Sample records for stochastic population model

  1. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    NASA Astrophysics Data System (ADS)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  2. Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-03-01

    In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.

  3. Stochastic analysis of future vehicle populations

    DOT National Transportation Integrated Search

    1979-05-01

    The purpose of this study was to build a stochastic model of future vehicle populations. Such a model can be used to investigate the uncertainties inherent in Future Vehicle Populations. The model, which is called the Future Automobile Population Sto...

  4. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    PubMed

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  5. Amerciamysis bahia Stochastic Matrix Population Model for Laboratory Populations

    EPA Science Inventory

    The population model described here is a stochastic, density-independent matrix model for integrating the effects of toxicants on survival and reproduction of the marine invertebrate, Americamysis bahia. The model was constructed using Microsoft® Excel 2003. The focus of the mode...

  6. The critical domain size of stochastic population models.

    PubMed

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K

    2017-02-01

    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  7. Phase-Space Transport of Stochastic Chaos in Population Dynamics of Virus Spread

    NASA Astrophysics Data System (ADS)

    Billings, Lora; Bollt, Erik M.; Schwartz, Ira B.

    2002-06-01

    A general way to classify stochastic chaos is presented and applied to population dynamics models. A stochastic dynamical theory is used to develop an algorithmic tool to measure the transport across basin boundaries and predict the most probable regions of transport created by noise. The results of this tool are illustrated on a model of virus spread in a large population, where transport regions reveal how noise completes the necessary manifold intersections for the creation of emerging stochastic chaos.

  8. Kinetic theory of age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  9. Unification theory of optimal life histories and linear demographic models in internal stochasticity.

    PubMed

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.

  10. Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity

    PubMed Central

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258

  11. A kinetic theory for age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Greenman, Chris

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but they are structurally unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Conversely, current theories that include size-dependent population dynamics (e.g., carrying capacity) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a BBGKY-like hierarchy. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution. NSF.

  12. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-01-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  13. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-06-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  14. Evolutionary Game Theory in Growing Populations

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Cremer, Jonas; Frey, Erwin

    2010-10-01

    Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We present here a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.

  15. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    NASA Astrophysics Data System (ADS)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  16. Estimating the effects of 17α-ethinylestradiol on stochastic population growth rate of fathead minnows: a population synthesis of empirically derived vital rates.

    PubMed

    Schwindt, Adam R; Winkelman, Dana L

    2016-09-01

    Urban freshwater streams in arid climates are wastewater effluent dominated ecosystems particularly impacted by bioactive chemicals including steroid estrogens that disrupt vertebrate reproduction. However, more understanding of the population and ecological consequences of exposure to wastewater effluent is needed. We used empirically derived vital rate estimates from a mesocosm study to develop a stochastic stage-structured population model and evaluated the effect of 17α-ethinylestradiol (EE2), the estrogen in human contraceptive pills, on fathead minnow Pimephales promelas stochastic population growth rate. Tested EE2 concentrations ranged from 3.2 to 10.9 ng L(-1) and produced stochastic population growth rates (λ S ) below 1 at the lowest concentration, indicating potential for population decline. Declines in λ S compared to controls were evident in treatments that were lethal to adult males despite statistically insignificant effects on egg production and juvenile recruitment. In fact, results indicated that λ S was most sensitive to the survival of juveniles and female egg production. More broadly, our results document that population model results may differ even when empirically derived estimates of vital rates are similar among experimental treatments, and demonstrate how population models integrate and project the effects of stressors throughout the life cycle. Thus, stochastic population models can more effectively evaluate the ecological consequences of experimentally derived vital rates.

  17. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  18. Stochastic multi-scale models of competition within heterogeneous cellular populations: Simulation methods and mean-field analysis.

    PubMed

    Cruz, Roberto de la; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás

    2016-10-21

    We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i.e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Coevolution Maintains Diversity in the Stochastic "Kill the Winner" Model

    NASA Astrophysics Data System (ADS)

    Xue, Chi; Goldenfeld, Nigel

    2017-12-01

    The "kill the winner" hypothesis is an attempt to address the problem of diversity in biology. It argues that host-specific predators control the population of each prey, preventing a winner from emerging and thus maintaining the coexistence of all species in the system. We develop a stochastic model for the kill the winner paradigm and show that the stable coexistence state of the deterministic kill the winner model is destroyed by demographic stochasticity, through a cascade of extinction events. We formulate an individual-level stochastic model in which predator-prey coevolution promotes the high diversity of the ecosystem by generating a persistent population flux of species.

  20. Estimating the effects of 17α-ethinylestradiol on stochastic population growth rate of fathead minnows: a population synthesis of empirically derived vital rates

    USGS Publications Warehouse

    Schwindt, Adam R.; Winkelman, Dana L.

    2016-01-01

    Urban freshwater streams in arid climates are wastewater effluent dominated ecosystems particularly impacted by bioactive chemicals including steroid estrogens that disrupt vertebrate reproduction. However, more understanding of the population and ecological consequences of exposure to wastewater effluent is needed. We used empirically derived vital rate estimates from a mesocosm study to develop a stochastic stage-structured population model and evaluated the effect of 17α-ethinylestradiol (EE2), the estrogen in human contraceptive pills, on fathead minnow Pimephales promelas stochastic population growth rate. Tested EE2 concentrations ranged from 3.2 to 10.9 ng L−1 and produced stochastic population growth rates (λ S ) below 1 at the lowest concentration, indicating potential for population decline. Declines in λ S compared to controls were evident in treatments that were lethal to adult males despite statistically insignificant effects on egg production and juvenile recruitment. In fact, results indicated that λ S was most sensitive to the survival of juveniles and female egg production. More broadly, our results document that population model results may differ even when empirically derived estimates of vital rates are similar among experimental treatments, and demonstrate how population models integrate and project the effects of stressors throughout the life cycle. Thus, stochastic population models can more effectively evaluate the ecological consequences of experimentally derived vital rates.

  1. Stochastic hybrid delay population dynamics: well-posed models and extinction.

    PubMed

    Yuan, Chenggui; Mao, Xuerong; Lygeros, John

    2009-01-01

    Nonlinear differential equations have been used for decades for studying fluctuations in the populations of species, interactions of species with the environment, and competition and symbiosis between species. Over the years, the original non-linear models have been embellished with delay terms, stochastic terms and more recently discrete dynamics. In this paper, we investigate stochastic hybrid delay population dynamics (SHDPD), a very general class of population dynamics that comprises all of these phenomena. For this class of systems, we provide sufficient conditions to ensure that SHDPD have global positive, ultimately bounded solutions, a minimum requirement for a realistic, well-posed model. We then study the question of extinction and establish conditions under which an ecosystem modelled by SHDPD is doomed.

  2. Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion

    USGS Publications Warehouse

    Ackleh, A.S.; Allen, L.J.S.; Carter, J.

    2007-01-01

    We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded. ?? 2007 Elsevier Inc. All rights reserved.

  3. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  4. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth.

  5. Stochastic hybrid systems for studying biochemical processes.

    PubMed

    Singh, Abhyudai; Hespanha, João P

    2010-11-13

    Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.

  6. The effect of stochiastic technique on estimates of population viability from transition matrix models

    USGS Publications Warehouse

    Kaye, T.N.; Pyke, David A.

    2003-01-01

    Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.

  7. Using stochastic models to incorporate spatial and temporal variability [Exercise 14

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...

  8. Stochastic gain in finite populations

    NASA Astrophysics Data System (ADS)

    Röhl, Torsten; Traulsen, Arne; Claussen, Jens Christian; Schuster, Heinz Georg

    2008-08-01

    Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper [Traulsen , Phys. Rev. Lett. 93, 028701 (2004)], we have demonstrated this effect based on a replicator dynamics model which is subject to external noise. Here, we utilize recent advances on finite population dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the population size and the intensity of selection, which measures the balance between the deterministic and the stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate microscopic update process, even if learning rates are constant.

  9. Climate change threatens polar bear populations: a stochastic demographic analysis.

    PubMed

    Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian

    2010-10-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.

  10. Climate change threatens polar bear populations: A stochastic demographic analysis

    USGS Publications Warehouse

    Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, Steven C.; Stirling, I.

    2010-01-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in ?? in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ??s, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ??s ' - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act. ?? 2010 by the Ecological Society of America.

  11. Nonlinear Stochastic Markov Processes and Modeling Uncertainty in Populations

    DTIC Science & Technology

    2011-07-06

    219–232. [26] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer, New York, 1991. [27] F. Klebaner...ubiquitous in mathematics and physics (e.g., particle transport, filtering), biology (population models), finance (e.g., Black-Scholes equations) among other

  12. A statistical approach to quasi-extinction forecasting.

    PubMed

    Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric

    2007-12-01

    Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.

  13. Expansion or extinction: deterministic and stochastic two-patch models with Allee effects.

    PubMed

    Kang, Yun; Lanchier, Nicolas

    2011-06-01

    We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the probability of extinction for the stochastic model.

  14. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation.

    PubMed

    Gustafsson, Leif; Sternad, Mikael

    2007-10-01

    Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.

