DOE Office of Scientific and Technical Information (OSTI.GOV)
Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au
We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less
Dynamically orthogonal field equations for stochastic flows and particle dynamics
2011-02-01
where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new
Algorithm refinement for stochastic partial differential equations: II. Correlated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.
2005-08-10
We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less
Optimal Control for Stochastic Delay Evolution Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less
Fault Tolerant Optimal Control.
1982-08-01
subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic
Cotter, C J; Gottwald, G A; Holm, D D
2017-09-01
In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.
First-passage times for pattern formation in nonlocal partial differential equations
NASA Astrophysics Data System (ADS)
Cáceres, Manuel O.; Fuentes, Miguel A.
2015-10-01
We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.
First-passage times for pattern formation in nonlocal partial differential equations.
Cáceres, Manuel O; Fuentes, Miguel A
2015-10-01
We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated by invading fronts.
Cotter, C. J.
2017-01-01
In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow. PMID:28989316
Zhang, Kejiang; Achari, Gopal; Li, Hua
2009-11-03
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Towards sub-optimal stochastic control of partially observable stochastic systems
NASA Technical Reports Server (NTRS)
Ruzicka, G. J.
1980-01-01
A class of multidimensional stochastic control problems with noisy data and bounded controls encountered in aerospace design is examined. The emphasis is on suboptimal design, the optimality being taken in quadratic mean sense. To that effect the problem is viewed as a stochastic version of the Lurie problem known from nonlinear control theory. The main result is a separation theorem (involving a nonlinear Kalman-like filter) suitable for Lurie-type approximations. The theorem allows for discontinuous characteristics. As a byproduct the existence of strong solutions to a class of non-Lipschitzian stochastic differential equations in dimensions is proven.
Simulation of Stochastic Processes by Coupled ODE-PDE
NASA Technical Reports Server (NTRS)
Zak, Michail
2008-01-01
A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.
Evaluation of Uncertainty in Runoff Analysis Incorporating Theory of Stochastic Process
NASA Astrophysics Data System (ADS)
Yoshimi, Kazuhiro; Wang, Chao-Wen; Yamada, Tadashi
2015-04-01
The aim of this paper is to provide a theoretical framework of uncertainty estimate on rainfall-runoff analysis based on theory of stochastic process. SDE (stochastic differential equation) based on this theory has been widely used in the field of mathematical finance due to predict stock price movement. Meanwhile, some researchers in the field of civil engineering have investigated by using this knowledge about SDE (stochastic differential equation) (e.g. Kurino et.al, 1999; Higashino and Kanda, 2001). However, there have been no studies about evaluation of uncertainty in runoff phenomenon based on comparisons between SDE (stochastic differential equation) and Fokker-Planck equation. The Fokker-Planck equation is a partial differential equation that describes the temporal variation of PDF (probability density function), and there is evidence to suggest that SDEs and Fokker-Planck equations are equivalent mathematically. In this paper, therefore, the uncertainty of discharge on the uncertainty of rainfall is explained theoretically and mathematically by introduction of theory of stochastic process. The lumped rainfall-runoff model is represented by SDE (stochastic differential equation) due to describe it as difference formula, because the temporal variation of rainfall is expressed by its average plus deviation, which is approximated by Gaussian distribution. This is attributed to the observed rainfall by rain-gauge station and radar rain-gauge system. As a result, this paper has shown that it is possible to evaluate the uncertainty of discharge by using the relationship between SDE (stochastic differential equation) and Fokker-Planck equation. Moreover, the results of this study show that the uncertainty of discharge increases as rainfall intensity rises and non-linearity about resistance grows strong. These results are clarified by PDFs (probability density function) that satisfy Fokker-Planck equation about discharge. It means the reasonable discharge can be estimated based on the theory of stochastic processes, and it can be applied to the probabilistic risk of flood management.
XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations
NASA Astrophysics Data System (ADS)
Dennis, Graham R.; Hope, Joseph J.; Johnsson, Mattias T.
2013-01-01
XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code. Program summaryProgram title: XMDS2 Catalogue identifier: AENK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 872490 No. of bytes in distributed program, including test data, etc.: 45522370 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer with a Unix-like system, a C++ compiler and Python. Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux. RAM: Problem dependent (roughly 50 bytes per grid point) Classification: 4.3, 6.5. External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms (used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-FFT-based spectral methods). Nature of problem: General coupled initial-value stochastic partial differential equations. Solution method: Spectral method with method-of-lines integration Running time: Determined by the size of the problem
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M
2016-12-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-09-04
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruen, Christine, E-mail: christine.gruen@univ-brest.fr
We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.
2016-01-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Jakeman, John; Gittelson, Claude
2015-01-08
In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less
Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Yuecai; Hu Yaozhong; Song Jian, E-mail: jsong2@math.rutgers.edu
2013-04-15
We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need tomore » develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.« less
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
Harrison, Jonathan U; Yates, Christian A
2016-09-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics
Yates, Christian A.
2016-01-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuchu, E-mail: chenchuchu@lsec.cc.ac.cn; Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn; Zhang, Liying, E-mail: lyzhang@lsec.cc.ac.cn
Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the correspondingmore » discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.« less
Plasma Equilibrium in a Magnetic Field with Stochastic Field-Line Trajectories
NASA Astrophysics Data System (ADS)
Krommes, J. A.; Reiman, A. H.
2008-11-01
The nature of plasma equilibrium in a magnetic field with stochastic field lines is examined, expanding upon the ideas first described by Reiman et al. The magnetic partial differential equation (PDE) that determines the equilibrium Pfirsch-Schlüter currents is treated as a passive stochastic PDE for μj/B. Renormalization leads to a stochastic Langevin equation for μ in which the resonances at the rational surfaces are broadened by the stochastic diffusion of the field lines; even weak radial diffusion can significantly affect the equilibrium, which need not be flattened in the stochastic region. Particular attention is paid to satisfying the periodicity constraints in toroidal configurations with sheared magnetic fields. A numerical scheme that couples the renormalized Langevin equation to Ampere's law is described. A. Reiman et al, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes, Phys. Reports 360, 1--351.
Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs
2010-05-31
Todor : Finite elements for elliptic problems with stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194 (2005) 205-228. [14] R. Ghanem and P. Spanos...for elliptic partial differential equations with random input data SIAM J. Num. Anal. 46(2008), 2411–2442. [20] R. Todor , Robust eigenvalue computation...for smoothing operators, SIAM J. Num. Anal. 44(2006), 865– 878. [21] Ch. Schwab and R.A. Todor , Karhúnen-Loève Approximation of Random Fields by
Asymptotic problems for stochastic partial differential equations
NASA Astrophysics Data System (ADS)
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
O'Neill, William; Penn, Richard; Werner, Michael; Thomas, Justin
2015-06-01
Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible.
1988-07-01
a priori inequalities with applications to R J Knops boundary value problems 40 Singular systems of differential equations V G Sigiilito S L...Stochastic functional differential equations S E A Mohammed 100 Optimal control of variational inequalities 125 Ennio de Giorgi Colloquium V Barbu P Kr e...location of the period-doubled bifurcation point varies slightly with Zc [ 3 ]. In addition, no significant effect is found if a smoother functional
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
NASA Astrophysics Data System (ADS)
Bobrowski, Adam; Lipniacki, Tomasz; Pichór, Katarzyna; Rudnicki, Ryszard
2007-09-01
The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.RE Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, JE Theor. Biol. 238 (2006) 348-367] in modelling gene expression in eukaryotes. Starting from the full generator of the process we show that its distributions satisfy a (Fokker-Planck-type) system of partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.
Stochastic approach and fluctuation theorem for charge transport in diodes
NASA Astrophysics Data System (ADS)
Gu, Jiayin; Gaspard, Pierre
2018-05-01
A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2002-04-01
The Klein-Gordon equation is shown to be equivalent to coupled partial differential equations for a sub-quantum Brownian movement of a “particle”, which is both passively affected by, and actively affecting, a diffusion process of its generally nonlocal environment. This indicates circularly causal, or “cybernetic”, relationships between “particles” and their surroundings. Moreover, in the relativistic domain, the original stochastic theory of Nelson is shown to hold as a limiting case only, i.e., for a vanishing quantum potential.
Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
Venturi, D; Karniadakis, G E
2014-06-08
Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.
Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems
Venturi, D.; Karniadakis, G. E.
2014-01-01
Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519
Large Deviations for Nonlocal Stochastic Neural Fields
2014-01-01
We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers’ law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations. Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20. PMID:24742297
Johnson, Paul; Howell, Sydney; Duck, Peter
2017-08-13
A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Hozman, J.; Tichý, T.
2017-12-01
Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.
Penn, Richard; Werner, Michael; Thomas, Justin
2015-01-01
Background Estimation of stochastic process models from data is a common application of time series analysis methods. Such system identification processes are often cast as hypothesis testing exercises whose intent is to estimate model parameters and test them for statistical significance. Ordinary least squares (OLS) regression and the Levenberg-Marquardt algorithm (LMA) have proven invaluable computational tools for models being described by non-homogeneous, linear, stationary, ordinary differential equations. Methods In this paper we extend stochastic model identification to linear, stationary, partial differential equations in two independent variables (2D) and show that OLS and LMA apply equally well to these systems. The method employs an original nonparametric statistic as a test for the significance of estimated parameters. Results We show gray scale and color images are special cases of 2D systems satisfying a particular autoregressive partial difference equation which estimates an analogous partial differential equation. Several applications to medical image modeling and classification illustrate the method by correctly classifying demented and normal OLS models of axial magnetic resonance brain scans according to subject Mini Mental State Exam (MMSE) scores. Comparison with 13 image classifiers from the literature indicates our classifier is at least 14 times faster than any of them and has a classification accuracy better than all but one. Conclusions Our modeling method applies to any linear, stationary, partial differential equation and the method is readily extended to 3D whole-organ systems. Further, in addition to being a robust image classifier, estimated image models offer insights into which parameters carry the most diagnostic image information and thereby suggest finer divisions could be made within a class. Image models can be estimated in milliseconds which translate to whole-organ models in seconds; such runtimes could make real-time medicine and surgery modeling possible. PMID:26029638
Partial ASL extensions for stochastic programming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, David
2010-03-31
partially completed extensions for stochastic programming to the AMPL/solver interface library (ASL).modeling and experimenting with stochastic recourse problems. This software is not primarily for military applications
Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J
2016-01-01
To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.
Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.
2016-01-01
To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804
NASA Astrophysics Data System (ADS)
Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl
2018-06-01
The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.
Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise
Zeng, Caibin; Yang, Qigui; Cao, Junfei
2014-01-01
This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB H(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Online sequential Monte Carlo smoother for partially observed diffusion processes
NASA Astrophysics Data System (ADS)
Gloaguen, Pierre; Étienne, Marie-Pierre; Le Corff, Sylvain
2018-12-01
This paper introduces a new algorithm to approximate smoothed additive functionals of partially observed diffusion processes. This method relies on a new sequential Monte Carlo method which allows to compute such approximations online, i.e., as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. The original algorithm cannot be used in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that it may be extended to partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. This estimator is proved to be consistent and its performance are illustrated using data from two models.
On the motion of classical three-body system with consideration of quantum fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorkyan, A. S., E-mail: g-ashot@sci.am
2017-03-15
We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch
2013-10-01
Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less
Stochastic Evolution of Augmented Born-Infeld Equations
NASA Astrophysics Data System (ADS)
Holm, Darryl D.
2018-06-01
This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely, the introduction of Stratonovich cylindrical noise into each of their Hamiltonian formulations introduces stochastic Lie transport into their dynamics in the same form for both theories. Moreover, the resulting stochastic partial differential equations retain their unperturbed form, except for an additional term representing induced Lie transport by the set of divergence-free vector fields associated with the spatial correlations of the cylindrical noise. The explanation for this remarkable similarity lies in the method of construction of the Hamiltonian for the Stratonovich stochastic contribution to the motion in both cases, which is done via pairing spatial correlation eigenvectors for cylindrical noise with the momentum map for the deterministic motion. This momentum map is responsible for the well-known analogy between hydrodynamics and electromagnetism. The momentum map for the Maxwell and Born-Infeld theories of electromagnetism treated here is the 1-form density known as the Poynting vector. Two appendices treat the Hamiltonian structures underlying these results.
A two-level stochastic collocation method for semilinear elliptic equations with random coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Luoping; Zheng, Bin; Lin, Guang
In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse meshmore » $$\\mathcal{T}_H$$ with a low level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_{P}$$) and solve linearized equations on a fine mesh $$\\mathcal{T}_h$$ using high level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_p$$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $$\\mathcal{T}_h$$ and $$\\mathcal{P}_p$$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.« less
Continuum Model for River Networks
NASA Astrophysics Data System (ADS)
Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.
1995-07-01
The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.
Pricing real estate index options under stochastic interest rates
NASA Astrophysics Data System (ADS)
Gong, Pu; Dai, Jun
2017-08-01
Real estate derivatives as new financial instruments are not merely risk management tools but also provide a novel way to gain exposure to real estate assets without buying or selling the physical assets. Although real estate derivatives market has exhibited a rapid development in recent years, the valuation challenge of real estate derivatives remains a great obstacle for further development in this market. In this paper, we derive a partial differential equation contingent on a real estate index in a stochastic interest rate environment and propose a modified finite difference method that adopts the non-uniform grids to solve this problem. Numerical results confirm the efficiency of the method and indicate that constant interest rate models lead to the mispricing of options and the effects of stochastic interest rates on option prices depend on whether the term structure of interest rates is rising or falling. Finally, we have investigated and compared the different effects of stochastic interest rates on European and American option prices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Li, X. M., E-mail: lixinmiaotju@163.com; Xu, J., E-mail: xujia-ld@163.com
A kind of magnetic shape memory alloy (MSMA) microgripper is proposed in this paper, and its nonlinear dynamic characteristics are studied when the stochastic perturbation is considered. Nonlinear differential items are introduced to explain the hysteretic phenomena of MSMA, and the constructive relationships among strain, stress, and magnetic field intensity are obtained by the partial least-square regression method. The nonlinear dynamic model of a MSMA microgripper subjected to in-plane stochastic excitation is developed. The stationary probability density function of the system’s response is obtained, the transition sets of the system are determined, and the conditions of stochastic bifurcation are obtained.more » The homoclinic and heteroclinic orbits of the system are given, and the boundary of the system’s safe basin is obtained by stochastic Melnikov integral method. The numerical and experimental results show that the system’s motion depends on its parameters, and stochastic Hopf bifurcation appears in the variation of the parameters; the area of the safe basin decreases with the increase of the stochastic excitation, and the boundary of the safe basin becomes fractal. The results of this paper are helpful for the application of MSMA microgripper in engineering fields.« less
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
NASA Astrophysics Data System (ADS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction
2016-02-25
Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Nunno, Giulia, E-mail: giulian@math.uio.no; Khedher, Asma, E-mail: asma.khedher@tum.de; Vanmaele, Michèle, E-mail: michele.vanmaele@ugent.be
We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure withmore » infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.« less
Computing diffusivities from particle models out of equilibrium
NASA Astrophysics Data System (ADS)
Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia
2018-04-01
A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.
Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type
NASA Astrophysics Data System (ADS)
Scarpa, Luca
2017-08-01
We prove well-posedness for doubly nonlinear parabolic stochastic partial differential equations of the form dXt - div γ (∇Xt) dt + β (Xt) dt ∋ B (t ,Xt) dWt, where γ and β are the two nonlinearities, assumed to be multivalued maximal monotone operators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener process. Using variational techniques, suitable uniform estimates (both pathwise and in expectation) and some compactness results, well-posedness is proved under the classical Leray-Lions conditions on γ and with no restrictive smoothness or growth assumptions on β. The operator B is assumed to be Hilbert-Schmidt and to satisfy some classical Lipschitz conditions in the second variable.
NASA Astrophysics Data System (ADS)
Gao, Peng
2018-06-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
NASA Astrophysics Data System (ADS)
Gao, Peng
2018-04-01
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.
Hybrid approaches for multiple-species stochastic reaction–diffusion models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spill, Fabian, E-mail: fspill@bu.edu; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Guerrero, Pilar
2015-10-15
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and smallmore » in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.« less
NASA Astrophysics Data System (ADS)
Cosso, Andrea; Russo, Francesco
2016-11-01
Functional Itô calculus was introduced in order to expand a functional F(t,Xṡ+t,Xt) depending on time t, past and present values of the process X. Another possibility to expand F(t,Xṡ+t,Xt) consists in considering the path Xṡ+t = {Xx+t,x ∈ [-T, 0]} as an element of the Banach space of continuous functions on C([-T, 0]) and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.
Pricing geometric Asian rainbow options under fractional Brownian motion
NASA Astrophysics Data System (ADS)
Wang, Lu; Zhang, Rong; Yang, Lin; Su, Yang; Ma, Feng
2018-03-01
In this paper, we explore the pricing of the assets of Asian rainbow options under the condition that the assets have self-similar and long-range dependence characteristics. Based on the principle of no arbitrage, stochastic differential equation, and partial differential equation, we obtain the pricing formula for two-asset rainbow options under fractional Brownian motion. Next, our Monte Carlo simulation experiments show that the derived pricing formula is accurate and effective. Finally, our sensitivity analysis of the influence of important parameters, such as the risk-free rate, Hurst exponent, and correlation coefficient, on the prices of Asian rainbow options further illustrate the rationality of our pricing model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardaliaguet, P., E-mail: cardaliaguet@ceremade.dauphine.fr; Rainer, C., E-mail: Catherine.Rainer@univ-brest.fr
We introduce a new notion of pathwise strategies for stochastic differential games. This allows us to give a correct meaning to some statement asserted in Cardaliaguet and Rainer (Appl. Math. Optim. 59: 1-36, 2009)
Stochastic differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobczyk, K.
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less
Organization of the cytokeratin network in an epithelial cell.
Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien
2003-08-07
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.
Optimal estimation of parameters and states in stochastic time-varying systems with time delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-08-01
In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
2017-10-26
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
Active stability augmentation of large space structures: A stochastic control problem
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1987-01-01
A problem in SCOLE is that of slewing an offset antenna on a long flexible beam-like truss attached to the space shuttle, with rather stringent pointing accuracy requirements. The relevant methodology aspects in robust feedback-control design for stability augmentation of the beam using on-board sensors is examined. It is framed as a stochastic control problem, boundary control of a distributed parameter system described by partial differential equations. While the framework is mathematical, the emphasis is still on an engineering solution. An abstract mathematical formulation is developed as a nonlinear wave equation in a Hilbert space. That the system is controllable is shown and a feedback control law that is robust in the sense that it does not require quantitative knowledge of system parameters is developed. The stochastic control problem that arises in instrumenting this law using appropriate sensors is treated. Using an engineering first approximation which is valid for small damping, formulas for optimal choice of the control gain are developed.
