.

    PubMed

    Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien

    2016-02-01

    In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.

  6. Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Vaughan L.; Gayme, Dennice F.; Lieu, Binh K.

    2014-10-15

    This paper demonstrates the maintenance of self-sustaining turbulence in a restricted nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly from the Navier-Stokes equations and permits higher resolution studies of the dynamical system associated with the stochastic structural stability theory (S3T) model, which is a second order approximation of the statistical state dynamics of the flow. The RNL model shares the dynamical restrictions of the S3T model but can be easily implemented by reducing a DNS code so that it retains only the RNL dynamics. Comparisons of turbulence arising from DNS and RNL simulations demonstrate thatmore » the RNL system supports self-sustaining turbulence with a mean flow as well as structural and dynamical features that are consistent with DNS. These results demonstrate that the simplified RNL system captures fundamental aspects of fully developed turbulence in wall-bounded shear flows and motivate use of the RNL/S3T framework for further study of wall-turbulence.« less

  7. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    PubMed Central

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  8. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    PubMed

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  9. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Rana, Navdeep; Ghosh, Pushpita; Perlekar, Prasad

    2017-11-01

    We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.

  10. A split-step method to include electron–electron collisions via Monte Carlo in multiple rate equation simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huthmacher, Klaus; Molberg, Andreas K.; Rethfeld, Bärbel

    2016-10-01

    A split-step numerical method for calculating ultrafast free-electron dynamics in dielectrics is introduced. The two split steps, independently programmed in C++11 and FORTRAN 2003, are interfaced via the presented open source wrapper. The first step solves a deterministic extended multi-rate equation for the ionization, electron–phonon collisions, and single photon absorption by free-carriers. The second step is stochastic and models electron–electron collisions using Monte-Carlo techniques. This combination of deterministic and stochastic approaches is a unique and efficient method of calculating the nonlinear dynamics of 3D materials exposed to high intensity ultrashort pulses. Results from simulations solving the proposed model demonstrate howmore » electron–electron scattering relaxes the non-equilibrium electron distribution on the femtosecond time scale.« less

  11. Towards sub-optimal stochastic control of partially observable stochastic systems

    NASA Technical Reports Server (NTRS)

    Ruzicka, G. J.

    1980-01-01

    A class of multidimensional stochastic control problems with noisy data and bounded controls encountered in aerospace design is examined. The emphasis is on suboptimal design, the optimality being taken in quadratic mean sense. To that effect the problem is viewed as a stochastic version of the Lurie problem known from nonlinear control theory. The main result is a separation theorem (involving a nonlinear Kalman-like filter) suitable for Lurie-type approximations. The theorem allows for discontinuous characteristics. As a byproduct the existence of strong solutions to a class of non-Lipschitzian stochastic differential equations in dimensions is proven.

  12. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  13. Distinguishing Error from Chaos in Ecological Time Series

    NASA Astrophysics Data System (ADS)

    Sugihara, George; Grenfell, Bryan; May, Robert M.

    1990-11-01

    Over the years, there has been much discussion about the relative importance of environmental and biological factors in regulating natural populations. Often it is thought that environmental factors are associated with stochastic fluctuations in population density, and biological ones with deterministic regulation. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show that completely deterministic regulatory factors can lead to apparently random fluctuations in population density, and we then develop a new method (that can be applied to limited data sets) to make practical distinctions between apparently noisy dynamics produced by low-dimensional chaos and population variation that in fact derives from random (high-dimensional)noise, such as environmental stochasticity or sampling error. To show its practical use, the method is first applied to models where the dynamics are known. We then apply the method to several sets of real data, including newly analysed data on the incidence of measles in the United Kingdom. Here the additional problems of secular trends and spatial effects are explored. In particular, we find that on a city-by-city scale measles exhibits low-dimensional chaos (as has previously been found for measles in New York City), whereas on a larger, country-wide scale the dynamics appear as a noisy two-year cycle. In addition to shedding light on the basic dynamics of some nonlinear biological systems, this work dramatizes how the scale on which data is collected and analysed can affect the conclusions drawn.

  14. Bistable dynamics of a levitated nanoparticle (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ricci, Francesco; Spasenovic, M.; Rica, Raúl A.; Novotny, Lukas; Quidant, Romain

    2015-08-01

    Bistable systems are ubiquitous in nature. Classical examples in chemistry and biology include relaxation kinetics in chemical reactions [1] and stochastic resonance processes such as neuron firing [2,3]. Likewise, bistable systems play a key role in signal processing and information handling at the nanoscale, giving rise to intriguing applications such as optical switches [4], coherent signal amplification [5,6] and weak forces detection [5]. The interest and applicability of bistable systems are intimately connected with the complexity of their dynamics, typically due to the presence of a large number of parameters and nonlinearities. Appropriate modeling is therefore challenging. Alternatively, the possibility to experimentally recreate bistable systems in a clean and controlled way has recently become very appealing, but elusive and complicated. With this aim, we combined optical tweezers with a novel active feedback-cooling scheme to develop a well-defined opto-mechanical platform reaching unprecedented performances in terms of Q-factor, frequency stability and force sensitivity [7,8]. Our experimental system consists of a single nanoparticle levitated in high vacuum with optical tweezers, which behaves as a non-linear (Duffing) oscillator under appropriate conditions. Here, we prove it to be an ideal tool for a deep study of bistability. We demonstrate bistability of the nanoparticle by noise activated switching between two oscillation states, discussing our results in terms of a double-well potential model. We also show the flexibility of our system in shaping the potential at will, in order to meet the conditions prescribed by any bistable system that could therefore then be simulated with our setup. References [1] T. Amemiya, T. Ohmori, M. Nakaiwa, T. Yamamoto, and T. Yamaguchi, "Modeling of Nonlinear Chemical Reaction Systems and Two-Parameter Stochastic Resonance," J. Biol. Phys. 25 (1999) 73 [2] F. Moss, L. M. Ward, and W. G. Sannita, "Stochastic resonance and sensory information processing: a tutorial and review of application" Clinical neurophysiology 115 (2004) 267 [3] M. Platkov, and M. Gruebele, "Periodic and stochastic thermal modulation of protein folding kinetics" J. Chem. Phys. 141 (2014) 035103 [4] T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi. "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip". Opt. Lett., 30 (2005) 2575 [5] R. L. Badzey and P. Mohanty. "Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance" Nature, 437 (2005) 995 [6] W. J. Venstra, H. J. R. Westra, and H. S. J. van der Zant. "Stochastic switching of cantilever motion," Nature Communications, 4 (2013) 3624 [7] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny "Subkelvin parametric feedback cooling of a Laser-Trapped nanoparticle" Phys. Rev. Lett. 109 (2012) 103603 [8] J. Gieseler, M. Spasenović, L. Novotny, and R. Quidant, "Nonlinear Mode Coupling and Synchronization of a Vacuum-Trapped Nanoparticle," Phys. Rev. Lett. 112 (2014) 103603

  15. Persistence and stochastic periodicity in the intensity dynamics of a fiber laser during the transition to optical turbulence

    NASA Astrophysics Data System (ADS)

    Carpi, Laura; Masoller, Cristina

    2018-02-01

    Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the transition temporal correlations can be precisely represented by a surprisingly simple model.

  16. Linear dynamical modes as new variables for data-driven ENSO forecast

    NASA Astrophysics Data System (ADS)

    Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2018-05-01

    A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.

  17. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  18. Linear theory for filtering nonlinear multiscale systems with model error

    PubMed Central

    Berry, Tyrus; Harlim, John

    2014-01-01

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829

  19. Estimation and Analysis of Nonlinear Stochastic Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Marcus, S. I.

    1975-01-01

    The algebraic and geometric structures of certain classes of nonlinear stochastic systems were exploited in order to obtain useful stability and estimation results. The class of bilinear stochastic systems (or linear systems with multiplicative noise) was discussed. The stochastic stability of bilinear systems driven by colored noise was considered. Approximate methods for obtaining sufficient conditions for the stochastic stability of bilinear systems evolving on general Lie groups were discussed. Two classes of estimation problems involving bilinear systems were considered. It was proved that, for systems described by certain types of Volterra series expansions or by certain bilinear equations evolving on nilpotent or solvable Lie groups, the optimal conditional mean estimator consists of a finite dimensional nonlinear set of equations. The theory of harmonic analysis was used to derive suboptimal estimators for bilinear systems driven by white noise which evolve on compact Lie groups or homogeneous spaces.

  20. The role of predictive uncertainty in the operational management of reservoirs

    NASA Astrophysics Data System (ADS)

    Todini, E.

    2014-09-01

    The present work deals with the operational management of multi-purpose reservoirs, whose optimisation-based rules are derived, in the planning phase, via deterministic (linear and nonlinear programming, dynamic programming, etc.) or via stochastic (generally stochastic dynamic programming) approaches. In operation, the resulting deterministic or stochastic optimised operating rules are then triggered based on inflow predictions. In order to fully benefit from predictions, one must avoid using them as direct inputs to the reservoirs, but rather assess the "predictive knowledge" in terms of a predictive probability density to be operationally used in the decision making process for the estimation of expected benefits and/or expected losses. Using a theoretical and extremely simplified case, it will be shown why directly using model forecasts instead of the full predictive density leads to less robust reservoir management decisions. Moreover, the effectiveness and the tangible benefits for using the entire predictive probability density instead of the model predicted values will be demonstrated on the basis of the Lake Como management system, operational since 1997, as well as on the basis of a case study on the lake of Aswan.

  1. Noise in nonlinear nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Guerra Vidal, Diego N.

    Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by adjusting the resonator's operating parameters. The device can access one of two stable steady states, according to a specific logic function; this operation is mediated by the noise floor, which can be directly adjusted, or dynamically "tuned" via an adjustment of the underlying nonlinearity of the resonator. The demonstration of this reprogrammable nanomechanical logic gate affords a path to the practical realization of a new generation of mechanical computer.

  2. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  3. Evidence of low dimensional chaos in renal blood flow control in genetic and experimental hypertension

    NASA Astrophysics Data System (ADS)

    Yip, K.-P.; Marsh, D. J.; Holstein-Rathlou, N.-H.

    1995-01-01

    We applied a surrogate data technique to test for nonlinear structure in spontaneous fluctuations of hydrostatic pressure in renal tubules of hypertensive rats. Tubular pressure oscillates at 0.03-0.05 Hz in animals with normal blood pressure, but the fluctuations become irregular with chronic hypertension. Using time series from rats with hypertension we produced surrogate data sets to test whether they represent linearly correlated noise or ‘static’ nonlinear transforms of a linear stochastic process. The correlation dimension and the forecasting error were used as discriminating statistics to compare surrogate with experimental data. The results show that the original experimental time series can be distinguished from both linearly and static nonlinearly correlated noise, indicating that the nonlinear behavior is due to the intrinsic dynamics of the system. Together with other evidence this strongly suggests that a low dimensional chaotic attractor governs renal hemodynamics in hypertension. This appears to be the first demonstration of a transition to chaotic dynamics in an integrated physiological control system occurring in association with a pathological condition.

  4. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    NASA Astrophysics Data System (ADS)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  5. Extended Plefka expansion for stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Bravi, B.; Sollich, P.; Opper, M.

    2016-05-01

    We propose an extension of the Plefka expansion, which is well known for the dynamics of discrete spins, to stochastic differential equations with continuous degrees of freedom and exhibiting generic nonlinearities. The scenario is sufficiently general to allow application to e.g. biochemical networks involved in metabolism and regulation. The main feature of our approach is to constrain in the Plefka expansion not just first moments akin to magnetizations, but also second moments, specifically two-time correlations and responses for each degree of freedom. The end result is an effective equation of motion for each single degree of freedom, where couplings to other variables appear as a self-coupling to the past (i.e. memory term) and a coloured noise. This constitutes a new mean field approximation that should become exact in the thermodynamic limit of a large network, for suitably long-ranged couplings. For the analytically tractable case of linear dynamics we establish this exactness explicitly by appeal to spectral methods of random matrix theory, for Gaussian couplings with arbitrary degree of symmetry.

  6. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  7. Statistical nature of infrared dynamics on de Sitter background

    NASA Astrophysics Data System (ADS)

    Tokuda, Junsei; Tanaka, Takahiro

    2018-02-01

    In this study, we formulate a systematic way of deriving an effective equation of motion(EoM) for long wavelength modes of a massless scalar field with a general potential V(phi) on de Sitter background, and investigate whether or not the effective EoM can be described as a classical stochastic process. Our formulation gives an extension of the usual stochastic formalism to including sub-leading secular growth coming from the nonlinearity of short wavelength modes. Applying our formalism to λ phi4 theory, we explicitly derive an effective EoM which correctly recovers the next-to-leading secularly growing part at a late time, and show that this effective EoM can be seen as a classical stochastic process. Our extended stochastic formalism can describe all secularly growing terms which appear in all correlation functions with a specific operator ordering. The restriction of the operator ordering will not be a big drawback because the commutator of a light scalar field becomes negligible at large scales owing to the squeezing.

  8. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less

  9. General Results in Optimal Control of Discrete-Time Nonlinear Stochastic Systems

    DTIC Science & Technology

    1988-01-01

    P. J. McLane, "Optimal Stochastic Control of Linear System. with State- and Control-Dependent Distur- bances," ZEEE Trans. 4uto. Contr., Vol. 16, No...Vol. 45, No. 1, pp. 359-362, 1987 (9] R. R. Mohler and W. J. Kolodziej, "An Overview of Stochastic Bilinear Control Processes," ZEEE Trans. Syst...34 J. of Math. anal. App.:, Vol. 47, pp. 156-161, 1974 [14) E. Yaz, "A Control Scheme for a Class of Discrete Nonlinear Stochastic Systems," ZEEE Trans

  10. Modeling and complexity of stochastic interacting Lévy type financial price dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao

    2018-06-01

    In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series

  11. Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.

    PubMed

    Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani

    2017-03-27

    Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and reliable tool to infer MINs and track their dynamics.

  12. Exact lower and upper bounds on stationary moments in stochastic biochemical systems

    NASA Astrophysics Data System (ADS)

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Lamperski, Andrew; Singh, Abhyudai

    2017-08-01

    In the stochastic description of biochemical reaction systems, the time evolution of statistical moments for species population counts is described by a linear dynamical system. However, except for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is underdetermined as lower-order moments depend upon higher-order moments. Here, we propose a novel method to find exact lower and upper bounds on stationary moments for a given arbitrary system of biochemical reactions. The method exploits the fact that statistical moments of any positive-valued random variable must satisfy some constraints that are compactly represented through the positive semidefiniteness of moment matrices. Our analysis shows that solving moment equations at steady state in conjunction with constraints on moment matrices provides exact lower and upper bounds on the moments. These results are illustrated by three different examples—the commonly used logistic growth model, stochastic gene expression with auto-regulation and an activator-repressor gene network motif. Interestingly, in all cases the accuracy of the bounds is shown to improve as moment equations are expanded to include higher-order moments. Our results provide avenues for development of approximation methods that provide explicit bounds on moments for nonlinear stochastic systems that are otherwise analytically intractable.

  13. Dynamic electrical impedance imaging with the interacting multiple model scheme.

    PubMed

    Kim, Kyung Youn; Kim, Bong Seok; Kim, Min Chan; Kim, Sin; Isaacson, David; Newell, Jonathan C

    2005-04-01

    In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.

  14. Effects of random tooth profile errors on the dynamic behaviors of planetary gears

    NASA Astrophysics Data System (ADS)

    Xun, Chao; Long, Xinhua; Hua, Hongxing

    2018-02-01

    In this paper, a nonlinear random model is built to describe the dynamics of planetary gear trains (PGTs), in which the time-varying mesh stiffness, tooth profile modification (TPM), tooth contact loss, and random tooth profile error are considered. A stochastic method based on the method of multiple scales (MMS) is extended to analyze the statistical property of the dynamic performance of PGTs. By the proposed multiple-scales based stochastic method, the distributions of the dynamic transmission errors (DTEs) are investigated, and the lower and upper bounds are determined based on the 3σ principle. Monte Carlo method is employed to verify the proposed method. Results indicate that the proposed method can be used to determine the distribution of the DTE of PGTs high efficiently and allow a link between the manufacturing precision and the dynamical response. In addition, the effects of tooth profile modification on the distributions of vibration amplitudes and the probability of tooth contact loss with different manufacturing tooth profile errors are studied. The results show that the manufacturing precision affects the distribution of dynamic transmission errors dramatically and appropriate TPMs are helpful to decrease the nominal value and the deviation of the vibration amplitudes.