  15. Two-strain competition in quasineutral stochastic disease dynamics.

    PubMed

    Kogan, Oleg; Khasin, Michael; Meerson, Baruch; Schneider, David; Myers, Christopher R

    2014-10-01

    We develop a perturbation method for studying quasineutral competition in a broad class of stochastic competition models and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain generalization of the stochastic susceptible-infected-susceptible (SIS) model. Here we extend previous results due to Parsons and Quince [Theor. Popul. Biol. 72, 468 (2007)], Parsons et al. [Theor. Popul. Biol. 74, 302 (2008)], and Lin, Kim, and Doering [J. Stat. Phys. 148, 646 (2012)]. The second model, a two-strain generalization of the stochastic susceptible-infected-recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of subpopulation sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the subpopulations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically "typical" initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.

  16. Dynamics of stochastic SEIS epidemic model with varying population size

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wei, Fengying

    2016-12-01

    We introduce the stochasticity into a deterministic model which has state variables susceptible-exposed-infected with varying population size in this paper. The infected individuals could return into susceptible compartment after recovering. We show that the stochastic model possesses a unique global solution under building up a suitable Lyapunov function and using generalized Itô's formula. The densities of the exposed and infected tend to extinction when some conditions are being valid. Moreover, the conditions of persistence to a global solution are derived when the parameters are subject to some simple criteria. The stochastic model admits a stationary distribution around the endemic equilibrium, which means that the disease will prevail. To check the validity of the main results, numerical simulations are demonstrated as end of this contribution.

  17. The scaling of population persistence with carrying capacity does not asymptote in populations of a fish experiencing extreme climate variability.

    PubMed

    White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R

    2017-06-14

    Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).

  18. Demographic noise can reverse the direction of deterministic selection

    PubMed Central

    Constable, George W. A.; Rogers, Tim; McKane, Alan J.; Tarnita, Corina E.

    2016-01-01

    Deterministic evolutionary theory robustly predicts that populations displaying altruistic behaviors will be driven to extinction by mutant cheats that absorb common benefits but do not themselves contribute. Here we show that when demographic stochasticity is accounted for, selection can in fact act in the reverse direction to that predicted deterministically, instead favoring cooperative behaviors that appreciably increase the carrying capacity of the population. Populations that exist in larger numbers experience a selective advantage by being more stochastically robust to invasions than smaller populations, and this advantage can persist even in the presence of reproductive costs. We investigate this general effect in the specific context of public goods production and find conditions for stochastic selection reversal leading to the success of public good producers. This insight, developed here analytically, is missed by the deterministic analysis as well as by standard game theoretic models that enforce a fixed population size. The effect is found to be amplified by space; in this scenario we find that selection reversal occurs within biologically reasonable parameter regimes for microbial populations. Beyond the public good problem, we formulate a general mathematical framework for models that may exhibit stochastic selection reversal. In this context, we describe a stochastic analog to r−K theory, by which small populations can evolve to higher densities in the absence of disturbance. PMID:27450085

  19. Extinction in neutrally stable stochastic Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  20. Extinction in neutrally stable stochastic Lotka-Volterra models.

    PubMed

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  1. Stochastic Forecasting of Labor Supply and Population: An Integrated Model.

    PubMed

    Fuchs, Johann; Söhnlein, Doris; Weber, Brigitte; Weber, Enzo

    2018-01-01

    This paper presents a stochastic model to forecast the German population and labor supply until 2060. Within a cohort-component approach, our population forecast applies principal components analysis to birth, mortality, emigration, and immigration rates, which allows for the reduction of dimensionality and accounts for correlation of the rates. Labor force participation rates are estimated by means of an econometric time series approach. All time series are forecast by stochastic simulation using the bootstrap method. As our model also distinguishes between German and foreign nationals, different developments in fertility, migration, and labor participation could be predicted. The results show that even rising birth rates and high levels of immigration cannot break the basic demographic trend in the long run. An important finding from an endogenous modeling of emigration rates is that high net migration in the long run will be difficult to achieve. Our stochastic perspective suggests therefore a high probability of substantially decreasing the labor supply in Germany.

  2. Psychological effect on single-species population models in a polluted environment.

    PubMed

    Wei, Fengying; Chen, Lihong

    2017-08-01

    We formulate and investigate the psychological effect of single-species population models in a polluted environment in this paper. For the deterministic single-species population model, the conditions that guarantee the local extinction and persistence in the mean are derived firstly. We then show that, around the pollution-free equilibrium, the stochastic single-species population is weakly persistent in the mean, and is stochastically permanent under some conditions. As a consequence, some numerical simulations demonstrate the efficiency of the main results. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    PubMed

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  4. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  5. Stochastic resonance in a generalized Von Foerster population growth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N.; Mankin, R.

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. Anmore » analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.« less

  6. Impact of stochasticity in immigration and reintroduction on colonizing and extirpating populations.

    PubMed

    Rajakaruna, Harshana; Potapov, Alexei; Lewis, Mark

    2013-05-01

    A thorough quantitative understanding of populations at the edge of extinction is needed to manage both invasive and extirpating populations. Immigration can govern the population dynamics when the population levels are low. It increases the probability of a population establishing (or reestablishing) before going extinct (EBE). However, the rate of immigration can be highly fluctuating. Here, we investigate how the stochasticity in immigration impacts the EBE probability for small populations in variable environments. We use a population model with an Allee effect described by a stochastic differential equation (SDE) and employ the Fokker-Planck diffusion approximation to quantify the EBE probability. We find that, the effect of the stochasticity in immigration on the EBE probability depends on both the intrinsic growth rate (r) and the mean rate of immigration (p). In general, if r is large and positive (e.g. invasive species introduced to favorable habitats), or if p is greater than the rate of population decline due to the demographic Allee effect (e.g., effective stocking of declining populations), then the stochasticity in immigration decreases the EBE probability. If r is large and negative (e.g. endangered populations in unfavorable habitats), or if the rate of decline due to the demographic Allee effect is much greater than p (e.g., weak stocking of declining populations), then the stochasticity in immigration increases the EBE probability. However, the mean time for EBE decreases with the increasing stochasticity in immigration with both positive and negative large r. Thus, results suggest that ecological management of populations involves a tradeoff as to whether to increase or decrease the stochasticity in immigration in order to optimize the desired outcome. Moreover, the control of invasive species spread through stochastic means, for example, by stochastic monitoring and treatment of vectors such as ship-ballast water, may be suitable strategies given the environmental and demographic uncertainties at introductions. Similarly, the recovery of declining and extirpated populations through stochastic stocking, translocation, and reintroduction, may also be suitable strategies. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Immune Response to a Variable Pathogen: A Stochastic Model with Two Interlocked Darwinian Entities

    PubMed Central

    Kuhn, Christoph

    2012-01-01

    This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction. PMID:23424603

  8. Immune response to a variable pathogen: a stochastic model with two interlocked Darwinian entities.

    PubMed

    Kuhn, Christoph

    2012-01-01

    This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction.

  9. Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching

    NASA Astrophysics Data System (ADS)

    Yu, Xingwang; Yuan, Sanling; Zhang, Tonghua

    2018-06-01

    Allee effect can interact with environment stochasticity and is active when population numbers are small. Our goal of this paper is to investigate such effect on population dynamics. More precisely, we develop and investigate a stochastic single species model with Allee effect under regime switching. We first prove the existence of global positive solution of the model. Then, we perform the survival analysis to seek sufficient conditions for the extinction, non-persistence in mean, persistence in mean and stochastic permanence. By constructing a suitable Lyapunov function, we show that the model is positive recurrent and ergodic. Our results indicate that the regime switching can suppress the extinction of the species. Finally, numerical simulations are carried out to illustrate the obtained theoretical results, where a real-life example is also discussed showing the inclusion of Allee effect in the model provides a better match to the data.

  10. A minimum stochastic model evaluating the interplay between population density and drift for species coexistence

    NASA Astrophysics Data System (ADS)

    Guariento, Rafael Dettogni; Caliman, Adriano

    2017-02-01

    Despite the general acknowledgment of the role of niche and stochastic process in community dynamics, the role of species relative abundances according to both perspectives may have different effects regarding coexistence patterns. In this study, we explore a minimum probabilistic stochastic model to determine the relationship of populations relative and total abundances with species chances to outcompete each other and their persistence in time (i.e., unstable coexistence). Our model is focused on the effects drift (i.e., random sampling of recruitment) under different scenarios of selection (i.e., fitness differences between species). Our results show that taking into account the stochasticity in demographic properties and conservation of individuals in closed communities (zero-sum assumption), initial population abundance can strongly influence species chances to outcompete each other, despite fitness inequalities between populations, and also, influence the period of coexistence of these species in a particular time interval. Systems carrying capacity can have an important role in species coexistence by exacerbating fitness inequalities and affecting the size of the period of coexistence. Overall, the simple stochastic formulation used in this study demonstrated that populations initial abundances could act as an equalizing mechanism, reducing fitness inequalities, which can favor species coexistence and even make less fitted species to be more likely to outcompete better-fitted species, and thus to dominate ecological communities in the absence of niche mechanisms. Although our model is restricted to a pair of interacting species, and overall conclusions are already predicted by the Neutral Theory of Biodiversity, our main objective was to derive a model that can explicitly show the functional relationship between population densities and community mono-dominance odds. Overall, our study provides a straightforward understanding of how a stochastic process (i.e., drift) may affect the expected outcome based on species selection (i.e., fitness inequalities among species) and the resulting outcome regarding unstable coexistence among species.