A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Vassilevski, Panayot S.; Villa, Umberto
In this paper, we propose an alternative method to generate samples of a spatially correlated random field with applications to large-scale problems for forward propagation of uncertainty. A classical approach for generating these samples is the Karhunen--Loève (KL) decomposition. However, the KL expansion requires solving a dense eigenvalue problem and is therefore computationally infeasible for large-scale problems. Sampling methods based on stochastic partial differential equations provide a highly scalable way to sample Gaussian fields, but the resulting parametrization is mesh dependent. We propose a multilevel decomposition of the stochastic field to allow for scalable, hierarchical sampling based on solving amore » mixed finite element formulation of a stochastic reaction-diffusion equation with a random, white noise source function. Lastly, numerical experiments are presented to demonstrate the scalability of the sampling method as well as numerical results of multilevel Monte Carlo simulations for a subsurface porous media flow application using the proposed sampling method.« less
Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.
Gomez, Christophe; Hartung, Niklas
2018-01-01
Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.
Two Different Approaches to Nonzero-Sum Stochastic Differential Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainer, Catherine
2007-06-15
We make the link between two approaches to Nash equilibria for nonzero-sum stochastic differential games: the first one using backward stochastic differential equations and the second one using strategies with delay. We prove that, when both exist, the two notions of Nash equilibria coincide.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro
2010-12-01
This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.
Hybrid approaches for multiple-species stochastic reaction-diffusion models
NASA Astrophysics Data System (ADS)
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-10-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen
2015-10-15
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction–diffusion models
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-01-01
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. PMID:26478601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klevtsova, Yu Yu
2013-09-30
The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of a stationary measure. Bibliography: 25 titles.
Exact time-dependent solutions for a self-regulating gene.
Ramos, A F; Innocentini, G C P; Hornos, J E M
2011-06-01
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.
NonMarkov Ito Processes with 1- state memory
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.
2010-08-01
A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.
Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats
2015-05-01
Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.
Numerical methods for stochastic differential equations
NASA Astrophysics Data System (ADS)
Kloeden, Peter; Platen, Eckhard
1991-06-01
The numerical analysis of stochastic differential equations differs significantly from that of ordinary differential equations due to the peculiarities of stochastic calculus. This book provides an introduction to stochastic calculus and stochastic differential equations, both theory and applications. The main emphasise is placed on the numerical methods needed to solve such equations. It assumes an undergraduate background in mathematical methods typical of engineers and physicists, through many chapters begin with a descriptive summary which may be accessible to others who only require numerical recipes. To help the reader develop an intuitive understanding of the underlying mathematicals and hand-on numerical skills exercises and over 100 PC Exercises (PC-personal computer) are included. The stochastic Taylor expansion provides the key tool for the systematic derivation and investigation of discrete time numerical methods for stochastic differential equations. The book presents many new results on higher order methods for strong sample path approximations and for weak functional approximations, including implicit, predictor-corrector, extrapolation and variance-reduction methods. Besides serving as a basic text on such methods. the book offers the reader ready access to a large number of potential research problems in a field that is just beginning to expand rapidly and is widely applicable.
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
Maximum principle for a stochastic delayed system involving terminal state constraints.
Wen, Jiaqiang; Shi, Yufeng
2017-01-01
We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.
A representation of solution of stochastic differential equations
NASA Astrophysics Data System (ADS)
Kim, Yoon Tae; Jeon, Jong Woo
2006-03-01
We prove that the logarithm of the formal power series, obtained from a stochastic differential equation, is an element in the closure of the Lie algebra generated by vector fields being coefficients of equations. By using this result, we obtain a representation of the solution of stochastic differential equations in terms of Lie brackets and iterated Stratonovich integrals in the algebra of formal power series.
Quantum stochastic calculus associated with quadratic quantum noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in
2016-02-15
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculusmore » extends the Hudson-Parthasarathy quantum stochastic calculus.« less
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik
2009-06-01
The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.
Statistics of Experiments on Cluster Formation and Transport in a Gravitational Field
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
Metastable state relaxation in a gravitational field is investigated in the case of non-critical binary solutions. A relaxation description is presented in terms of the time-dependent Ginzburg-Landau formalism for a non-conserved order parameter. A new ansatz for solution of the corresponding partial nonlinear stochastic differential equation is discussed. It is proved that, for the supersaturated solution under consideration, the metastable state relaxation in a gravitational field leads to formation of solute concentration gradients due to the sedimentation of subcritical solute clusters. The pure discussion of the possible methods to compare theoretical results and experimental data related to solute sedimentation in a gravitational field is presented. It is shown that in order to describe these experiments it is necessary to deal both with the value of the solute concentration gradient and with its formation rate. The stochastic nature of the sedimentation process is shown.
Stochastic models for tumoral growth
NASA Astrophysics Data System (ADS)
Escudero, Carlos
2006-02-01
Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Differential equations driven by rough paths with jumps
NASA Astrophysics Data System (ADS)
Friz, Peter K.; Zhang, Huilin
2018-05-01
We develop the rough path counterpart of Itô stochastic integration and differential equations driven by general semimartingales. This significantly enlarges the classes of (Itô/forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
A damage mechanics based approach to structural deterioration and reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattcharya, B.; Ellingwood, B.
1998-02-01
Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions tomore » the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.« less
Derivation of kinetic equations from non-Wiener stochastic differential equations
NASA Astrophysics Data System (ADS)
Basharov, A. M.
2013-12-01
Kinetic differential-difference equations containing terms with fractional derivatives and describing α -stable Levy processes with 0 < α < 1 have been derived in a unified manner in terms of one-dimensional stochastic differential equations controlled merely by the Poisson processes.
Probabilistic density function method for nonlinear dynamical systems driven by colored noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barajas-Solano, David A.; Tartakovsky, Alexandre M.
2016-05-01
We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less
Time-ordered product expansions for computational stochastic system biology.
Mjolsness, Eric
2013-06-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.
Electron thermal confinement in a partially stochastic magnetic structure
NASA Astrophysics Data System (ADS)
Morton, L. A.; Young, W. C.; Hegna, C. C.; Parke, E.; Reusch, J. A.; Den Hartog, D. J.
2018-04-01
Using a high-repetition-rate Thomson scattering diagnostic, we observe a peak in electron temperature Te coinciding with the location of a large magnetic island in the Madison Symmetric Torus. Magnetohydrodynamic modeling of this quasi-single helicity plasma indicates that smaller adjacent islands overlap with and destroy the large island flux surfaces. The estimated stochastic electron thermal conductivity ( ≈30 m 2/s ) is consistent with the conductivity inferred from the observed Te gradient and ohmic heating power. Island-shaped Te peaks can result from partially stochastic magnetic islands.
An estimator for the relative entropy rate of path measures for stochastic differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opper, Manfred, E-mail: manfred.opper@tu-berlin.de
2017-02-01
We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.
2–stage stochastic Runge–Kutta for stochastic delay differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah
2015-05-15
This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.
Continuation of probability density functions using a generalized Lyapunov approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baars, S., E-mail: s.baars@rug.nl; Viebahn, J.P., E-mail: viebahn@cwi.nl; Mulder, T.E., E-mail: t.e.mulder@uu.nl
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.
Enhancing sparsity of Hermite polynomial expansions by iterative rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiu; Lei, Huan; Baker, Nathan A.
2016-02-01
Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
NASA Astrophysics Data System (ADS)
Wei, Xinjiang; Sun, Shixiang
2018-03-01
An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.
A stochastic-field description of finite-size spiking neural networks
Longtin, André
2017-01-01
Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagiannis, Georgios; Lin, Guang
2014-02-15
Generalized polynomial chaos (gPC) expansions allow the representation of the solution of a stochastic system as a series of polynomial terms. The number of gPC terms increases dramatically with the dimension of the random input variables. When the number of the gPC terms is larger than that of the available samples, a scenario that often occurs if the evaluations of the system are expensive, the evaluation of the gPC expansion can be inaccurate due to over-fitting. We propose a fully Bayesian approach that allows for global recovery of the stochastic solution, both in spacial and random domains, by coupling Bayesianmore » model uncertainty and regularization regression methods. It allows the evaluation of the PC coefficients on a grid of spacial points via (1) Bayesian model average or (2) medial probability model, and their construction as functions on the spacial domain via spline interpolation. The former accounts the model uncertainty and provides Bayes-optimal predictions; while the latter, additionally, provides a sparse representation of the solution by evaluating the expansion on a subset of dominating gPC bases when represented as a gPC expansion. Moreover, the method quantifies the importance of the gPC bases through inclusion probabilities. We design an MCMC sampler that evaluates all the unknown quantities without the need of ad-hoc techniques. The proposed method is suitable for, but not restricted to, problems whose stochastic solution is sparse at the stochastic level with respect to the gPC bases while the deterministic solver involved is expensive. We demonstrate the good performance of the proposed method and make comparisons with others on 1D, 14D and 40D in random space elliptic stochastic partial differential equations.« less
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Spreading paths in partially observed social networks
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Stochastic simulations on a model of circadian rhythm generation.
Miura, Shigehiro; Shimokawa, Tetsuya; Nomura, Taishin
2008-01-01
Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu
2014-08-01
The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also themore » stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.« less
A stochastic hybrid systems based framework for modeling dependent failure processes
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313
A stochastic hybrid systems based framework for modeling dependent failure processes.
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.
Complex groundwater flow systems as traveling agent models
Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis
2014-01-01
Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455
A large deviations principle for stochastic flows of viscous fluids
NASA Astrophysics Data System (ADS)
Cipriano, Fernanda; Costa, Tiago
2018-04-01
We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2 (0 , T ;H1 (T2)) . The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier-Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.
Stochastic Differential Games with Asymmetric Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardaliaguet, Pierre, E-mail: Pierre.Cardaliaguet@univ-brest.fr; Rainer, Catherine
2009-02-15
We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.
NASA Astrophysics Data System (ADS)
McCarthy, S.; Rachinskii, D.
2011-01-01
We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.
1/f Noise from nonlinear stochastic differential equations.
Ruseckas, J; Kaulakys, B
2010-03-01
We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.
Modeling animal movements using stochastic differential equations
Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie
2004-01-01
We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...
Modelling and Computation in the Valuation of Carbon Derivatives with Stochastic Convenience Yields
Chang, Shuhua; Wang, Xinyu
2015-01-01
The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE) resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results. PMID:26010900
Model reduction method using variable-separation for stochastic saddle point problems
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2018-02-01
In this paper, we consider a variable-separation (VS) method to solve the stochastic saddle point (SSP) problems. The VS method is applied to obtain the solution in tensor product structure for stochastic partial differential equations (SPDEs) in a mixed formulation. The aim of such a technique is to construct a reduced basis approximation of the solution of the SSP problems. The VS method attempts to get a low rank separated representation of the solution for SSP in a systematic enrichment manner. No iteration is performed at each enrichment step. In order to satisfy the inf-sup condition in the mixed formulation, we enrich the separated terms for the primal system variable at each enrichment step. For the SSP problems by regularization or penalty, we propose a more efficient variable-separation (VS) method, i.e., the variable-separation by penalty method. This can avoid further enrichment of the separated terms in the original mixed formulation. The computation of the variable-separation method decomposes into offline phase and online phase. Sparse low rank tensor approximation method is used to significantly improve the online computation efficiency when the number of separated terms is large. For the applications of SSP problems, we present three numerical examples to illustrate the performance of the proposed methods.
Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields.
Chang, Shuhua; Wang, Xinyu
2015-01-01
The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE) resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results.
Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming
NASA Astrophysics Data System (ADS)
Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji
In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.
Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W
2008-08-01
We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.
Computational singular perturbation analysis of stochastic chemical systems with stiffness
NASA Astrophysics Data System (ADS)
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.
2017-04-01
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.
K-Minimax Stochastic Programming Problems
NASA Astrophysics Data System (ADS)
Nedeva, C.
2007-10-01
The purpose of this paper is a discussion of a numerical procedure based on the simplex method for stochastic optimization problems with partially known distribution functions. The convergence of this procedure is proved by the condition on dual problems.
Simulation of quantum dynamics based on the quantum stochastic differential equation.
Li, Ming
2013-01-01
The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.
Existence and uniqueness of solution for a class of stochastic differential equations.
Cao, Junfei; Huang, Zaitang; Zeng, Caibin
2013-01-01
A class of stochastic differential equations given by dx(t) = f(x(t))dt + g(x(t))dW(t), x(t 0) = x 0, t 0 ≤ t ≤ T < +∞, are investigated. Upon making some suitable assumptions, the existence and uniqueness of solution for the equations are obtained. Moreover, the existence and uniqueness of solution for stochastic Lorenz system, which is illustrated by example, are in good agreement with the theoretical analysis.
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...
2017-12-20
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
Differential Equations Models to Study Quorum Sensing.
Pérez-Velázquez, Judith; Hense, Burkhard A
2018-01-01
Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.
Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Miao, C. C.
1973-01-01
The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.
NASA Astrophysics Data System (ADS)
Gavrilov, S. N.; Krivtsov, A. M.; Tsvetkov, D. V.
2018-05-01
We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.
Engen, Steinar; Saether, Bernt-Erik
2014-03-01
We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
A stochastic maximum principle for backward control systems with random default time
NASA Astrophysics Data System (ADS)
Shen, Yang; Kuen Siu, Tak
2013-05-01
This paper establishes a necessary and sufficient stochastic maximum principle for backward systems, where the state processes are governed by jump-diffusion backward stochastic differential equations with random default time. An application of the sufficient stochastic maximum principle to an optimal investment and capital injection problem in the presence of default risk is discussed.
Reflected stochastic differential equation models for constrained animal movement
Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.
2017-01-01
Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...
2017-03-05
Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.
Fast Numerical Methods for Stochastic Partial Differential Equations
2016-04-15
analysis we first derived a system of forward and backward SDEs (BSDEs) for (Xt, Qt, Zt){ dXs = b( Xs )dt+ σsdWs, Xt = x, t < s < T, (SDE) dQs = ZsdWs...g( Xs )QsdVs, QT = Φ(XT ). (BSDE) (6) Here Wt and Vt are two independent Brownian motions. The first equation in (6) is a forward SDE while the second...first order scheme for a general coupled system of forward-backward SDEs [1]: dXs = b( Xs )ds+ σ( Xs )dWs, t ≤ s ≤ T, dYs = +f(s, Xs , Ys)ds +g(s
Computational singular perturbation analysis of stochastic chemical systems with stiffness
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...
2017-01-25
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less
Kleinert, H; Zatloukal, V
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
A Discrete Probability Function Method for the Equation of Radiative Transfer
NASA Technical Reports Server (NTRS)
Sivathanu, Y. R.; Gore, J. P.
1993-01-01
A discrete probability function (DPF) method for the equation of radiative transfer is derived. The DPF is defined as the integral of the probability density function (PDF) over a discrete interval. The derivation allows the evaluation of the PDF of intensities leaving desired radiation paths including turbulence-radiation interactions without the use of computer intensive stochastic methods. The DPF method has a distinct advantage over conventional PDF methods since the creation of a partial differential equation from the equation of transfer is avoided. Further, convergence of all moments of intensity is guaranteed at the basic level of simulation unlike the stochastic method where the number of realizations for convergence of higher order moments increases rapidly. The DPF method is described for a representative path with approximately integral-length scale-sized spatial discretization. The results show good agreement with measurements in a propylene/air flame except for the effects of intermittency resulting from highly correlated realizations. The method can be extended to the treatment of spatial correlations as described in the Appendix. However, information regarding spatial correlations in turbulent flames is needed prior to the execution of this extension.
Diffusion of multiple species with excluded-volume effects.
Bruna, Maria; Chapman, S Jonathan
2012-11-28
Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.
Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance
2003-07-21
Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance Vincent A. Cicirello CMU-RI-TR-03-27 Submitted in partial fulfillment...AND SUBTITLE Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...lead to the development of a search control framework, called QD-BEACON that uses online -generated statistical models of search performance to
Mean-Potential Law in Evolutionary Games
NASA Astrophysics Data System (ADS)
Nałecz-Jawecki, Paweł; Miekisz, Jacek
2018-01-01
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
Stochastic Simulation Using @ Risk for Dairy Business Investment Decisions
USDA-ARS?s Scientific Manuscript database
A dynamic, stochastic, mechanistic simulation model of a dairy business was developed to evaluate the cost and benefit streams coinciding with technology investments. The model was constructed to embody the biological and economical complexities of a dairy farm system within a partial budgeting fram...
Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-07-01
The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.
Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong
2016-01-01
We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, J.; Ristorcelli, J. R.
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno
2008-01-01
We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. PMID:19255631
Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style
NASA Astrophysics Data System (ADS)
Hillston, Jane; Duguid, Adam
The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.
Stochastic Differential Games with Complexity Constrained Strategies.
1982-03-01
Stochastic Differential Game ..... . 39 2.-1 A b.mp.C mcamp e ..... .... ................ . ..... qu CHAPTER 3 - PROBLEM OF STATE ESTDAATION IN TWO...similar to that used vith the differential game , e vould find that the optimal K has the form K T[T* + ( 2.58) This is not a surprising ansver in viev...Examle Example: Discrete-time, one-stage scalar game Transition equation: Y X + U - V P-offtfuntinl: J E + {5 2 CV Cc~ c>a> 0 Observation equations: Z x
Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A J
2013-03-06
Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment.
Vierheller, Janine; Neubert, Wilhelm; Falcke, Martin; Gilbert, Stephen H.; Chamakuri, Nagaiah
2015-01-01
Mathematical modeling of excitation-contraction coupling (ECC) in ventricular cardiac myocytes is a multiscale problem, and it is therefore difficult to develop spatially detailed simulation tools. ECC involves gradients on the length scale of 100 nm in dyadic spaces and concentration profiles along the 100 μm of the whole cell, as well as the sub-millisecond time scale of local concentration changes and the change of lumenal Ca2+ content within tens of seconds. Our concept for a multiscale mathematical model of Ca2+ -induced Ca2+ release (CICR) and whole cardiomyocyte electrophysiology incorporates stochastic simulation of individual LC- and RyR-channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca2+ and Ca2+-binding molecules in the bulk of the cell. We developed a novel computational approach to resolve the concentration gradients from dyadic space to cell level by using a quasistatic approximation within the dyad and finite element methods for integrating the partial differential equations. We show whole cell Ca2+-concentration profiles using three previously published RyR-channel Markov schemes. PMID:26441674
Mean-Potential Law in Evolutionary Games.