  15. Dynamical Signatures of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1999-01-01

    One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion equation which represents the mental dynamics. It has been demonstrated that coupled mental-motor dynamics can simulate emerging self-organization, prey-predator games, collaboration and competition, "collective brain," etc.

  16. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    PubMed

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  17. A scaling law for random walks on networks

    PubMed Central

    Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick

    2014-01-01

    The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics. PMID:25311870

  18. A scaling law for random walks on networks

    NASA Astrophysics Data System (ADS)

    Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick

    2014-10-01

    The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.

  19. A scaling law for random walks on networks.

    PubMed

    Perkins, Theodore J; Foxall, Eric; Glass, Leon; Edwards, Roderick

    2014-10-14

    The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.

  20. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  1. What can we learn about the dynamics of DO-events from studying the high resolution ice core records?

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter

    2017-04-01

    The causes for and possible predictions of rapid climate changes are poorly understood. The most pronounced changes observed, beside the glacial terminations, are the Dansgaard-Oeschger events. Present day general circulation climate models simulating glacial conditions are not capable of reproducing these rapid shifts. It is thus not known if they are due to bifurcations in the structural stability of the climate or if they are induced by stochastic fluctuations. By analyzing a high resolution ice core record we exclude the bifurcation scenario, which strongly suggests that they are noise induced and thus have very limited predictability. Ref: Peter Ditlevsen, "Tipping points in the climate system", in Nonlinear and Stochastic Climate Dynamics, Cambridge University Press (C. Franzke and T. O'Kane, eds.) (2016) P. D. Ditlevsen and S. Johnsen, "Tipping points: Early warning and wishful thinking", Geophys. Res. Lett., 37, L19703, 2010

  2. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the secondmore » explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.« less

  3. Stochastic symplectic and multi-symplectic methods for nonlinear Schrödinger equation with white noise dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jianbo, E-mail: jianbocui@lsec.cc.ac.cn; Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn; Liu, Zhihui, E-mail: liuzhihui@lsec.cc.ac.cn

    We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.

  4. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  5. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    PubMed

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  6. Stochastic thermodynamics across scales: Emergent inter-attractoral discrete Markov jump process and its underlying continuous diffusion

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2013-01-01

    We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.

  7. Orbit Determination Using Vinti’s Solution

    DTIC Science & Technology

    2016-09-15

    Surveillance Network STK Systems Tool Kit TBP Two Body Problem TLE Two-line Element Set xv Acronym Definition UKF Unscented Kalman Filter WPAFB Wright...simplicity, stability, and speed. On the other hand, Kalman filters would be best suited for sequential estimation of stochastic or random components of a...be likened to how an Unscented Kalman Filter samples a system’s nonlinearities directly, avoiding linearizing the dynamics in the partials matrices

  8. Multiscale Dynamics and Information in Data Collection and Assimilation for Environmental Applications

    DTIC Science & Technology

    2015-07-30

    elsewhere such as: prepared in cooperation with; translation of; report supersedes; old edition number, etc. 14. ABSTRACT. A brief (approximately 200...involves the derivative of a stochastic path, which is obtained using Malliavin calculus . 4 DISTRIBUTION A: Distribution approved for public release...predictability, 8th European Nonlinear Oscillations Conference, The Vienna University of Technology, Vienna, Austria, July 06 – 11, 2014. [11] Lingala N

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpelli, Andrea

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation,more » able to measure intensity, position and transverse cross-section beam.« less

  10. Nonlinear energy harvesting.

    PubMed

    Cottone, F; Vocca, H; Gammaitoni, L

    2009-02-27

    Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous solution to the powering of small-scale electronic mobile devices. Among the different solutions, vibration energy harvesting has played a major role due to the almost universal presence of mechanical vibrations. Here we propose a new method based on the exploitation of the dynamical features of stochastic nonlinear oscillators. Such a method is shown to outperform standard linear oscillators and to overcome some of the most severe limitations of present approaches. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.

  11. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  12. Noise-induced escape in an excitable system

    NASA Astrophysics Data System (ADS)

    Khovanov, I. A.; Polovinkin, A. V.; Luchinsky, D. G.; McClintock, P. V. E.

    2013-03-01

    We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal) fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We compare the responses of a monostable resonator and monostable integrator to stochastic input signals and to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state, our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical simulations of the Langevin equation.

  13. Stochastic resonance in a generalized Von Foerster population growth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N.; Mankin, R.

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. Anmore » analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.« less

  14. Power Spectrum of a Noisy System Close to a Heteroclinic Orbit

    NASA Astrophysics Data System (ADS)

    Giner-Baldó, Jordi; Thomas, Peter J.; Lindner, Benjamin

    2017-07-01

    We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form Q˜ [ln (1/D)]^2. Our results are compared to numerical simulations of the respective Langevin equations.

  15. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  16. The cardiorespiratory interaction: a nonlinear stochastic model and its synchronization properties

    NASA Astrophysics Data System (ADS)

    Bahraminasab, A.; Kenwright, D.; Stefanovska, A.; McClintock, P. V. E.

    2007-06-01

    We address the problem of interactions between the phase of cardiac and respiration oscillatory components. The coupling between these two quantities is experimentally investigated by the theory of stochastic Markovian processes. The so-called Markov analysis allows us to derive nonlinear stochastic equations for the reconstruction of the cardiorespiratory signals. The properties of these equations provide interesting new insights into the strength and direction of coupling which enable us to divide the couplings to two parts: deterministic and stochastic. It is shown that the synchronization behaviors of the reconstructed signals are statistically identical with original one.

  17. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.

  18. Deriving dynamical models from paleoclimatic records: application to glacial millennial-scale climate variability.

    PubMed

    Kwasniok, Frank; Lohmann, Gerrit

    2009-12-01

    A method for systematically deriving simple nonlinear dynamical models from ice-core data is proposed. It offers a tool to integrate models and theories with paleoclimatic data. The method is based on the unscented Kalman filter, a nonlinear extension of the conventional Kalman filter. Here, we adopt the abstract conceptual model of stochastically driven motion in a potential that allows for two distinctly different states. The parameters of the model-the shape of the potential and the noise level-are estimated from a North Greenland ice-core record. For the glacial period from 70 to 20 ky before present, a potential is derived that is asymmetric and almost degenerate. There is a deep well corresponding to a cold stadial state and a very shallow well corresponding to a warm interstadial state.

  19. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  20. Introduction to Focus Issue: nonlinear and stochastic physics in biology.

    PubMed

    Bahar, Sonya; Neiman, Alexander B; Jung, Peter; Kurths, Jürgen; Schimansky-Geier, Lutz; Showalter, Kenneth

    2011-12-01

    Frank Moss was a leading figure in the study of nonlinear and stochastic processes in biological systems. His work, particularly in the area of stochastic resonance, has been highly influential to the interdisciplinary scientific community. This Focus Issue pays tribute to Moss with articles that describe the most recent advances in the field he helped to create. In this Introduction, we review Moss's seminal scientific contributions and introduce the articles that make up this Focus Issue.

  1. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion.

    PubMed

    Leszczynski, Henryk; Wrzosek, Monika

    2017-02-01

    We consider nonlinear stochastic wave equations driven by one-dimensional white noise with respect to time. The existence of solutions is proved by means of Picard iterations. Next we apply Newton's method. Moreover, a second-order convergence in a probabilistic sense is demonstrated.

  2. On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2014-08-01

    The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also themore » stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.« less

  3. Further studies using matched filter theory and stochastic simulation for gust loads prediction

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii

    1993-01-01

    This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.

  4. Global dynamics of a stochastic neuronal oscillator

    NASA Astrophysics Data System (ADS)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  5. Global dynamics of a stochastic neuronal oscillator.

    PubMed

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  6. Large-Amplitude Forced Response of Dynamic Systems

    DTIC Science & Technology

    1992-11-01

    Blacksburg, VA, June 25-27, 1990. 11. A. Abou- Rayan , A. H. Nayfeh, D. T. Mook, and M. A. Nayfeh, "Nonlinear Analysis of a Parametrically Excited...34 62nd Shock and Vibration Symposium, Springfield, VA, October 29-31, 1991. 23. A. Abou- Rayan , A. H. Nayfeh, D. T. Mook, and M. A. Nayfeh...Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1991. 6. A. Abou- Rayan , Ph.D., "Deterministic and Stochastic Responses

  7. Stochastic maps, continuous approximation, and stable distribution

    NASA Astrophysics Data System (ADS)

    Kessler, David A.; Burov, Stanislav

    2017-10-01

    A continuous approximation framework for general nonlinear stochastic as well as deterministic discrete maps is developed. For the stochastic map with uncorelated Gaussian noise, by successively applying the Itô lemma, we obtain a Langevin type of equation. Specifically, we show how nonlinear maps give rise to a Langevin description that involves multiplicative noise. The multiplicative nature of the noise induces an additional effective force, not present in the absence of noise. We further exploit the continuum description and provide an explicit formula for the stable distribution of the stochastic map and conditions for its existence. Our results are in good agreement with numerical simulations of several maps.

  8. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?

    PubMed Central

    Jedlicka, Peter

    2017-01-01

    The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics. PMID:29163041

  9. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  10. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?

    PubMed

    Jedlicka, Peter

    2017-01-01

    The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.

  11. Filamentation of ultrashort light pulses in a liquid scattering medium

    NASA Astrophysics Data System (ADS)

    Jukna, V.; Tamošauskas, G.; Valiulis, G.; Aputis, M.; Puida, M.; Ivanauskas, F.; Dubietis, A.

    2009-01-01

    We have studied filamentation of 1-ps laser pulses in a scattering medium (aqueous suspension of 2-μm polystyrene microspheres) and compared filamentation dynamics to that in pure water. Our results indicate that light scattering does not alter filamentation dynamics in general, but rather results in farther position of the nonlinear focus, shorter filament length, and the development of speckle structure in the peripheral part of the beam. The experimental observations are qualitatively reproduced by the numerical model which accounts for diffraction, self-focusing, multiphoton absorption, and light scattering introduced through a stochastic diffusion and diffraction term.

  12. A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab

    NASA Astrophysics Data System (ADS)

    Eckel, S.; Kumar, A.; Jacobson, T.; Spielman, I. B.; Campbell, G. K.

    2018-04-01

    We study the dynamics of a supersonically expanding, ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations—solitons and vortices—driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of "preheating" that may have taken place at the end of inflation.

  13. Data-driven Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2016-12-01

    Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.

  14. Non-linear stochastic growth rates and redshift space distortions

    DOE PAGES

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean , together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc -1 to 25 per cent atmore » k ~ 0.45 h Mpc -1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 10 12 M ⊙ h -1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean away from the linear theory prediction -f LTδ, where f LT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc -1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of f LT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of f LT extracted using models which assume a linear, deterministic expression.« less

  15. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu

    2014-01-15

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less

  16. A path integral approach to the Hodgkin-Huxley model

    NASA Astrophysics Data System (ADS)

    Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando

    2017-11-01

    To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.

  17. Exploring information transmission in gene networks using stochastic simulation and machine learning

    NASA Astrophysics Data System (ADS)

    Park, Kyemyung; Prüstel, Thorsten; Lu, Yong; Narayanan, Manikandan; Martins, Andrew; Tsang, John

    How gene regulatory networks operate robustly despite environmental fluctuations and biochemical noise is a fundamental question in biology. Mathematically the stochastic dynamics of a gene regulatory network can be modeled using chemical master equation (CME), but nonlinearity and other challenges render analytical solutions of CMEs difficult to attain. While approaches of approximation and stochastic simulation have been devised for simple models, obtaining a more global picture of a system's behaviors in high-dimensional parameter space without simplifying the system substantially remains a major challenge. Here we present a new framework for understanding and predicting the behaviors of gene regulatory networks in the context of information transmission among genes. Our approach uses stochastic simulation of the network followed by machine learning of the mapping between model parameters and network phenotypes such as information transmission behavior. We also devised ways to visualize high-dimensional phase spaces in intuitive and informative manners. We applied our approach to several gene regulatory circuit motifs, including both feedback and feedforward loops, to reveal underexplored aspects of their operational behaviors. This work is supported by the Intramural Program of NIAID/NIH.

  18. Optogenetic stimulation of a meso-scale human cortical model

    NASA Astrophysics Data System (ADS)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  19. A quantum extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  20. Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.

    PubMed

    Herzallah, Randa

    2015-03-01

    Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of loss of immunity on noise-induced sustained oscillations in epidemics.

    PubMed

    Chaffee, J; Kuske, R

    2011-11-01

    The effect of loss of immunity on sustained population oscillations about an endemic equilibrium is studied via a multiple scales analysis of a SIRS model. The analysis captures the key elements supporting the nearly regular oscillations of the infected and susceptible populations, namely, the interaction of the deterministic and stochastic dynamics together with the separation of time scales of the damping and the period of these oscillations. The derivation of a nonlinear stochastic amplitude equation describing the envelope of the oscillations yields two criteria providing explicit parameter ranges where they can be observed. These conditions are similar to those found for other applications in the context of coherence resonance, in which noise drives nearly regular oscillations in a system that is quiescent without noise. In this context the criteria indicate how loss of immunity and other factors can lead to a significant increase in the parameter range for prevalence of the sustained oscillations, without any external driving forces. Comparison of the power spectral densities of the full model and the approximation confirms that the multiple scales analysis captures nonlinear features of the oscillations.

  2. Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design.

    PubMed

    Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve

    2016-10-01

    In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.

  3. A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Andersen, J. V.

    Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (April 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.

  4. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics.

    PubMed

    Chorin, Alexandre J; Lu, Fei

    2015-08-11

    Many physical systems are described by nonlinear differential equations that are too complicated to solve in full. A natural way to proceed is to divide the variables into those that are of direct interest and those that are not, formulate solvable approximate equations for the variables of greater interest, and use data and statistical methods to account for the impact of the other variables. In the present paper we consider time-dependent problems and introduce a fully discrete solution method, which simplifies both the analysis of the data and the numerical algorithms. The resulting time series are identified by a NARMAX (nonlinear autoregression moving average with exogenous input) representation familiar from engineering practice. The connections with the Mori-Zwanzig formalism of statistical physics are discussed, as well as an application to the Lorenz 96 system.

  5. Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field

    NASA Technical Reports Server (NTRS)

    Chen, J.; Palmadesso, P. J.

    1986-01-01

    The properties of charged-particle motion in Hamiltonian dynamics are studied in a magnetotaillike magnetic field configuration. It is shown by numerical integration of the equation of motion that the system is generally nonintegrable and that the particle motion can be classified into three distinct types of orbits: bounded integrable orbits, unbounded stochastic orbits, and unbounded transient orbits. It is also shown that different regions of the phase space exhibit qualitatively different responses to external influences. The concept of 'differential memory' in single-particle distributions is proposed. Physical implications for the dynamical properties of the magnetotail plasmas and the possible generation of non-Maxwellian features in the distribution functions are discussed.

  6. Nonlinear Image Denoising Methodologies

    DTIC Science & Technology

    2002-05-01

    53 5.3 A Multiscale Approach to Scale-Space Analysis . . . . . . . . . . . . . . . . 53 5.4...etc. In this thesis, Our approach to denoising is first based on a controlled nonlinear stochastic random walk to achieve a scale space analysis ( as in... stochastic treatment or interpretation of the diffusion. In addition, unless a specific stopping time is known to be adequate, the resulting evolution

  7. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    NASA Astrophysics Data System (ADS)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  8. A New Stochastic Equivalent Linearization Implementation for Prediction of Geometrically Nonlinear Vibrations

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.; Turner, Travis L.; Robinson, Jay H.; Rizzi, Stephen A.