  11. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgür D.

    2015-12-01

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto-type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear, which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed.

  12. A stochastic model for the probability of malaria extinction by mass drug administration.

    PubMed

    Pemberton-Ross, Peter; Chitnis, Nakul; Pothin, Emilie; Smith, Thomas A

    2017-09-18

    Mass drug administration (MDA) has been proposed as an intervention to achieve local extinction of malaria. Although its effect on the reproduction number is short lived, extinction may subsequently occur in a small population due to stochastic fluctuations. This paper examines how the probability of stochastic extinction depends on population size, MDA coverage and the reproduction number under control, R c . A simple compartmental model is developed which is used to compute the probability of extinction using probability generating functions. The expected time to extinction in small populations after MDA for various scenarios in this model is calculated analytically. The results indicate that mass drug administration (Firstly, R c must be sustained at R c  < 1.2 to avoid the rapid re-establishment of infections in the population. Secondly, the MDA must produce effective cure rates of >95% to have a non-negligible probability of successful elimination. Stochastic fluctuations only significantly affect the probability of extinction in populations of about 1000 individuals or less. The expected time to extinction via stochastic fluctuation is less than 10 years only in populations less than about 150 individuals. Clustering of secondary infections and of MDA distribution both contribute positively to the potential probability of success, indicating that MDA would most effectively be administered at the household level. There are very limited circumstances in which MDA will lead to local malaria elimination with a substantial probability.

  13. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    PubMed

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  14. SLUG - stochastically lighting up galaxies - III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Fumagalli, Michele; da Silva, Robert L.; Rendahl, Theodore; Parra, Jonathan

    2015-09-01

    Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also require consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include the following: a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes spectra and photometry for stochastically or deterministically sampled stellar populations with nearly arbitrary star formation histories, clustering properties, and initial mass functions; CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radiative transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included in the software. The complete package is available at http://www.slugsps.com.

  15. The Allee effect, stochastic dynamics and the eradication of alien species

    Treesearch

    Andrew Liebhold; Jordi Bascompte; Jordi Bascompte

    2003-01-01

    Previous treatments of the population biology of eradication have assumed that eradication can only be achieved via 100% removal of the alien population. However, this assumption appears to be incorrect because stochastic dynamics and the Allee effect typically contribute to the extinction of very low-density populations. We explore a model that incorporates Allee...

  16. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.

    PubMed

    Christen, Alejandra; Maulén-Yañez, M Angélica; González-Olivares, Eduardo; Curé, Michel

    2018-03-01

    In this paper a stochastic susceptible-infectious (SI) epidemic model is analysed, which is based on the model proposed by Roberts and Saha (Appl Math Lett 12: 37-41, 1999), considering a hyperbolic type nonlinear incidence rate. Assuming the proportion of infected population varies with time, our new model is described by an ordinary differential equation, which is analogous to the equation that describes the double Allee effect. The limit of the solution of this equation (deterministic model) is found when time tends to infinity. Then, the asymptotic behaviour of a stochastic fluctuation due to the environmental variation in the coefficient of disease transmission is studied. Thus a stochastic differential equation (SDE) is obtained and the existence of a unique solution is proved. Moreover, the SDE is analysed through the associated Fokker-Planck equation to obtain the invariant measure when the proportion of the infected population reaches steady state. An explicit expression for invariant measure is found and we study some of its properties. The long time behaviour of deterministic and stochastic models are compared by simulations. According to our knowledge this incidence rate has not been previously used for this type of epidemic models.

  17. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    NASA Astrophysics Data System (ADS)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  18. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks.

    PubMed

    Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G

    2007-05-24

    The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.

  19. Structured population dynamics: continuous size and discontinuous stage structures.

    PubMed

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  20. Environmental Stochasticity and the Speed of Evolution

    NASA Astrophysics Data System (ADS)

    Danino, Matan; Kessler, David A.; Shnerb, Nadav M.

    2018-03-01

    Biological populations are subject to two types of noise: demographic stochasticity due to fluctuations in the reproductive success of individuals, and environmental variations that affect coherently the relative fitness of entire populations. The rate in which the average fitness of a community increases has been considered so far using models with pure demographic stochasticity; here we present some theoretical considerations and numerical results for the general case where environmental variations are taken into account. When the competition is pairwise, fitness fluctuations are shown to reduce the speed of evolution, while under global competition the speed increases due to environmental stochasticity.

  1. Environmental Stochasticity and the Speed of Evolution

    NASA Astrophysics Data System (ADS)

    Danino, Matan; Kessler, David A.; Shnerb, Nadav M.

    2018-07-01

    Biological populations are subject to two types of noise: demographic stochasticity due to fluctuations in the reproductive success of individuals, and environmental variations that affect coherently the relative fitness of entire populations. The rate in which the average fitness of a community increases has been considered so far using models with pure demographic stochasticity; here we present some theoretical considerations and numerical results for the general case where environmental variations are taken into account. When the competition is pairwise, fitness fluctuations are shown to reduce the speed of evolution, while under global competition the speed increases due to environmental stochasticity.

  2. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  3. Stochastic predation events and population persistence in bighorn sheep

    PubMed Central

    Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

    2006-01-01

    Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24–28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator–prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

  4. Stochastic von Bertalanffy models, with applications to fish recruitment.

    PubMed

    Lv, Qiming; Pitchford, Jonathan W

    2007-02-21

    We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.

  5. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evolution with Stochastic Fitness and Stochastic Migration

    PubMed Central

    Rice, Sean H.; Papadopoulos, Anthony

    2009-01-01

    Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580

  7. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects

    PubMed Central

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity. PMID:27010993

  8. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects.

    PubMed

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity.

  9. Stochastic demographic forecasting.

    PubMed

    Lee, R D

    1992-11-01

    "This paper describes a particular approach to stochastic population forecasting, which is implemented for the U.S.A. through 2065. Statistical time series methods are combined with demographic models to produce plausible long run forecasts of vital rates, with probability distributions. The resulting mortality forecasts imply gains in future life expectancy that are roughly twice as large as those forecast by the Office of the Social Security Actuary.... Resulting stochastic forecasts of the elderly population, elderly dependency ratios, and payroll tax rates for health, education and pensions are presented." excerpt

  10. Population viability of Pediocactus bradyi (Cactaceae) in a changing climate.

    PubMed

    Shryock, Daniel F; Esque, Todd C; Hughes, Lee

    2014-11-01

    A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona. We used a matrix model to calculate stochastic population growth rates (λs) and the relative influences of life-cycle transitions on population growth. Regression models linked population growth with climatic variability, while stochastic simulations were used to (1) understand how predicted increases in drought frequency and extreme precipitation would affect λs, and (2) quantify variability in λs based on temporal replication of data. Overall λs was below unity (0.961). Population growth was equally influenced by fecundity and survival and significantly correlated with increased annual precipitation and higher winter temperatures. Stochastic simulations increasing the probability of drought and extreme precipitation reduced λs, but less than simulations increasing the probability of drought alone. Simulations varying the temporal replication of data suggested 14 yr were required for accurate λs estimates. Pediocactus bradyi may be vulnerable to increases in the frequency and intensity of extreme climatic events, particularly drought. Biotic interactions resulting in low survival during drought years outweighed increased seedling establishment following heavy precipitation. Climatic extremes beyond historical ranges of variability may threaten rare desert species with low population growth rates and therefore high susceptibility to stochastic events. © 2014 Botanical Society of America, Inc.

  11. Stochastic Human Exposure and Dose Simulation for Air Toxics

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) is a multimedia, multipathway population-based exposure and dose model for air toxics developed by the US EPA's National Exposure Research Laboratory (NERL). SHEDS-AirToxics uses a probabili...

  12. Stochastic population dynamics in spatially extended predator-prey systems

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.

  13. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    PubMed

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  14. Outbreak and Extinction Dynamics in a Stochastic Ebola Model

    NASA Astrophysics Data System (ADS)

    Nieddu, Garrett; Bianco, Simone; Billings, Lora; Forgoston, Eric; Kaufman, James

    A zoonotic disease is a disease that can be passed between animals and humans. In many cases zoonotic diseases can persist in the animal population even if there are no infections in the human population. In this case we call the infected animal population the reservoir for the disease. Ebola virus disease (EVD) and SARS are both notable examples of such diseases. There is little work devoted to understanding stochastic disease extinction and reintroduction in the presence of a reservoir. Here we build a stochastic model for EVD and explicitly consider the presence of an animal reservoir. Using a master equation approach and a WKB ansatz, we determine the associated Hamiltonian of the system. Hamilton's equations are then used to numerically compute the 12-dimensional optimal path to extinction, which is then used to estimate mean extinction times. We also numerically investigate the behavior of the model for dynamic population size. Our results provide an improved understanding of outbreak and extinction dynamics in diseases like EVD.