Nałęcz-Jawecki, Paweł; Miękisz, Jacek
2018-01-12
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
A Lagrangian stochastic model is proposed as a tool that can be utilized in forecasting remedial performance and estimating the benefits (in terms of flux and mass reduction) derived from a source zone remedial effort. The stochastic functional relationships that describe the hyd...
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
Stochastic Cell Fate Progression in Embryonic Stem Cells
NASA Astrophysics Data System (ADS)
Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad
2013-03-01
Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund
Stationary conditions for stochastic differential equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Walker, W. W.
1972-01-01
This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.
NASA Astrophysics Data System (ADS)
Wijsen, N.; Poedts, S.; Pomoell, J.
2017-12-01
Solar energetic particles (SEPs) are high energy particles originating from solar eruptive events. These particles can be energised at solar flare sites during magnetic reconnection events, or in shock waves propagating in front of coronal mass ejections (CMEs). These CME-driven shocks are in particular believed to act as powerful accelerators of charged particles throughout their propagation in the solar corona. After escaping from their acceleration site, SEPs propagate through the heliosphere and may eventually reach our planet where they can disrupt the microelectronics on satellites in orbit and endanger astronauts among other effects. Therefore it is of vital importance to understand and thereby build models capable of predicting the characteristics of SEP events. The propagation of SEPs in the heliosphere can be described by the time-dependent focused transport equation. This five-dimensional parabolic partial differential equation can be solved using e.g., a finite difference method or by integrating a set of corresponding first order stochastic differential equations. In this work we take the latter approach to model SEP events under different solar wind and scattering conditions. The background solar wind in which the energetic particles propagate is computed using a magnetohydrodynamic model. This allows us to study the influence of different realistic heliospheric configurations on SEP transport. In particular, in this study we focus on exploring the influence of high speed solar wind streams originating from coronal holes that are located close to the eruption source region on the resulting particle characteristics at Earth. Finally, we discuss our upcoming efforts towards integrating our particle propagation model with time-dependent heliospheric MHD space weather modelling.
NASA Astrophysics Data System (ADS)
Soni, Hardik N.; Chauhan, Ashaba D.
2018-03-01
This study models a joint pricing, inventory, and preservation decision-making problem for deteriorating items subject to stochastic demand and promotional effort. The generalized price-dependent stochastic demand, time proportional deterioration, and partial backlogging rates are used to model the inventory system. The objective is to find the optimal pricing, replenishment, and preservation technology investment strategies while maximizing the total profit per unit time. Based on the partial backlogging and lost sale cases, we first deduce the criterion for optimal replenishment schedules for any given price and technology investment cost. Second, we show that, respectively, total profit per time unit is concave function of price and preservation technology cost. At the end, some numerical examples and the results of a sensitivity analysis are used to illustrate the features of the proposed model.
Fractional calculus in hydrologic modeling: A numerical perspective
Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan
2013-01-01
Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449
NASA Astrophysics Data System (ADS)
Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina
2017-09-01
A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.
Doi-Peliti path integral methods for stochastic systems with partial exclusion
NASA Astrophysics Data System (ADS)
Greenman, Chris D.
2018-09-01
Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.
Optimal control strategy for an impulsive stochastic competition system with time delays and jumps
NASA Astrophysics Data System (ADS)
Liu, Lidan; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Driven by both white and jump noises, a stochastic delayed model with two competitive species in a polluted environment is proposed and investigated. By using the comparison theorem of stochastic differential equations and limit superior theory, sufficient conditions for persistence in mean and extinction of two species are established. In addition, we obtain that the system is asymptotically stable in distribution by using ergodic method. Furthermore, the optimal harvesting effort and the maximum of expectation of sustainable yield (ESY) are derived from Hessian matrix method and optimal harvesting theory of differential equations. Finally, some numerical simulations are provided to illustrate the theoretical results.
Differential form representation of stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A. J.
2013-01-01
Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment. PMID:23325756
Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O
2016-06-01
Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2008-09-01
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2009-02-01
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
Discrete and continuous models for tissue growth and shrinkage.
Yates, Christian A
2014-06-07
The incorporation of domain growth into stochastic models of biological processes is of increasing interest to mathematical modellers and biologists alike. In many situations, especially in developmental biology, the growth of the underlying tissue domain plays an important role in the redistribution of particles (be they cells or molecules) which may move and react atop the domain. Although such processes have largely been modelled using deterministic, continuum models there is an increasing appetite for individual-based stochastic models which can capture the fine details of the biological movement processes which are being elucidated by modern experimental techniques, and also incorporate the inherent stochasticity of such systems. In this work we study a simple stochastic model of domain growth. From a basic version of this model, Hywood et al. (2013) were able to derive a Fokker-Plank equation (FPE) (in this case an advection-diffusion partial differential equation on a growing domain) which describes the evolution of the probability density of some tracer particles on the domain. We extend their work so that a variety of different domain growth mechanisms can be incorporated and demonstrate a good agreement between the mean tracer density and the solution of the FPE in each case. In addition we incorporate domain shrinkage (via element death) into our individual-level model and demonstrate that we are able to derive coefficients for the FPE in this case as well. For situations in which the drift and diffusion coefficients are not readily available we introduce a numerical coefficient estimation approach and demonstrate the accuracy of this approach by comparing it with situations in which an analytical solution is obtainable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics
NASA Astrophysics Data System (ADS)
Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.
2015-07-01
Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.
Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates
NASA Astrophysics Data System (ADS)
Chang, Zhengbo; Meng, Xinzhu; Lu, Xiao
2017-04-01
This paper presents a stochastic SIRS epidemic model with two different nonlinear incidence rates and double epidemic asymmetrical hypothesis, and we devote to develop a mathematical method to obtain the threshold of the stochastic epidemic model. We firstly investigate the boundness and extinction of the stochastic system. Furthermore, we use Ito's formula, the comparison theorem and some new inequalities techniques of stochastic differential systems to discuss persistence in mean of two diseases on three cases. The results indicate that stochastic fluctuations can suppress the disease outbreak. Finally, numerical simulations about different noise disturbance coefficients are carried out to illustrate the obtained theoretical results.
NASA Astrophysics Data System (ADS)
Eyre, T. M. W.
Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as
Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
Salis, Howard; Kaznessis, Yiannis
2005-02-01
The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.
Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach
NASA Astrophysics Data System (ADS)
Kim, Changho; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.; Donev, Aleksandar
2017-03-01
We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. By comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.
Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach
Kim, Changho; Nonaka, Andy; Bell, John B.; ...
2017-03-24
Here, we develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our SPDEs are spatially discretized and reactions are modeled as a source term having Poisson fluctuations. However, unlike the RDME, which becomes prohibitively expensive for an increasing number of molecules, our FHD-based description naturally extends from the regime where fluctuations are strong, i.e., each mesoscopic cell has few (reactive) molecules,more » to regimes with moderate or weak fluctuations, and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the severe restriction on time step size that limits all methods based on explicit treatments of diffusion and construct numerical methods that are more efficient than RDME methods, without compromising accuracy. Guided by an analysis of the accuracy of the distribution of steady-state fluctuations for the linearized reaction-diffusion model, we construct several two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic Crank-Nicolson method, and reactions are handled by the stochastic simulation algorithm of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint tau leaping scheme attains second-order weak accuracy in the linearized setting and gives an accurate and stable structure factor for a time step size of an order of magnitude larger than the hopping time scale of diffusing molecules. We study the numerical accuracy of our methods for the Schlögl reaction-diffusion model both in and out of thermodynamic equilibrium. We demonstrate and quantify the importance of thermodynamic fluctuations to the formation of a two-dimensional Turing-like pattern and examine the effect of fluctuations on three-dimensional chemical front propagation. Furthermore, by comparing stochastic simulations to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern formation in spatially homogeneous systems and lead to a qualitatively different disordered pattern behind a traveling wave.« less
Stochastic model for threat assessment in multi-sensor defense system
NASA Astrophysics Data System (ADS)
Wang, Yongcheng; Wang, Hongfei; Jiang, Changsheng
2007-11-01
This paper puts forward a stochastic model for target detecting and tracking in multi-sensor defense systems and applies the Lanchester differential equations to threat assessment in combat. The two different modes of targets tracking and their respective Lanchester differential equations are analyzed and established. By use of these equations, we could briefly estimate the loss of each combat side and accordingly get the threat estimation results, given the situation analysis is accomplished.
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω(t) and damping factor γ(t). Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models
NASA Astrophysics Data System (ADS)
Krupp, Armin; Griffiths, Ian; Please, Colin
2016-11-01
Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.
Taylor, P. R.; Baker, R. E.; Simpson, M. J.; Yates, C. A.
2016-01-01
Numerous processes across both the physical and biological sciences are driven by diffusion. Partial differential equations are a popular tool for modelling such phenomena deterministically, but it is often necessary to use stochastic models to accurately capture the behaviour of a system, especially when the number of diffusing particles is low. The stochastic models we consider in this paper are ‘compartment-based’: the domain is discretized into compartments, and particles can jump between these compartments. Volume-excluding effects (crowding) can be incorporated by blocking movement with some probability. Recent work has established the connection between fine- and coarse-grained models incorporating volume exclusion, but only for uniform lattices. In this paper, we consider non-uniform, hybrid lattices that incorporate both fine- and coarse-grained regions, and present two different approaches to describe the interface of the regions. We test both techniques in a range of scenarios to establish their accuracy, benchmarking against fine-grained models, and show that the hybrid models developed in this paper can be significantly faster to simulate than the fine-grained models in certain situations and are at least as fast otherwise. PMID:27383421
Huang, Tingwen; Li, Chuandong; Duan, Shukai; Starzyk, Janusz A
2012-06-01
This paper focuses on the hybrid effects of parameter uncertainty, stochastic perturbation, and impulses on global stability of delayed neural networks. By using the Ito formula, Lyapunov function, and Halanay inequality, we established several mean-square stability criteria from which we can estimate the feasible bounds of impulses, provided that parameter uncertainty and stochastic perturbations are well-constrained. Moreover, the present method can also be applied to general differential systems with stochastic perturbation and impulses.
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches.
Pahle, Jürgen
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem.
Biochemical simulations: stochastic, approximate stochastic and hybrid approaches
2009-01-01
Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097
Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong
The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.
Multiple Objective Evaluation and Choicemaking under Risk with partial Preference Information.
1981-02-01
6I. PERlORUl, O RG n. REP[IORT NUMOIER Chelsea C./White," t.. 4-0 -C,6542 ~-Andrew P ,/Sage S. PERFORMING ORGANIZATION NAME ANO ADORES$ 10, POGAM...Vickson, R. G., "Theoretical Foundations of Stochastic Dominance," Chapter 2 in Whitmore , G. A., and Findlay, M. C. (eds), Stochastic Dominance: An
Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review
NASA Astrophysics Data System (ADS)
Falsone, G.
2018-03-01
In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.
Garijo, N; Manzano, R; Osta, R; Perez, M A
2012-12-07
Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Passivity-based sliding mode control for a polytopic stochastic differential inclusion system.
Liu, Leipo; Fu, Zhumu; Song, Xiaona
2013-11-01
Passivity-based sliding mode control for a polytopic stochastic differential inclusion (PSDI) system is considered. A control law is designed such that the reachability of sliding motion is guaranteed. Moreover, sufficient conditions for mean square asymptotic stability and passivity of sliding mode dynamics are obtained by linear matrix inequalities (LMIs). Finally, two examples are given to illustrate the effectiveness of the proposed method. © 2013 ISA. Published by ISA. All rights reserved.
Stochastic models for inferring genetic regulation from microarray gene expression data.
Tian, Tianhai
2010-03-01
Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.
New exponential stability criteria for stochastic BAM neural networks with impulses
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Samidurai, R.; Anthoni, S. M.
2010-10-01
In this paper, we study the global exponential stability of time-delayed stochastic bidirectional associative memory neural networks with impulses and Markovian jumping parameters. A generalized activation function is considered, and traditional assumptions on the boundedness, monotony and differentiability of activation functions are removed. We obtain a new set of sufficient conditions in terms of linear matrix inequalities, which ensures the global exponential stability of the unique equilibrium point for stochastic BAM neural networks with impulses. The Lyapunov function method with the Itô differential rule is employed for achieving the required result. Moreover, a numerical example is provided to show that the proposed result improves the allowable upper bound of delays over some existing results in the literature.
Dynamical crossover in a stochastic model of cell fate decision
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Kawaguchi, Kyogo; Sagawa, Takahiro
2017-07-01
We study the asymptotic behaviors of stochastic cell fate decision between proliferation and differentiation. We propose a model of a self-replicating Langevin system, where cells choose their fate (i.e., proliferation or differentiation) depending on local cell density. Based on this model, we propose a scenario for multicellular organisms to maintain the density of cells (i.e., homeostasis) through finite-ranged cell-cell interactions. Furthermore, we numerically show that the distribution of the number of descendant cells changes over time, thus unifying the previously proposed two models regarding homeostasis: the critical birth death process and the voter model. Our results provide a general platform for the study of stochastic cell fate decision in terms of nonequilibrium statistical mechanics.
Fractional Stochastic Field Theory
NASA Astrophysics Data System (ADS)
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Momentum Maps and Stochastic Clebsch Action Principles
NASA Astrophysics Data System (ADS)
Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.
2018-01-01
We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.
The ISI distribution of the stochastic Hodgkin-Huxley neuron.
Rowat, Peter F; Greenwood, Priscilla E
2014-01-01
The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.
Yates, Christian A; Flegg, Mark B
2015-05-06
Spatial reaction-diffusion models have been employed to describe many emergent phenomena in biological systems. The modelling technique most commonly adopted in the literature implements systems of partial differential equations (PDEs), which assumes there are sufficient densities of particles that a continuum approximation is valid. However, owing to recent advances in computational power, the simulation and therefore postulation, of computationally intensive individual-based models has become a popular way to investigate the effects of noise in reaction-diffusion systems in which regions of low copy numbers exist. The specific stochastic models with which we shall be concerned in this manuscript are referred to as 'compartment-based' or 'on-lattice'. These models are characterized by a discretization of the computational domain into a grid/lattice of 'compartments'. Within each compartment, particles are assumed to be well mixed and are permitted to react with other particles within their compartment or to transfer between neighbouring compartments. Stochastic models provide accuracy, but at the cost of significant computational resources. For models that have regions of both low and high concentrations, it is often desirable, for reasons of efficiency, to employ coupled multi-scale modelling paradigms. In this work, we develop two hybrid algorithms in which a PDE in one region of the domain is coupled to a compartment-based model in the other. Rather than attempting to balance average fluxes, our algorithms answer a more fundamental question: 'how are individual particles transported between the vastly different model descriptions?' First, we present an algorithm derived by carefully redefining the continuous PDE concentration as a probability distribution. While this first algorithm shows very strong convergence to analytical solutions of test problems, it can be cumbersome to simulate. Our second algorithm is a simplified and more efficient implementation of the first, it is derived in the continuum limit over the PDE region alone. We test our hybrid methods for functionality and accuracy in a variety of different scenarios by comparing the averaged simulations with analytical solutions of PDEs for mean concentrations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Mathematical issues in eternal inflation
NASA Astrophysics Data System (ADS)
Singh Kohli, Ikjyot; Haslam, Michael C.
2015-04-01
In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.
Backward-stochastic-differential-equation approach to modeling of gene expression
NASA Astrophysics Data System (ADS)
Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F.; Aguiar, Paulo
2017-03-01
In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).
NASA Astrophysics Data System (ADS)
Liu, Xiangdong; Li, Qingze; Pan, Jianxin
2018-06-01
Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.
Backward-stochastic-differential-equation approach to modeling of gene expression.
Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F; Aguiar, Paulo
2017-03-01
In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).
Higher-order stochastic differential equations and the positive Wigner function
NASA Astrophysics Data System (ADS)
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Stochastic von Bertalanffy models, with applications to fish recruitment.
Lv, Qiming; Pitchford, Jonathan W
2007-02-21
We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.
Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi; Lavery, Shane; Dalebout, Merel L; Funahashi, Naoko; Baker, C Scott
2010-04-01
Stable isotope ratios of carbon (partial differential(13)C) and nitrogen (partial differential(15)N) and total mercury (T-Hg) concentrations were measured in red meat samples from 11 odontocete species (toothed whales, dolphins, and porpoises) sold in Japan (n = 96) and in muscle samples from stranded killer whales (n = 6) and melon-headed whales (n = 15), and the analytical data for these species were classified into three regions (northern, central, and southern Japan) depending on the locations in which they were caught or stranded. The partial differential(15)N in the samples from southern Japan tended to be lower than that in samples from the north, whereas both partial differential(13)C and T-Hg concentrations in samples from the south tended to higher than those in samples from northern Japan. Negative correlations were found between the partial differential(13)C and partial differential(15)N values and between the partial differential(15)N value and T-Hg concentrations in the combined samples all three regions (gamma= -0.238, n = 117, P < 0.01). The partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the samples varied more by habitat than by species. Spatial variations in partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the ocean may be the cause of these phenomena.
Rackauckas, Christopher; Nie, Qing
2017-01-01
Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.
Rackauckas, Christopher
2017-01-01
Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs. PMID:29527134
2015-01-01
Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions’ cooperative and noncooperative optimal emission paths, which maximize the regions’ discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322
Chang, Shuhua; Wang, Xinyu; Wang, Zheng
2015-01-01
Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions' cooperative and noncooperative optimal emission paths, which maximize the regions' discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games.
Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
Christen, Alejandra; Maulén-Yañez, M Angélica; González-Olivares, Eduardo; Curé, Michel
2018-03-01
In this paper a stochastic susceptible-infectious (SI) epidemic model is analysed, which is based on the model proposed by Roberts and Saha (Appl Math Lett 12: 37-41, 1999), considering a hyperbolic type nonlinear incidence rate. Assuming the proportion of infected population varies with time, our new model is described by an ordinary differential equation, which is analogous to the equation that describes the double Allee effect. The limit of the solution of this equation (deterministic model) is found when time tends to infinity. Then, the asymptotic behaviour of a stochastic fluctuation due to the environmental variation in the coefficient of disease transmission is studied. Thus a stochastic differential equation (SDE) is obtained and the existence of a unique solution is proved. Moreover, the SDE is analysed through the associated Fokker-Planck equation to obtain the invariant measure when the proportion of the infected population reaches steady state. An explicit expression for invariant measure is found and we study some of its properties. The long time behaviour of deterministic and stochastic models are compared by simulations. According to our knowledge this incidence rate has not been previously used for this type of epidemic models.