    1999-01-01

    In this paper, the problem of random vibration of geometrically nonlinear MDOF structures is considered. The solutions obtained by application of two different versions of a stochastic linearization method are compared with exact (F-P-K) solutions. The formulation of a relatively new version of the stochastic linearization method (energy-based version) is generalized to the MDOF system case. Also, a new method for determination of nonlinear sti ness coefficients for MDOF structures is demonstrated. This method in combination with the equivalent linearization technique is implemented in a new computer program. Results in terms of root-mean-square (RMS) displacements obtained by using the new program and an existing in-house code are compared for two examples of beam-like structures.

  9. Adaptive output-feedback control for switched stochastic uncertain nonlinear systems with time-varying delay.

    PubMed

    Song, Zhibao; Zhai, Junyong

    2018-04-01

    This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  11. Is there evidence for the existence of nonlinear behavior within the interplanetary solar sector structure?

    NASA Astrophysics Data System (ADS)

    Brown, A. G.; Francis, N. M.; Broomhead, D. S.; Cannon, P. S.; Akram, A.

    1999-06-01

    Using data from the Sweden and Britain Radar Experiment (SABRE) VHF coherent radar, Yeoman et al. [1990] found evidence for two and four sector structures during the declining phase of solar cycle (SC) 21. No such obvious harmonic features were present during the ascending phase of SC 22. It was suggested that the structure of the heliospheric current sheet might exhibit nonlinear behavior during the latter period. A direct test of this suggestion, using established nonlinear methods, would require the computation of the fractal dimension of the data, for example. However, the quality of the SABRE data is insufficient for this purpose. Therefore we have tried to answer a simpler question: Is there any evidence that the SABRE data was generated by a (low-dimensional) nonlinear process? If this were the case, it would be a powerful indicator of nonlinear behavior in the solar current sheet. Our approach has been to use a system of orthogonal linear filters to separate the data into linearly uncorrelated time series. We then look for nonlinear dynamical relationships between these time series, using radial basis function models (which can be thought of as a class of neural networks). The presence of such a relationship, indicated by the ability to model one filter output given another, would equate to the presence of nonlinear properties within the data. Using this technique, evidence is found for the presence of low-level nonlinear behavior during both phases of the solar cycle investigated in this study. The evidence for nonlinear behavior is stronger during the descending phase of SC 21. However, it is not possible to distinguish between nonlinear dynamics and a nonlinearly transformed colored Gaussian noise process in either instance, using the available data. Therefore, in conclusion, we find insufficient evidence within the SABRE data set to support the suggestion of increased nonlinear dynamical behavior during the ascending phase of SC 22. In fact, nonlinear dynamics would seem to exert very little influence within the measurement time series at all, given the observed data. Therefore it is likely that stochastic or unresolved high-dimensional nonlinear mechanisms are responsible for the observed spectrum complexity during the ascending phase of SC 22.

  12. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    PubMed

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  13. A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs

    PubMed Central

    Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno

    2008-01-01

    We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. PMID:19255631

  14. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.

  15. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  16. A statistical state dynamics approach to wall turbulence.

    PubMed

    Farrell, B F; Gayme, D F; Ioannou, P J

    2017-03-13

    This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  17. A statistical state dynamics approach to wall turbulence

    PubMed Central

    Gayme, D. F.; Ioannou, P. J.

    2017-01-01

    This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation–perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or ‘band-limiting’ can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167577

  18. Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics.

    PubMed

    Ocone, Andrea; Millar, Andrew J; Sanguinetti, Guido

    2013-04-01

    Computational modelling of the dynamics of gene regulatory networks is a central task of systems biology. For networks of small/medium scale, the dominant paradigm is represented by systems of coupled non-linear ordinary differential equations (ODEs). ODEs afford great mechanistic detail and flexibility, but calibrating these models to data is often an extremely difficult statistical problem. Here, we develop a general statistical inference framework for stochastic transcription-translation networks. We use a coarse-grained approach, which represents the system as a network of stochastic (binary) promoter and (continuous) protein variables. We derive an exact inference algorithm and an efficient variational approximation that allows scalable inference and learning of the model parameters. We demonstrate the power of the approach on two biological case studies, showing that the method allows a high degree of flexibility and is capable of testable novel biological predictions. http://homepages.inf.ed.ac.uk/gsanguin/software.html. Supplementary data are available at Bioinformatics online.

  19. Methods of sequential estimation for determining initial data in numerical weather prediction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cohn, S. E.

    1982-01-01

    Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.

  20. Estimation of hysteretic damping of structures by stochastic subspace identification

    NASA Astrophysics Data System (ADS)

    Bajrić, Anela; Høgsberg, Jan

    2018-05-01

    Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.

  1. Investigating multiphoton phenomena using nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Shu

    Many seemingly simple systems can display extraordinarily complex dynamics which has been studied and uncovered through nonlinear dynamical theory. The leitmotif of this thesis is changing phase-space structures and their (linear or non-linear) stabilities by adding control functions (which act on the system as external perturbations) to the relevant Hamiltonians. These phase-space structures may be periodic orbits, invariant tori or their stable and unstable manifolds. One-electron systems and diatomic molecules are fundamental and important staging ground for new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort has been put on the control or manipulation of these systems. Recent developments of nonlinear dynamical tools can provide efficient ways of doing so. In the first subtopic of the thesis, we are adding a control function to restore tori at prescribed locations in phase space. In the remainder of the thesis, a control function with parameters is used to change the linear stability of the periodic orbits which govern the processes in question. In this thesis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms exposed to strong microwave fields and the dissociation of diatomic molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis is composed of three subtopics. In the first subtopic, we employ local control theory to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding a relatively small control term to the original Hamiltonian. In the second subtopic, we perform periodic orbit analysis to investigate multiphoton ionization driven by a bichromatic microwave field. Our results show quantitative and qualitative agreement with previous studies, and hence identify the mechanism through which short periodic orbits organize the dynamics in multiphoton ionization. In addition, we achieve substantial time savings with this approach. In the third subtopic we extend our periodic orbit analysis to the dissociation of diatomic molecules driven by a bichromatic laser. In this problem, our results based on periodic orbit analysis again show good agreement with previous work, and hence promise more potential applications of this approach in molecular physics.

  2. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  3. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  4. Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.

  5. Time series analysis for minority game simulations of financial markets

    NASA Astrophysics Data System (ADS)

    Ferreira, Fernando F.; Francisco, Gerson; Machado, Birajara S.; Muruganandam, Paulsamy

    2003-04-01

    The minority game (MG) model introduced recently provides promising insights into the understanding of the evolution of prices, indices and rates in the financial markets. In this paper we perform a time series analysis of the model employing tools from statistics, dynamical systems theory and stochastic processes. Using benchmark systems and a financial index for comparison, several conclusions are obtained about the generating mechanism for this kind of evolution. The motion is deterministic, driven by occasional random external perturbation. When the interval between two successive perturbations is sufficiently large, one can find low dimensional chaos in this regime. However, the full motion of the MG model is found to be similar to that of the first differences of the SP500 index: stochastic, nonlinear and (unit root) stationary.

  6. Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue

    NASA Astrophysics Data System (ADS)

    Kree, P.; Soize, C.

    The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.

  7. Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Xin, Ming

    2017-05-01

    Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.

  8. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  9. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  10. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.

    PubMed

    Barajas-Solano, David A; Tartakovsky, Alexandre M

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.

  11. Stochastic Representation of Chaos using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2005-01-01

    A nonlinear version of the Liouville equation based upon terminal attractors is proposed for describing post-instability motions of dynamical systems with exponential divergence of trajectories such as those leading to chaos and turbulence. As a result, the post-instability motions are represented by expectations, variances, and higher moments of the state variables as functions of time. The proposed approach can be applied to conservative chaos, and in particular, to n-bodies problem, as well as to dissipative systems, and in particular, to chaotic attractors and turbulence.

  12. Recovery from nonlinear creep provides a window into physics of polymer glasses

    NASA Astrophysics Data System (ADS)

    Caruthers, James; Medvedev, Grigori

    Creep under constant applied stress is one of the most basic mechanical experiments, where it exhibits extremely rich relaxation behavior for polymer glasses. As many as five distinct stages of nonlinear creep are observed, where the rate of creep dramatically slows down, accelerates and then slows down again. Modeling efforts to-date has primarily focused on predicting the intricacies of the nonlinear creep curve. We argue that as much attention should be paid to the creep recovery response, when the stress is removed. The experimental creep recovery curve is smooth, where the rate of recovery is initially quite rapid and then progressively decreases. In contrast, the majority of the traditional constitutive models predict recovery curves that are much too abrupt. A recently developed stochastic constitutive model that takes into account the dynamic heterogeneity of glasses produces a smooth creep recovery response that is consistent with experiment.

  13. Batch-mode Reinforcement Learning for improved hydro-environmental systems management

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R.

    2010-12-01

    Despite the great progresses made in the last decades, the optimal management of hydro-environmental systems still remains a very active and challenging research area. The combination of multiple, often conflicting interests, high non-linearities of the physical processes and the management objectives, strong uncertainties in the inputs, and high dimensional state makes the problem challenging and intriguing. Stochastic Dynamic Programming (SDP) is one of the most suitable methods for designing (Pareto) optimal management policies preserving the original problem complexity. However, it suffers from a dual curse, which, de facto, prevents its practical application to even reasonably complex water systems. (i) Computational requirement grows exponentially with state and control dimension (Bellman's curse of dimensionality), so that SDP can not be used with water systems where the state vector includes more than few (2-3) units. (ii) An explicit model of each system's component is required (curse of modelling) to anticipate the effects of the system transitions, i.e. any information included into the SDP framework can only be either a state variable described by a dynamic model or a stochastic disturbance, independent in time, with the associated pdf. Any exogenous information that could effectively improve the system operation cannot be explicitly considered in taking the management decision, unless a dynamic model is identified for each additional information, thus adding to the problem complexity through the curse of dimensionality (additional state variables). To mitigate this dual curse, the combined use of batch-mode Reinforcement Learning (bRL) and Dynamic Model Reduction (DMR) techniques is explored in this study. bRL overcomes the curse of modelling by replacing explicit modelling with an external simulator and/or historical observations. The curse of dimensionality is averted using a functional approximation of the SDP value function based on proper non-linear regressors. DMR reduces the complexity and the associated computational requirements of non-linear distributed process based models, making them suitable for being included into optimization schemes. Results from real world applications of the approach are also presented, including reservoir operation with both quality and quantity targets.

  14. Intrinsic nonlinearity and method of disturbed observations in inverse problems of celestial mechanics

    NASA Astrophysics Data System (ADS)

    Avdyushev, Victor A.

    2017-12-01

    Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the method of disturbed observations, we conclude that it practically should be still entirely acceptable to adequately describe the orbital uncertainty since, from a geometrical point of view, the efficiency of the method directly depends only on the nonflatness of the estimation subspace and it gets higher as the nonflatness decreases.

  15. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE PAGES

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...

    2018-02-20

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  17. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    NASA Astrophysics Data System (ADS)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  18. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The approach used follows the non-equilibrium statistical mechanical approach through a master equation. The aim is to represent the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and mass flux is a non-linear function of convective cell area, mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated mass flux variability under diurnally varying forcing. Besides its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of providing alternative, non-equilibrium, closure formulations for spectral mass flux parameterizations.« less

  19. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  20. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  1. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    DTIC Science & Technology

    2016-07-02

    great potential of chalcogenide microwires for applications in the mid-IR ranging from absorption spectroscopy to entangled photon pairs generation...modulation instability) gain. Stochastic nonlinear Schrödinger equation simulations were shown to be in very good agreement with experiment. This...as the seed coherence decreases. Stochastic nonlinear Schrödinger equation simulations of spectral and noise properties are in excellent agreement with

  2. Regenerating time series from ordinal networks.

    PubMed

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  3. Regenerating time series from ordinal networks

    NASA Astrophysics Data System (ADS)

    McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael

    2017-03-01

    Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.

  4. Microscopic Statistical Characterisation of the Congested Traffic Flow and Some Salient Empirical Features

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Yoon, Ji Wei; Monterola, Christopher

    We present large scale, detailed analysis of the microscopic empirical data of the congested traffic flow, focusing on the non-linear interactions between the components of the many-body traffic system. By implementing a systematic procedure that averages over relatively unimportant factors, we extract the effective dependence of the acceleration on the gap between the vehicles, velocity and relative velocity. Such relationship is characterised not just by a few vehicles but the traffic system as a whole. Several interesting features of the detailed vehicle-to-vehicle interactions are revealed, including the stochastic distribution of the human responses, relative importance of the non-linear terms in different density regimes, symmetric response to the relative velocity, and the insensitivity of the acceleration to the velocity within a certain gap and velocity range. The latter leads to a multitude of steady-states without a fundamental diagram. The empirically constructed functional dependence of the acceleration on the important dynamical quantities not only gives the detailed collective driving behaviours of the traffic system, it also serves as the fundamental reference for the validations of the deterministic and stochastic microscopic traffic models in the literature.

  5. Ergodicity of the Stochastic Nosé-Hoover Heat Bath

    NASA Astrophysics Data System (ADS)

    Wei Chung Lo,; Baowen Li,

    2010-07-01

    We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn. 77 (2008) 103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single- and many-body systems.

  6. Particle model for optical noisy image recovery via stochastic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-10-01

    We propose a particle model for investigating the optical noisy image recovery via stochastic resonance. The light propagating in nonlinear media is regarded as moving particles, which are used for analyzing the nonlinear coupling of signal and noise. Owing to nonlinearity, a signal seeds a potential to reinforce itself at the expense of noise. The applied electric field, noise intensity, and correlation length are important parameters that influence the recovery effects. The noise-hidden image with the signal-to-noise intensity ratio of 1:30 is successfully restored and an optimal cross-correlation gain of 6.1 is theoretically obtained.

  7. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.

    PubMed

    Chang, Pyung Hun; Kang, Sang Hoon

    2010-05-30

    The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.

  8. Nonlinear Dynamics, Noise and Cooperative Behavior in Affective Disorders

    NASA Astrophysics Data System (ADS)

    Huber, Martin

    2001-03-01

    Mood disorders tend to be recurrent and progressive and illness patterns typically evolve from isolated episodes at the beginning to more rapid, rhythmic and finally irregular "chaotic" mood patterns. This chararacteristic timecourse prompted the consideration of nonlinear dynamics as a way to describe and analyze course and disease states of mood disorders. Indeed, some evidences now exist indicating that low-dimensional dynamics underly the illness progression. To gain an understanding of prinicple mechanisms that might underly the course and disease patterns of mood disorders, we developed a phenomenological mathematical model for the disease course. In doing so, we made use of a neuronal analogy that exists between disease patterns and neuronal spike patterns and which is commonly referred to as the kindling model of mood disorders (Post, Am J of Psychiatry 1992,149:999-1010; Huber, Braun, Krieg, Biol Psychiatry 1999,46:256-262; Huber, Braun, Krieg, Biol Psychiatry 2000,47:634-642). Using a computational implementation of this approach we investigated the possible relevance of nonlinear dynamics for the disease course, the role of cooperative interactions between nonlinear and noisy dynamics as well as the effect of sensitization mechanisms between disease episodes and disease system. Our simulations show that a low-dimensional model can phenomenologically map the timecourse of mood disorders. From a functional perspective, the model indicates an important role for stochastic fluctuations which can amplify subthreshold states into disease states and can induce transitions to irregular rapidly changing disease patterns. Interesting dynamics are observed with respect to deterministically defined disease states and their dependence on noise intensity. Finally, our simulations show how sensitization effects quite naturally lead to a disease course which ends in irregular fluctuating disease patterns as observed in clinical data. Our findings indicate the usefulness of a computational approach as a way to understand and explain the complexity of temporal disease dynamics of mood disorders but also to procede to new experimental approaches for disease characterisation with the aim of better treatment options.