  15. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  16. A stochastic SIS epidemic model with vaccination

    NASA Astrophysics Data System (ADS)

    Cao, Boqiang; Shan, Meijing; Zhang, Qimin; Wang, Weiming

    2017-11-01

    In this paper, we investigate the basic features of an SIS type infectious disease model with varying population size and vaccinations in presence of environment noise. By applying the Markov semigroup theory, we propose a stochastic reproduction number R0s which can be seen as a threshold parameter to utilize in identifying the stochastic extinction and persistence: If R0s < 1, under some mild extra conditions, there exists a disease-free absorbing set for the stochastic epidemic model, which implies that disease dies out with probability one; while if R0s > 1, under some mild extra conditions, the SDE model has an endemic stationary distribution which results in the stochastic persistence of the infectious disease. The most interesting finding is that large environmental noise can suppress the outbreak of the disease.

  17. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  18. Hybrid stochastic simulations of intracellular reaction-diffusion systems.

    PubMed

    Kalantzis, Georgios

    2009-06-01

    With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.

  19. Size and stochasticity in irrigated social-ecological systems

    NASA Astrophysics Data System (ADS)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  20. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  1. Stochastic models for regulatory networks of the genetic toggle switch.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2006-05-30

    Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

  2. Stochastic models for regulatory networks of the genetic toggle switch

    PubMed Central

    Tian, Tianhai; Burrage, Kevin

    2006-01-01

    Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385

  3. Development and validation of a generic finite element vehicle buck model for the analysis of driver rib fractures in real life nearside oblique frontal crashes.

    PubMed

    Iraeus, Johan; Lindquist, Mats

    2016-10-01

    Frontal crashes still account for approximately half of all fatalities in passenger cars, despite several decades of crash-related research. For serious injuries in this crash mode, several authors have listed the thorax as the most important. Computer simulation provides an effective tool to study crashes and evaluate injury mechanisms, and using stochastic input data, whole populations of crashes can be studied. The aim of this study was to develop a generic buck model and to validate this model on a population of real-life frontal crashes in terms of the risk of rib fracture. The study was conducted in four phases. In the first phase, real-life validation data were derived by analyzing NASS/CDS data to find the relationship between injury risk and crash parameters. In addition, available statistical distributions for the parameters were collected. In the second phase, a generic parameterized finite element (FE) model of a vehicle interior was developed based on laser scans from the A2MAC1 database. In the third phase, model parameters that could not be found in the literature were estimated using reverse engineering based on NCAP tests. Finally, in the fourth phase, the stochastic FE model was used to simulate a population of real-life crashes, and the result was compared to the validation data from phase one. The stochastic FE simulation model overestimates the risk of rib fracture, more for young occupants and less for senior occupants. However, if the effect of underestimation of rib fractures in the NASS/CDS material is accounted for using statistical simulations, the risk of rib fracture based on the stochastic FE model matches the risk based on the NASS/CDS data for senior occupants. The current version of the stochastic model can be used to evaluate new safety measures using a population of frontal crashes for senior occupants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang

    2010-10-01

    This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less

  5. Stochasticity in the signalling network of a model microbe

    NASA Astrophysics Data System (ADS)

    Bischofs, Ilka; Foley, Jonathan; Battenberg, Eric; Fontaine-Bodin, Lisa; Price, Gavin; Wolf, Denise; Arkin, Adam

    2007-03-01

    The soil dwelling bacterium Bacillus subtilis is an excellent model organism for studying stochastic stress response induction in an isoclonal population. Subjected to the same stressor cells undergo different cell fates, including sporulation, competence, degradative enzyme synthesis and motility. For example, under conditions of nutrient deprivation and high cell density only a portion of the cell population forms an endospore. Here we use a combined experimental and theoretical approach to study stochastic sporulation induction in Bacillus subtilis. Using several fluorescent reporter strains we apply time lapse fluorescent microscopy in combination with quantitative image analysis to study cell fate progression on a single cell basis and elucidate key noise generators in the underlying cellular network.

  6. Discovering network behind infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2010-11-01

    Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.

  7. Predator-prey model for the self-organization of stochastic oscillators in dual populations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan; Gürcan, Ozgur D.

    A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced that follows the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronization state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronization of stochastic oscillator is discussed. Sara Moradi has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 nº 246540).

  8. A Stochastic Super-Exponential Growth Model for Population Dynamics

    NASA Astrophysics Data System (ADS)

    Avila, P.; Rekker, A.

    2010-11-01

    A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.

  9. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series

    PubMed Central

    Ferguson, Jake M; Ponciano, José M

    2014-01-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. PMID:24304946

  10. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    NASA Astrophysics Data System (ADS)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    2014-12-01

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Dengue and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.

  11. Disease mapping based on stochastic SIR-SI model for Dengue and Chikungunya in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samat, N. A.; Ma'arof, S. H. Mohd Imam

    This paper describes and demonstrates a method for relative risk estimation which is based on the stochastic SIR-SI vector-borne infectious disease transmission model specifically for Dengue and Chikungunya diseases in Malaysia. Firstly, the common compartmental model for vector-borne infectious disease transmission called the SIR-SI model (susceptible-infective-recovered for human populations; susceptible-infective for vector populations) is presented. This is followed by the explanations on the stochastic SIR-SI model which involve the Bayesian description. This stochastic model then is used in the relative risk formulation in order to obtain the posterior relative risk estimation. Then, this relative estimation model is demonstrated using Denguemore » and Chikungunya data of Malaysia. The viruses of these diseases are transmitted by the same type of female vector mosquito named Aedes Aegypti and Aedes Albopictus. Finally, the findings of the analysis of relative risk estimation for both Dengue and Chikungunya diseases are presented, compared and displayed in graphs and maps. The distribution from risk maps show the high and low risk area of Dengue and Chikungunya diseases occurrence. This map can be used as a tool for the prevention and control strategies for both diseases.« less

  12. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

    PubMed

    Sanz, Luis; Alonso, Juan Antonio

    2017-12-01

    In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

  13. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  14. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  15. Sex in an uncertain world: environmental stochasticity helps restore competitive balance between sexually and asexually reproducing populations.

    PubMed

    Park, A W; Vandekerkhove, J; Michalakis, Y

    2014-08-01

    Like many organisms, individuals of the freshwater ostracod species Eucypris virens exhibit either obligate sexual or asexual reproductive modes. Both types of individual routinely co-occur, including in the same temporary freshwater pond (their natural habitat in which they undergo seasonal diapause). Given the well-known two-fold cost of sex, this begs the question of how sexually reproducing individuals are able to coexist with their asexual counterparts in spite of such overwhelming costs. Environmental stochasticity in the form of 'false dawn' inundations (where the first hydration is ephemeral and causes loss of early hatching individuals) may provide an advantage to the sexual subpopulation, which shows greater variation in hatching times following inundation. We explore the potential role of environmental stochasticity in this system using life-history data analysis, climate data, and matrix projection models. In the absence of environmental stochasticity, the population growth rate is significantly lower in sexual subpopulations. Climate data reveal that 'false dawn' inundations are common. Using matrix projection modelling with and without environmental stochasticity, we demonstrate that this phenomenon can restore appreciable balance to the system, in terms of population growth rates. This provides support for the role of environmental stochasticity in helping to explain the maintenance of sex and the occurrence of geographical parthenogenesis. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  16. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  17. Developing population models with data from marked individuals

    USGS Publications Warehouse

    Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,

    2016-01-01

    Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.

  18. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series.

    PubMed

    Ferguson, Jake M; Ponciano, José M

    2014-02-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  19. Resonant activation of population extinctions

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Doering, Charles R.; Flierl, Glenn R.

    2017-10-01

    Understanding the mechanisms governing population extinctions is of key importance to many problems in ecology and evolution. Stochastic factors are known to play a central role in extinction, but the interactions between a population's demographic stochasticity and environmental noise remain poorly understood. Here we model environmental forcing as a stochastic fluctuation between two states, one with a higher death rate than the other. We find that, in general, there exists a rate of fluctuations that minimizes the mean time to extinction, a phenomenon previously dubbed "resonant activation." We develop a heuristic description of the phenomenon, together with a criterion for the existence of resonant activation. Specifically, the minimum extinction time arises as a result of the system approaching a scenario wherein the severity of rare events is balanced by the time interval between them. We discuss our findings within the context of more general forms of environmental noise and suggest potential applications to evolutionary models.

  20. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning.

    PubMed

    Franklin, Nicholas T; Frank, Michael J

    2015-12-25

    Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments.

  1. The importance of environmental variability and management control error to optimal harvest policies

    USGS Publications Warehouse

    Hunter, C.M.; Runge, M.C.