Zheng, Wendong; Zeng, Pingping
2016-01-01
ABSTRACT Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability of the 3/2 SVM by proposing a closed-form formula for the partial transform of the triple joint transition density which stand for the log asset price, the quadratic variation (continuous realized variance) and the instantaneous variance, respectively. Two distinct formulations are provided for deriving the main result. The closed-form partial transform enables us to deduce a variety of marginal partial transforms and characteristic functions and plays a crucial role in pricing discretely sampled variance derivatives and exotic options that depend on both the asset price and quadratic variation. Various applications and numerical examples on pricing moment swaps and timer options with discrete monitoring feature are given to demonstrate the versatility of the partial transform under the 3/2 model. PMID:28706460
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2009-04-01
The QUAGMIRE model has recently been made freely available for public use. QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. This presentation describes the model's main features. QUAGMIRE uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
NASA Astrophysics Data System (ADS)
Appleby, J. A. D.; Wu, H.
2008-11-01
In this paper we consider functional differential equations subjected to either instantaneous state-dependent noise, or to a white noise perturbation. The drift of the equations depend linearly on the current value and on the maximum of the solution. The functional term always provides positive feedback, while the instantaneous term can be mean-reverting or can exhibit positive feedback. We show in the white noise case that if the instantaneous term is mean reverting and dominates the history term, then solutions are recurrent, and upper bounds on the a.s. growth rate of the partial maxima of the solution can be found. When the instantaneous term is weaker, or is of positive feedback type, we determine necessary and sufficient conditions on the diffusion coefficient which ensure the exact exponential growth of solutions. An application of these results to an inefficient financial market populated by reference traders and speculators is given, in which the difference between the current instantaneous returns and maximum of the returns over the last few time units is used to determine trading strategies.
Rough flows and homogenization in stochastic turbulence
NASA Astrophysics Data System (ADS)
Bailleul, I.; Catellier, R.
2017-10-01
We provide in this work a tool-kit for the study of homogenisation of random ordinary differential equations, under the form of a friendly-user black box based on the technology of rough flows. We illustrate the use of this setting on the example of stochastic turbulence.
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
NASA Astrophysics Data System (ADS)
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation
NASA Astrophysics Data System (ADS)
Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter
2015-04-01
Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.
Fluctuating hydrodynamics of multispecies nonreactive mixtures
Balakrishnan, Kaushik; Garcia, Alejandro L.; Donev, Aleksandar; ...
2014-01-22
In this study we discuss the formulation of the fluctuating Navier-Stokes equations for multispecies, nonreactive fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial differential equations. An accurate and efficient numerical scheme, based on our previous methods for single species and binary mixtures, is presented and tested at equilibrium as well as for a variety of nonequilibrium problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture, as well asmore » reverse diffusion in a ternary mixture. Finally, good agreement with theory and experiment demonstrates that the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multispecies fluids.« less
Simulations of Fluvial Landscapes
NASA Astrophysics Data System (ADS)
Cattan, D.; Birnir, B.
2013-12-01
The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Quinoa - Adaptive Computational Fluid Dynamics, 0.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, Jozsef; Gonzalez, Francisco; Rogers, Brandon
Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter,more » an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh, (http://www.geuz.org/gmsh), Netgen, (http://sourceforge.net/apps/mediawiki/netgen-mesher), ExodusII, (http://sourceforge.net/projects/exodusii), HyperMesh, (http://www.altairhyperworks.com/product/HyperMesh).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xuetao; Zhu, Quanxin, E-mail: zqx22@126.com
2015-12-15
In this paper, we are mainly concerned with a class of stochastic neutral functional differential equations of Sobolev-type with Poisson jumps. Under two different sets of conditions, we establish the existence of the mild solution by applying the Leray-Schauder alternative theory and the Sadakovskii’s fixed point theorem, respectively. Furthermore, we use the Bihari’s inequality to prove the Osgood type uniqueness. Also, the mean square exponential stability is investigated by applying the Gronwall inequality. Finally, two examples are given to illustrate the theory results.
NASA Astrophysics Data System (ADS)
Lima, L. S.; Miranda, L. L. B.
2018-01-01
We have used the Itô's stochastic differential equation for the double well with additive white noise as a mathematical model for price dynamics of the financial market. We have presented a model which allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents, with respect to the facts of financial markets. We have obtained the mean price in terms of the β parameter that represents the force of the randomness term of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less
NASA Astrophysics Data System (ADS)
Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.
2017-03-01
We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.
Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis
Yüksel, Melih; Power, Jeffrey J.; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike
2016-01-01
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off. PMID:27375604
Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis.
Yüksel, Melih; Power, Jeffrey J; Ribbe, Jan; Volkmann, Thorsten; Maier, Berenike
2016-01-01
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H
2018-03-29
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Double diffusivity model under stochastic forcing
NASA Astrophysics Data System (ADS)
Chattopadhyay, Amit K.; Aifantis, Elias C.
2017-05-01
The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into account all boundary layer fluctuations. Our stochastic-ILG diffusion calculation confirms rapprochement between theory and experiment, thereby benchmarking a new generation of gradient-based continuum models that conform closer to real-life fluctuating environments.
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2017-10-01
We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.
A game-theoretic method for cross-layer stochastic resilient control design in CPS
NASA Astrophysics Data System (ADS)
Shen, Jiajun; Feng, Dongqin
2018-03-01
In this paper, the cross-layer security problem of cyber-physical system (CPS) is investigated from the game-theoretic perspective. Physical dynamics of plant is captured by stochastic differential game with cyber-physical influence being considered. The sufficient and necessary condition for the existence of state-feedback equilibrium strategies is given. The attack-defence cyber interactions are formulated by a Stackelberg game intertwined with stochastic differential game in physical layer. The condition such that the Stackelberg equilibrium being unique and the corresponding analytical solutions are both provided. An algorithm is proposed for obtaining hierarchical security strategy by solving coupled games, which ensures the operational normalcy and cyber security of CPS subject to uncertain disturbance and unexpected cyberattacks. Simulation results are given to show the effectiveness and performance of the proposed algorithm.
Mean-field approach to evolving spatial networks, with an application to osteocyte network formation
NASA Astrophysics Data System (ADS)
Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.
2017-07-01
We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.
Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.
Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong
2014-12-01
In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.
Stochastic resonance based on modulation instability in spatiotemporal chaos.
Han, Jing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu
2017-04-03
A novel dynamic of stochastic resonance in spatiotemporal chaos is presented, which is based on modulation instability of perturbed partially coherent wave. The noise immunity of chaos can be reinforced through this effect and used to restore the coherent signal information buried in chaotic perturbation. A theoretical model with fluctuations term is derived from the complex Ginzburg-Landau equation via Wigner transform. It shows that through weakening the nonlinear threshold and triggering energy redistribution, the coherent component dominates the instability damped by incoherent component. The spatiotemporal output showing the properties of stochastic resonance may provide a potential application of signal encryption and restoration.
Stochastic Calculus and Differential Equations for Physics and Finance
NASA Astrophysics Data System (ADS)
McCauley, Joseph L.
2013-02-01
1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.
NASA Astrophysics Data System (ADS)
Hutt, Axel; Longtin, Andre; Schimansky-Geier, Lutz
2008-05-01
This work studies the spatio-temporal dynamics of a generic integral-differential equation subject to additive random fluctuations. It introduces a combination of the stochastic center manifold approach for stochastic differential equations and the adiabatic elimination for Fokker-Planck equations, and studies analytically the systems’ stability near Turing bifurcations. In addition two types of fluctuation are studied, namely fluctuations uncorrelated in space and time, and global fluctuations, which are constant in space but uncorrelated in time. We show that the global fluctuations shift the Turing bifurcation threshold. This shift is proportional to the fluctuation variance. Applications to a neural field equation and the Swift-Hohenberg equation reveal the shift of the bifurcation to larger control parameters, which represents a stabilization of the system. All analytical results are confirmed by numerical simulations of the occurring mode equations and the full stochastic integral-differential equation. To gain some insight into experimental manifestations, the sum of uncorrelated and global additive fluctuations is studied numerically and the analytical results on global fluctuations are confirmed qualitatively.
Zollanvari, Amin; Dougherty, Edward R
2016-12-01
In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.
Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora
2017-11-01
In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.
NASA Astrophysics Data System (ADS)
Arfawi Kurdhi, Nughthoh; Adi Diwiryo, Toray; Sutanto
2016-02-01
This paper presents an integrated single-vendor two-buyer production-inventory model with stochastic demand and service level constraints. Shortage is permitted in the model, and partial backordered partial lost sale. The lead time demand is assumed follows a normal distribution and the lead time can be reduced by adding crashing cost. The lead time and ordering cost reductions are interdependent with logaritmic function relationship. A service level constraint policy corresponding to each buyer is considered in the model in order to limit the level of inventory shortages. The purpose of this research is to minimize joint total cost inventory model by finding the optimal order quantity, safety stock, lead time, and the number of lots delivered in one production run. The optimal production-inventory policy gained by the Lagrange method is shaped to account for the service level restrictions. Finally, a numerical example and effects of the key parameters are performed to illustrate the results of the proposed model.
Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?
Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda
2010-01-01
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857
Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.
Allen, Edward J
2014-06-01
Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.
Emergent user behavior on Twitter modelled by a stochastic differential equation.
Mollgaard, Anders; Mathiesen, Joachim
2015-01-01
Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.
Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation
Mollgaard, Anders; Mathiesen, Joachim
2015-01-01
Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise. PMID:25955783
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
Hybrid ODE/SSA methods and the cell cycle model
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, M.; Cao, Y.
2017-07-01
Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.
Problems of Mathematical Finance by Stochastic Control Methods
NASA Astrophysics Data System (ADS)
Stettner, Łukasz
The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.
Chen, Jiao; Weihs, Daphne; Vermolen, Fred J
2018-04-01
Cell migration, known as an orchestrated movement of cells, is crucially important for wound healing, tumor growth, immune response as well as other biomedical processes. This paper presents a cell-based model to describe cell migration in non-isotropic fibrin networks around pancreatic tumor islets. This migration is determined by the mechanical strain energy density as well as cytokines-driven chemotaxis. Cell displacement is modeled by solving a large system of ordinary stochastic differential equations where the stochastic parts result from random walk. The stochastic differential equations are solved by the use of the classical Euler-Maruyama method. In this paper, the influence of anisotropic stromal extracellular matrix in pancreatic tumor islets on T-lymphocytes migration in different immune systems is investigated. As a result, tumor peripheral stromal extracellular matrix impedes the immune response of T-lymphocytes through changing direction of their migration.
On convergence of the unscented Kalman-Bucy filter using contraction theory
NASA Astrophysics Data System (ADS)
Maree, J. P.; Imsland, L.; Jouffroy, J.
2016-06-01
Contraction theory entails a theoretical framework in which convergence of a nonlinear system can be analysed differentially in an appropriate contraction metric. This paper is concerned with utilising stochastic contraction theory to conclude on exponential convergence of the unscented Kalman-Bucy filter. The underlying process and measurement models of interest are Itô-type stochastic differential equations. In particular, statistical linearisation techniques are employed in a virtual-actual systems framework to establish deterministic contraction of the estimated expected mean of process values. Under mild conditions of bounded process noise, we extend the results on deterministic contraction to stochastic contraction of the estimated expected mean of the process state. It follows that for the regions of contraction, a result on convergence, and thereby incremental stability, is concluded for the unscented Kalman-Bucy filter. The theoretical concepts are illustrated in two case studies.
NASA Astrophysics Data System (ADS)
Zhu, Z. W.; Zhang, W. D.; Xu, J.
2014-03-01
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.
Diversity, Stability, and Reproducibility in Stochastically Assembled Microbial Ecosystems
NASA Astrophysics Data System (ADS)
Goyal, Akshit; Maslov, Sergei
2018-04-01
Microbial ecosystems are remarkably diverse, stable, and usually consist of a mixture of core and peripheral species. Here we propose a conceptual model exhibiting all these emergent properties in quantitative agreement with real ecosystem data, specifically species abundance and prevalence distributions. Resource competition and metabolic commensalism drive the stochastic ecosystem assembly in our model. We demonstrate that even when supplied with just one resource, ecosystems can exhibit high diversity, increasing stability, and partial reproducibility between samples.
Feynman-Kac equation for anomalous processes with space- and time-dependent forces
NASA Astrophysics Data System (ADS)
Cairoli, Andrea; Baule, Adrian
2017-04-01
Functionals of a stochastic process Y(t) model many physical time-extensive observables, for instance particle positions, local and occupation times or accumulated mechanical work. When Y(t) is a normal diffusive process, their statistics are obtained as the solution of the celebrated Feynman-Kac equation. This equation provides the crucial link between the expected values of diffusion processes and the solutions of deterministic second-order partial differential equations. When Y(t) is non-Brownian, e.g. an anomalous diffusive process, generalizations of the Feynman-Kac equation that incorporate power-law or more general waiting time distributions of the underlying random walk have recently been derived. A general representation of such waiting times is provided in terms of a Lévy process whose Laplace exponent is directly related to the memory kernel appearing in the generalized Feynman-Kac equation. The corresponding anomalous processes have been shown to capture nonlinear mean square displacements exhibiting crossovers between different scaling regimes, which have been observed in numerous experiments on biological systems like migrating cells or diffusing macromolecules in intracellular environments. However, the case where both space- and time-dependent forces drive the dynamics of the generalized anomalous process has not been solved yet. Here, we present the missing derivation of the Feynman-Kac equation in such general case by using the subordination technique. Furthermore, we discuss its extension to functionals explicitly depending on time, which are of particular relevance for the stochastic thermodynamics of anomalous diffusive systems. Exact results on the work fluctuations of a simple non-equilibrium model are obtained. An additional aim of this paper is to provide a pedagogical introduction to Lévy processes, semimartingales and their associated stochastic calculus, which underlie the mathematical formulation of anomalous diffusion as a subordinated process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
BLANC, EMILIE; ENGBLOM, STEFAN; HELLANDER, ANDREAS; LÖTSTEDT, PER
2017-01-01
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again. PMID:29046618
C1,1 regularity for degenerate elliptic obstacle problems
NASA Astrophysics Data System (ADS)
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
Das, Shankar P; Yoshimori, Akira
2013-10-01
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
A stochastic delay model for pricing debt and equity: Numerical techniques and applications
NASA Astrophysics Data System (ADS)
Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah
2015-01-01
Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.
On Two-Scale Modelling of Heat and Mass Transfer
NASA Astrophysics Data System (ADS)
Vala, J.; Št'astník, S.
2008-09-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
When push comes to shove: Exclusion processes with nonlocal consequences
NASA Astrophysics Data System (ADS)
Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.
2015-11-01
Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.
A Stochastic Climate Generator for Agriculture in Southeast Asian Domains
NASA Astrophysics Data System (ADS)
Greene, A. M.; Allis, E. C.
2014-12-01
We extend a previously-described method for generating future climate scenarios, suitable for driving agricultural models, to selected domains in Lao PDR, Bangladesh and Indonesia. There are notable differences in climatology among the study regions, most importantly the inverse seasonal relationship of southeast Asian and Australian monsoons. These differences necessitate a partially-differentiated modeling approach, utilizing common features for better estimation while allowing independent modeling of divergent attributes. The method attempts to constrain uncertainty due to both anthropogenic and natural influences, providing a measure of how these effects may combine during specified future decades. Seasonal climate fields are downscaled to the daily time step by resampling the AgMERRA dataset, providing a full suite of agriculturally relevant variables and enabling the propagation of climate uncertainty to agricultural outputs. The role of this research in a broader project, conducted under the auspices of the International Fund for Agricultural Development (IFAD), is discussed.
NASA Astrophysics Data System (ADS)
Graham, Wendy D.; Tankersley, Claude D.
1994-05-01
Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.
Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
NASA Astrophysics Data System (ADS)
Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing
2014-09-01
We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.
Müller, Eike H.; Scheichl, Rob; Shardlow, Tony
2015-01-01
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075
Müller, Eike H; Scheichl, Rob; Shardlow, Tony
2015-04-08
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.
Quantitative analysis of random ameboid motion
NASA Astrophysics Data System (ADS)
Bödeker, H. U.; Beta, C.; Frank, T. D.; Bodenschatz, E.
2010-04-01
We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.
Accelerating numerical solution of stochastic differential equations with CUDA
NASA Astrophysics Data System (ADS)
Januszewski, M.; Kostur, M.
2010-01-01
Numerical integration of stochastic differential equations is commonly used in many branches of science. In this paper we present how to accelerate this kind of numerical calculations with popular NVIDIA Graphics Processing Units using the CUDA programming environment. We address general aspects of numerical programming on stream processors and illustrate them by two examples: the noisy phase dynamics in a Josephson junction and the noisy Kuramoto model. In presented cases the measured speedup can be as high as 675× compared to a typical CPU, which corresponds to several billion integration steps per second. This means that calculations which took weeks can now be completed in less than one hour. This brings stochastic simulation to a completely new level, opening for research a whole new range of problems which can now be solved interactively. Program summaryProgram title: SDE Catalogue identifier: AEFG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Gnu GPL v3 No. of lines in distributed program, including test data, etc.: 978 No. of bytes in distributed program, including test data, etc.: 5905 Distribution format: tar.gz Programming language: CUDA C Computer: any system with a CUDA-compatible GPU Operating system: Linux RAM: 64 MB of GPU memory Classification: 4.3 External routines: The program requires the NVIDIA CUDA Toolkit Version 2.0 or newer and the GNU Scientific Library v1.0 or newer. Optionally gnuplot is recommended for quick visualization of the results. Nature of problem: Direct numerical integration of stochastic differential equations is a computationally intensive problem, due to the necessity of calculating multiple independent realizations of the system. We exploit the inherent parallelism of this problem and perform the calculations on GPUs using the CUDA programming environment. The GPU's ability to execute hundreds of threads simultaneously makes it possible to speed up the computation by over two orders of magnitude, compared to a typical modern CPU. Solution method: The stochastic Runge-Kutta method of the second order is applied to integrate the equation of motion. Ensemble-averaged quantities of interest are obtained through averaging over multiple independent realizations of the system. Unusual features: The numerical solution of the stochastic differential equations in question is performed on a GPU using the CUDA environment. Running time: < 1 minute
Differential geometric methods in system theory.
NASA Technical Reports Server (NTRS)
Brockett, R. W.
1971-01-01
Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.
NASA Technical Reports Server (NTRS)
Varaiya, P. P.