  9. Stochastic Integration H∞ Filter for Rapid Transfer Alignment of INS.

    PubMed

    Zhou, Dapeng; Guo, Lei

    2017-11-18

    The performance of an inertial navigation system (INS) operated on a moving base greatly depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of large initial attitude errors and uncertain observation noise statistics poses a great challenge for the estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear filter, namely the stochastic integration H ∞ filter (SIH ∞ F) for improving both the accuracy and robustness of RTA. In this new nonlinear H ∞ filter, the stochastic spherical-radial integration rule is incorporated with the framework of the derivative-free H ∞ filter for the first time, and the resulting SIH ∞ F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity and large uncertainty. Comparisons between the SIH ∞ F and previously well-known methodologies are carried out by means of numerical simulation and a van test. The results demonstrate that the newly-proposed method outperforms the cubature H ∞ filter. Moreover, the SIH ∞ F inherits the benefit of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.

  10. 1/f Noise from nonlinear stochastic differential equations.

    PubMed

    Ruseckas, J; Kaulakys, B

    2010-03-01

    We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.

  11. Collective effect of personal behavior induced preventive measures and differential rate of transmission on spread of epidemics

    NASA Astrophysics Data System (ADS)

    Sagar, Vikram; Zhao, Yi

    2017-02-01

    In the present work, the effect of personal behavior induced preventive measures is studied on the spread of epidemics over scale free networks that are characterized by the differential rate of disease transmission. The role of personal behavior induced preventive measures is parameterized in terms of variable λ, which modulates the number of concurrent contacts a node makes with the fraction of its neighboring nodes. The dynamics of the disease is described by a non-linear Susceptible Infected Susceptible model based upon the discrete time Markov Chain method. The network mean field approach is generalized to account for the effect of non-linear coupling between the aforementioned factors on the collective dynamics of nodes. The upper bound estimates of the disease outbreak threshold obtained from the mean field theory are found to be in good agreement with the corresponding non-linear stochastic model. From the results of parametric study, it is shown that the epidemic size has inverse dependence on the preventive measures (λ). It has also been shown that the increase in the average degree of the nodes lowers the time of spread and enhances the size of epidemics.

  12. Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.

    PubMed

    Dorval, A D; Christini, D J; White, J A

    2001-10-01

    We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.

  13. Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes

    PubMed Central

    Dobos, László; Király, András; Abonyi, János

    2012-01-01

    Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298

  14. Noise effects in nonlinear biochemical signaling

    NASA Astrophysics Data System (ADS)

    Bostani, Neda; Kessler, David A.; Shnerb, Nadav M.; Rappel, Wouter-Jan; Levine, Herbert

    2012-01-01

    It has been generally recognized that stochasticity can play an important role in the information processing accomplished by reaction networks in biological cells. Most treatments of that stochasticity employ Gaussian noise even though it is a priori obvious that this approximation can violate physical constraints, such as the positivity of chemical concentrations. Here, we show that even when such nonphysical fluctuations are rare, an exact solution of the Gaussian model shows that the model can yield unphysical results. This is done in the context of a simple incoherent-feedforward model which exhibits perfect adaptation in the deterministic limit. We show how one can use the natural separation of time scales in this model to yield an approximate model, that is analytically solvable, including its dynamical response to an environmental change. Alternatively, one can employ a cutoff procedure to regularize the Gaussian result.

  15. Extreme wave formation in unidirectional sea due to stochastic wave phase dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Balachandran, Balakumar

    2018-07-01

    The authors consider a stochastic model based on the interaction and phase coupling amongst wave components that are modified envelope soliton solutions to the nonlinear Schrödinger equation. A probabilistic study is carried out and the resulting findings are compared with ocean wave field observations and laboratory experimental results. The wave height probability distribution obtained from the model is found to match well with prior data in the large wave height region. From the eigenvalue spectrum obtained through the Inverse Scattering Transform, it is revealed that the deep-water wave groups move at a speed different from the linear group speed, which justifies the inclusion of phase correction to the envelope solitary wave components. It is determined that phase synchronization amongst elementary solitary wave components can be critical for the formation of extreme waves in unidirectional sea states.

  16. Dynamically orthogonal field equations for stochastic flows and particle dynamics

    DTIC Science & Technology

    2011-02-01

    where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new

  17. Dynamics of the mean signal amplitude of a crystal oscillator with a nonlinear resonator and low drives

    NASA Astrophysics Data System (ADS)

    Shmaliy, Yuriy S.; Rosales, Juan

    2004-09-01

    Dynamics of the mean amplitude of oscillations of a crystal oscillator with a linear feedback is outlined for low drives when the losses (friction) of a resonator become large and nonlinear after a long storage. The drive-level-dependence (DLD) of the crystal resonator losses is assumed to change inversely to the piezoelectric current. A stochastic differential equation for the mean amplitude is derived and solved in a sense of Ito. The development and attenuation processes are learned and it is shown that attenuation finishes at some non-zero level associated with the effect termed "sleeping sickness." The critical value of the friction is calculated and the conditions are discussed to avoid attenuation. Based upon, we show in that (1) if the value of the DLD coefficient of the resonator losses ranges below the critical point, the effect occurs primarilly in a delay of self-excitation; (2) contrary, noise drives the crystal oscillator.

  18. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dsilva, Carmeline J., E-mail: cdsilva@princeton.edu; Talmon, Ronen, E-mail: ronen.talmon@yale.edu; Coifman, Ronald R., E-mail: coifman@math.yale.edu

    2013-11-14

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certainmore » simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.« less

  19. Nonlinear intrinsic variables and state reconstruction in multiscale simulations

    NASA Astrophysics Data System (ADS)

    Dsilva, Carmeline J.; Talmon, Ronen; Rabin, Neta; Coifman, Ronald R.; Kevrekidis, Ioannis G.

    2013-11-01

    Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certain simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water.

  20. Solar flux forecasting using mutual information with an optimal delay

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Conway, D.; Rokni, M.; Sperling, R.; Roszman, L.; Cooley, J.

    1993-01-01

    Solar flux F(sub 10.7) directly affects the atmospheric density, thereby changing the lifetime and prediction of satellite orbits. For this reason, accurate forecasting of F(sub 10.7) is crucial for orbit determination of spacecraft. Our attempts to model and forecast F(sub 10.7) uncovered highly entangled dynamics. We concluded that the general lack of predictability in solar activity arises from its nonlinear nature. Nonlinear dynamics allow us to predict F(sub 10.7) more accurately than is possible using stochastic methods for time scales shorter than a characteristic horizon, and with about the same accuracy as using stochastic techniques when the forecasted data exceed this horizon. The forecast horizon is a function of two dynamical invariants: the attractor dimension and the Lyapunov exponent. In recent years, estimation of the attractor dimension reconstructed from a time series has become an important tool in data analysis. In calculating the invariants of the system, the first necessary step is the reconstruction of the attractor for the system from the time-delayed values of the time series. The choice of the time delay is critical for this reconstruction. For an infinite amount of noise-free data, the time delay can, in principle, be chosen almost arbitrarily. However, the quality of the phase portraits produced using the time-delay technique is determined by the value chosen for the delay time. Fraser and Swinney have shown that a good choice for this time delay is the one suggested by Shaw, which uses the first local minimum of the mutual information rather than the autocorrelation function to determine the time delay. This paper presents a refinement of this criterion and applies the refined technique to solar flux data to produce a forecast of the solar activity.

  1. Advanced data assimilation in strongly nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert N.; Ghil, Michael; Gauthiez, Francois

    1994-01-01

    Advanced data assimilation methods are applied to simple but highly nonlinear problems. The dynamical systems studied here are the stochastically forced double well and the Lorenz model. In both systems, linear approximation of the dynamics about the critical points near which regime transitions occur is not always sufficient to track their occurrence or nonoccurrence. Straightforward application of the extended Kalman filter yields mixed results. The ability of the extended Kalman filter to track transitions of the double-well system from one stable critical point to the other depends on the frequency and accuracy of the observations relative to the mean-square amplitude of the stochastic forcing. The ability of the filter to track the chaotic trajectories of the Lorenz model is limited to short times, as is the ability of strong-constraint variational methods. Examples are given to illustrate the difficulties involved, and qualitative explanations for these difficulties are provided. Three generalizations of the extended Kalman filter are described. The first is based on inspection of the innovation sequence, that is, the successive differences between observations and forecasts; it works very well for the double-well problem. The second, an extension to fourth-order moments, yields excellent results for the Lorenz model but will be unwieldy when applied to models with high-dimensional state spaces. A third, more practical method--based on an empirical statistical model derived from a Monte Carlo simulation--is formulated, and shown to work very well. Weak-constraint methods can be made to perform satisfactorily in the context of these simple models, but such methods do not seem to generalize easily to practical models of the atmosphere and ocean. In particular, it is shown that the equations derived in the weak variational formulation are difficult to solve conveniently for large systems.

  2. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    PubMed

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  3. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  4. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints.

    PubMed

    Wang, Huanqing; Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong

    2013-12-01

    This paper is concerned with the problem of adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with input saturation. To overcome the design difficulty from nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is first introduced to approximate the saturation function; then, an adaptive fuzzy tracking controller based on the mean-value theorem is constructed by using backstepping technique. The proposed adaptive fuzzy controller guarantees that all signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighborhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.

  5. Epidemic spreading on adaptively weighted scale-free networks.

    PubMed

    Sun, Mengfeng; Zhang, Haifeng; Kang, Huiyan; Zhu, Guanghu; Fu, Xinchu

    2017-04-01

    We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.

  6. Optimization of an electromagnetic linear actuator using a network and a finite element model

    NASA Astrophysics Data System (ADS)

    Neubert, Holger; Kamusella, Alfred; Lienig, Jens

    2011-03-01

    Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.

  7. Stochastic Multiscale Analysis and Design of Engine Disks

    DTIC Science & Technology

    2010-07-28

    shown recently to fail when used with data-driven non-linear stochastic input models (KPCA, IsoMap, etc.). Need for scalable exascale computing algorithms Materials Process Design and Control Laboratory Cornell University

  8. Nonlinear unitary quantum collapse model with self-generated noise

    NASA Astrophysics Data System (ADS)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  9. A novel framework to simulating non-stationary, non-linear, non-Normal hydrological time series using Markov Switching Autoregressive Models

    NASA Astrophysics Data System (ADS)

    Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.

    2012-12-01

    In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.

  10. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  11. From quantum stochastic differential equations to Gisin-Percival state diffusion

    NASA Astrophysics Data System (ADS)

    Parthasarathy, K. R.; Usha Devi, A. R.

    2017-08-01

    Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.

  12. Dynamic Theory of Relativistic Electrons Stochastic Heating by Whistler Mode Waves with Application to the Earth Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2007-01-01

    In the Hamiltonian approach an electron motion in a coherent packet of the whistler mode waves propagating along the direction of an ambient magnetic field is studied. The physical processes by which these particles are accelerated to high energy are established. Equations governing a particle motion were transformed in to a closed pair of nonlinear difference equations. The solutions of these equations have shown there exists the energetic threshold below that the electron motion is regular, and when the initial energy is above the threshold an electron moves stochastically. Particle energy spectra and pitch angle electron scattering are described by the Fokker-Planck-Kolmogorov equations. Calculating the stochastic diffusion of electrons due to a spectrum of whistler modes is presented. The parametric dependence of the diffusion coefficients on the plasma particle density, magnitude of wave field, and the strength of magnetic field is studies. It is shown that significant pitch angle diffusion occurs for the Earth radiation belt electrons with energies from a few keV up to a few MeV.

  13. Stochastic Computations in Cortical Microcircuit Models

    PubMed Central

    Maass, Wolfgang

    2013-01-01

    Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons and synapses, have a stationary distribution of network states and trajectories of network states to which they converge exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations, separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems, where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry out complex computational tasks such as prediction, imagination, memory recall and problem solving. PMID:24244126

  14. Stochastic filtering for damage identification through nonlinear structural finite element model updating

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.

    2015-03-01

    This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.

  15. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  16. Network-based stochastic semisupervised learning.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-03-01

    Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

  17. Probabilistic Structural Analysis Theory Development

    NASA Technical Reports Server (NTRS)

    Burnside, O. H.

    1985-01-01

    The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.

  18. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  19. Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion

    NASA Astrophysics Data System (ADS)

    Li, Z.; Ghaith, M.

    2017-12-01

    Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.

  20. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  1. Information Processing Capacity of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  2. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    NASA Astrophysics Data System (ADS)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-01

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  3. Information Processing Capacity of Dynamical Systems

    PubMed Central

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gur, Sourav; Frantziskonis, George N.; Univ. of Arizona, Tucson, AZ

    Here, we report results from a numerical study of multi-time-scale bistable dynamics for CO oxidation on a catalytic surface in a flowing, well-mixed gas stream. The problem is posed in terms of surface and gas-phase submodels that dynamically interact in the presence of stochastic perturbations, reflecting the impact of molecular-scale fluctuations on the surface and turbulence in the gas. Wavelet-based methods are used to encode and characterize the temporal dynamics produced by each submodel and detect the onset of sudden state shifts (bifurcations) caused by nonlinear kinetics. When impending state shifts are detected, a more accurate but computationally expensive integrationmore » scheme can be used. This appears to make it possible, at least in some cases, to decrease the net computational burden associated with simulating multi-time-scale, nonlinear reacting systems by limiting the amount of time in which the more expensive integration schemes are required. Critical to achieving this is being able to detect unstable temporal transitions such as the bistable shifts in the example problem considered here. Lastly, our results indicate that a unique wavelet-based algorithm based on the Lipschitz exponent is capable of making such detections, even under noisy conditions, and may find applications in critical transition detection problems beyond catalysis.« less

  5. Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; O. Redelico, Francisco

    2018-04-01

    In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.

  6. Reduced nonlinear prognostic model construction from high-dimensional data

    NASA Astrophysics Data System (ADS)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2017-04-01

    Construction of a data-driven model of evolution operator using universal approximating functions can only be statistically justified when the dimension of its phase space is small enough, especially in the case of short time series. At the same time in many applications real-measured data is high-dimensional, e.g. it is space-distributed and multivariate in climate science. Therefore it is necessary to use efficient dimensionality reduction methods which are also able to capture key dynamical properties of the system from observed data. To address this problem we present a Bayesian approach to an evolution operator construction which incorporates two key reduction steps. First, the data is decomposed into a set of certain empirical modes, such as standard empirical orthogonal functions or recently suggested nonlinear dynamical modes (NDMs) [1], and the reduced space of corresponding principal components (PCs) is obtained. Then, the model of evolution operator for PCs is constructed which maps a number of states in the past to the current state. The second step is to reduce this time-extended space in the past using appropriate decomposition methods. Such a reduction allows us to capture only the most significant spatio-temporal couplings. The functional form of the evolution operator includes separately linear, nonlinear (based on artificial neural networks) and stochastic terms. Explicit separation of the linear term from the nonlinear one allows us to more easily interpret degree of nonlinearity as well as to deal better with smooth PCs which can naturally occur in the decompositions like NDM, as they provide a time scale separation. Results of application of the proposed method to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510

  7. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation.

    PubMed

    Zimmer, Christoph

    2016-01-01

    Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.

  8. Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method

    NASA Astrophysics Data System (ADS)

    Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.

    2017-03-01

    We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.

  9. Theory of time-averaged neutral dynamics with environmental stochasticity

    NASA Astrophysics Data System (ADS)

    Danino, Matan; Shnerb, Nadav M.

    2018-04-01

    Competition is the main driver of population dynamics, which shapes the genetic composition of populations and the assembly of ecological communities. Neutral models assume that all the individuals are equivalent and that the dynamics is governed by demographic (shot) noise, with a steady state species abundance distribution (SAD) that reflects a mutation-extinction equilibrium. Recently, many empirical and theoretical studies emphasized the importance of environmental variations that affect coherently the relative fitness of entire populations. Here we consider two generic time-averaged neutral models; in both the relative fitness of each species fluctuates independently in time but its mean is zero. The first (model A) describes a system with local competition and linear fitness dependence of the birth-death rates, while in the second (model B) the competition is global and the fitness dependence is nonlinear. Due to this nonlinearity, model B admits a noise-induced stabilization mechanism that facilitates the invasion of new mutants. A self-consistent mean-field approach is used to reduce the multispecies problem to two-species dynamics, and the large-N asymptotics of the emerging set of Fokker-Planck equations is presented and solved. Our analytic expressions are shown to fit the SADs obtained from extensive Monte Carlo simulations and from numerical solutions of the corresponding master equations.