    2004-01-01

    State-dependent strategies (SDSs) are the most general form of harvest policy because they allow the harvest rate to depend, without constraint, on the state of the system. State-dependent strategies that provide an optimal harvest rate for any system state can be calculated, and stochasticity can be appropriately accommodated in this optimization. Stochasticity poses 2 challenges to harvest policies: (1) the population will never be at the equilibrium state; and (2) stochasticity induces uncertainty about future states. We investigated the effects of 2 types of stochasticity, environmental variability and management control error, on SDS harvest policies for a white-tailed deer (Odocoileus virginianus) model, and contrasted these with a harvest policy based on maximum sustainable yield (MSY). Increasing stochasticity resulted in more conservative SDSs; that is, higher population densities were required to support the same harvest rate, but these effects were generally small. As stochastic effects increased, SDSs performed much better than MSY. Both deterministic and stochastic SDSs maintained maximum mean annual harvest yield (AHY) and optimal equilibrium population size (Neq) in a stochastic environment, whereas an MSY policy could not. We suggest 3 rules of thumb for harvest management of long-lived vertebrates in stochastic systems: (1) an SDS is advantageous over an MSY policy, (2) using an SDS rather than an MSY is more important than whether a deterministic or stochastic SDS is used, and (3) for SDSs, rankings of the variability in management outcomes (e.g., harvest yield) resulting from parameter stochasticity can be predicted by rankings of the deterministic elasticities.

  2. Population density equations for stochastic processes with memory kernels

    NASA Astrophysics Data System (ADS)

    Lai, Yi Ming; de Kamps, Marc

    2017-06-01

    We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.

  3. Tuning stochastic matrix models with hydrologic data to predict the population dynamics of a riverine fish.

    PubMed

    Sakaris, Peter C; Irwin, Elise R

    2010-03-01

    We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotic fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes.

  4. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  5. Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics.

    PubMed

    Tuckwell, H C; Toubiana, L; Vibert, J F

    2000-05-01

    We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only slowly as sigma increases, until a critical value is reached at which the mean infection level suddenly increases. Similar results are obtained when the parameters of the model are also randomized across the population. We conclude with a discussion and a description of a diffusion approximation for a model in which stochasticity arises through random contacts rather than fluctuation in ambient virion levels.

  6. A stochastic chemostat model with an inhibitor and noise independent of population sizes

    NASA Astrophysics Data System (ADS)

    Sun, Shulin; Zhang, Xiaolu

    2018-02-01

    In this paper, a stochastic chemostat model with an inhibitor is considered, here the inhibitor is input from an external source and two organisms in chemostat compete for a nutrient. Firstly, we show that the system has a unique global positive solution. Secondly, by constructing some suitable Lyapunov functions, we investigate that the average in time of the second moment of the solutions of the stochastic model is bounded for a relatively small noise. That is, the asymptotic behaviors of the stochastic system around the equilibrium points of the deterministic system are studied. However, the sufficient large noise can make the microorganisms become extinct with probability one, although the solutions to the original deterministic model may be persistent. Finally, the obtained analytical results are illustrated by computer simulations.

  7. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.

    PubMed

    Coron, Camille

    2016-01-01

    We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter K that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order K, the sequence of stochastic processes indexed by K converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy-Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches.

  8. Spreading of nonmotile bacteria on a hard agar plate: Comparison between agent-based and stochastic simulations

    NASA Astrophysics Data System (ADS)

    Rana, Navdeep; Ghosh, Pushpita; Perlekar, Prasad

    2017-11-01

    We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.

  9. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.

    PubMed

    Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H

    2018-03-29

    Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Using Dynamic Stochastic Modelling to Estimate Population Risk Factors in Infectious Disease: The Example of FIV in 15 Cat Populations

    PubMed Central

    Fouchet, David; Leblanc, Guillaume; Sauvage, Frank; Guiserix, Micheline; Poulet, Hervé; Pontier, Dominique

    2009-01-01

    Background In natural cat populations, Feline Immunodeficiency Virus (FIV) is transmitted through bites between individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on the frequency of fight between individuals and hence appear as important population risk factors for FIV. Methodology/Principal Findings To study such population risk factors, we present data on FIV prevalence in 15 cat populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-ratio, the number of males and the mean age of males and females within the population. We overcome the problem of dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and females had an effect (p = 0.043 and p = 0.02, respectively) on the male-to-female transmission rate. Due to multiple tests, it is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be explained by a very simple model that does not invoke any risk factor. Conclusion Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence between populations than previously expected. Finally, we determined confidence intervals for the simple model parameters that can be used to further aid in management of the disease. PMID:19888418

  11. Effects of deterministic and random refuge in a prey-predator model with parasite infection.

    PubMed

    Mukhopadhyay, B; Bhattacharyya, R

    2012-09-01

    Most natural ecosystem populations suffer from various infectious diseases and the resulting host-pathogen dynamics is dependent on host's characteristics. On the other hand, empirical evidences show that for most host pathogen systems, a part of the host population always forms a refuge. To study the role of refuge on the host-pathogen interaction, we study a predator-prey-pathogen model where the susceptible and the infected prey can undergo refugia of constant size to evade predator attack. The stability aspects of the model system is investigated from a local and global perspective. The study reveals that the refuge sizes for the susceptible and the infected prey are the key parameters that control possible predator extinction as well as species co-existence. Next we perform a global study of the model system using Lyapunov functions and show the existence of a global attractor. Finally we perform a stochastic extension of the basic model to study the phenomenon of random refuge arising from various intrinsic, habitat-related and environmental factors. The stochastic model is analyzed for exponential mean square stability. Numerical study of the stochastic model shows that increasing the refuge rates has a stabilizing effect on the stochastic dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics.

    PubMed

    Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J

    2018-04-01

    Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.

  13. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  14. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE PAGES

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...

    2018-02-20

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  15. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    NASA Astrophysics Data System (ADS)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  16. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The approach used follows the non-equilibrium statistical mechanical approach through a master equation. The aim is to represent the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and mass flux is a non-linear function of convective cell area, mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated mass flux variability under diurnally varying forcing. Besides its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of providing alternative, non-equilibrium, closure formulations for spectral mass flux parameterizations.« less

  17. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less

  18. Stochastic population dynamic models as probability networks

    Treesearch

    M.E. and D.C. Lee Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  19. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: CASE STUDY RESULTS FOR PM 2.5 IN PHILADELPHIA, PA

    EPA Science Inventory

    A population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model, has been developed and applied in a case study of daily PM2.5 exposures for the population living in Philadelphia, PA. SHEDS-PM is a probabilisti...

  20. Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2018-07-01

    Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.

  1. Stochastic mixed-mode oscillations in a three-species predator-prey model

    NASA Astrophysics Data System (ADS)

    Sadhu, Susmita; Kuehn, Christian

    2018-03-01

    The effect of demographic stochasticity, in the form of Gaussian white noise, in a predator-prey model with one fast and two slow variables is studied. We derive the stochastic differential equations (SDEs) from a discrete model. For suitable parameter values, the deterministic drift part of the model admits a folded node singularity and exhibits a singular Hopf bifurcation. We focus on the parameter regime near the Hopf bifurcation, where small amplitude oscillations exist as stable dynamics in the absence of noise. In this regime, the stochastic model admits noise-driven mixed-mode oscillations (MMOs), which capture the intermediate dynamics between two cycles of population outbreaks. We perform numerical simulations to calculate the distribution of the random number of small oscillations between successive spikes for varying noise intensities and distance to the Hopf bifurcation. We also study the effect of noise on a suitable Poincaré map. Finally, we prove that the stochastic model can be transformed into a normal form near the folded node, which can be linked to recent results on the interplay between deterministic and stochastic small amplitude oscillations. The normal form can also be used to study the parameter influence on the noise level near folded singularities.

  2. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...

  3. The Stochastic Modelling of Endemic Diseases

    NASA Astrophysics Data System (ADS)

    Susvitasari, Kurnia; Siswantining, Titin

    2017-01-01

    A study about epidemic has been conducted since a long time ago, but genuine progress was hardly forthcoming until the end of the 19th century (Bailey, 1975). Both deterministic and stochastic models were used to describe these. Then, from 1927 to 1939 Kermack and McKendrick introduced a generality of this model, including some variables to consider such as rate of infection and recovery. The purpose of this project is to investigate the behaviour of the models when we set the basic reproduction number, R0. This quantity is defined as the expected number of contacts made by a typical infective to susceptibles in the population. According to the epidemic threshold theory, when R0 ≤ 1, minor epidemic occurs with probability one in both approaches, but when R0 > 1, the deterministic and stochastic models have different interpretation. In the deterministic approach, major epidemic occurs with probability one when R0 > 1 and predicts that the disease will settle down to an endemic equilibrium. Stochastic models, on the other hand, identify that the minor epidemic can possibly occur. If it does, then the epidemic will die out quickly. Moreover, if we let the population size be large and the major epidemic occurs, then it will take off and then reach the endemic level and move randomly around the deterministic’s equilibrium.

  4. Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models.

    PubMed

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal

    2012-09-01

    Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems. © 2012 Blackwell Publishing Ltd.

  5. PREDICTING POPULATION EXPOSURES TO PM: THE IMPORTANCE OF MICROENVIRONMENTAL CONCENTRATIONS AND HUMAN ACTIVITIES

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation (SHEDS) models being developed by the US EPA/NERL use a probabilistic approach to predict population exposures to pollutants. The SHEDS model for particulate matter (SHEDS-PM) estimates the population distribution of PM exposure...

  6. Evaluating growth of the Porcupine Caribou Herd using a stochastic model

    USGS Publications Warehouse

    Walsh, Noreen E.; Griffith, Brad; McCabe, Thomas R.