1972-01-01
General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Yardeni, Gil; Tessler, Naama; Imbert, Eric; Sapir, Yuval
2016-01-01
Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species’ full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea. PMID:27436798
A Global Existence and Uniqueness Theorem for a Riccati Equation.
1981-01-01
made to an asymptotic stochastic analysis of a noisy duel problem. / DTICELECTE[I JUN 2 3 19820 !--i *This w paper was partially supported by AFOSR Grant...of these results is made to an asymptotic stochastic analysis of I ntssy duel problem. DD ,OR 1473 EDITION O, 1.OV 1SIS OSOLTE UNCLASTFIED SCUJRITY...motivated by the approach used in [3] and [6] to analyze the equal-accuracy noisy duel problem for two players having finite unequal units of ammunition
Stochastic models for regulatory networks of the genetic toggle switch.
Tian, Tianhai; Burrage, Kevin
2006-05-30
Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Stochastic models for regulatory networks of the genetic toggle switch
Tian, Tianhai; Burrage, Kevin
2006-01-01
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385
Computational Modeling and Simulation of Genital Tubercle ...
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology. Here, we describe a multicellular agent-based model of genital tubercle development that simulates urethrogenesis from the urethral plate stage to urethral tube closure in differentiating male embryos. The model, constructed in CompuCell3D, implemented spatially dynamic signals from SHH, FGF10, and androgen signaling pathways. These signals modulated stochastic cell behaviors, such as differential adhesion, cell motility, proliferation, and apoptosis. Urethral tube closure was an emergent property of the model that was quantitatively dependent on SHH and FGF10 induced effects on mesenchymal proliferation and endodermal apoptosis, ultimately linked to androgen signaling. In the absence of androgenization, simulated genital tubercle development defaulted to the female condition. Intermediate phenotypes associated with partial androgen deficiency resulted in incomplete closure. Using this computer model, complex relationships between urethral tube closure defects and disruption of underlying signaling pathways could be probed theoretically in multiplex disturbance scenarios and modeled into probabilistic predictions for individual risk for hypospadias and potentially other developmental defects of the male genital tubercle. We identify the minimal molecular network that determines the outcome of male genital tubercle development in mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Infinite time interval backward stochastic differential equations with continuous coefficients.
Zong, Zhaojun; Hu, Feng
2016-01-01
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-10-01
The stability property of stochastic hybrid bidirectional associate memory (BAM) neural networks with discrete delays is considered. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, the delay-independent sufficient conditions to guarantee the exponential stability of the equilibrium solution for such networks are given by using the nonnegative semimartingale convergence theorem.
ERIC Educational Resources Information Center
Parlar, Mahmut
2004-01-01
Brownian motion is an important stochastic process used in modelling the random evolution of stock prices. In their 1973 seminal paper--which led to the awarding of the 1997 Nobel prize in Economic Sciences--Fischer Black and Myron Scholes assumed that the random stock price process is described (i.e., generated) by Brownian motion. Despite its…
Patrick C. Tobin; Ottar N. Bjornstad
2005-01-01
Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Effective action for stochastic partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less
Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements
NASA Astrophysics Data System (ADS)
Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.
2000-11-01
In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.
An Isotonic Partial Credit Model for Ordering Subjects on the Basis of Their Sum Scores
ERIC Educational Resources Information Center
Ligtvoet, Rudy
2012-01-01
In practice, the sum of the item scores is often used as a basis for comparing subjects. For items that have more than two ordered score categories, only the partial credit model (PCM) and special cases of this model imply that the subjects are stochastically ordered on the common latent variable. However, the PCM is very restrictive with respect…
Bidirectional Classical Stochastic Processes with Measurements and Feedback
NASA Technical Reports Server (NTRS)
Hahne, G. E.
2005-01-01
A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.
Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise
NASA Astrophysics Data System (ADS)
Chen, Can; Kang, Yanmei
2017-01-01
A stochastic multi-strain SIS epidemic model is formulated by introducing Lévy noise into the disease transmission rate of each strain. First, we prove that the stochastic model admits a unique global positive solution, and, by the comparison theorem, we show that the solution remains within a positively invariant set almost surely. Next we investigate stochastic stability of the disease-free equilibrium, including stability in probability and pth moment asymptotic stability. Then sufficient conditions for persistence in the mean of the disease are established. Finally, based on an Euler scheme for Lévy-driven stochastic differential equations, numerical simulations for a stochastic two-strain model are carried out to verify the theoretical results. Moreover, numerical comparison results of the stochastic two-strain model and the deterministic version are also given. Lévy noise can cause the two strains to become extinct almost surely, even though there is a dominant strain that persists in the deterministic model. It can be concluded that the introduction of Lévy noise reduces the disease extinction threshold, which indicates that Lévy noise may suppress the disease outbreak.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin; Zhang, W. D., E-mail: zhangwenditju@126.com
2014-03-15
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposedmore » in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.« less
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
A Stochastic Diffusion Process for the Dirichlet Distribution
Bakosi, J.; Ristorcelli, J. R.
2013-03-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability ofNcoupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener processes in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating ensemble ofNvariables subject to a conservation principle.more » Similar to the multivariate Wright-Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution.« less
Stochastic Optimal Prediction with Application to Averaged Euler Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, John; Chorin, Alexandre J.; Crutchfield, William
Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.
Mean, covariance, and effective dimension of stochastic distributed delay dynamics
NASA Astrophysics Data System (ADS)
René, Alexandre; Longtin, André
2017-11-01
Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.
Partial Synchronization of Stochastic Oscillators through Hydrodynamic Coupling
NASA Astrophysics Data System (ADS)
Curran, Arran; Lee, Michael P.; Padgett, Miles J.; Cooper, Jonathan M.; Di Leonardo, Roberto
2012-06-01
Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a Brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronization. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.
NASA Astrophysics Data System (ADS)
Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.
2018-03-01
One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
Nonclassical point of view of the Brownian motion generation via fractional deterministic model
NASA Astrophysics Data System (ADS)
Gilardi-Velázquez, H. E.; Campos-Cantón, E.
In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.
Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng
2017-01-01
Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications. PMID:28961262
Gundersen, Kenneth; Kvaløy, Jan Terje; Eftestøl, Trygve; Kramer-Johansen, Jo
2015-10-15
For patients undergoing cardiopulmonary resuscitation (CPR) and being in a shockable rhythm, the coarseness of the electrocardiogram (ECG) signal is an indicator of the state of the patient. In the current work, we show how mixed effects stochastic differential equations (SDE) models, commonly used in pharmacokinetic and pharmacodynamic modelling, can be used to model the relationship between CPR quality measurements and ECG coarseness. This is a novel application of mixed effects SDE models to a setting quite different from previous applications of such models and where using such models nicely solves many of the challenges involved in analysing the available data. Copyright © 2015 John Wiley & Sons, Ltd.
Faizullah, Faiz
2016-01-01
The aim of the current paper is to present the path-wise and moment estimates for solutions to stochastic functional differential equations with non-linear growth condition in the framework of G-expectation and G-Brownian motion. Under the nonlinear growth condition, the pth moment estimates for solutions to SFDEs driven by G-Brownian motion are proved. The properties of G-expectations, Hölder's inequality, Bihari's inequality, Gronwall's inequality and Burkholder-Davis-Gundy inequalities are used to develop the above mentioned theory. In addition, the path-wise asymptotic estimates and continuity of pth moment for the solutions to SFDEs in the G-framework, with non-linear growth condition are shown.
NASA Technical Reports Server (NTRS)
Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.
Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul
2018-04-01
The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.
Stochastic modelling of intermittency.
Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram
2010-01-13
Recently, methods have been developed to model low-dimensional chaotic systems in terms of stochastic differential equations. We tested such methods in an electronic circuit experiment. We aimed to obtain reliable drift and diffusion coefficients even without a pronounced time-scale separation of the chaotic dynamics. By comparing the analytical solutions of the corresponding Fokker-Planck equation with experimental data, we show here that crisis-induced intermittency can be described in terms of a stochastic model which is dominated by state-space-dependent diffusion. Further on, we demonstrate and discuss some limits of these modelling approaches using numerical simulations. This enables us to state a criterion that can be used to decide whether a stochastic model will capture the essential features of a given time series. This journal is © 2010 The Royal Society
On two mathematical problems of canonical quantization. IV
NASA Astrophysics Data System (ADS)
Kirillov, A. I.
1992-11-01
A method for solving the problem of reconstructing a measure beginning with its logarithmic derivative is presented. The method completes that of solving the stochastic differential equation via Dirichlet forms proposed by S. Albeverio and M. Rockner. As a result one obtains the mathematical apparatus for the stochastic quantization. The apparatus is applied to prove the existence of the Feynman-Kac measure of the sine-Gordon and λφ2n/(1 + K2φ2n)-models. A synthesis of both mathematical problems of canonical quantization is obtained in the form of a second-order martingale problem for vacuum noise. It is shown that in stochastic mechanics the martingale problem is an analog of Newton's second law and enables us to find the Nelson's stochastic trajectories without determining the wave functions.
Hybrid Differential Dynamic Programming with Stochastic Search
NASA Technical Reports Server (NTRS)
Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob A.
2016-01-01
Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASA's Dawn mission. The Dawn trajectory was designed with the DDP-based Static/Dynamic Optimal Control algorithm used in the Mystic software.1 Another recently developed method, Hybrid Differential Dynamic Programming (HDDP),2, 3 is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.
Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids.
Wang, Jianlin; Tian, Lu; Madlung, Andreas; Lee, Hyeon-Se; Chen, Meng; Lee, Jinsuk J; Watson, Brian; Kagochi, Trevor; Comai, Luca; Chen, Z Jeffrey
2004-08-01
Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution. Copyright 2004 Genetics Society of America
NASA Astrophysics Data System (ADS)
Umut Caglar, Mehmet; Pal, Ranadip
2010-10-01
The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology
ERIC Educational Resources Information Center
Hannan, Michael T.
This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Inducing Tropical Cyclones to Undergo Brownian Motion
NASA Astrophysics Data System (ADS)
Hodyss, D.; McLay, J.; Moskaitis, J.; Serra, E.
2014-12-01
Stochastic parameterization has become commonplace in numerical weather prediction (NWP) models used for probabilistic prediction. Here, a specific stochastic parameterization will be related to the theory of stochastic differential equations and shown to be affected strongly by the choice of stochastic calculus. From an NWP perspective our focus will be on ameliorating a common trait of the ensemble distributions of tropical cyclone (TC) tracks (or position), namely that they generally contain a bias and an underestimate of the variance. With this trait in mind we present a stochastic track variance inflation parameterization. This parameterization makes use of a properly constructed stochastic advection term that follows a TC and induces its position to undergo Brownian motion. A central characteristic of Brownian motion is that its variance increases with time, which allows for an effective inflation of an ensemble's TC track variance. Using this stochastic parameterization we present a comparison of the behavior of TCs from the perspective of the stochastic calculi of Itô and Stratonovich within an operational NWP model. The central difference between these two perspectives as pertains to TCs is shown to be properly predicted by the stochastic calculus and the Itô correction. In the cases presented here these differences will manifest as overly intense TCs, which, depending on the strength of the forcing, could lead to problems with numerical stability and physical realism.
Mean Field Games for Stochastic Growth with Relative Utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Minyi, E-mail: mhuang@math.carleton.ca; Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu
This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation errormore » estimate.« less
MONALISA for stochastic simulations of Petri net models of biochemical systems.
Balazki, Pavel; Lindauer, Klaus; Einloft, Jens; Ackermann, Jörg; Koch, Ina
2015-07-10
The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.
A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,
NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS
Zaikin, Alexey; Míguez, Joaquín
2017-01-01
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087
Stochastic differential equations and turbulent dispersion
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
NASA Astrophysics Data System (ADS)
Gottwald, Georg; Melbourne, Ian
2013-04-01
Whereas diffusion limits of stochastic multi-scale systems have a long and successful history, the case of constructing stochastic parametrizations of chaotic deterministic systems has been much less studied. We present rigorous results of convergence of a chaotic slow-fast system to a stochastic differential equation with multiplicative noise. Furthermore we present rigorous results for chaotic slow-fast maps, occurring as numerical discretizations of continuous time systems. This raises the issue of how to interpret certain stochastic integrals; surprisingly the resulting integrals of the stochastic limit system are generically neither of Stratonovich nor of Ito type in the case of maps. It is shown that the limit system of a numerical discretisation is different to the associated continuous time system. This has important consequences when interpreting the statistics of long time simulations of multi-scale systems - they may be very different to the one of the original continuous time system which we set out to study.
Murakami, Masayoshi; Shteingart, Hanan; Loewenstein, Yonatan; Mainen, Zachary F
2017-05-17
The selection and timing of actions are subject to determinate influences such as sensory cues and internal state as well as to effectively stochastic variability. Although stochastic choice mechanisms are assumed by many theoretical models, their origin and mechanisms remain poorly understood. Here we investigated this issue by studying how neural circuits in the frontal cortex determine action timing in rats performing a waiting task. Electrophysiological recordings from two regions necessary for this behavior, medial prefrontal cortex (mPFC) and secondary motor cortex (M2), revealed an unexpected functional dissociation. Both areas encoded deterministic biases in action timing, but only M2 neurons reflected stochastic trial-by-trial fluctuations. This differential coding was reflected in distinct timescales of neural dynamics in the two frontal cortical areas. These results suggest a two-stage model in which stochastic components of action timing decisions are injected by circuits downstream of those carrying deterministic bias signals. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Fen; Chen, Yuanlong; Liu, Meichun
2018-02-01
Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solution of the finite Milne problem in stochastic media with RVT Technique
NASA Astrophysics Data System (ADS)
Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.
2017-12-01
This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Energy-optimal path planning in the coastal ocean
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Haley, Patrick J.; Lermusiaux, Pierre F. J.
2017-05-01
We integrate data-driven ocean modeling with the stochastic Dynamically Orthogonal (DO) level-set optimization methodology to compute and study energy-optimal paths, speeds, and headings for ocean vehicles in the Middle-Atlantic Bight (MAB) region. We hindcast the energy-optimal paths from among exact time-optimal paths for the period 28 August 2006 to 9 September 2006. To do so, we first obtain a data-assimilative multiscale reanalysis, combining ocean observations with implicit two-way nested multiresolution primitive-equation simulations of the tidal-to-mesoscale dynamics in the region. Second, we solve the reduced-order stochastic DO level-set partial differential equations (PDEs) to compute the joint probability of minimum arrival time, vehicle-speed time series, and total energy utilized. Third, for each arrival time, we select the vehicle-speed time series that minimize the total energy utilization from the marginal probability of vehicle-speed and total energy. The corresponding energy-optimal path and headings are obtained through the exact particle-backtracking equation. Theoretically, the present methodology is PDE-based and provides fundamental energy-optimal predictions without heuristics. Computationally, it is 3-4 orders of magnitude faster than direct Monte Carlo methods. For the missions considered, we analyze the effects of the regional tidal currents, strong wind events, coastal jets, shelfbreak front, and other local circulations on the energy-optimal paths. Results showcase the opportunities for vehicles that intelligently utilize the ocean environment to minimize energy usage, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Going from microscopic to macroscopic on nonuniform growing domains.
Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K
2012-08-01
Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.
NASA Astrophysics Data System (ADS)
Cooper, Fred; Dawson, John F.
2016-02-01
We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields ϕi(x , t) in the presence of external noise ηi(x , t) , namely (∂t - ν∇2) ϕ - F [ ϕ ] = η, as well as chemical reaction annihilation processes obtained by applying the many-body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies.
Numerical pricing of options using high-order compact finite difference schemes
NASA Astrophysics Data System (ADS)
Tangman, D. Y.; Gopaul, A.; Bhuruth, M.
2008-09-01
We consider high-order compact (HOC) schemes for quasilinear parabolic partial differential equations to discretise the Black-Scholes PDE for the numerical pricing of European and American options. We show that for the heat equation with smooth initial conditions, the HOC schemes attain clear fourth-order convergence but fail if non-smooth payoff conditions are used. To restore the fourth-order convergence, we use a grid stretching that concentrates grid nodes at the strike price for European options. For an American option, an efficient procedure is also described to compute the option price, Greeks and the optimal exercise curve. Comparisons with a fourth-order non-compact scheme are also done. However, fourth-order convergence is not experienced with this strategy. To improve the convergence rate for American options, we discuss the use of a front-fixing transformation with the HOC scheme. We also show that the HOC scheme with grid stretching along the asset price dimension gives accurate numerical solutions for European options under stochastic volatility.
Bootstrapping Least Squares Estimates in Biochemical Reaction Networks
Linder, Daniel F.
2015-01-01
The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769
A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1988-01-01
The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.
Orlando, Paul A; Gatenby, Robert A; Brown, Joel S
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.
Analysis of the correlation dimension for inertial particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsson, Kristian; Department of Physics, Göteborg University, 41296 Gothenburg; Mehlig, Bernhard
2015-07-15
We obtain an implicit equation for the correlation dimension which describes clustering of inertial particles in a complex flow onto a fractal measure. Our general equation involves a propagator of a nonlinear stochastic process in which the velocity gradient of the fluid appears as additive noise. When the long-time limit of the propagator is considered our equation reduces to an existing large-deviation formalism from which it is difficult to extract concrete results. In the short-time limit, however, our equation reduces to a solvability condition on a partial differential equation. In the case where the inertial particles are much denser thanmore » the fluid, we show how this approach leads to a perturbative expansion of the correlation dimension, for which the coefficients can be obtained exactly and in principle to any order. We derive the perturbation series for the correlation dimension of inertial particles suspended in three-dimensional spatially smooth random flows with white-noise time correlations, obtaining the first 33 non-zero coefficients exactly.« less
Crevillén-García, D
2018-04-01
Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.
Chen, Bor-Sen; Lin, Ying-Po
2013-01-01
In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales. PMID:23515112
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce; Karniadakis, George Em
2015-06-28
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike previous works, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Basili, Victor R.; Hetmanski, Christopher J.
1992-01-01
Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are limited and scheduling is tight. Therefore, one needs to be able to differentiate low/high fault density components so that the testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. This paper presents an alternative approach for constructing such models that is intended to fulfill specific software engineering needs (i.e. dealing with partial/incomplete information and creating models that are easy to interpret). Our approach to classification is as follows: (1) to measure the software system to be considered; and (2) to build multivariate stochastic models for prediction. We present experimental results obtained by classifying FORTRAN components developed at the NASA/GSFC into two fault density classes: low and high. Also we evaluate the accuracy of the model and the insights it provides into the software process.