  10. The amazing evolutionary dynamics of non-linear optical systems with feedback

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Leonid

    2013-09-01

    Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.

  11. Idempotent Methods for Continuous Time Nonlinear Stochastic Control

    DTIC Science & Technology

    2012-09-13

    AND ADDRESS(ES) dba AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Stochastech Corporation dba Tempest Technologies 8939 S...Stochastic Control Problems Ben G. Fitzpatrick Tempest Technologies 8939 S. Sepulveda Boulevard, Suite 506 Los Angeles, CA 90045 Sponsored by

  12. Stochastic stability of sigma-point Unscented Predictive Filter.

    PubMed

    Cao, Lu; Tang, Yu; Chen, Xiaoqian; Zhao, Yong

    2015-07-01

    In this paper, the Unscented Predictive Filter (UPF) is derived based on unscented transformation for nonlinear estimation, which breaks the confine of conventional sigma-point filters by employing Kalman filter as subject investigated merely. In order to facilitate the new method, the algorithm flow of UPF is given firstly. Then, the theoretical analyses demonstrate that the estimate accuracy of the model error and system for the UPF is higher than that of the conventional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of Unscented Predictive Filter (UPF) for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that the estimation error remains bounded and the covariance keeps stable if the system׳s initial estimation error, disturbing noise terms as well as the model error are small enough, which is the core part of the UPF theory. All of the results have been demonstrated by numerical simulations for a nonlinear example system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. On the pth moment estimates of solutions to stochastic functional differential equations in the G-framework.

    PubMed

    Faizullah, Faiz

    2016-01-01

    The aim of the current paper is to present the path-wise and moment estimates for solutions to stochastic functional differential equations with non-linear growth condition in the framework of G-expectation and G-Brownian motion. Under the nonlinear growth condition, the pth moment estimates for solutions to SFDEs driven by G-Brownian motion are proved. The properties of G-expectations, Hölder's inequality, Bihari's inequality, Gronwall's inequality and Burkholder-Davis-Gundy inequalities are used to develop the above mentioned theory. In addition, the path-wise asymptotic estimates and continuity of pth moment for the solutions to SFDEs in the G-framework, with non-linear growth condition are shown.

  14. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  15. Event-based recursive filtering for a class of nonlinear stochastic parameter systems over fading channels

    NASA Astrophysics Data System (ADS)

    Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2018-07-01

    In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.

  16. Stochastic Estimation and Non-Linear Wall-Pressure Sources in a Separating/Reattaching Flow

    NASA Technical Reports Server (NTRS)

    Naguib, A.; Hudy, L.; Humphreys, W. M., Jr.

    2002-01-01

    Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.

  17. Sustainability of transport structures - some aspects of the nonlinear reliability assessment

    NASA Astrophysics Data System (ADS)

    Pukl, Radomír; Sajdlová, Tereza; Strauss, Alfred; Lehký, David; Novák, Drahomír

    2017-09-01

    Efficient techniques for both nonlinear numerical analysis of concrete structures and advanced stochastic simulation methods have been combined in order to offer an advanced tool for assessment of realistic behaviour, failure and safety assessment of transport structures. The utilized approach is based on randomization of the non-linear finite element analysis of the structural models. Degradation aspects such as carbonation of concrete can be accounted in order predict durability of the investigated structure and its sustainability. Results can serve as a rational basis for the performance and sustainability assessment based on advanced nonlinear computer analysis of the structures of transport infrastructure such as bridges or tunnels. In the stochastic simulation the input material parameters obtained from material tests including their randomness and uncertainty are represented as random variables or fields. Appropriate identification of material parameters is crucial for the virtual failure modelling of structures and structural elements. Inverse analysis using artificial neural networks and virtual stochastic simulations approach is applied to determine the fracture mechanical parameters of the structural material and its numerical model. Structural response, reliability and sustainability have been investigated on different types of transport structures made from various materials using the above mentioned methodology and tools.

  18. Unveiling Galaxy Bias via the Halo Model, KiDS and GAMA

    NASA Astrophysics Data System (ADS)

    Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Schneider, Peter; Amon, Alexandra; Nakajima, Reiko; Viola, Massimo; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Heymans, Catherine; Hildebrandt, Hendrik; Sifón, Cristóbal; Wang, Lingyu

    2018-06-01

    We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function Γgm(rp), where rp is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of Γgm(rp), and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.

  19. Nonlinear dynamics in the perceptual grouping of connected surfaces.

    PubMed

    Hock, Howard S; Schöner, Gregor

    2016-09-01

    Evidence obtained using the dynamic grouping method has shown that the grouping of an object's connected surfaces has properties characteristic of a nonlinear dynamical system. When a surface's luminance changes, one of its boundaries is perceived moving across the surface. The direction of this dynamic grouping (DG) motion indicates which of two flanking surfaces has been grouped with the changing surface. A quantitative measure of overall grouping strength (affinity) for adjacent surfaces is provided by the frequency of DG motion perception in directions promoted by the grouping variables. It was found that: (1) variables affecting surface grouping for three-surface objects evolve over time, settling at stable levels within a single fixation, (2) how often DG motion is perceived when a surface's luminance is perturbed (changed) depends on the pre-perturbation affinity state of the surface grouping, (3) grouping variables promoting the same surface grouping combine cooperatively and nonlinearly (super-additively) in determining the surface grouping's affinity, (4) different DG motion directions during different trials indicate that surface grouping can be bistable, which implies that inhibitory interactions have stabilized one of two alternative surface groupings, and (5) when alternative surface groupings have identical affinity, stochastic fluctuations can break the symmetry and inhibitory interactions can then stabilize one of the surface groupings, providing affinity levels are not too high (which results in bidirectional DG motion). A surface-grouping network is proposed within which boundaries vary in salience. Low salience or suppressed boundaries instantiate surface grouping, and DG motion results from changes in boundary salience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousedík, Bedřich, E-mail: sousedik@umbc.edu; Elman, Howard C., E-mail: elman@cs.umd.edu

    2016-07-01

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less

  1. Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates

    NASA Astrophysics Data System (ADS)

    Chang, Zhengbo; Meng, Xinzhu; Lu, Xiao

    2017-04-01

    This paper presents a stochastic SIRS epidemic model with two different nonlinear incidence rates and double epidemic asymmetrical hypothesis, and we devote to develop a mathematical method to obtain the threshold of the stochastic epidemic model. We firstly investigate the boundness and extinction of the stochastic system. Furthermore, we use Ito's formula, the comparison theorem and some new inequalities techniques of stochastic differential systems to discuss persistence in mean of two diseases on three cases. The results indicate that stochastic fluctuations can suppress the disease outbreak. Finally, numerical simulations about different noise disturbance coefficients are carried out to illustrate the obtained theoretical results.

  2. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    DOE PAGES

    Sousedík, Bedřich; Elman, Howard C.

    2016-04-12

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less

  3. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.

    PubMed

    Heinz, M G; Colburn, H S; Carney, L H

    2001-10-01

    The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.

  4. Water resources planning and management : A stochastic dual dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Pinte, D.; Tilmant, A.

    2008-12-01

    Allocating water between different users and uses, including the environment, is one of the most challenging task facing water resources managers and has always been at the heart of Integrated Water Resources Management (IWRM). As water scarcity is expected to increase over time, allocation decisions among the different uses will have to be found taking into account the complex interactions between water and the economy. Hydro-economic optimization models can capture those interactions while prescribing efficient allocation policies. Many hydro-economic models found in the literature are formulated as large-scale non linear optimization problems (NLP), seeking to maximize net benefits from the system operation while meeting operational and/or institutional constraints, and describing the main hydrological processes. However, those models rarely incorporate the uncertainty inherent to the availability of water, essentially because of the computational difficulties associated stochastic formulations. The purpose of this presentation is to present a stochastic programming model that can identify economically efficient allocation policies in large-scale multipurpose multireservoir systems. The model is based on stochastic dual dynamic programming (SDDP), an extension of traditional SDP that is not affected by the curse of dimensionality. SDDP identify efficient allocation policies while considering the hydrologic uncertainty. The objective function includes the net benefits from the hydropower and irrigation sectors, as well as penalties for not meeting operational and/or institutional constraints. To be able to implement the efficient decomposition scheme that remove the computational burden, the one-stage SDDP problem has to be a linear program. Recent developments improve the representation of the non-linear and mildly non- convex hydropower function through a convex hull approximation of the true hydropower function. This model is illustrated on a cascade of 14 reservoirs on the Nile river basin.

  5. Normal forms for reduced stochastic climate models

    PubMed Central

    Majda, Andrew J.; Franzke, Christian; Crommelin, Daan

    2009-01-01

    The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943

  6. Gompertzian stochastic model with delay effect to cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  7. Nonlinear dynamics of cardiovascular ageing

    PubMed Central

    Shiogai, Y.; Stefanovska, A.; McClintock, P.V.E.

    2010-01-01

    The application of methods drawn from nonlinear and stochastic dynamics to the analysis of cardiovascular time series is reviewed, with particular reference to the identification of changes associated with ageing. The natural variability of the heart rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA) corresponding to modulation of the instantaneous cardiac frequency by the rhythm of respiration. HRV has been intensively studied using traditional spectral analyses, e.g. by Fourier transform or autoregressive methods, and, because of its complexity, has been used as a paradigm for testing several proposed new methods of complexity analysis. These methods are reviewed. The application of time–frequency methods to HRV is considered, including in particular the wavelet transform which can resolve the time-dependent spectral content of HRV. Attention is focused on the cardio-respiratory interaction by introduction of the respiratory frequency variability signal (RFV), which can be acquired simultaneously with HRV by use of a respiratory effort transducer. Current methods for the analysis of interacting oscillators are reviewed and applied to cardio-respiratory data, including those for the quantification of synchronization and direction of coupling. These reveal the effect of ageing on the cardio-respiratory interaction through changes in the mutual modulation of the instantaneous cardiac and respiratory frequencies. Analyses of blood flow signals recorded with laser Doppler flowmetry are reviewed and related to the current understanding of how endothelial-dependent oscillations evolve with age: the inner lining of the vessels (the endothelium) is shown to be of crucial importance to the emerging picture. It is concluded that analyses of the complex and nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of blood circulation, and that the heart, the lungs and the vascular system function as a single entity in dynamical terms. Clear evidence is found for dynamical ageing. PMID:20396667

  8. Nonlinear dynamics of cardiovascular ageing

    NASA Astrophysics Data System (ADS)

    Shiogai, Y.; Stefanovska, A.; McClintock, P. V. E.

    2010-03-01

    The application of methods drawn from nonlinear and stochastic dynamics to the analysis of cardiovascular time series is reviewed, with particular reference to the identification of changes associated with ageing. The natural variability of the heart rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA) corresponding to modulation of the instantaneous cardiac frequency by the rhythm of respiration. HRV has been intensively studied using traditional spectral analyses, e.g. by Fourier transform or autoregressive methods, and, because of its complexity, has been used as a paradigm for testing several proposed new methods of complexity analysis. These methods are reviewed. The application of time-frequency methods to HRV is considered, including in particular the wavelet transform which can resolve the time-dependent spectral content of HRV. Attention is focused on the cardio-respiratory interaction by introduction of the respiratory frequency variability signal (RFV), which can be acquired simultaneously with HRV by use of a respiratory effort transducer. Current methods for the analysis of interacting oscillators are reviewed and applied to cardio-respiratory data, including those for the quantification of synchronization and direction of coupling. These reveal the effect of ageing on the cardio-respiratory interaction through changes in the mutual modulation of the instantaneous cardiac and respiratory frequencies. Analyses of blood flow signals recorded with laser Doppler flowmetry are reviewed and related to the current understanding of how endothelial-dependent oscillations evolve with age: the inner lining of the vessels (the endothelium) is shown to be of crucial importance to the emerging picture. It is concluded that analyses of the complex and nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of blood circulation, and that the heart, the lungs and the vascular system function as a single entity in dynamical terms. Clear evidence is found for dynamical ageing.

  9. Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States

    PubMed Central

    Orio, Patricio; Soudry, Daniel

    2012-01-01

    Background The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. Main Contributions We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used. PMID:22629320

  10. An Alternative Approach to the Operation of Multinational Reservoir Systems: Application to the Amistad & Falcon System (Lower Rio Grande/Rí-o Bravo)

    NASA Astrophysics Data System (ADS)

    Serrat-Capdevila, A.; Valdes, J. B.

    2005-12-01

    An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithms, both steady-state and real-time, to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.

  11. Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; He, Q. Y.; Reid, M. D.; Drummond, P. D.

    2012-08-01

    We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. A local nonlinear S-wave scattering interaction has the effect of creating spin squeezing at each well, while a tunneling coupling, analogous to a beam splitter in optics, introduces an interference between these fields that causes interwell entanglement. We consider two internal modes at each well so that the entanglement can be detected by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number. It becomes sufficiently strong at higher numbers of atoms so that the EPR paradox and steering nonlocality can be realized. The entanglement is predicted using an analytical approach and, for larger atom numbers, using stochastic simulations based on a truncated Wigner function approximation. We find generally that strong tunneling is favorable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.

  12. Stochastic nonlinear electrical characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Jun Shin, Young; Gopinadhan, Kalon; Narayanapillai, Kulothungasagaran; Kalitsov, Alan; Bhatia, Charanjit S.; Yang, Hyunsoo

    2013-01-01

    A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 103. It is found that graphene channel experiences the topological change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.

  13. Collaborative Research: Robust Climate Projections and Stochastic Stability of Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilya Zaliapin

    This project focused on conceptual exploration of El Nino/Southern Oscillation (ENSO) variability and sensitivity using a Delay Differential Equation developed in the project. We have (i) established the existence and continuous dependence of solutions of the model (ii) explored multiple models solutions, and the distribution of solutions extrema, and (iii) established and explored the phase locking phenomenon and the existence of multiple solutions for the same values of model parameters. In addition, we have applied to our model the concept of pullback attractor, which greatly facilitated predictive understanding of the nonlinear model's behavior.

  14. Noise stabilization of self-organized memories.

    PubMed

    Povinelli, M L; Coppersmith, S N; Kadanoff, L P; Nagel, S R; Venkataramani, S C

    1999-05-01

    We investigate a nonlinear dynamical system which "remembers" preselected values of a system parameter. The deterministic version of the system can encode many parameter values during a transient period, but in the limit of long times, almost all of them are forgotten. Here we show that a certain type of stochastic noise can stabilize multiple memories, enabling many parameter values to be encoded permanently. We present analytic results that provide insight both into the memory formation and into the noise-induced memory stabilization. The relevance of our results to experiments on the charge-density wave material NbSe3 is discussed.

  15. Gesellschaft fuer angewandte Mathematik und Mechanik, Annual Scientific Meeting, Universitaet Regensburg, Regensburg, West Germany, April 16-19, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Problems in applied mathematics and mechanics are addressed in reviews and reports. Areas covered are vibration and stability, elastic and plastic mechanics, fluid mechanics, the numerical treatment of differential equations (general theory and finite-element methods in particular), optimization, decision theory, stochastics, actuarial mathematics, applied analysis and mathematical physics, and numerical analysis. Included are major lectures on separated flows, the transition regime of rarefied-gas dynamics, recent results in nonlinear elasticity, fluid-elastic vibration, the new computer arithmetic, and unsteady wave propagation in layered elastic bodies.

  16. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation

    PubMed Central

    Zimmer, Christoph

    2016-01-01

    Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802

  17. Bioengineering Spin-Offs from Dynamical Systems Theory

    NASA Astrophysics Data System (ADS)

    Collins, J. J.

    1997-03-01

    Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.