    1995-01-01

    Estimates of the relative effects of demographic parameters on population rates of change, and of the level of natural variation in these parameters, are necessary to address potential effects of perturbations on populations. We used a stochastic model, based on survival and reproduction estimates of the Porcupine Caribou (Rangifer tarandus granti) Herd (PCH), during 1983-89 and 1989-92 to obtain distributions of potential population rates of change (r). The distribution of r produced by 1,000 trajectories of our simulation model (1983-89, r̄ = 0.013; 1989-92, r̄ = 0.003) encompassed the rate of increase calculated from an independent series of photo-survey data over the same years (1983-89, r = 0.048; 1989-92, r = -0.035). Changes in adult female survival had the largest effect on r, followed by changes in calf survival. We hypothesized that petroleum development on calving grounds, or changes in calving and post-calving habitats due to global climate change, would affect model input parameters. A decline in annual adult female survival from 0.871 to 0.847, or a decline in annual calf survival from 0.518 to 0.472, would be sufficient to cause a declining population, if all other input estimates remained the same. We then used these lower survival rates, in conjunction with our estimated amount of among-year variation, to determine a range of resulting population trajectories. Stochastic models can be used to better understand dynamics of populations, optimize sampling investment, and evaluate potential effects of various factors on population growth.

  7. Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir

    2017-11-01

    In this paper, a stochastic delayed HIV-1 infection model with nonlinear incidence is proposed and investigated. First of all, we prove that there is a unique global positive solution as desired in any population dynamics. Then by constructing some suitable Lyapunov functions, we show that if the basic reproduction number R0 ≤ 1, then the solution of the stochastic system oscillates around the infection-free equilibrium E0, while if R0 > 1, then the solution of the stochastic system fluctuates around the infective equilibrium E∗. Sufficient conditions of these results are established. Finally, we give some examples and a series of numerical simulations to illustrate the analytical results.

  8. Influence of vectors' risk-spreading strategies and environmental stochasticity on the epidemiology and evolution of vector-borne diseases: the example of Chagas' disease.

    PubMed

    Pelosse, Perrine; Kribs-Zaleta, Christopher M; Ginoux, Marine; Rabinovich, Jorge E; Gourbière, Sébastien; Menu, Frédéric

    2013-01-01

    Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control.

  9. Influence of Vectors’ Risk-Spreading Strategies and Environmental Stochasticity on the Epidemiology and Evolution of Vector-Borne Diseases: The Example of Chagas’ Disease

    PubMed Central

    Pelosse, Perrine; Kribs-Zaleta, Christopher M.; Ginoux, Marine; Rabinovich, Jorge E.; Gourbière, Sébastien; Menu, Frédéric

    2013-01-01

    Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control. PMID:23951018

  10. Stochastic population dynamics of a montane ground-dwelling squirrel.

    PubMed

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λ(s) was 0.92, suggesting a declining population; however, the 95% CI on λ(s) included 1.0 (0.52-1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  11. Stochastic Population Dynamics of a Montane Ground-Dwelling Squirrel

    PubMed Central

    Hostetler, Jeffrey A.; Kneip, Eva; Van Vuren, Dirk H.; Oli, Madan K.

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990–2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λs was 0.92, suggesting a declining population; however, the 95% CI on λs included 1.0 (0.52–1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration. PMID:22479616

  12. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.

    PubMed

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2017-10-31

    We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.

  13. An evaluation of sex-age-kill (SAK) model performance

    USGS Publications Warehouse

    Millspaugh, Joshua J.; Skalski, John R.; Townsend, Richard L.; Diefenbach, Duane R.; Boyce, Mark S.; Hansen, Lonnie P.; Kammermeyer, Kent

    2009-01-01

    The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.

  14. Sign reversals of the output autocorrelation function for the stochastic Bernoulli-Verhulst equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N., E-mail: Neeme.Lumi@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee

    2015-10-28

    We consider a stochastic Bernoulli-Verhulst equation as a model for population growth processes. The effect of fluctuating environment on the carrying capacity of a population is modeled as colored dichotomous noise. Relying on the composite master equation an explicit expression for the stationary autocorrelation function (ACF) of population sizes is found. On the basis of this expression a nonmonotonic decay of the ACF by increasing lag-time is shown. Moreover, in a certain regime of the noise parameters the ACF demonstrates anticorrelation as well as related sign reversals at some values of the lag-time. The conditions for the appearance of thismore » highly unexpected effect are also discussed.« less

  15. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning

    PubMed Central

    Franklin, Nicholas T; Frank, Michael J

    2015-01-01

    Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments. DOI: http://dx.doi.org/10.7554/eLife.12029.001 PMID:26705698

  16. Integral projection models for finite populations in a stochastic environment.

    PubMed

    Vindenes, Yngvild; Engen, Steinar; Saether, Bernt-Erik

    2011-05-01

    Continuous types of population structure occur when continuous variables such as body size or habitat quality affect the vital parameters of individuals. These structures can give rise to complex population dynamics and interact with environmental conditions. Here we present a model for continuously structured populations with finite size, including both demographic and environmental stochasticity in the dynamics. Using recent methods developed for discrete age-structured models we derive the demographic and environmental variance of the population growth as functions of a continuous state variable. These two parameters, together with the expected population growth rate, are used to define a one-dimensional diffusion approximation of the population dynamics. Thus, a substantial reduction in complexity is achieved as the dynamics of the complex structured model can be described by only three population parameters. We provide methods for numerical calculation of the model parameters and demonstrate the accuracy of the diffusion approximation by computer simulation of specific examples. The general modeling framework makes it possible to analyze and predict future dynamics and extinction risk of populations with various types of structure, and to explore consequences of changes in demography caused by, e.g., climate change or different management decisions. Our results are especially relevant for small populations that are often of conservation concern.

  17. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang

    2015-12-15

    Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less

  18. Tuning stochastic matrix models with hydrologic data to predict the population dynamics of a riverine fish

    USGS Publications Warehouse

    Sakaris, P.C.; Irwin, E.R.

    2010-01-01

    We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes. ?? 2010 by the Ecological Society of America.

  19. POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY

    EPA Science Inventory

    The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...

  20. Noise-induced shifts in the population model with a weak Allee effect

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2018-02-01

    We consider the Truscott-Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey-predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov-Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.

  1. Crises, noise, and tipping in the Hassell population model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina

    2018-03-01

    We consider a problem of the analysis of the noise-induced tipping in population systems. To study this phenomenon, we use Hassell-type system with Allee effect as a conceptual model. A mathematical investigation of the tipping is connected with the analysis of the crisis bifurcations, both boundary and interior. In the parametric study of the abrupt changes in dynamics related to the noise-induced extinction and transition from order to chaos, the stochastic sensitivity function technique and confidence domains are used. The effectiveness of the suggested approach to detect early warnings of critical stochastic transitions is demonstrated.

  2. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangdong; Li, Qingze; Pan, Jianxin

    2018-06-01

    Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.

  3. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  4. Antibiotic-induced population fluctuations and stochastic clearance of bacteria

    PubMed Central

    Le, Dai; Şimşek, Emrah; Chaudhry, Waqas

    2018-01-01

    Effective antibiotic use that minimizes treatment failures remains a challenge. A better understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of large bacterial populations established the deterministic framework of pharmacodynamics. Here, characterizing the dynamics of population extinction, we demonstrated the stochastic nature of eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. These striking outcomes of population fluctuations were well captured by our probabilistic model. Our model further suggested a strategy to facilitate eradication by increasing extinction probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were previously deemed inefficacious to eradicate bacteria. PMID:29508699

  5. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    PubMed

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. COST VS. QUALITY IN DEMOGRAPHIC MODELLING: WHEN IS A VITAL RATE GOOD ENOUGH?

    EPA Science Inventory

    This presentation will focus on the assessment of quality for demographic parameters to be used in population-level risk assessment. Current population models can handle genetic, demographic, and environmental stochasticity, density dependence, and multiple stressors. However, cu...

  7. A stochastic bioenergetics model based approach to translating large river flow and temperature in to fish population responses: The pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.

    2015-01-01

    In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.

  8. Stochastic evolution in populations of ideas

    PubMed Central

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games. PMID:28098244

  9. Stochastic evolution in populations of ideas

    NASA Astrophysics Data System (ADS)

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games.

  10. Shot noise perturbations and mean first passage times between stable states.

    PubMed

    Drury, Kevin L S

    2007-08-01

    Predicting crossings between stable states is a central issue in population biology. Crossings from low-density to high-density equilibria are often associated with pest outbreaks, while the opposite crossings are often associated with population collapse of harvested species. Here I use a simple, bistable model to demonstrate a technique for estimating mean first passage times (MFPT) of thresholds, including boundaries between stable equilibria. The approach is based on stochastic "shot-noise" perturbations to the population and the MFPTs compare favorably with mean crossing times from Monte Carlo numerical solutions of the stochastically perturbed model. This agreement suggests that MFPT approximations can be used to quantify expected effects of species manipulations, whether the goal is pest control or sustainable harvest.

  11. Mutant number distribution in an exponentially growing population

    NASA Astrophysics Data System (ADS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  12. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    PubMed

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  14. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  15. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  16. Analysis of lethal and sublethal impacts of environmental disasters on sperm whales using stochastic modeling.