On the hierarchy of partially invariant submodels of differential equations
NASA Astrophysics Data System (ADS)
Golovin, Sergey V.
2008-07-01
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
Barajas-Solano, David A; Tartakovsky, Alexandre M
2016-05-01
We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.
Solution of differential equations by application of transformation groups
NASA Technical Reports Server (NTRS)
Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.
1968-01-01
Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.
The genetic network controlling plasma cell differentiation.
Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D
2011-10-01
Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.
Stochastic differential game formulation on the reinsurance and investment problem
NASA Astrophysics Data System (ADS)
Li, Danping; Rong, Ximin; Zhao, Hui
2015-09-01
This paper focuses on a stochastic differential game between two insurance companies, a big one and a small one. The big company has sufficient asset to invest in a risk-free asset and a risky asset and is allowed to purchase proportional reinsurance or acquire new business, and the small company can transfer part of the risk to a reinsurer via proportional reinsurance. The game studied here is zero-sum, where the big company is trying to maximise the expected exponential utility of the difference between two insurance companies' surpluses at the terminal time to keep its advantage on surplus, while simultaneously the small company is trying to minimise the same quantity to reduce its disadvantage. Particularly, the relationships between the surplus processes and the price process of the risky asset are considered. By applying stochastic control theory, we provide and prove the verification theorem and obtain the Nash equilibrium strategy of the game, explicitly. Furthermore, numerical simulations are presented to illustrate the effects of parameters on the equilibrium strategy as well as the economic meanings behind.
From quantum stochastic differential equations to Gisin-Percival state diffusion
NASA Astrophysics Data System (ADS)
Parthasarathy, K. R.; Usha Devi, A. R.
2017-08-01
Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Chinmaya; López, José Manuel; Azencott, Robert
Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less
Three Dimensional Time Dependent Stochastic Method for Cosmic-ray Modulation
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J. M.
2009-12-01
A proper understanding of the different behavior of intensities of galactic cosmic rays in different solar cycle phases requires solving the modulation equation with time dependence. We present a detailed description of our newly developed stochastic approach for cosmic ray modulation which we believe is the first attempt to solve the time dependent Parker equation in 3D evolving from our 3D steady state stochastic approach, which has been benchmarked extensively by using the finite difference method. Our 3D stochastic method is different from other stochastic approaches in literature (Ball et al 2005, Miyake et al 2005, and Florinski 2008) in several ways. For example, we employ spherical coordinates which makes the code much more efficient by reducing coordinate transformations. What's more, our stochastic differential equations are different from others because our map from Parker's original equation to the Fokker-Planck equation extends the method used by Jokipii and Levy 1977 while others don't although all 3D stochastic methods are essentially based on Ito formula. The advantage of the stochastic approach is that it also gives the probability information of travel times and path lengths of cosmic rays besides the intensities. We show that excellent agreement exists between solutions obtained by our steady state stochastic method and by the traditional finite difference method. We also show time dependent solutions for an idealized heliosphere which has a Parker magnetic field, a planar current sheet, and a simple initial condition.
Model identification using stochastic differential equation grey-box models in diabetes.
Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik
2013-03-01
The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.
Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics.
Erban, Radek
2016-02-01
Molecular dynamics (MD) simulations of ions (K + , Na + , Ca 2+ and Cl - ) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parametrized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja
We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to thosemore » studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.« less
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Stochastic resonance and noise delayed extinction in a model of two competing species
NASA Astrophysics Data System (ADS)
Valenti, D.; Fiasconaro, A.; Spagnolo, B.
2004-01-01
We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.
Discovering network behind infectious disease outbreak
NASA Astrophysics Data System (ADS)
Maeno, Yoshiharu
2010-11-01
Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.
Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.
NASA Astrophysics Data System (ADS)
Carlen, Eric Anders
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.
Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F
2005-12-01
This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. Copyright 2006 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com
The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.
Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus
Gong, Haijun; Guo, Yusong; Linstedt, Adam
2017-01-01
The Golgi apparatus plays a central role in processing and sorting proteins and lipids in eukaryotic cells. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development, and osmotic stress. We have developed three minimal models of membrane and protein exchange in the Golgi—a discrete, stochastic model, a continuous ordinary differential equation model, and a continuous stochastic differential equation model—each based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of cargoes and soluble N-ethylmaleimide-sensitive factor attachment protein receptor SNARE proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. By exploring where the models differ, we hope to discover whether the discrete, stochastic nature of vesicle-mediated transport is likely to have appreciable functional consequences for the Golgi. All three models show similar ability to restore and maintain distinct identities over broad parameter ranges. They diverge, however, in conditions corresponding to collapse and reassembly of the Golgi. The results suggest that a continuum model provides a good description of Golgi maintenance but that considering the discrete nature of vesicle-based traffic is important to understanding assembly and disassembly of the Golgi. Experimental analysis validates a prediction of the models that altering guanine nucleotide exchange factor expression levels will modulate Golgi size. PMID:20365406
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taranenko, Y.; Barnes, C.
1996-12-31
This paper deals with further developments of the new theory that applies stochastic differential geometry (SDG) to dynamics of interest rates. We examine mathematical constraints on the evolution of interest rate volatilities that arise from stochastic differential calculus under assumptions of an arbitrage free evolution of zero coupon bonds and developed markets (i.e., none of the party/factor can drive the whole market). The resulting new theory incorporates the Heath-Jarrow-Morton (HJM) model of interest rates and provides new equations for volatilities which makes the system of equations for interest rates and volatilities complete and self consistent. It results in much smallermore » amount of volatility data that should be guessed for the SDG model as compared to the HJM model. Limited analysis of the market volatility data suggests that the assumption of the developed market is violated around maturity of two years. Such maturities where the assumptions of the SDG model are violated are suggested to serve as boundaries at which volatilities should be specified independently from the model. Our numerical example with two boundaries (two years and five years) qualitatively resembles the market behavior. Under some conditions solutions of the SDG model become singular that may indicate market crashes. More detail comparison with the data is needed before the theory can be established or refuted.« less
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stochastic climate dynamics: Stochastic parametrizations and their global effects
NASA Astrophysics Data System (ADS)
Ghil, Michael
2010-05-01
A well-known difficulty in modeling the atmosphere and oceans' general circulation is the limited, albeit increasing resolution possible in the numerical solution of the governing partial differential equations. While the mass, energy and momentum of an individual cloud, in the atmosphere, or convection chimney, in the oceans, is negligible, their combined effects over long times are not. Until recently, small, subgrid-scale processes were represented in general circulation models (GCMs) by deterministic "parametrizations." While A. Arakawa and associates had realized over three decades ago the conceptual need for ensembles of clouds in such parametrizations, it is only very recently that truly stochastic parametrizations have been introduced into GCMs and weather prediction models. These parametrizations essentially transform a deterministic autonomous system into a non-autonomous one, subject to random forcing. To study systematically the long-term effects of such a forcing has to rely on theory of random dynamical systems (RDS). This theory allows one to consider the detailed geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems. These attractors extend the concept of strange attractors from autonomous dynamical systems to non-autonomous systems with random forcing. To illustrate the essence of the theory, its concepts and methods, we carry out a high-resolution numerical study of two "toy" models in their respective phase spaces. This study allows one to obtain a good approximation of their global random attractors, as well as of the time-dependent invariant measures supported by these attractors. The first of the two models studied herein is the Arnol'd family of circle maps in the presence of noise. The maps' fine-grained, resonant landscape --- associated with Arnol'd tongues --- is smoothed by the noise, thus permitting a comparison with the observable aspects of the "Devil's staircase" that arises in modeling the El Nino-Southern Oscillation (ENSO). These results are confirmed by studying a "French garden" that is obtained by smoothing a "Devil's quarry." Such a quarry results from coupling two circle maps, and random forcing leads to a smoothed version thereof. We thus suspect that stochastic parametrizations will stabilize the sensitive dependence on parameters that has been noticed in the development of GCMs. This talk represents joint work with Mickael D. Chekroun, D. Kondrashov, Eric Simonnet and I. Zaliapin. Several other talks and posters complement the results presented here and provide further insights into RDS theory and its application to the geosciences.
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.
2018-05-01
As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.
Stochastic mixed-mode oscillations in a three-species predator-prey model
NASA Astrophysics Data System (ADS)
Sadhu, Susmita; Kuehn, Christian
2018-03-01
The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.
Model risk for European-style stock index options.
Gençay, Ramazan; Gibson, Rajna
2007-01-01
In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning.
NASA Astrophysics Data System (ADS)
Deco, Gustavo; Martí, Daniel
2007-03-01
The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational principles that underlie those perceptual and cognitive processes involving multistable phenomena, like decision making and bistable perception. To investigate the role of noise in a multistable neurodynamical system described by coupled differential equations, one usually considers numerical simulations, which are time consuming because of the need for sufficiently many trials to capture the statistics of the influence of the fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. However, the application of the method of moments is restricted by the assumption that the distribution of the state variables of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled differential equations can be derived for the desired regime of multistability.
Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Jian-Guo; Lu, Jianfeng
2017-10-01
We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.
Systematization of a set of closure techniques.
Hausken, Kjell; Moxnes, John F
2011-11-01
Approximations in population dynamics are gaining popularity since stochastic models in large populations are time consuming even on a computer. Stochastic modeling causes an infinite set of ordinary differential equations for the moments. Closure models are useful since they recast this infinite set into a finite set of ordinary differential equations. This paper systematizes a set of closure approximations. We develop a system, which we call a power p closure of n moments, where 0≤p≤n. Keeling's (2000a,b) approximation with third order moments is shown to be an instantiation of this system which we call a power 3 closure of 3 moments. We present an epidemiological example and evaluate the system for third and fourth moments compared with Monte Carlo simulations. Copyright © 2011 Elsevier Inc. All rights reserved.
Resonance Properties of Class I and Class II Neurons Differentially Modulated by Channel Noise
NASA Astrophysics Data System (ADS)
Wang, Lei
2018-01-01
Resonance properties of two different neuron types (Class I and Class II) induced by channel noise are investigated in this study. It is found that for Class I neuron, spiking activity is enhanced when certain noise intensity is presented, especially under weak current stimuli -- a typical phenomenon of stochastic resonance (SR); while for Class II neuron, in addition to perform the SR, certain noise intensity would inhibit neuronal activity under some current stimuli -- a typical phenomenon of inverse stochastic resonance (ISR). Moreover, we show that only sodium channel noise or potassium channel noise variation can achieve the similar phenomena. Consequently, the model results suggest that channel noise may exert differential roles in modulating the resonance properties of Class I and Class II neurons.
Partial Measurements and the Realization of Quantum-Mechanical Counterfactuals
NASA Astrophysics Data System (ADS)
Paraoanu, G. S.
2011-07-01
We propose partial measurements as a conceptual tool to understand how to operate with counterfactual claims in quantum physics. Indeed, unlike standard von Neumann measurements, partial measurements can be reversed probabilistically. We first analyze the consequences of this rather unusual feature for the principle of superposition, for the complementarity principle, and for the issue of hidden variables. Then we move on to exploring non-local contexts, by reformulating the EPR paradox, the quantum teleportation experiment, and the entanglement-swapping protocol for the situation in which one uses partial measurements followed by their stochastic reversal. This leads to a number of counter-intuitive results, which are shown to be resolved if we give up the idea of attributing reality to the wavefunction of a single quantum system.
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2006-11-01
A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
A quantum-classical theory with nonlinear and stochastic dynamics
NASA Astrophysics Data System (ADS)
Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.
2014-12-01
The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.
Mathematical Methods for Physics and Engineering Third Edition Paperback Set
NASA Astrophysics Data System (ADS)
Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.
2006-06-01
Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.
Spatial complexity of solutions of higher order partial differential equations
NASA Astrophysics Data System (ADS)
Kukavica, Igor
2004-03-01
We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .
Partial Ordering and Stochastic Resonance in Discrete Memoryless Channels
2012-05-01
Methods for Underwater Wireless Sensor Networks”, which is to analyze and develop noncoherent communication methods at the physical layer for target...Capacity Behavior for Simple Models of Optical Fiber Communication,” 8 th International conf. on Communications, COMM 2010, Bucharest, pp.1-6, July 2010
Online learning in optical tomography: a stochastic approach
NASA Astrophysics Data System (ADS)
Chen, Ke; Li, Qin; Liu, Jian-Guo
2018-07-01
We study the inverse problem of radiative transfer equation (RTE) using stochastic gradient descent method (SGD) in this paper. Mathematically, optical tomography amounts to recovering the optical parameters in RTE using the incoming–outgoing pair of light intensity. We formulate it as a PDE-constraint optimization problem, where the mismatch of computed and measured outgoing data is minimized with same initial data and RTE constraint. The memory and computation cost it requires, however, is typically prohibitive, especially in high dimensional space. Smart iterative solvers that only use partial information in each step is called for thereafter. Stochastic gradient descent method is an online learning algorithm that randomly selects data for minimizing the mismatch. It requires minimum memory and computation, and advances fast, therefore perfectly serves the purpose. In this paper we formulate the problem, in both nonlinear and its linearized setting, apply SGD algorithm and analyze the convergence performance.
Numerical simulations in stochastic mechanics
NASA Astrophysics Data System (ADS)
McClendon, Marvin; Rabitz, Herschel
1988-05-01
The stochastic differential equation of Nelson's stochastic mechanics is integrated numerically for several simple quantum systems. The calculations are performed with use of Helfand and Greenside's method and pseudorandom numbers. The resulting trajectories are analyzed both individually and collectively to yield insight into momentum, uncertainty principles, interference, tunneling, quantum chaos, and common models of diatomic molecules from the stochastic quantization point of view. In addition to confirming Shucker's momentum theorem, these simulations illustrate, within the context of stochastic mechanics, the position-momentum and time-energy uncertainty relations, the two-slit diffraction pattern, exponential decay of an unstable system, and the greater degree of anticorrelation in a valence-bond model as compared with a molecular-orbital model of H2. The attempt to find exponential divergence of initially nearby trajectories, potentially useful as a criterion for quantum chaos, in a periodically forced oscillator is inconclusive. A way of computing excited energies from the ground-state motion is presented. In all of these studies the use of particle trajectories allows a more insightful interpretation of physical phenomena than is possible within traditional wave mechanics.
Reconstructing the hidden states in time course data of stochastic models.
Zimmer, Christoph
2015-11-01
Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Illness-death model: statistical perspective and differential equations.
Brinks, Ralph; Hoyer, Annika
2018-01-27
The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.
Stochastic hybrid delay population dynamics: well-posed models and extinction.
Yuan, Chenggui; Mao, Xuerong; Lygeros, John
2009-01-01
Nonlinear differential equations have been used for decades for studying fluctuations in the populations of species, interactions of species with the environment, and competition and symbiosis between species. Over the years, the original non-linear models have been embellished with delay terms, stochastic terms and more recently discrete dynamics. In this paper, we investigate stochastic hybrid delay population dynamics (SHDPD), a very general class of population dynamics that comprises all of these phenomena. For this class of systems, we provide sufficient conditions to ensure that SHDPD have global positive, ultimately bounded solutions, a minimum requirement for a realistic, well-posed model. We then study the question of extinction and establish conditions under which an ecosystem modelled by SHDPD is doomed.
NASA Astrophysics Data System (ADS)
Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou
2006-06-01
In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.
Telegraph noise in Markovian master equation for electron transport through molecular junctions
NASA Astrophysics Data System (ADS)
Kosov, Daniel S.
2018-05-01
We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.
Dynamics of a prey-predator system under Poisson white noise excitation
NASA Astrophysics Data System (ADS)
Pan, Shan-Shan; Zhu, Wei-Qiu
2014-10-01
The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.
On the Solution of Elliptic Partial Differential Equations on Regions with Corners
2015-07-09
In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J.
2010-12-01
We present a detailed description of our newly developed stochastic approach for solving Parker's transport equation, which we believe is the first attempt to solve it with time dependence in 3-D, evolving from our 3-D steady state stochastic approach. Our formulation of this method is general and is valid for any type of heliospheric magnetic field, although we choose the standard Parker field as an example to illustrate the steps to calculate the transport of galactic cosmic rays. Our 3-D stochastic method is different from other stochastic approaches in the literature in several ways. For example, we employ spherical coordinates to integrate directly, which makes the code much more efficient by reducing coordinate transformations. What is more, the equivalence between our stochastic differential equations and Parker's transport equation is guaranteed by Ito's theorem in contrast to some other approaches. We generalize the technique for calculating particle flux based on the pseudoparticle trajectories for steady state solutions and for time-dependent solutions in 3-D. To validate our code, first we show that good agreement exists between solutions obtained by our steady state stochastic method and a traditional finite difference method. Then we show that good agreement also exists for our time-dependent method for an idealized and simplified heliosphere which has a Parker magnetic field and a simple initial condition for two different inner boundary conditions.
Rare events in finite and infinite dimensions
NASA Astrophysics Data System (ADS)
Reznikoff, Maria G.
Thermal noise introduces stochasticity into deterministic equations and makes possible events which are never seen in the zero temperature setting. The driving force behind the thesis work is a desire to bring analysis and probability to bear on a class of relevant and intriguing physical problems, and in so doing, to allow applications to drive the development of new mathematical theory. The unifying theme is the study of rare events under the influence of small, random perturbations, and the manifold mathematical problems which ensue. In the first part, we apply large deviation theory and prefactor estimates to a coherent rotation micromagnetic model in order to analyze thermally activated magnetic switching. We consider recent physical experiments and the mathematical questions "asked" by them. A stochastic resonance type phenomenon is discovered, leading to the definition of finite temperature astroids. Non-Arrhenius behavior is discussed. The analysis is extended to ramped astroids. In addition, we discover that for low damping and ultrashort pulses, deterministic effects can override thermal effects, in accord with very recent ultrashort pulse experiments. Even more interesting, perhaps, is the study of large deviations in the infinite dimensional context, i.e. in spatially extended systems. Inspired by recent numerical investigations, we study the stochastically perturbed Allen Cahn and Cahn Hilliard equations. For the Allen Cahn equation, we study the action minimization problem (a deterministic variational problem) and prove the action scaling in four parameter regimes, via upper and lower bounds. The sharp interface limit is studied. We formally derive a reduced action functional which lends insight into the connection between action minimization and curvature flow. For the Cahn Hilliard equation, we prove upper and lower bounds for the scaling of the energy barrier in the nucleation and growth regime. Finally, we consider rare events in large or infinite domains, in one spatial dimension. We introduce a natural reference measure through which to analyze the invariant measure of stochastically perturbed, nonlinear partial differential equations. Also, for noisy reaction diffusion equations with an asymmetric potential, we discover how to rescale space and time in order to map the dynamics in the zero temperature limit to the Poisson Model, a simple version of the Johnson-Mehl-Avrami-Kolmogorov model for nucleation and growth.