  18. Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type

    NASA Astrophysics Data System (ADS)

    Scarpa, Luca

    2017-08-01

    We prove well-posedness for doubly nonlinear parabolic stochastic partial differential equations of the form dXt - div γ (∇Xt) dt + β (Xt) dt ∋ B (t ,Xt) dWt, where γ and β are the two nonlinearities, assumed to be multivalued maximal monotone operators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener process. Using variational techniques, suitable uniform estimates (both pathwise and in expectation) and some compactness results, well-posedness is proved under the classical Leray-Lions conditions on γ and with no restrictive smoothness or growth assumptions on β. The operator B is assumed to be Hilbert-Schmidt and to satisfy some classical Lipschitz conditions in the second variable.

  19. Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats

    PubMed Central

    Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.

    2011-01-01

    Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661

  20. Effects of thermal noise on the transitional dynamics of an inextensible elastic filament in stagnation flow.

    PubMed

    Deng, Mingge; Grinberg, Leopold; Caswell, Bruce; Karniadakis, George Em

    2015-06-28

    We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike previous works, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.

  1. Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve?

    PubMed

    Karev, Georgy P; Wolf, Yuri I; Koonin, Eugene V

    2003-10-12

    The distributions of many genome-associated quantities, including the membership of paralogous gene families can be approximated with power laws. We are interested in developing mathematical models of genome evolution that adequately account for the shape of these distributions and describe the evolutionary dynamics of their formation. We show that simple stochastic models of genome evolution lead to power-law asymptotics of protein domain family size distribution. These models, called Birth, Death and Innovation Models (BDIM), represent a special class of balanced birth-and-death processes, in which domain duplication and deletion rates are asymptotically equal up to the second order. The simplest, linear BDIM shows an excellent fit to the observed distributions of domain family size in diverse prokaryotic and eukaryotic genomes. However, the stochastic version of the linear BDIM explored here predicts that the actual size of large paralogous families is reached on an unrealistically long timescale. We show that introduction of non-linearity, which might be interpreted as interaction of a particular order between individual family members, allows the model to achieve genome evolution rates that are much better compatible with the current estimates of the rates of individual duplication/loss events.

  2. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  3. Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.

    PubMed

    Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong

    2017-10-01

    This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.

  4. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    PubMed

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  5. Nonlinear Synergistic Emergence and Predictability in Complex Systems: Theory and Hydro-Climatic Applications

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Hall, Julia; Pires, Carlos A. L.; Blöschl, Günter

    2017-04-01

    Classical and stochastic dynamical system theories assume structural coherence and dynamic recurrence with invariants of motion that are not necessarily so. These are grounded on the unproven assumption of universality in the dynamic laws derived from statistical kinematic evaluation of non-representative empirical records. As a consequence, the associated formulations revolve around a restrictive set of configurations and intermittencies e.g. in an ergodic setting, beyond which any predictability is essentially elusive. Moreover, dynamical systems are fundamentally framed around dynamic codependence among intervening processes, i.e. entail essentially redundant interactions such as couplings and feedbacks. That precludes synergistic cooperation among processes that, whilst independent from each other, jointly produce emerging dynamic behaviour not present in any of the intervening parties. In order to overcome these fundamental limitations, we introduce a broad class of non-recursive dynamical systems that formulate dynamic emergence of unprecedented states in a fundamental synergistic manner, with fundamental principles in mind. The overall theory enables innovations to be predicted from the internal system dynamics before any a priori information is provided about the associated dynamical properties. The theory is then illustrated to anticipate, from non-emergent records, the spatiotemporal emergence of multiscale hyper chaotic regimes, critical transitions and structural coevolutionary changes in synthetic and real-world complex systems. Example applications are provided within the hydro-climatic context, formulating and dynamically forecasting evolving hydro-climatic distributions, including the emergence of extreme precipitation and flooding in a structurally changing hydro-climate system. Validation is then conducted with a posteriori verification of the simulated dynamics against observational records. Agreement between simulations and observations is confirmed with robust nonlinear information diagnostics.

  6. Developing stochastic model of thrust and flight dynamics for small UAVs

    NASA Astrophysics Data System (ADS)

    Tjhai, Chandra

    This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.

  7. Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.

    PubMed

    Grossi, Giuliano

    2009-08-01

    Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-optimal solutions of several difficult combinatorial problems. In many cases, the network energy function is obtained through a learning procedure so that its minima are states falling into a proper subspace (feasible region) of the search space. However, because of the network nonlinearity, a number of undesirable local energy minima emerge from the learning procedure, significantly effecting the network performance. In the neural model analyzed here, we combine both a penalty and a stochastic process in order to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network topology, the desired final distribution on the states can be reached by carefully modulating such process. The model uses pseudo-Boolean functions both to express problem constraints and cost function; a combination of these two functions is then interpreted as energy of the neural network. A wide variety of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial time) to maximize. We show the asymptotic convergence properties of this model characterizing its state space distribution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high quality solutions on benchmarks and randomly generated instances of two specific problems taken from the computational graph theory.

  8. Nonlinear Stochastic Markov Processes and Modeling Uncertainty in Populations

    DTIC Science & Technology

    2011-07-06

    219–232. [26] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer, New York, 1991. [27] F. Klebaner...ubiquitous in mathematics and physics (e.g., particle transport, filtering), biology (population models), finance (e.g., Black-Scholes equations) among other

  9. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  10. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    NASA Astrophysics Data System (ADS)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.

  11. Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion.

    PubMed

    Sathiyaraj, T; Balasubramaniam, P

    2017-11-30

    This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  13. Time varying moments, regime switch, and crisis warning: The birth-death process with changing transition probability

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2014-06-01

    The sub-prime crisis in the U.S. reveals the limitation of diversification strategy based on mean-variance analysis. A regime switch and a turning point can be observed using a high moment representation and time-dependent transition probability. Up-down price movements are induced by interactions among agents, which can be described by the birth-death (BD) process. Financial instability is visible by dramatically increasing 3rd to 5th moments one-quarter before and during the crisis. The sudden rising high moments provide effective warning signals of a regime-switch or a coming crisis. The critical condition of a market breakdown can be identified from nonlinear stochastic dynamics. The master equation approach of population dynamics provides a unified theory of a calm and turbulent market.

  14. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics

    PubMed Central

    Cotter, C. J.

    2017-01-01

    In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow. PMID:28989316

  15. Empirical Investigation of Critical Transitions in Paleoclimate

    NASA Astrophysics Data System (ADS)

    Loskutov, E. M.; Mukhin, D.; Gavrilov, A.; Feigin, A.

    2016-12-01

    In this work we apply a new empirical method for the analysis of complex spatially distributed systems to the analysis of paleoclimate data. The method consists of two general parts: (i) revealing the optimal phase-space variables and (ii) construction the empirical prognostic model by observed time series. The method of phase space variables construction based on the data decomposition into nonlinear dynamical modes which was successfully applied to global SST field and allowed clearly separate time scales and reveal climate shift in the observed data interval [1]. The second part, the Bayesian approach to optimal evolution operator reconstruction by time series is based on representation of evolution operator in the form of nonlinear stochastic function represented by artificial neural networks [2,3]. In this work we are focused on the investigation of critical transitions - the abrupt changes in climate dynamics - in match longer time scale process. It is well known that there were number of critical transitions on different time scales in the past. In this work, we demonstrate the first results of applying our empirical methods to analysis of paleoclimate variability. In particular, we discuss the possibility of detecting, identifying and prediction such critical transitions by means of nonlinear empirical modeling using the paleoclimate record time series. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep155102. Ya. I. Molkov, D. N. Mukhin, E. M. Loskutov, A.M. Feigin, (2012) : Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.3. Mukhin, D., Kondrashov, D., Loskutov, E., Gavrilov, A., Feigin, A., & Ghil, M. (2015). Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models. Journal of Climate, 28(5), 1962-1976. http://doi.org/10.1175/JCLI-D-14-00240.1

  16. Quantum-field-theoretical approach to phase-space techniques: Generalizing the positive-P representation

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.

    2003-01-01

    We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.

  17. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  18. Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot attitude estimation.

    PubMed

    Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin

    2014-03-01

    Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.

  19. Stochastic opinion formation in scale-free networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Bartolozzi; D. B. Leinweber; A. W. Thomas

    2005-10-01

    The dynamics of opinion formation in large groups of people is a complex nonlinear phenomenon whose investigation is just beginning. Both collective behavior and personal views play an important role in this mechanism. In the present work we mimic the dynamics of opinion formation of a group of agents, represented by two states 1, as a stochastic response of each agent to the opinion of his/her neighbors in the social network and to feedback from the average opinion of the whole. In the light of recent studies, a scale-free Barabsi-Albert network has been selected to simulate the topology of themore » interactions. A turbulent-like dynamics, characterized by an intermittent behavior, is observed for a certain range of the model parameters. The problem of uncertainty in decision taking is also addressed both from a topological point of view, using random and targeted removal of agents from the network, and by implementing a three-state model, where the third state, zero, is related to the information available to each agent. Finally, the results of the model are tested against the best known network of social interactions: the stock market. A time series of daily closures of the Dow-Jones index has been used as an indicator of the possible applicability of our model in the financial context. Good qualitative agreement is found.« less

  20. Application of Wavelet-Based Methods for Accelerating Multi-Time-Scale Simulation of Bistable Heterogeneous Catalysis

    DOE PAGES

    Gur, Sourav; Frantziskonis, George N.; Univ. of Arizona, Tucson, AZ; ...

    2017-02-16

    Here, we report results from a numerical study of multi-time-scale bistable dynamics for CO oxidation on a catalytic surface in a flowing, well-mixed gas stream. The problem is posed in terms of surface and gas-phase submodels that dynamically interact in the presence of stochastic perturbations, reflecting the impact of molecular-scale fluctuations on the surface and turbulence in the gas. Wavelet-based methods are used to encode and characterize the temporal dynamics produced by each submodel and detect the onset of sudden state shifts (bifurcations) caused by nonlinear kinetics. When impending state shifts are detected, a more accurate but computationally expensive integrationmore » scheme can be used. This appears to make it possible, at least in some cases, to decrease the net computational burden associated with simulating multi-time-scale, nonlinear reacting systems by limiting the amount of time in which the more expensive integration schemes are required. Critical to achieving this is being able to detect unstable temporal transitions such as the bistable shifts in the example problem considered here. Lastly, our results indicate that a unique wavelet-based algorithm based on the Lipschitz exponent is capable of making such detections, even under noisy conditions, and may find applications in critical transition detection problems beyond catalysis.« less

  1. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Hong; Guo, Lei

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  2. Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2017-10-01

    We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.

  3. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE PAGES

    Liu, Yunlong; Wang, Hong; Guo, Lei

    2018-03-26

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  4. A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity

    NASA Astrophysics Data System (ADS)

    Fan, Kuangang; Zhang, Yan; Gao, Shujing; Wei, Xiang

    2017-09-01

    A class of SIR epidemic model with generalized nonlinear incidence rate is presented in this paper. Temporary immunity and stochastic perturbation are also considered. The existence and uniqueness of the global positive solution is achieved. Sufficient conditions guaranteeing the extinction and persistence of the epidemic disease are established. Moreover, the threshold behavior is discussed, and the threshold value R0 is obtained. We show that if R0 < 1, the disease eventually becomes extinct with probability one, whereas if R0 > 1, then the system remains permanent in the mean.

  5. Strong Evidence for Stochastic Growth of Langmuir-Like Waves in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1999-01-01

    Bursty Langmuir-like waves driven by electron beams in Earth's foreshock have properties which are inconsistent with the standard plasma physics paradigm of uniform exponential growth saturated by nonlinear processes. Here it is demonstrated for a specific period that stochastic growth theory (SGT) quantitatively describes these waves throughout a large fraction of the foreshock. The statistical wave properties are inconsistent with nonlinear processes or self-organized criticality being important. SGT's success in explaining the foreshock waves and type III solar bursts suggests that SGT is widely applicable to wave growth in space, astrophysical, and laboratory plasmas.

  6. Chaotic behavior in the locomotion of Amoeba proteus.

    PubMed

    Miyoshi, H; Kagawa, Y; Tsuchiya, Y

    2001-01-01

    The locomotion of Amoeba proteus has been investigated by algorithms evaluating correlation dimension and Lyapunov spectrum developed in the field of nonlinear science. It is presumed by these parameters whether the random behavior of the system is stochastic or deterministic. For the analysis of the nonlinear parameters, n-dimensional time-delayed vectors have been reconstructed from a time series of periphery and area of A. proteus images captured with a charge-coupled-device camera, which characterize its random motion. The correlation dimension analyzed has shown the random motion of A. proteus is subjected only to 3-4 macrovariables, though the system is a complex system composed of many degrees of freedom. Furthermore, the analysis of the Lyapunov spectrum has shown its largest exponent takes positive values. These results indicate the random behavior of A. proteus is chaotic and deterministic motion on an attractor with low dimension. It may be important for the elucidation of the cell locomotion to take account of nonlinear interactions among a small number of dynamics such as the sol-gel transformation, the cytoplasmic streaming, and the relating chemical reaction occurring in the cell.

  7. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    PubMed

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.

  8. Coupled stochastic soil moisture simulation-optimization model of deficit irrigation

    NASA Astrophysics Data System (ADS)

    Alizadeh, Hosein; Mousavi, S. Jamshid

    2013-07-01

    This study presents an explicit stochastic optimization-simulation model of short-term deficit irrigation management for large-scale irrigation districts. The model which is a nonlinear nonconvex program with an economic objective function is built on an agrohydrological simulation component. The simulation component integrates (1) an explicit stochastic model of soil moisture dynamics of the crop-root zone considering interaction of stochastic rainfall and irrigation with shallow water table effects, (2) a conceptual root zone salt balance model, and 3) the FAO crop yield model. Particle Swarm Optimization algorithm, linked to the simulation component, solves the resulting nonconvex program with a significantly better computational performance compared to a Monte Carlo-based implicit stochastic optimization model. The model has been tested first by applying it in single-crop irrigation problems through which the effects of the severity of water deficit on the objective function (net benefit), root-zone water balance, and irrigation water needs have been assessed. Then, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. While the maximum net benefit has been obtained for a stress-avoidance (SA) irrigation policy, the highest water profitability has been resulted when only about 60% of the water used in the SA policy is applied. The DAID with respectively 33% of total cultivated area and 37% of total applied water has produced only 14% of the total net benefit due to low-valued crops and adverse soil and shallow water table conditions.

  9. A new magnetic reconnection paradigm: Stochastic plasmoid chains

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno

    2015-11-01

    Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  10. Adaptive non-linear control for cancer therapy through a Fokker-Planck observer.

    PubMed

    Shakeri, Ehsan; Latif-Shabgahi, Gholamreza; Esmaeili Abharian, Amir

    2018-04-01

    In recent years, many efforts have been made to present optimal strategies for cancer therapy through the mathematical modelling of tumour-cell population dynamics and optimal control theory. In many cases, therapy effect is included in the drift term of the stochastic Gompertz model. By fitting the model with empirical data, the parameters of therapy function are estimated. The reported research works have not presented any algorithm to determine the optimal parameters of therapy function. In this study, a logarithmic therapy function is entered in the drift term of the Gompertz model. Using the proposed control algorithm, the therapy function parameters are predicted and adaptively adjusted. To control the growth of tumour-cell population, its moments must be manipulated. This study employs the probability density function (PDF) control approach because of its ability to control all the process moments. A Fokker-Planck-based non-linear stochastic observer will be used to determine the PDF of the process. A cost function based on the difference between a predefined desired PDF and PDF of tumour-cell population is defined. Using the proposed algorithm, the therapy function parameters are adjusted in such a manner that the cost function is minimised. The existence of an optimal therapy function is also proved. The numerical results are finally given to demonstrate the effectiveness of the proposed method.

  11. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2017-04-01

    How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.

  12. Activation rates for nonlinear stochastic flows driven by non-Gaussian noise

    NASA Astrophysics Data System (ADS)

    van den Broeck, C.; Hänggi, P.