    PubMed

    Ackleh, Azmy S; Chiquet, Ross A; Ma, Baoling; Tang, Tingting; Caswell, Hal; Veprauskas, Amy; Sidorovskaia, Natalia

    2017-08-01

    Mathematical models are essential for combining data from multiple sources to quantify population endpoints. This is especially true for species, such as marine mammals, for which data on vital rates are difficult to obtain. Since the effects of an environmental disaster are not fixed, we develop time-varying (nonautonomous) matrix population models that account for the eventual recovery of the environment to the pre-disaster state. We use these models to investigate how lethal and sublethal impacts (in the form of reductions in the survival and fecundity, respectively) affect the population's recovery process. We explore two scenarios of the environmental recovery process and include the effect of demographic stochasticity. Our results provide insights into the relationship between the magnitude of the disaster, the duration of the disaster, and the probability that the population recovers to pre-disaster levels or a biologically relevant threshold level. To illustrate this modeling methodology, we provide an application to a sperm whale population. This application was motivated by the 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico that has impacted a wide variety of species populations including oysters, fish, corals, and whales.

  17. Model of white oak flower survival and maturation

    Treesearch

    David R. Larsen; Robert A. Cecich

    1997-01-01

    A stochastic model of oak flower dynamics is presented that integrates a number of factors which appear to affect the oak pistillate flower development process. The factors are modeled such that the distribution of the predicted flower populations could have come from the same distribution as the observed flower populations. Factors included in the model are; the range...

  18. AMBIENT PARTICULATE MATTER EXPOSURES: A COMPARISON OF SHEDS-PM EXPOSURE MODEL PREDICTIONS AND ESTIMATES DERIVED FROM MEASUREMENTS COLLECTED DURING NERL'S RTP PM PANEL STUDY

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) is currently refining and evaluating a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribu...

  19. SHEDS-PM: A POPULATION EXPOSURE MODEL FOR PREDICTING DISTRIBUTIONS OF PM EXPOSURE AND DOSE FROM BOTH OUTDOOR AND INDOOR SOURCES

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS) model. SHEDS-PM uses a probabilistic approach that incorporates both variabi...

  20. IMPLICATIONS OF SELECTING ALTERNATIVE EXPOSURE METRICS IN ANALYZING THE RELATIONSHIPS BETWEEN PM AND ACUTE MORTALITY AND MORBIDITY IN PHILADELPHIA

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribution of PM exposures by...

  1. The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.

    PubMed

    Niu, Yuanling; Wang, Yue; Zhou, Da

    2015-12-07

    The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Use of suprathreshold stochastic resonance in cochlear implant coding

    NASA Astrophysics Data System (ADS)

    Allingham, David; Stocks, Nigel G.; Morse, Robert P.

    2003-05-01

    In this article we discuss the possible use of a novel form of stochastic resonance, termed suprathreshold stochastic resonance (SSR), to improve signal encoding/transmission in cochlear implants. A model, based on the leaky-integrate-and-fire (LIF) neuron, has been developed from physiological data and use to model information flow in a population of cochlear nerve fibers. It is demonstrated that information flow can, in principle, be enhanced by the SSR effect. Furthermore, SSR was found to enhance information transmission for signal parameters that are commonly encountered in cochlear implants. This, therefore, gives hope that SSR may be implemented in cochlear implants to improve speech comprehension.

  3. A developmental basis for stochasticity in floral organ numbers

    PubMed Central

    Kitazawa, Miho S.; Fujimoto, Koichi

    2014-01-01

    Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning. PMID:25404932

  4. Population activity statistics dissect subthreshold and spiking variability in V1.

    PubMed

    Bányai, Mihály; Koman, Zsombor; Orbán, Gergő

    2017-07-01

    Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity. Copyright © 2017 the American Physiological Society.

  5. A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.

    PubMed

    Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong

    2016-01-01

    We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.

  6. Stochastic stability in three-player games.

    PubMed

    Kamiński, Dominik; Miekisz, Jacek; Zaborowski, Marcin

    2005-11-01

    Animal behavior and evolution can often be described by game-theoretic models. Although in many situations the number of players is very large, their strategic interactions are usually decomposed into a sum of two-player games. Only recently were evolutionarily stable strategies defined for multi-player games and their properties analyzed [Broom, M., Cannings, C., Vickers, G.T., 1997. Multi-player matrix games. Bull. Math. Biol. 59, 931-952]. Here we study the long-run behavior of stochastic dynamics of populations of randomly matched individuals playing symmetric three-player games. We analyze the stochastic stability of equilibria in games with multiple evolutionarily stable strategies. We also show that, in some games, a population may not evolve in the long run to an evolutionarily stable equilibrium.

  7. Application of an NLME-Stochastic Deconvolution Approach to Level A IVIVC Modeling.

    PubMed

    Kakhi, Maziar; Suarez-Sharp, Sandra; Shepard, Terry; Chittenden, Jason

    2017-07-01

    Stochastic deconvolution is a parameter estimation method that calculates drug absorption using a nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using clinical pharmacokinetic (PK) data generated for an in vitro-in vivo correlation (IVIVC) study of extended release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The preliminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction absorbed (F abs ) versus time profiles when supplied with exactly the same externally determined unit impulse response parameters. In a separate analysis, a full population-PK/stochastic deconvolution was applied to the clinical PK data. Scenarios were considered in which immediate release (IR) data were either retained or excluded to inform parameter estimation. The resulting F abs profiles were then used to model level A IVIVCs. All the considered stochastic deconvolution scenarios, and numerical deconvolution, yielded on average similar results with respect to the IVIVC validation. These results could be achieved with stochastic deconvolution without recourse to IR data. Unlike numerical deconvolution, this also implies that in crossover studies where certain individuals do not receive an IR treatment, their ER data alone can still be included as part of the IVIVC analysis. Published by Elsevier Inc.

  8. [Stochastic model of infectious diseases transmission].

    PubMed

    Ruiz-Ramírez, Juan; Hernández-Rodríguez, Gabriela Eréndira

    2009-01-01

    Propose a mathematic model that shows how population structure affects the size of infectious disease epidemics. This study was conducted during 2004 at the University of Colima. It used generalized small-world network topology to represent contacts that occurred within and between families. To that end, two programs in MATLAB were conducted to calculate the efficiency of the network. The development of a program in the C programming language was also required, that represents the stochastic susceptible-infectious-removed model, and simultaneous results were obtained for the number of infected people. An increased number of families connected by meeting sites impacted the size of the infectious diseases by roughly 400%. Population structure influences the rapid spread of infectious diseases, reaching epidemic effects.

  9. Spatially heterogeneous stochasticity and the adaptive diversification of dormancy.

    PubMed

    Rajon, E; Venner, S; Menu, F

    2009-10-01

    Diversified bet-hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life-history traits defined as diversified bet-hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet-hedging dormancy strategies in a metapopulation using a two-patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet-hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet-hedging strategies that we hope will encourage new empirical studies of this topic.

  10. Prediction of mortality rates using a model with stochastic parameters

    NASA Astrophysics Data System (ADS)

    Tan, Chon Sern; Pooi, Ah Hin

    2016-10-01

    Prediction of future mortality rates is crucial to insurance companies because they face longevity risks while providing retirement benefits to a population whose life expectancy is increasing. In the past literature, a time series model based on multivariate power-normal distribution has been applied on mortality data from the United States for the years 1933 till 2000 to forecast the future mortality rates for the years 2001 till 2010. In this paper, a more dynamic approach based on the multivariate time series will be proposed where the model uses stochastic parameters that vary with time. The resulting prediction intervals obtained using the model with stochastic parameters perform better because apart from having good ability in covering the observed future mortality rates, they also tend to have distinctly shorter interval lengths.

  11. On the proportional abundance of species: Integrating population genetics and community ecology.

    PubMed

    Marquet, Pablo A; Espinoza, Guillermo; Abades, Sebastian R; Ganz, Angela; Rebolledo, Rolando

    2017-12-01

    The frequency of genes in interconnected populations and of species in interconnected communities are affected by similar processes, such as birth, death and immigration. The equilibrium distribution of gene frequencies in structured populations is known since the 1930s, under Wright's metapopulation model known as the island model. The equivalent distribution for the species frequency (i.e. the species proportional abundance distribution (SPAD)), at the metacommunity level, however, is unknown. In this contribution, we develop a stochastic model to analytically account for this distribution (SPAD). We show that the same as for genes SPAD follows a beta distribution, which provides a good description of empirical data and applies across a continuum of scales. This stochastic model, based upon a diffusion approximation, provides an alternative to neutral models for the species abundance distribution (SAD), which focus on number of individuals instead of proportions, and demonstrate that the relative frequency of genes in local populations and of species within communities follow the same probability law. We hope our contribution will help stimulate the mathematical and conceptual integration of theories in genetics and ecology.