Economic analysis for commingling effects of insect activity in the elevator boot area
USDA-ARS?s Scientific Manuscript database
Boot areas in commercial grain elevators and feed mills contribute to commingling of insects with grain that moves through the elevator leg. A partial budget and stochastic dominance model was developed to improve pest management decision-making and risk analysis assessment from commingling effects ...
Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2006-03-01
Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.
Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.
Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O
2006-03-01
The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.
The Influence of Turbulent Coherent Structure on Suspended Sediment Transport
NASA Astrophysics Data System (ADS)
Huang, S. H.; Tsai, C.
2017-12-01
The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.
Optimal Control via Self-Generated Stochasticity
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
NASA Astrophysics Data System (ADS)
Strauss, R. Du Toit; Effenberger, Frederic
2017-10-01
In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via "toy models". Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach.
Yamamoto, Naoki
2012-11-28
Recently, the complete characterization of a general Gaussian dissipative system having a unique pure steady state was obtained. This result provides a clear guideline for engineering an environment such that the dissipative system has a desired pure steady state such as a cluster state. In this paper, we describe the system in terms of a quantum stochastic differential equation (QSDE) so that the environment channels can be explicitly dealt with. Then, a physical meaning of that characterization, which cannot be seen without the QSDE representation, is clarified; more specifically, the nullifier dynamics of any Gaussian system generating a unique pure steady state is passive. In addition, again based on the QSDE framework, we provide a general and practical method to implement a desired dissipative Gaussian system, which has a structure of quantum state transfer.
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2017-04-01
How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.
SDE decomposition and A-type stochastic interpretation in nonequilibrium processes
NASA Astrophysics Data System (ADS)
Yuan, Ruoshi; Tang, Ying; Ao, Ping
2017-12-01
An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.
Time-delayed feedback control of diffusion in random walkers.
Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U
2017-07-01
Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.
Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
Riegert, Anja; Baba, Nilüfer; Gelfert, Katrin; Just, Wolfram; Kantz, Holger
2005-02-11
The Hamiltonian dynamics of slow variables coupled to fast degrees of freedom is modeled by an effective stochastic differential equation. Formal perturbation expansions, involving a Markov approximation, yield a Fokker-Planck equation in the slow subspace which respects conservation of energy. A detailed numerical and analytical analysis of suitable model systems demonstrates the feasibility of obtaining the system specific drift and diffusion terms and the accuracy of the stochastic approximation on all time scales. Non-Markovian and non-Gaussian features of the fast variables are negligible.
Finite-Dimensional Representations for Controlled Diffusions with Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federico, Salvatore, E-mail: salvatore.federico@unimi.it; Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr
2015-02-15
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.
Stochastic stability of parametrically excited random systems
NASA Astrophysics Data System (ADS)
Labou, M.
2004-01-01
Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.
Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr
2015-02-15
This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less
Autoionizing states driven by stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Mouloudakis, G.; Lambropoulos, P.
2018-01-01
We have examined the profile of an isolated autoionizing resonance driven by a pulse of short duration and moderately strong field. The analysis has been based on stochastic differential equations governing the time evolution of the density matrix under a stochastic field. Having focused our quantitative analysis on the 2{{s}}2{{p}}({}1{{P}}) resonance of helium, we have investigated the role of field fluctuations and of the duration of the pulse. We report surprisingly strong distortion of the profile, even for peak intensity below the strong field limit. Our results demonstrate the intricate connection between intensity and pulse duration, with the latter appearing to be the determining influence, even for a seemingly short pulse of 50 fs. Further effects that would arise under much shorter pulses are discussed.
Designing a stochastic genetic switch by coupling chaos and bistability.
Zhao, Xiang; Ouyang, Qi; Wang, Hongli
2015-11-01
In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.
Kadam, Shantanu; Vanka, Kumar
2013-02-15
Methods based on the stochastic formulation of chemical kinetics have the potential to accurately reproduce the dynamical behavior of various biochemical systems of interest. However, the computational expense makes them impractical for the study of real systems. Attempts to render these methods practical have led to the development of accelerated methods, where the reaction numbers are modeled by Poisson random numbers. However, for certain systems, such methods give rise to physically unrealistic negative numbers for species populations. The methods which make use of binomial variables, in place of Poisson random numbers, have since become popular, and have been partially successful in addressing this problem. In this manuscript, the development of two new computational methods, based on the representative reaction approach (RRA), has been discussed. The new methods endeavor to solve the problem of negative numbers, by making use of tools like the stochastic simulation algorithm and the binomial method, in conjunction with the RRA. It is found that these newly developed methods perform better than other binomial methods used for stochastic simulations, in resolving the problem of negative populations. Copyright © 2012 Wiley Periodicals, Inc.
Rupture Propagation for Stochastic Fault Models
NASA Astrophysics Data System (ADS)
Favreau, P.; Lavallee, D.; Archuleta, R.
2003-12-01
The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.
NASA Astrophysics Data System (ADS)
Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Discrete stochastic simulation methods for chemically reacting systems.
Cao, Yang; Samuels, David C
2009-01-01
Discrete stochastic chemical kinetics describe the time evolution of a chemically reacting system by taking into account the fact that, in reality, chemical species are present with integer populations and exhibit some degree of randomness in their dynamical behavior. In recent years, with the development of new techniques to study biochemistry dynamics in a single cell, there are increasing studies using this approach to chemical kinetics in cellular systems, where the small copy number of some reactant species in the cell may lead to deviations from the predictions of the deterministic differential equations of classical chemical kinetics. This chapter reviews the fundamental theory related to stochastic chemical kinetics and several simulation methods based on that theory. We focus on nonstiff biochemical systems and the two most important discrete stochastic simulation methods: Gillespie's stochastic simulation algorithm (SSA) and the tau-leaping method. Different implementation strategies of these two methods are discussed. Then we recommend a relatively simple and efficient strategy that combines the strengths of the two methods: the hybrid SSA/tau-leaping method. The implementation details of the hybrid strategy are given here and a related software package is introduced. Finally, the hybrid method is applied to simple biochemical systems as a demonstration of its application.
Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise
NASA Astrophysics Data System (ADS)
Deng, M. L.; Zhu, W. Q.
2007-10-01
The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.
Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.
Li, Haifeng; Shao, Jiushu; Wang, Shikuan
2011-11-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Igor V.; Schwartz, Robert N.; Wang, Kang L.
2016-03-01
The concept of deterministic dynamical chaos has a long history and is well established by now. Nevertheless, its field theoretic essence and its stochastic generalization have been revealed only very recently. Within the newly found supersymmetric theory of stochastics (STS), all stochastic differential equations (SDEs) possess topological or de Rahm supersymmetry and stochastic chaos is the phenomenon of its spontaneous breakdown. Even though the STS is free of approximations and thus is technically solid, it is still missing a firm interpretational basis in order to be physically sound. Here, we make a few important steps toward the construction of the interpretational foundation for the STS. In particular, we discuss that one way to understand why the ground states of chaotic SDEs are conditional (not total) probability distributions, is that some of the variables have infinite memory of initial conditions and thus are not “thermalized”, i.e., cannot be described by the initial-conditions-independent probability distributions. As a result, the definitive assumption of physical statistics that the ground state is a steady-state total probability distribution is not valid for chaotic SDEs.
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce
2015-01-01
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance. PMID:26023834
Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media: SCALE-DEPENDENT UQ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, A. M.; Panzeri, M.; Tartakovsky, G. D.
Equations governing flow and transport in heterogeneous porous media are scale-dependent. We demonstrate that it is possible to identify a support scalemore » $$\\eta^*$$, such that the typically employed approximate formulations of Moment Equations (ME) yield accurate (statistical) moments of a target environmental state variable. Under these circumstances, the ME approach can be used as an alternative to the Monte Carlo (MC) method for Uncertainty Quantification in diverse fields of Earth and environmental sciences. MEs are directly satisfied by the leading moments of the quantities of interest and are defined on the same support scale as the governing stochastic partial differential equations (PDEs). Computable approximations of the otherwise exact MEs can be obtained through perturbation expansion of moments of the state variables in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for the standard deviation smaller than one. We demonstrate our approach in the context of steady-state groundwater flow in a porous medium with a spatially random hydraulic conductivity.« less
Optogenetic stimulation of a meso-scale human cortical model
NASA Astrophysics Data System (ADS)
Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi
2015-03-01
Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.
Perdikaris, Paris; Karniadakis, George Em
2016-05-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. © 2016 The Author(s).
Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes
NASA Astrophysics Data System (ADS)
Seid, Abdu Mohammed; Berhane, Tesfahun; Roininen, Lassi; Nigussie, Melessew
2018-03-01
We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia (11.6 °N, 37.4 °E) . We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv -χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.
Evans, Simon; Fleming, Stephen M.; Dolan, Raymond J.; Averbeck, Bruno B.
2012-01-01
Real-world decision-making often involves social considerations. Consequently, the social value of stimuli can induce preferences in choice behavior. However, it is unknown how financial and social values are integrated in the brain. Here, we investigated how smiling and angry face stimuli interacted with financial reward feedback in a stochastically-rewarded decision-making task. Subjects reliably preferred the smiling faces despite equivalent reward feedback, demonstrating a socially driven bias. We fit a Bayesian reinforcement learning model to factor the effects of financial rewards and emotion preferences in individual subjects, and regressed model predictions on the trial-by-trial fMRI signal. Activity in the sub-callosal cingulate and the ventral striatum, both involved in reward learning, correlated with financial reward feedback, whereas the differential contribution of social value activated dorsal temporo-parietal junction and dorsal anterior cingulate cortex, previously proposed as components of a mentalizing network. We conclude that the impact of social stimuli on value-based decision processes is mediated by effects in brain regions partially separable from classical reward circuitry. PMID:20946058
Perdikaris, Paris; Karniadakis, George Em
2016-01-01
We present a computational framework for model inversion based on multi-fidelity information fusion and Bayesian optimization. The proposed methodology targets the accurate construction of response surfaces in parameter space, and the efficient pursuit to identify global optima while keeping the number of expensive function evaluations at a minimum. We train families of correlated surrogates on available data using Gaussian processes and auto-regressive stochastic schemes, and exploit the resulting predictive posterior distributions within a Bayesian optimization setting. This enables a smart adaptive sampling procedure that uses the predictive posterior variance to balance the exploration versus exploitation trade-off, and is a key enabler for practical computations under limited budgets. The effectiveness of the proposed framework is tested on three parameter estimation problems. The first two involve the calibration of outflow boundary conditions of blood flow simulations in arterial bifurcations using multi-fidelity realizations of one- and three-dimensional models, whereas the last one aims to identify the forcing term that generated a particular solution to an elliptic partial differential equation. PMID:27194481
STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu
2016-12-10
Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less
A parallel time integrator for noisy nonlinear oscillatory systems
NASA Astrophysics Data System (ADS)
Subber, Waad; Sarkar, Abhijit
2018-06-01
In this paper, we adapt a parallel time integration scheme to track the trajectories of noisy non-linear dynamical systems. Specifically, we formulate a parallel algorithm to generate the sample path of nonlinear oscillator defined by stochastic differential equations (SDEs) using the so-called parareal method for ordinary differential equations (ODEs). The presence of Wiener process in SDEs causes difficulties in the direct application of any numerical integration techniques of ODEs including the parareal algorithm. The parallel implementation of the algorithm involves two SDEs solvers, namely a fine-level scheme to integrate the system in parallel and a coarse-level scheme to generate and correct the required initial conditions to start the fine-level integrators. For the numerical illustration, a randomly excited Duffing oscillator is investigated in order to study the performance of the stochastic parallel algorithm with respect to a range of system parameters. The distributed implementation of the algorithm exploits Massage Passing Interface (MPI).
The consentaneous model of the financial markets exhibiting spurious nature of long-range memory
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2018-09-01
It is widely accepted that there is strong persistence in the volatility of financial time series. The origin of the observed persistence, or long-range memory, is still an open problem as the observed phenomenon could be a spurious effect. Earlier we have proposed the consentaneous model of the financial markets based on the non-linear stochastic differential equations. The consentaneous model successfully reproduces empirical probability and power spectral densities of volatility. This approach is qualitatively different from models built using fractional Brownian motion. In this contribution we investigate burst and inter-burst duration statistics of volatility in the financial markets employing the consentaneous model. Our analysis provides an evidence that empirical statistical properties of burst and inter-burst duration can be explained by non-linear stochastic differential equations driving the volatility in the financial markets. This serves as an strong argument that long-range memory in finance can have spurious nature.
Nonlinear GARCH model and 1 / f noise
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
NASA Astrophysics Data System (ADS)
Kaulakys, B.; Alaburda, M.; Ruseckas, J.
2016-05-01
A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilipenko, A Yu
2003-04-30
Let {mu} be a Gaussian measure in the space X and H the Cameron-Martin space of the measure {mu}. Consider the stochastic differential equation d{xi}(u,t)=a{sub t}({xi}(u,t))dt+{sigma}{sub n}{sigma}{sub t}{sup n}({xi}(u,t))d{omega}{sub n}(t), t element of [0,T]; {xi}(u,0)=u,; where u element of X, a and {sigma}{sub n} are functions taking values in H, {omega}{sub n}(t), n{>=}1 are independent one-dimensional Wiener processes. Consider the easure-valued random process {mu}{sub t}:={mu}o{xi}( {center_dot} ,t){sup -1}. It is shown that under certain natural conditions on the coefficients of the initial equation the measures {mu}{sub t}({omega}) are equivalent to {mu} for almost all {omega}. Explicit expressions for their Radon-Nikodymmore » densities are obtained.« less
Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.
García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G
2017-08-01
The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.
About the discrete-continuous nature of a hematopoiesis model for Chronic Myeloid Leukemia.
Gaudiano, Marcos E; Lenaerts, Tom; Pacheco, Jorge M
2016-12-01
Blood of mammals is composed of a variety of cells suspended in a fluid medium known as plasma. Hematopoiesis is the biological process of birth, replication and differentiation of blood cells. Despite of being essentially a stochastic phenomenon followed by a huge number of discrete entities, blood formation has naturally an associated continuous dynamics, because the cellular populations can - on average - easily be described by (e.g.) differential equations. This deterministic dynamics by no means contemplates some important stochastic aspects related to abnormal hematopoiesis, that are especially significant for studying certain blood cancer deceases. For instance, by mere stochastic competition against the normal cells, leukemic cells sometimes do not reach the population thereshold needed to kill the organism. Of course, a pure discrete model able to follow the stochastic paths of billons of cells is computationally impossible. In order to avoid this difficulty, we seek a trade-off between the computationally feasible and the biologically realistic, deriving an equation able to size conveniently both the discrete and continuous parts of a model for hematopoiesis in terrestrial mammals, in the context of Chronic Myeloid Leukemia. Assuming the cancer is originated from a single stem cell inside of the bone marrow, we also deduce a theoretical formula for the probability of non-diagnosis as a function of the mammal average adult mass. In addition, this work cellular dynamics analysis may shed light on understanding Peto's paradox, which is shown here as an emergent property of the discrete-continuous nature of the system. Copyright © 2016 Elsevier Inc. All rights reserved.
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
Etiology and treatment of hematological neoplasms: stochastic mathematical models.
Radivoyevitch, Tomas; Li, Huamin; Sachs, Rainer K
2014-01-01
Leukemias are driven by stemlike cancer cells (SLCC), whose initiation, growth, response to treatment, and posttreatment behavior are often "stochastic", i.e., differ substantially even among very similar patients for reasons not observable with present techniques. We review the probabilistic mathematical methods used to analyze stochastics and give two specific examples. The first example concerns a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We argue mathematically that, if independent SLCC are growing stochastically during prolonged treatment, then, other things being equal, front-loading doses are more effective for tumor eradication than back loading. We also argue that the interacting SLCC dynamics during treatment is often best modeled by considering SLCC in microenvironmental niches, with SLCC-SLCC interactions occurring only among SLCC within the same niche, and we present a stochastic dynamics formalism, involving "Poissonization," applicable in such situations. Interactions at a distance due to partial control of total cell numbers are also considered. The second half of this chapter concerns chromosomal aberrations, lesions known to cause some leukemias. A specific example is the induction of a Philadelphia chromosome by ionizing radiation, subsequent development of chronic myeloid leukemia (CML), CML treatment, and treatment outcome. This time evolution involves a coordinated sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular, macromolecular, cellular, tissue, and population scales, with corresponding time scales ranging from picoseconds to decades. We discuss models of these steps and progress in integrating models across scales.
Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.
ERIC Educational Resources Information Center
Muraki, Eiji
1999-01-01
Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…
Patchwork sampling of stochastic differential equations
NASA Astrophysics Data System (ADS)
Kürsten, Rüdiger; Behn, Ulrich
2016-03-01
We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains.
Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
NASA Astrophysics Data System (ADS)
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
A Functional Central Limit Theorem for the Becker-Döring Model
NASA Astrophysics Data System (ADS)
Sun, Wen
2018-04-01
We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.
A stochastic diffusion process for Lochner's generalized Dirichlet distribution
Bakosi, J.; Ristorcelli, J. R.
2013-10-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N stochastic variables with Lochner’s generalized Dirichlet distribution as its asymptotic solution. Individual samples of a discrete ensemble, obtained from the system of stochastic differential equations, equivalent to the Fokker-Planck equation developed here, satisfy a unit-sum constraint at all times and ensure a bounded sample space, similarly to the process developed in for the Dirichlet distribution. Consequently, the generalized Dirichlet diffusion process may be used to represent realizations of a fluctuating ensemble of N variables subject to a conservation principle.more » Compared to the Dirichlet distribution and process, the additional parameters of the generalized Dirichlet distribution allow a more general class of physical processes to be modeled with a more general covariance matrix.« less
The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III
2013-02-15
Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes,more » three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency 'edge' information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles/mm. Conclusions: The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.« less
The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.
Godfrey, Devon J; McAdams, H Page; Dobbins, James T
2013-02-01
Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency "edge" information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles∕mm. The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.
Displacement data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.
We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.