    1984-11-01

    Activation rates are calculated for stochastic bistable flows driven by asymmetric dichotomic Markov noise (a two-state Markov process). This noise contains as limits both a particular type of non-Gaussian white shot noise and white Gaussian noise. Apart from investigating the role of colored noise on the escape rates, one can thus also study the influence of the non-Gaussian nature of the noise on these rates. The rate for white shot noise differs in leading order (Arrhenius factor) from the corresponding rate for white Gaussian noise of equal strength. In evaluating the rates we demonstrate the advantage of using transport theory over a mean first-passage time approach for cases with generally non-white and non-Gaussian noise sources. For white shot noise with exponentially distributed weights we succeed in evaluating the mean first-passage time of the corresponding integro-differential master-equation dynamics. The rate is shown to coincide in the weak noise limit with the inverse mean first-passage time.

  13. A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in

    Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less

  14. Relating the bipolar spectrum to dysregulation of behavioural activation: a perspective from dynamical modelling.

    PubMed

    Steinacher, Arno; Wright, Kim A

    2013-01-01

    Bipolar Disorders affect a substantial minority of the population and result in significant personal, social and economic costs. Understanding of the causes of, and consequently the most effective interventions for, this condition is an area requiring development. Drawing upon theories of Bipolar Disorder that propose the condition to be underpinned by dysregulation of systems governing behavioural activation or approach motivation, we present a mathematical model of the regulation of behavioural activation. The model is informed by non-linear, dynamical principles and as such proposes that the transition from "non-bipolar" to "bipolar" diagnostic status corresponds to a switch from mono- to multistability of behavioural activation level, rather than an increase in oscillation of mood. Consistent with descriptions of the behavioural activation or approach system in the literature, auto-activation and auto-inhibitory feedback is inherent within our model. Comparison between our model and empirical, observational data reveals that by increasing the non-linearity dimension in our model, important features of Bipolar Spectrum disorders are reproduced. Analysis from stochastic simulation of the system reveals the role of noise in behavioural activation regulation and indicates that an increase of nonlinearity promotes noise to jump scales from small fluctuations of activation levels to longer lasting, but less variable episodes. We conclude that further research is required to relate parameters of our model to key behavioural and biological variables observed in Bipolar Disorder.

  15. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Wang, Jun; Fang, Wen, E-mail: fangwen@bjtu.edu.cn

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also definedmore » in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.« less

  16. The influence of track modelling options on the simulation of rail vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Di Gialleonardo, Egidio; Braghin, Francesco; Bruni, Stefano

    2012-09-01

    This paper investigates the effect of different models for track flexibility on the simulation of railway vehicle running dynamics on tangent and curved track. To this end, a multi-body model of the rail vehicle is defined including track flexibility effects on three levels of detail: a perfectly rigid pair of rails, a sectional track model and a three-dimensional finite element track model. The influence of the track model on the calculation of the nonlinear critical speed is pointed out and it is shown that neglecting the effect of track flexibility results in an overestimation of the critical speed by more than 10%. Vehicle response to stochastic excitation from track irregularity is also investigated, analysing the effect of track flexibility models on the vertical and lateral wheel-rail contact forces. Finally, the effect of the track model on the calculation of dynamic forces produced by wheel out-of-roundness is analysed, showing that peak dynamic loads are very sensitive to the track model used in the simulation.

  17. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  18. Transcranial Random Noise Stimulation of Visual Cortex: Stochastic Resonance Enhances Central Mechanisms of Perception.

    PubMed

    van der Groen, Onno; Wenderoth, Nicole

    2016-05-11

    Random noise enhances the detectability of weak signals in nonlinear systems, a phenomenon known as stochastic resonance (SR). Though counterintuitive at first, SR has been demonstrated in a variety of naturally occurring processes, including human perception, where it has been shown that adding noise directly to weak visual, tactile, or auditory stimuli enhances detection performance. These results indicate that random noise can push subthreshold receptor potentials across the transfer threshold, causing action potentials in an otherwise silent afference. Despite the wealth of evidence demonstrating SR for noise added to a stimulus, relatively few studies have explored whether or not noise added directly to cortical networks enhances sensory detection. Here we administered transcranial random noise stimulation (tRNS; 100-640 Hz zero-mean Gaussian white noise) to the occipital region of human participants. For increasing tRNS intensities (ranging from 0 to 1.5 mA), the detection accuracy of a visual stimuli changed according to an inverted-U-shaped function, typical of the SR phenomenon. When the optimal level of noise was added to visual cortex, detection performance improved significantly relative to a zero noise condition (9.7 ± 4.6%) and to a similar extent as optimal noise added to the visual stimuli (11.2 ± 4.7%). Our results demonstrate that adding noise to cortical networks can improve human behavior and that tRNS is an appropriate tool to exploit this mechanism. Our findings suggest that neural processing at the network level exhibits nonlinear system properties that are sensitive to the stochastic resonance phenomenon and highlight the usefulness of tRNS as a tool to modulate human behavior. Since tRNS can be applied to all cortical areas, exploiting the SR phenomenon is not restricted to the perceptual domain, but can be used for other functions that depend on nonlinear neural dynamics (e.g., decision making, task switching, response inhibition, and many other processes). This will open new avenues for using tRNS to investigate brain function and enhance the behavior of healthy individuals or patients. Copyright © 2016 the authors 0270-6474/16/365289-10$15.00/0.

  19. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    PubMed

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  20. Nonlinear signaling on biological networks: The role of stochasticity and spectral clustering

    NASA Astrophysics Data System (ADS)

    Hernandez-Hernandez, Gonzalo; Myers, Jesse; Alvarez-Lacalle, Enrique; Shiferaw, Yohannes

    2017-03-01

    Signal transduction within biological cells is governed by networks of interacting proteins. Communication between these proteins is mediated by signaling molecules which bind to receptors and induce stochastic transitions between different conformational states. Signaling is typically a cooperative process which requires the occurrence of multiple binding events so that reaction rates have a nonlinear dependence on the amount of signaling molecule. It is this nonlinearity that endows biological signaling networks with robust switchlike properties which are critical to their biological function. In this study we investigate how the properties of these signaling systems depend on the network architecture. Our main result is that these nonlinear networks exhibit bistability where the network activity can switch between states that correspond to a low and high activity level. We show that this bistable regime emerges at a critical coupling strength that is determined by the spectral structure of the network. In particular, the set of nodes that correspond to large components of the leading eigenvector of the adjacency matrix determines the onset of bistability. Above this transition the eigenvectors of the adjacency matrix determine a hierarchy of clusters, defined by its spectral properties, which are activated sequentially with increasing network activity. We argue further that the onset of bistability occurs either continuously or discontinuously depending upon whether the leading eigenvector is localized or delocalized. Finally, we show that at low network coupling stochastic transitions to the active branch are also driven by the set of nodes that contribute more strongly to the leading eigenvector. However, at high coupling, transitions are insensitive to network structure since the network can be activated by stochastic transitions of a few nodes. Thus this work identifies important features of biological signaling networks that may underlie their biological function.

  1. Some remarks on quantum physics, stochastic processes, and nonlinear filtering theory

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2016-05-01

    The mathematical similarities between quantum mechanics and stochastic processes has been studied in the literature. Some of the major results are reviewed, such as the relationship between the Fokker-Planck equation and the Schrödinger equation. Also reviewed are more recent results that show the mathematical similarities between quantum many particle systems and concepts in other areas of applied science, such as stochastic Petri nets. Some connections to filtering theory are discussed.

  2. Kalman filter parameter estimation for a nonlinear diffusion model of epithelial cell migration using stochastic collocation and the Karhunen-Loeve expansion.

    PubMed

    Barber, Jared; Tanase, Roxana; Yotov, Ivan

    2016-06-01

    Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Stochastic dynamics of melt ponds and sea ice-albedo climate feedback

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Krommes

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed.more » An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.« less

  5. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques.

    PubMed

    Hauptmann, C; Roulet, J-C; Niederhauser, J J; Döll, W; Kirlangic, M E; Lysyansky, B; Krachkovskyi, V; Bhatti, M A; Barnikol, U B; Sasse, L; Bührle, C P; Speckmann, E-J; Götz, M; Sturm, V; Freund, H-J; Schnell, U; Tass, P A

    2009-12-01

    In the past decade deep brain stimulation (DBS)-the application of electrical stimulation to specific target structures via implanted depth electrodes-has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  6. Detecting determinism from point processes.

    PubMed

    Andrzejak, Ralph G; Mormann, Florian; Kreuz, Thomas

    2014-12-01

    The detection of a nonrandom structure from experimental data can be crucial for the classification, understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear predictability score to detect determinism from point process data. Thanks to its modular nature, this approach can be adapted to whatever signature in the data one considers indicative of deterministic structure. After validating our approach using point process signals from deterministic and stochastic model dynamics, we show an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.

  7. Stability analysis for stochastic BAM nonlinear neural network with delays

    NASA Astrophysics Data System (ADS)

    Lv, Z. W.; Shu, H. S.; Wei, G. L.

    2008-02-01

    In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.

  8. Uncertainty Propagation for Turbulent, Compressible Flow in a Quasi-1D Nozzle Using Stochastic Methods

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise

    2003-01-01

    This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.

  9. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    PubMed

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Empirical method to measure stochasticity and multifractality in nonlinear time series

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  11. Phase-Space Transport of Stochastic Chaos in Population Dynamics of Virus Spread

    NASA Astrophysics Data System (ADS)

    Billings, Lora; Bollt, Erik M.; Schwartz, Ira B.

    2002-06-01

    A general way to classify stochastic chaos is presented and applied to population dynamics models. A stochastic dynamical theory is used to develop an algorithmic tool to measure the transport across basin boundaries and predict the most probable regions of transport created by noise. The results of this tool are illustrated on a model of virus spread in a large population, where transport regions reveal how noise completes the necessary manifold intersections for the creation of emerging stochastic chaos.

  12. Low Frequency Predictive Skill Despite Structural Instability and Model Error

    DTIC Science & Technology

    2014-09-30

    Majda, based on earlier theoretical work. 1. Dynamic Stochastic Superresolution of sparseley observed turbulent systems M. Branicki (Post doc...of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by...resolving subgridscale turbulence through Dynamic Stochastic Superresolution utilizing aliased grids is a potential breakthrough for practical online

  13. Response of MDOF strongly nonlinear systems to fractional Gaussian noises.

    PubMed

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-08-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  14. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn

    2016-08-15

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  15. Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?

    PubMed Central

    Hazledine, Saul; Sun, Jongho; Wysham, Derin; Downie, J. Allan; Oldroyd, Giles E. D.; Morris, Richard J.

    2009-01-01

    Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling. PMID:19675679

  16. Stochastic Representation of Chaos Using Terminal Attractors

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids). The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellesia, Giovanni; Bales, Benjamin B.

    Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less

  18. Computer Modelling of Functional Aspects of Noise in Endogenously Oscillating Neurons

    NASA Astrophysics Data System (ADS)

    Huber, M. T.; Dewald, M.; Voigt, K.; Braun, H. A.; Moss, F.

    1998-03-01

    Membrane potential oscillations are a widespread feature of neuronal activity. When such oscillations operate close to the spike-triggering threshold, noise can become an essential property of spike-generation. According to that, we developed a minimal Hodgkin-Huxley-type computer model which includes a noise term. This model accounts for experimental data from quite different cells ranging from mammalian cortical neurons to fish electroreceptors. With slight modifications of the parameters, the model's behavior can be tuned to bursting activity, which additionally allows it to mimick temperature encoding in peripheral cold receptors including transitions to apparently chaotic dynamics as indicated by methods for the detection of unstable periodic orbits. Under all conditions, cooperative effects between noise and nonlinear dynamics can be shown which, beyond stochastic resonance, might be of functional significance for stimulus encoding and neuromodulation.

  19. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  20. Sensitivity analysis of consumption cycles

    NASA Astrophysics Data System (ADS)

    Jungeilges, Jochen; Ryazanova, Tatyana; Mitrofanova, Anastasia; Popova, Irina

    2018-05-01

    We study the special case of a nonlinear stochastic consumption model taking the form of a 2-dimensional, non-invertible map with an additive stochastic component. Applying the concept of the stochastic sensitivity function and the related technique of confidence domains, we establish the conditions under which the system's complex consumption attractor is likely to become observable. It is shown that the level of noise intensities beyond which the complex consumption attractor is likely to be observed depends on the weight given to past consumption in an individual's preference adjustment.

  1. Modeling Limited Foresight in Water Management Systems

    NASA Astrophysics Data System (ADS)

    Howitt, R.

    2005-12-01

    The inability to forecast future water supplies means that their management inevitably occurs under situations of limited foresight. Three modeling problems arise, first what type of objective function is a manager with limited foresight optimizing? Second how can we measure these objectives? Third can objective functions that incorporate uncertainty be integrated within the structure of optimizing water management models? The paper reviews the concepts of relative risk aversion and intertemporal substitution that underlie stochastic dynamic preference functions. Some initial results from the estimation of such functions for four different dam operations in northern California are presented and discussed. It appears that the path of previous water decisions and states influences the decision-makers willingness to trade off water supplies between periods. A compromise modeling approach that incorporates carry-over value functions under limited foresight within a broader net work optimal water management model is developed. The approach uses annual carry-over value functions derived from small dimension stochastic dynamic programs embedded within a larger dimension water allocation network. The disaggregation of the carry-over value functions to the broader network is extended using the space rule concept. Initial results suggest that the solution of such annual nonlinear network optimizations is comparable to, or faster than, the solution of linear network problems over long time series.

  2. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    PubMed

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  3. Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation.

    PubMed

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

  4. Robust stochastic optimization for reservoir operation

    NASA Astrophysics Data System (ADS)

    Pan, Limeng; Housh, Mashor; Liu, Pan; Cai, Ximing; Chen, Xin

    2015-01-01

    Optimal reservoir operation under uncertainty is a challenging engineering problem. Application of classic stochastic optimization methods to large-scale problems is limited due to computational difficulty. Moreover, classic stochastic methods assume that the estimated distribution function or the sample inflow data accurately represents the true probability distribution, which may be invalid and the performance of the algorithms may be undermined. In this study, we introduce a robust optimization (RO) approach, Iterative Linear Decision Rule (ILDR), so as to provide a tractable approximation for a multiperiod hydropower generation problem. The proposed approach extends the existing LDR method by accommodating nonlinear objective functions. It also provides users with the flexibility of choosing the accuracy of ILDR approximations by assigning a desired number of piecewise linear segments to each uncertainty. The performance of the ILDR is compared with benchmark policies including the sampling stochastic dynamic programming (SSDP) policy derived from historical data. The ILDR solves both the single and multireservoir systems efficiently. The single reservoir case study results show that the RO method is as good as SSDP when implemented on the original historical inflows and it outperforms SSDP policy when tested on generated inflows with the same mean and covariance matrix as those in history. For the multireservoir case study, which considers water supply in addition to power generation, numerical results show that the proposed approach performs as well as in the single reservoir case study in terms of optimal value and distributional robustness.

  5. Stochastic multifractal forecasts: from theory to applications in radar meteorology

    NASA Astrophysics Data System (ADS)

    da Silva Rocha Paz, Igor; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Radar meteorology has been very inspiring for the development of multifractals. It has enabled to work on a 3D+1 field with many challenging applications, including predictability and stochastic forecasts, especially nowcasts that are particularly demanding in computation speed. Multifractals are indeed parsimonious stochastic models that require only a few physically meaningful parameters, e.g. Universal Multifractal (UM) parameters, because they are based on non-trivial symmetries of nonlinear equations. We first recall the physical principles of multifractal predictability and predictions, which are so closely related that the latter correspond to the most optimal predictions in the multifractal framework. Indeed, these predictions are based on the fundamental duality of a relatively slow decay of large scale structures and an injection of new born small scale structures. Overall, this triggers a mulfitractal inverse cascade of unpredictability. With the help of high resolution rainfall radar data (≈ 100 m), we detail and illustrate the corresponding stochastic algorithm in the framework of (causal) UM Fractionally Integrated Flux models (UM-FIF), where the rainfall field is obtained with the help of a fractional integration of a conservative multifractal flux, whose average is strictly scale invariant (like the energy flux in a dynamic cascade). Whereas, the introduction of small structures is rather straightforward, the deconvolution of the past of the field is more subtle, but nevertheless achievable, to obtain the past of the flux. Then, one needs to only fractionally integrate a multiplicative combination of past and future fluxes to obtain a nowcast realisation.