Risk management with substitution options: Valuing flexibility in small-scale energy systems
NASA Astrophysics Data System (ADS)
Knapp, Karl Eric
Several features of small-scale energy systems make them more easily adapted to a changing operating environment than large centralized designs. This flexibility is often manifested as the ability to substitute inputs. This research explores the value of this substitution flexibility and the marginal value of becoming a "little more flexible" in the context of real project investment in developing countries. The elasticity of substitution is proposed as a stylized measure of flexibility and a choice variable. A flexible alternative (elasticity > 0) can be thought of as holding a fixed-proportions "nflexible" asset plus a sequence of exchange options---the option to move to another feasible "recipe" each period. Substitutability derives value from following a contour of anticipated variations and from responding to new information. Substitutability value, a "cost savings option", increases with elasticity and price risk. However, the required premium to incrementally increase flexibility can in some cases decrease with an increase in risk. Variance is not always a measure of risk. Tools from stochastic dominance are newly applied to real options with convex payoffs to correct some misperceptions and clarify many common modeling situations that meet the criteria for increased variance to imply increased risk. The behavior of the cost savings option is explored subject to a stochastic input price process. At the point where costs are identical for all alternatives, the stochastic process for cost savings becomes deterministic, with savings directly proportional to elasticity of substitution and price variance. The option is also formulated as a derivative security via dynamic programming. The partial differential equation is solved for the special case of Cobb-Douglas (elasticity = 1) (also shown are linear (infinite elasticity), Leontief (elasticity = 0)). Risk aversion is insufficient to prefer a more flexible alternative with the same expected value. Intertemporal links convert the sequence of independent options to a single compound option and require an expansion of the flexibility concept. Additional options increase the value of the project but generally decrease flexibility value. The framework is applied to case study in India: an urban industry electricity strategy decision with reliability risk.
NASA Astrophysics Data System (ADS)
Naseri Kouzehgarani, Asal
2009-12-01
Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well as partially observable and uncertain data. We introduce the Hybrid Hidden Markov Modeling (HHMM) formalism to enable the prediction of the stochastic aircraft states (and thus, potential conflicts), by combining elements of the probabilistic timed input output automaton and the partially observable Markov decision process frameworks, along with the novel addition of a Markovian scheduler to remove the non-deterministic elements arising from the enabling of several actions simultaneously. Comparisons of aircraft in level, climbing/descending and turning flight are performed, and unknown flight track data is evaluated probabilistically against the tuned model in order to assess the effectiveness of the model in detecting the switch between multiple flight modes for a given aircraft. This also allows for the generation of probabilistic distribution over the execution traces of the hybrid hidden Markov model, which then enables the prediction of the states of aircraft based on partially observable and uncertain data. Based on the composition properties of the HHMM, we study a decentralized air traffic system where aircraft are moving along streams and can perform cruise, accelerate, climb and turn maneuvers. We develop a common decentralized policy for conflict avoidance with spatially distributed agents (aircraft in the sky) and assure its safety properties via correctness proofs.
NASA Technical Reports Server (NTRS)
Toomarian, N.; Fijany, A.; Barhen, J.
1993-01-01
Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.
Impact of stochasticity in immigration and reintroduction on colonizing and extirpating populations.
Rajakaruna, Harshana; Potapov, Alexei; Lewis, Mark
2013-05-01
A thorough quantitative understanding of populations at the edge of extinction is needed to manage both invasive and extirpating populations. Immigration can govern the population dynamics when the population levels are low. It increases the probability of a population establishing (or reestablishing) before going extinct (EBE). However, the rate of immigration can be highly fluctuating. Here, we investigate how the stochasticity in immigration impacts the EBE probability for small populations in variable environments. We use a population model with an Allee effect described by a stochastic differential equation (SDE) and employ the Fokker-Planck diffusion approximation to quantify the EBE probability. We find that, the effect of the stochasticity in immigration on the EBE probability depends on both the intrinsic growth rate (r) and the mean rate of immigration (p). In general, if r is large and positive (e.g. invasive species introduced to favorable habitats), or if p is greater than the rate of population decline due to the demographic Allee effect (e.g., effective stocking of declining populations), then the stochasticity in immigration decreases the EBE probability. If r is large and negative (e.g. endangered populations in unfavorable habitats), or if the rate of decline due to the demographic Allee effect is much greater than p (e.g., weak stocking of declining populations), then the stochasticity in immigration increases the EBE probability. However, the mean time for EBE decreases with the increasing stochasticity in immigration with both positive and negative large r. Thus, results suggest that ecological management of populations involves a tradeoff as to whether to increase or decrease the stochasticity in immigration in order to optimize the desired outcome. Moreover, the control of invasive species spread through stochastic means, for example, by stochastic monitoring and treatment of vectors such as ship-ballast water, may be suitable strategies given the environmental and demographic uncertainties at introductions. Similarly, the recovery of declining and extirpated populations through stochastic stocking, translocation, and reintroduction, may also be suitable strategies. Copyright © 2013 Elsevier Inc. All rights reserved.
Logistical constraints lead to an intermediate optimum in outbreak response vaccination
Shea, Katriona; Ferrari, Matthew
2018-01-01
Dynamic models in disease ecology have historically evaluated vaccination strategies under the assumption that they are implemented homogeneously in space and time. However, this approach fails to formally account for operational and logistical constraints inherent in the distribution of vaccination to the population at risk. Thus, feedback between the dynamic processes of vaccine distribution and transmission might be overlooked. Here, we present a spatially explicit, stochastic Susceptible-Infected-Recovered-Vaccinated model that highlights the density-dependence and spatial constraints of various diffusive strategies of vaccination during an outbreak. The model integrates an agent-based process of disease spread with a partial differential process of vaccination deployment. We characterize the vaccination response in terms of a diffusion rate that describes the distribution of vaccination to the population at risk from a central location. This generates an explicit trade-off between slow diffusion, which concentrates effort near the central location, and fast diffusion, which spreads a fixed vaccination effort thinly over a large area. We use stochastic simulation to identify the optimum vaccination diffusion rate as a function of population density, interaction scale, transmissibility, and vaccine intensity. Our results show that, conditional on a timely response, the optimal strategy for minimizing outbreak size is to distribute vaccination resource at an intermediate rate: fast enough to outpace the epidemic, but slow enough to achieve local herd immunity. If the response is delayed, however, the optimal strategy for minimizing outbreak size changes to a rapidly diffusive distribution of vaccination effort. The latter may also result in significantly larger outbreaks, thus suggesting a benefit of allocating resources to timely outbreak detection and response. PMID:29791432
Mathematical Modelling of Continuous Biotechnological Processes
ERIC Educational Resources Information Center
Pencheva, T.; Hristozov, I.; Shannon, A. G.
2003-01-01
Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…
MEANS: python package for Moment Expansion Approximation, iNference and Simulation
Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C.; Kirk, Paul D. W.; Stumpf, Michael P. H.
2016-01-01
Motivation: Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system’s moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. Results: We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. Availability and implementation: https://github.com/theosysbio/means Contacts: m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153663
MEANS: python package for Moment Expansion Approximation, iNference and Simulation.
Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C; Kirk, Paul D W; Stumpf, Michael P H
2016-09-15
Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system's moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. https://github.com/theosysbio/means m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Stochastic effects in a thermochemical system with Newtonian heat exchange.
Nowakowski, B; Lemarchand, A
2001-12-01
We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.
Differential geometry techniques for sets of nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Estabrook, Frank B.
1990-01-01
An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.
Martin, George M.
2011-01-01
All phenotypes result from interactions between Nature, Nurture and Chance. The constitutional genome is clearly the dominant factor in explaining the striking differences in the pace and patterns of ageing among species. We are now in a position to reveal salient features underlying these differential modulations, which are likely to be dominated by regulatory domains. By contrast, I shall argue that stochastic events are the major players underlying the surprisingly large intra-specific variations in lifespan and healthspan. I shall review well established as well as more speculative categories of chance events – somatic mutations, protein synthesis error catastrophe and variegations of gene expression (epigenetic drift), with special emphasis upon the latter. I shall argue that stochastic drifts in variegated gene expression are the major contributors to intra-specific differences in the pace and patterns of ageing within members of the same species. They may be responsible for the quasi-stochastic distributions of major types of geriatric pathologies, including the “big three” of Alzheimer's disease, atherosclerosis and, via the induction of hyperplasis, cancer. They may be responsible for altered stoichiometries of heteromultimeric mitochondrial complexes, potentially leading to such disorders as sarcopenia, nonischemic cardiomyopathy and Parkinson's disease. PMID:21963385
Detecting evolutionary forces in language change.
Newberry, Mitchell G; Ahern, Christopher A; Clark, Robin; Plotkin, Joshua B
2017-11-09
Both language and genes evolve by transmission over generations with opportunity for differential replication of forms. The understanding that gene frequencies change at random by genetic drift, even in the absence of natural selection, was a seminal advance in evolutionary biology. Stochastic drift must also occur in language as a result of randomness in how linguistic forms are copied between speakers. Here we quantify the strength of selection relative to stochastic drift in language evolution. We use time series derived from large corpora of annotated texts dating from the 12th to 21st centuries to analyse three well-known grammatical changes in English: the regularization of past-tense verbs, the introduction of the periphrastic 'do', and variation in verbal negation. We reject stochastic drift in favour of selection in some cases but not in others. In particular, we infer selection towards the irregular forms of some past-tense verbs, which is likely driven by changing frequencies of rhyming patterns over time. We show that stochastic drift is stronger for rare words, which may explain why rare forms are more prone to replacement than common ones. This work provides a method for testing selective theories of language change against a null model and reveals an underappreciated role for stochasticity in language evolution.
Modelling uncertainty in incompressible flow simulation using Galerkin based generalized ANOVA
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Chowdhury, Rajib
2016-11-01
This paper presents a new algorithm, referred to here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA) for modelling input uncertainties and its propagation in incompressible fluid flow. The proposed approach utilizes ANOVA to represent the unknown stochastic response. Further, the unknown component functions of ANOVA are represented using the generalized polynomial chaos expansion (PCE). The resulting functional form obtained by coupling the ANOVA and PCE is substituted into the stochastic Navier-Stokes equation (NSE) and Galerkin projection is employed to decompose it into a set of coupled deterministic 'Navier-Stokes alike' equations. Temporal discretization of the set of coupled deterministic equations is performed by employing Adams-Bashforth scheme for convective term and Crank-Nicolson scheme for diffusion term. Spatial discretization is performed by employing finite difference scheme. Implementation of the proposed approach has been illustrated by two examples. In the first example, a stochastic ordinary differential equation has been considered. This example illustrates the performance of proposed approach with change in nature of random variable. Furthermore, convergence characteristics of GG-ANOVA has also been demonstrated. The second example investigates flow through a micro channel. Two case studies, namely the stochastic Kelvin-Helmholtz instability and stochastic vortex dipole, have been investigated. For all the problems results obtained using GG-ANOVA are in excellent agreement with benchmark solutions.
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Albert, Jaroslav
2016-01-01
Modeling stochastic behavior of chemical reaction networks is an important endeavor in many aspects of chemistry and systems biology. The chemical master equation (CME) and the Gillespie algorithm (GA) are the two most fundamental approaches to such modeling; however, each of them has its own limitations: the GA may require long computing times, while the CME may demand unrealistic memory storage capacity. We propose a method that combines the CME and the GA that allows one to simulate stochastically a part of a reaction network. First, a reaction network is divided into two parts. The first part is simulated via the GA, while the solution of the CME for the second part is fed into the GA in order to update its propensities. The advantage of this method is that it avoids the need to solve the CME or stochastically simulate the entire network, which makes it highly efficient. One of its drawbacks, however, is that most of the information about the second part of the network is lost in the process. Therefore, this method is most useful when only partial information about a reaction network is needed. We tested this method against the GA on two systems of interest in biology--the gene switch and the Griffith model of a genetic oscillator--and have shown it to be highly accurate. Comparing this method to four different stochastic algorithms revealed it to be at least an order of magnitude faster than the fastest among them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlou, A. T.; Betzler, B. R.; Burke, T. P.
Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less
Multiscale modeling of mucosal immune responses
2015-01-01
Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787
Multiscale modeling of mucosal immune responses.
Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep
2015-01-01
Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.
Overgaard, Rune Viig; Holford, Nick; Rytved, Klaus A; Madsen, Henrik
2007-02-01
To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using NONMEM. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a more realistic description with improved simulation properties, and further changed the model into one that could not be falsified by the autocorrelation function. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a biologically plausible model. The quality of the model was improved by the use of SDEs.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks.
Navarro Jimenez, M; Le Maître, O P; Knio, O M
2016-12-28
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-23
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
NASA Astrophysics Data System (ADS)
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-01
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.
2015-10-01
The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports.
Schilde, M; Doerner, K F; Hartl, R F
2011-12-01
The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles
USDA-ARS?s Scientific Manuscript database
Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maint...
Avian seasonal productivity is often modeled as a time-limited stochastic process. Many mathematical formulations have been proposed, including individual based models, continuous-time differential equations, and discrete Markov models. All such models typically include paramete...
NASA Astrophysics Data System (ADS)
Filimonov, M. Yu.
2017-12-01
The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.
COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak, E-mail: Lorin_Matthews@baylor.edu
2013-10-20
The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface ofmore » an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.« less
Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Liu Kaijun; Winske, Dan
2009-11-15
This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less
A Stochastic Model of Eye Lens Growth
Šikić, Hrvoje; Shi, Yanrong; Lubura, Snježana; Bassnett, Steven
2015-01-01
The size and shape of the ocular lens must be controlled with precision if light is to be focused sharply on the retina. The lifelong growth of the lens depends on the production of cells in the anterior epithelium. At the lens equator, epithelial cells differentiate into fiber cells, which are added to the surface of the existing fiber cell mass, increasing its volume and area. We developed a stochastic model relating the rates of cell proliferation and death in various regions of the lens epithelium to deposition of fiber cells and lens growth. Epithelial population dynamics were modeled as a branching process with emigration and immigration between various proliferative zones. Numerical simulations were in agreement with empirical measurements and demonstrated that, operating within the strict confines of lens geometry, a stochastic growth engine can produce the smooth and precise growth necessary for lens function. PMID:25816743
Diffusion of test particles in stochastic magnetic fields for small Kubo numbers.
Neuer, Marcus; Spatschek, Karl H
2006-02-01
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used A-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.
A stochastic model for eye movements during fixation on a stationary target.
NASA Technical Reports Server (NTRS)
Vasudevan, R.; Phatak, A. V.; Smith, J. D.
1971-01-01
A stochastic model describing small eye movements occurring during steady fixation on a stationary target is presented. Based on eye movement data for steady gaze, the model has a hierarchical structure; the principal level represents the random motion of the image point within a local area of fixation, while the higher level mimics the jump processes involved in transitions from one local area to another. Target image motion within a local area is described by a Langevin-like stochastic differential equation taking into consideration the microsaccadic jumps pictured as being due to point processes and the high frequency muscle tremor, represented as a white noise. The transform of the probability density function for local area motion is obtained, leading to explicit expressions for their means and moments. Evaluation of these moments based on the model is comparable with experimental results.
Spatial scaling patterns and functional redundancies in a changing boreal lake landscape
Angeler, David G.; Allen, Craig R.; Uden, Daniel R.; Johnson, Richard K.
2015-01-01
Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using longterm data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries
NASA Astrophysics Data System (ADS)
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics
Calcagno, Cristina; Coppo, Mario
2014-01-01
The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo-Negrete, Diego del; Blazevski, Daniel
2016-04-15
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less
On designing multicore-aware simulators for systems biology endowed with OnLine statistics.
Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo
2014-01-01
The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.
Stochastic Models for Precipitable Water in Convection
NASA Astrophysics Data System (ADS)
Leung, Kimberly
Atmospheric precipitable water vapor (PWV) is the amount of water vapor in the atmosphere within a vertical column of unit cross-sectional area and is a critically important parameter of precipitation processes. However, accurate high-frequency and long-term observations of PWV in the sky were impossible until the availability of modern instruments such as radar. The United States Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Program facility made the first systematic and high-resolution observations of PWV at Darwin, Australia since 2002. At a resolution of 20 seconds, this time series allowed us to examine the volatility of PWV, including fractal behavior with dimension equal to 1.9, higher than the Brownian motion dimension of 1.5. Such strong fractal behavior calls for stochastic differential equation modeling in an attempt to address some of the difficulties of convective parameterization in various kinds of climate models, ranging from general circulation models (GCM) to weather research forecasting (WRF) models. This important observed data at high resolution can capture the fractal behavior of PWV and enables stochastic exploration into the next generation of climate models which considers scales from micrometers to thousands of kilometers. As a first step, this thesis explores a simple stochastic differential equation model of water mass balance for PWV and assesses accuracy, robustness, and sensitivity of the stochastic model. A 1000-day simulation allows for the determination of the best-fitting 25-day period as compared to data from the TWP-ICE field campaign conducted out of Darwin, Australia in early 2006. The observed data and this portion of the simulation had a correlation coefficient of 0.6513 and followed similar statistics and low-resolution temporal trends. Building on the point model foundation, a similar algorithm was applied to the National Center for Atmospheric Research (NCAR)'s existing single-column model as a test-of-concept for eventual inclusion in a general circulation model. The stochastic scheme was designed to be coupled with the deterministic single-column simulation by modifying results of the existing convective scheme (Zhang-McFarlane) and was able to produce a 20-second resolution time series that effectively simulated observed PWV, as measured by correlation coefficient (0.5510), fractal dimension (1.9), statistics, and visual examination of temporal trends. Results indicate that simulation of a highly volatile time series of observed PWV is certainly achievable and has potential to improve prediction capabilities in climate modeling. Further, this study demonstrates the feasibility of adding a mathematics- and statistics-based stochastic scheme to an existing deterministic parameterization to simulate observed fractal behavior.
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
Güner, Özkan; Cevikel, Adem C.
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972
On implicit abstract neutral nonlinear differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br; O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie
2016-04-15
In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.
Oscillation of certain higher-order neutral partial functional differential equations.
Li, Wei Nian; Sheng, Weihong
2016-01-01
In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.
Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks
NASA Astrophysics Data System (ADS)
Rozdeba, Paul J.
The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.
2018-03-14
pricing, Appl. Math . Comp. Vol.305, 174-187 (2017) 5. W. Li, S. Wang, Pricing European options with proportional transaction costs and stochastic...for fractional differential equation. Numer. Math . Theor. Methods Appl. 5, 229–241, 2012. [23] Kilbas A.A. and Marzan, S.A., Cauchy problem for...numerical technique for solving fractional optimal control problems, Comput. Math . Appl., 62, Issue 3, 1055–1067, 2011. [26] Lotfi A., Yousefi SA., Dehghan M
Fractional Poisson Fields and Martingales
NASA Astrophysics Data System (ADS)
Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely
2018-02-01
We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.
2013-06-26
flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take