  6. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  7. Data-adaptive harmonic analysis and prediction of sea level change in North Atlantic region

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2017-12-01

    This study aims to characterize North Atlantic sea level variability across the temporal and spatial scales. We apply recently developed data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) stochastic modeling techniques [Chekroun and Kondrashov, 2017] to monthly 1993-2017 dataset of Combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM altimetry fields over North Atlantic region. The key numerical feature of the DAH relies on the eigendecomposition of a matrix constructed from time-lagged spatial cross-correlations. In particular, eigenmodes form an orthogonal set of oscillating data-adaptive harmonic modes (DAHMs) that come in pairs and in exact phase quadrature for a given temporal frequency. Furthermore, the pairs of data-adaptive harmonic coefficients (DAHCs), obtained by projecting the dataset onto associated DAHMs, can be very efficiently modeled by a universal parametric family of simple nonlinear stochastic models - coupled Stuart-Landau oscillators stacked per frequency, and synchronized across different frequencies by the stochastic forcing. Despite the short record of altimetry dataset, developed DAH-MSLM model provides for skillful prediction of key dynamical and statistical features of sea level variability. References M. D. Chekroun and D. Kondrashov, Data-adaptive harmonic spectra and multilayer Stuart-Landau models. HAL preprint, 2017, https://hal.archives-ouvertes.fr/hal-01537797

  8. Effects of Thermal Noise on the Transitional Dynamics of an Inextensible Elastic Filament in Stagnation Flow

    PubMed Central

    Deng, Mingge; Grinberg, Leopold; Caswell, Bruce

    2015-01-01

    We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance. PMID:26023834

  9. The Principle of Energetic Consistency

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of energetic consistency implies that, to precisely the extent that growing modes are important in data assimilation, this term is also important.

  10. New insights into soil temperature time series modeling: linear or nonlinear?

    NASA Astrophysics Data System (ADS)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and ANFIS (respectively) were optimized with the particle swarm optimization (PSO) algorithm in conjunction with the wavelet transform and nonlinear methods (Wavelet-MLP & Wavelet-ANFIS). A comparison of the proposed methodology with individual and hybrid nonlinear models in predicting DST time series indicates the lowest Akaike Information Criterion (AIC) index value, which considers model simplicity and accuracy simultaneously at different depths and stations. The methodology presented in this study can thus serve as an excellent alternative to complex nonlinear methods that are normally employed to examine DST.

  11. Variational principles for stochastic fluid dynamics

    PubMed Central

    Holm, Darryl D.

    2015-01-01

    This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083

  12. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  13. Stochastic growth logistic model with aftereffect for batch fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  14. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  15. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  16. Simulation Analysis of Zero Mean Flow Edge Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Friedman, Brett Cory

    I model, simulate, and analyze the turbulence in a particular experiment on the Large Plasma Device (LAPD) at UCLA. The experiment, conducted by Schaffner et al. [D. Schaffner et al., Phys. Rev. Lett. 109, 135002 (2012)], nulls out the intrinsic mean flow in LAPD by limiter biasing. The model that I use in the simulation is an electrostatic reduced Braginskii two-fluid model that describes the time evolution of density, electron temperature, electrostatic potential, and parallel electron velocity fluctuations in the edge region of LAPD. The spatial domain is annular, encompassing the radial coordinates over which a significant equilibrium density gradient exists. My model breaks the independent variables in the equations into time-independent equilibrium parts and time-dependent fluctuating parts, and I use experimentally obtained values as input for the equilibrium parts. After an initial exponential growth period due to a linear drift wave instability, the fluctuations saturate and the frequency and azimuthal wavenumber spectra become broadband with no visible coherent peaks, at which point the fluctuations become turbulent. The turbulence develops intermittent pressure and flow filamentary structures that grow and dissipate, but look much different than the unstable linear drift waves, primarily in the extremely long axial wavelengths that the filaments possess. An energy dynamics analysis that I derive reveals the mechanism that drives these structures. The long k|| ˜ 0 intermittent potential filaments convect equilibrium density across the equilibrium density gradient, setting up local density filaments. These density filaments, also with k || ˜ 0, produce azimuthal density gradients, which drive radially propagating secondary drift waves. These finite k|| drift waves nonlinearly couple to one another and reinforce the original convective filament, allowing the process to bootstrap itself. The growth of these structures is by nonlinear instability because they require a finite amplitude to start, and they require nonlinear terms in the equations to sustain their growth. The reason why k|| ˜ 0 structures can grow and support themselves in a dynamical system with no k|| = 0 linear instability is because the linear eigenmodes of the system are nonorthogonal. Nonorthogonal eigenmodes that individually decay under linear dynamics can transiently inject energy into the system, allowing for instability. The instability, however, can only occur when the fluctuations have a finite starting amplitude, and nonlinearities are available to mix energy among eigenmodes. Finally, I attempt to figure out how many effective degrees of freedom control the turbulence to determine whether it is stochastic or deterministic. Using two different methods - permutation entropy analysis by means of time delay trajectory reconstruction and Proper Orthogonal Decomposition - I determine that more than a few degrees of freedom, possibly even dozens or hundreds, are all active. The turbulence, while not stochastic, is not a manifestation of low-dimensional chaos - it is high-dimensional.

  17. Nonlinear GARCH model and 1 / f noise

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  18. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.

    PubMed

    Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  19. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-03-01

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  20. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less

  1. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  2. Stochastic theory of polarized light in nonlinear birefringent media: An application to optical rotation

    NASA Astrophysics Data System (ADS)

    Tsuchida, Satoshi; Kuratsuji, Hiroshi

    2018-05-01

    A stochastic theory is developed for the light transmitting the optical media exhibiting linear and nonlinear birefringence. The starting point is the two-component nonlinear Schrödinger equation (NLSE). On the basis of the ansatz of “soliton” solution for the NLSE, the evolution equation for the Stokes parameters is derived, which turns out to be the Langevin equation by taking account of randomness and dissipation inherent in the birefringent media. The Langevin equation is converted to the Fokker-Planck (FP) equation for the probability distribution by employing the technique of functional integral on the assumption of the Gaussian white noise for the random fluctuation. The specific application is considered for the optical rotation, which is described by the ellipticity (third component of the Stokes parameters) alone: (i) The asymptotic analysis is given for the functional integral, which leads to the transition rate on the Poincaré sphere. (ii) The FP equation is analyzed in the strong coupling approximation, by which the diffusive behavior is obtained for the linear and nonlinear birefringence. These would provide with a basis of statistical analysis for the polarization phenomena in nonlinear birefringent media.

  3. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533  2.3.1. Kubo oscillator535  2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544  4.1.1. Weak-coupling approximation545  4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550  5.1.1. Control of quantum rates551  5.1.2. Stochastic cooling and inversion of level populations552  5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563  6.3.1. Fast fluctuating energy levels565  6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566  6.3.3. Electron transfer in fast oscillating periodic fields567  6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579

  4. On multilevel RBF collocation to solve nonlinear PDEs arising from endogenous stochastic volatility models

    NASA Astrophysics Data System (ADS)

    Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl

    2018-06-01

    The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.

  5. Comparison of linear–stochastic and nonlinear–deterministic algorithms in the analysis of 15-minute clinical ECGs to predict risk of arrhythmic death

    PubMed Central

    Skinner, James E; Meyer, Michael; Nester, Brian A; Geary, Una; Taggart, Pamela; Mangione, Antoinette; Ramalanjaona, George; Terregino, Carol; Dalsey, William C

    2009-01-01

    Objective: Comparative algorithmic evaluation of heartbeat series in low-to-high risk cardiac patients for the prospective prediction of risk of arrhythmic death (AD). Background: Heartbeat variation reflects cardiac autonomic function and risk of AD. Indices based on linear stochastic models are independent risk factors for AD in post-myocardial infarction (post-MI) cohorts. Indices based on nonlinear deterministic models have superior predictability in retrospective data. Methods: Patients were enrolled (N = 397) in three emergency departments upon presenting with chest pain and were determined to be at low-to-high risk of acute MI (>7%). Brief ECGs were recorded (15 min) and R-R intervals assessed by three nonlinear algorithms (PD2i, DFA, and ApEn) and four conventional linear-stochastic measures (SDNN, MNN, 1/f-Slope, LF/HF). Out-of-hospital AD was determined by modified Hinkle–Thaler criteria. Results: All-cause mortality at one-year follow-up was 10.3%, with 7.7% adjudicated to be AD. The sensitivity and relative risk for predicting AD was highest at all time-points for the nonlinear PD2i algorithm (p ≤0.001). The sensitivity at 30 days was 100%, specificity 58%, and relative risk >100 (p ≤0.001); sensitivity at 360 days was 95%, specificity 58%, and relative risk >11.4 (p ≤0.001). Conclusions: Heartbeat analysis by the time-dependent nonlinear PD2i algorithm is comparatively the superior test. PMID:19707283

  6. Stochastic gain in finite populations

    NASA Astrophysics Data System (ADS)

    Röhl, Torsten; Traulsen, Arne; Claussen, Jens Christian; Schuster, Heinz Georg

    2008-08-01

    Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper [Traulsen , Phys. Rev. Lett. 93, 028701 (2004)], we have demonstrated this effect based on a replicator dynamics model which is subject to external noise. Here, we utilize recent advances on finite population dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the population size and the intensity of selection, which measures the balance between the deterministic and the stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate microscopic update process, even if learning rates are constant.

  7. Quantum treatment of field propagation in a fiber near the zero dispersion wavelength

    NASA Astrophysics Data System (ADS)

    Safaei, A.; Bassi, A.; Bolorizadeh, M. A.

    2018-05-01

    In this report, we present a quantum theory describing the propagation of the electromagnetic radiation in a fiber in the presence of the third order dispersion coefficient. We obtained the quantum photon-polariton field, hence, we provide herein a coupled set of operator forms for the corresponding nonlinear Schrödinger equations when the third order dispersion coefficient is included. Coupled stochastic nonlinear Schrödinger equations were obtained by applying a positive P-representation that governs the propagation and interaction of quantum solitons in the presence of the third-order dispersion term. Finally, to reduce the fluctuations near solitons in the first approximation, we developed coupled stochastic linear equations.

  8. Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Soncini-Sessa, R.

    2009-10-01

    Stochastic dynamic programming has been extensively used as a method for designing optimal regulation policies for water reservoirs. However, the potential of this method is dramatically reduced by its computational burden, which often forces to introduce strong approximations in the model of the system, especially in the description of the reservoir inflow. In this paper, an approach to partially remedy this problem is proposed and applied to a real world case study. It foresees solving the management problem on-line, using a reduced model of the system and the inflow forecast provided by a dynamic model. By doing so, all the hydrometeorological information that is available in real-time is fully exploited. The model here proposed for the inflow forecasting is a nonlinear, heteroscedastic model that provides both the expected value and the standard deviation of the inflow through dynamic relations. The effectiveness of such model for the purpose of the reservoir regulation is evaluated through simulation and comparison with the results provided by conventional homoscedastic inflow models.

  9. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology?

    PubMed

    Huang, Sui

    2012-02-01

    The Neo-Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo-Darwinism. It needs to incorporate the non-linear, stochastic dynamics of gene networks. A first step is to consider the mathematical correspondence between gene regulatory networks and Waddington's metaphoric 'epigenetic landscape', which actually represents the quasi-potential function of global network dynamics. It explains the coexistence of multiple stable phenotypes within one genotype. The landscape's topography with its attractors is shaped by evolution through mutational re-wiring of regulatory interactions - offering a link between genetic mutation and sudden, broad evolutionary changes. Copyright © 2012 WILEY Periodicals, Inc.

  10. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    DOE PAGES

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-10

    Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less

  11. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less

  12. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haisu; Tzortzakis, Stelios, E-mail: stzortz@iesl.forth.gr; Materials Science and Technology Department, University of Crete, 71003 Heraklion

    2016-05-23

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  13. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system

    NASA Astrophysics Data System (ADS)

    Avitabile, D.; Desroches, M.; Knobloch, E.; Krupa, M.

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  14. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system.

    PubMed

    Avitabile, D; Desroches, M; Knobloch, E; Krupa, M

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  15. Quantifying stochasticity in the dynamics of delay-coupled semiconductor lasers via forbidden patterns.

    PubMed

    Tiana-Alsina, Jordi; Buldú, Javier M; Torrent, M C; García-Ojalvo, Jordi

    2010-01-28

    We quantify the level of stochasticity in the dynamics of two mutually coupled semiconductor lasers. Specifically, we concentrate on a regime in which the lasers synchronize their dynamics with a non-zero lag time, and the leader and laggard roles alternate irregularly between the lasers. We analyse this switching dynamics in terms of the number of forbidden patterns of the alternate time series. The results reveal that the system operates in a stochastic regime, with the level of stochasticity decreasing as the lasers are pumped further away from their lasing threshold. This behaviour is similar to that exhibited by a single semiconductor laser subject to external optical feedback, as its dynamics shifts from the regime of low-frequency fluctuations to coherence collapse. This journal is © 2010 The Royal Society

  16. Dynamically Consistent Parameterization of Mesoscale Eddies This work aims at parameterization of eddy effects for use in non-eddy-resolving ocean models and focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones.

    NASA Astrophysics Data System (ADS)

    Berloff, P. S.

    2016-12-01

    This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.

  17. Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape

    PubMed Central

    Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A.; Lotto, R. Beau; Malkin, David; Escalera Santos, Gerardo J.; Padilla-Longoria, Pablo

    2008-01-01

    In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development. PMID:18978941

  18. Stochastic dynamic modeling of regular and slow earthquakes

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.

  19. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations.

    PubMed

    Passler, Peter P; Hofer, Thomas S

    2017-02-15

    Stochastic dynamics is a widely employed strategy to achieve local thermostatization in molecular dynamics simulation studies; however, it suffers from an inherent violation of momentum conservation. Although this short-coming has little impact on structural and short-time dynamic properties, it can be shown that dynamics in the long-time limit such as diffusion is strongly dependent on the respective thermostat setting. Application of the methodically similar dissipative particle dynamics (DPD) provides a simple, effective strategy to ensure the advantages of local, stochastic thermostatization while at the same time the linear momentum of the system remains conserved. In this work, the key parameters to employ the DPD thermostats in the framework of periodic boundary conditions are investigated, in particular the dependence of the system properties on the size of the DPD-region as well as the treatment of forces near the cutoff. Structural and dynamical data for light and heavy water as well as a Lennard-Jones fluid have been compared to simulations executed via stochastic dynamics as well as via use of the widely employed Nose-Hoover chain and Berendsen thermostats. It is demonstrated that a small size of the DPD region is sufficient to achieve local thermalization, while at the same time artifacts in the self-diffusion characteristic for stochastic dynamics are eliminated. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Reach a nonlinear consensus for MAS via doubly stochastic quadratic operators

    NASA Astrophysics Data System (ADS)

    Abdulghafor, Rawad; Turaev, Sherzod; Zeki, Akram; Al-Shaikhli, Imad

    2018-06-01

    This technical note addresses the new nonlinear protocol class of doubly stochastic quadratic operators (DSQOs) for coordination of consensus problem in multi-agent systems (MAS). We derive the conditions for ensuring that every agent reaches consensus on a desired rate of the group's decision where the group decision value in its agent's initial statuses varies. Besides that, we investigate a nonlinear protocol sub-class of extreme DSQO (EDSQO) to reach a consensus for MAS to a common value with nonlinear low-complexity rules and fast time convergence if the interactions for each agent are not selfish. In addition, to extend the results to reach a consensus and to avoid the selfish case we specify a general class of DSQO for reaching a consensus under any given case of initial states. The case that MAS reach a consensus by DSQO is if each member of the agent group has positive interactions of DSQO (PDSQO) with the others. The convergence of both EDSQO and PDSQO classes is found to be directed towards the centre point. Finally, experimental simulations are given to support the analysis from theoretical aspect.

Top