  12. Variation in the local population dynamics of the short-lived Opuntia macrorhiza (Cactaceae).

    PubMed

    Haridas, C V; Keeler, Kathleen H; Tenhumberg, Brigitte

    2015-03-01

    Spatiotemporal variation in demographic rates can have profound effects for population persistence, especially for dispersal-limited species living in fragmented landscapes. Long-term studies of plants in such habitats help with understanding the impacts of fragmentation on population persistence but such studies are rare. In this work, we reanalyzed demographic data from seven years of the short-lived cactus Opuntia macrorhiza var. macrorhiza at five plots in Boulder, Colorado. Previous work combining data from all years and all plots predicted a stable population (deterministic log lamda approximately 0). This approach assumed that all five plots were part of a single population. Since the plots were located in a suburban-agricultural interface separated by highways, grazing lands, and other barriers, and O. macrorhiza is likely dispersal limited, we analyzed the dynamics of each plot separately using stochastic matrix models assuming each plot represented a separate population. We found that the stochastic population growth rate log lamdaS varied widely between populations (log lamdaS = 0.1497, 0.0774, -0.0230, -0.2576, -0.4989). The three populations with the highest growth rates were located close together in space, while the two most isolated populations had the lowest growth rates suggesting that dispersal between populations is critical for the population viability of O. macrorhiza. With one exception, both our prospective (stochastic elasticity) and retrospective (stochastic life table response experiments) analysis suggested that means of stasis and growth, especially of smaller plants, were most important for population growth rate. This is surprising because recruitment is typically the most important vital rate in a short-lived species such as O. macrorhiza. We found that elasticity to the variance was mostly negligible, suggesting that O. macrorhiza populations are buffered against large temporal variation. Finally, single-year elasticities to means of transitions to the smallest stage (mostly due to reproduction) and growth differed considerably from their long-term elasticities. It is important to be aware of this difference when using models to predict the effect of manipulating plant vital rates within the time frame of typical plant demographic studies.

  13. Front propagation and clustering in the stochastic nonlocal Fisher equation

    NASA Astrophysics Data System (ADS)

    Ganan, Yehuda A.; Kessler, David A.

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  14. Front propagation and clustering in the stochastic nonlocal Fisher equation.

    PubMed

    Ganan, Yehuda A; Kessler, David A

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  15. Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development

    PubMed Central

    Kurokawa, Hiroshi; Sakaue-Sawano, Asako; Imamura, Takeshi; Miyawaki, Atsushi; Iimura, Tadahiro

    2014-01-01

    In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode. PMID:25474567

  16. Stochastic analysis of a pulse-type prey-predator model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  17. Stochastic analysis of a pulse-type prey-predator model.

    PubMed

    Wu, Y; Zhu, W Q

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  18. Explaining mortality rate plateaus

    PubMed Central

    Weitz, Joshua S.; Fraser, Hunter B.

    2001-01-01

    We propose a stochastic model of aging to explain deviations from exponential growth in mortality rates commonly observed in empirical studies. Mortality rate plateaus are explained as a generic consequence of considering death in terms of first passage times for processes undergoing a random walk with drift. Simulations of populations with age-dependent distributions of viabilities agree with a wide array of experimental results. The influence of cohort size is well accounted for by the stochastic nature of the model. PMID:11752476

  19. Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2016-10-01

    The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.

  20. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  1. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  2. Health safety nets can break cycles of poverty and disease: a stochastic ecological model.

    PubMed

    Plucinski, Mateusz M; Ngonghala, Calistus N; Bonds, Matthew H

    2011-12-07

    The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a 'safety net', defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium.

  3. A stochastic cellular automata model of tautomer equilibria

    NASA Astrophysics Data System (ADS)

    Bowers, Gregory A.; Seybold, Paul G.

    2018-03-01

    Many chemical substances, including drugs and biomolecules, exist in solution not as a single species, but as a collection of tautomers and related species. Importantly, each of these species is an independent compoundwith its own specific biochemical and physicochemical properties. The species interconvert in a dynamic and often complicated manner, making modelling the overall species composition difficult. Agent-based cellular automata models are uniquely suited to meet this challenge, allowing the equilibria to be simulated using simple rulesand at the same time capturing the inherent stochasticity of the natural phenomenon. In the present example a stochastic cellular automata model is employed to simulate the tautomer equilibria of 9-anthrone and 9-anthrol in the presence of their common anion. The observed KE of the 9-anthrone ⇌ 9-anthrol tautomerisation along with the measured tautomer pKa values were used to model the equilibria at pH values 4, 7 and 10. At pH 4 and 7, the anthrone comprises >99% of the total species population, while at pH 10the anthrone and the anion each represent just under half of the total population. The advantages of the cellular automata approach over the customary coupled differential equation approach are discussed.

  4. The stochastic dance of early HIV infection

    NASA Astrophysics Data System (ADS)

    Merrill, Stephen J.

    2005-12-01

    The stochastic nature of early HIV infection is described in a series of models, each of which captures aspects of the dance of HIV during the early stages of infection. It is to this highly variable target that the immune response must respond. The adaptability of the various components of the immune response is an important aspect of the system's operation, as the nature of the pathogens that the response will be required to respond to and the order in which those responses must be made cannot be known beforehand. As HIV infection has direct influence over cells responsible for the immune response, the dance predicts that the immune response will be also in a variable state of readiness and capability for this task of adaptation. The description of the stochastic dance of HIV here will use the tools of stochastic models, and for the most part, simulation. The justification for this approach is that the early stages and the development of HIV diversity require that the model to be able to describe both individual sample path and patient-to-patient variability. In addition, as early viral dynamics are best described using branching processes, the explosive growth of these models both predicts high variability and rapid response of HIV to changes in system parameters.In this paper, a basic viral growth model based on a time dependent continuous-time branching process is used to describe the growth of HIV infected cells in the macrophage and lymphocyte populations. Immigration from the reservoir population is added to the basic model to describe the incubation time distribution. This distribution is deduced directly from the modeling assumptions and the model of viral growth. A system of two branching processes, one in the infected macrophage population and one in the infected lymphocyte population is used to provide a description of the relationship between the development of HIV diversity as it relates to tropism (host cell preference). The role of the immune response to HIV and HIV infected cells is used to describe the movement of the infection from a few infected macrophages to a disease of infected CD4+ T lymphocytes.

  5. Rethinking "normal": The role of stochasticity in the phenology of a synchronously breeding seabird.

    PubMed

    Youngflesh, Casey; Jenouvrier, Stephanie; Hinke, Jefferson T; DuBois, Lauren; St Leger, Judy; Trivelpiece, Wayne Z; Trivelpiece, Susan G; Lynch, Heather J

    2018-05-01

    Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability in breeding phenology of Adélie penguins under fixed environmental conditions and to use those data to identify a "null model" appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modelled as a function of year, individual and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual's effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. A Markov model for the temporal dynamics of balanced random networks of finite size

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644

  7. Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Goldenfeld, Nigel

    2010-07-01

    Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses, we derive a mean-field theory for the population dynamics of microbe-virus systems, including the effects of lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a limit cycle, which we interpret physically. To test the robustness of our mean-field calculations to demographic fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the various steady states of our model.

  8. Development and validation of a stochastic model for potential growth of Listeria monocytogenes in naturally contaminated lightly preserved seafood.

    PubMed

    Mejlholm, Ole; Bøknæs, Niels; Dalgaard, Paw

    2015-02-01

    A new stochastic model for the simultaneous growth of Listeria monocytogenes and lactic acid bacteria (LAB) was developed and validated on data from naturally contaminated samples of cold-smoked Greenland halibut (CSGH) and cold-smoked salmon (CSS). During industrial processing these samples were added acetic and/or lactic acids. The stochastic model was developed from an existing deterministic model including the effect of 12 environmental parameters and microbial interaction (O. Mejlholm and P. Dalgaard, Food Microbiology, submitted for publication). Observed maximum population density (MPD) values of L. monocytogenes in naturally contaminated samples of CSGH and CSS were accurately predicted by the stochastic model based on measured variability in product characteristics and storage conditions. Results comparable to those from the stochastic model were obtained, when product characteristics of the least and most preserved sample of CSGH and CSS were used as input for the existing deterministic model. For both modelling approaches, it was shown that lag time and the effect of microbial interaction needs to be included to accurately predict MPD values of L. monocytogenes. Addition of organic acids to CSGH and CSS was confirmed as a suitable mitigation strategy against the risk of growth by L. monocytogenes as both types of products were in compliance with the EU regulation on ready-to-eat foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A stochastic population model for Lepidium papilliferum (Brassicaceae), a rare desert ephemeral with a persistent seed bank

    Treesearch

    Susan E. Meyer; Dana Quinney; Jay Weaver

    2006-01-01

    Population viability analysis (PVA) is a valuable tool for rare plant conservation, but PVA for plants with persistent seed banks is difficult without reliable information on seed bank processes. We modeled the population dynamics of the Snake River Plains ephemeral Lepidium papilliferum using data from an 11-yr artificial seed bank experiment to estimate age-specific...

  10. Systematization of a set of closure techniques.

    PubMed

    Hausken, Kjell; Moxnes, John F

    2011-11-01

    Approximations in population dynamics are gaining popularity since stochastic models in large populations are time consuming even on a computer. Stochastic modeling causes an infinite set of ordinary differential equations for the moments. Closure models are useful since they recast this infinite set into a finite set of ordinary differential equations. This paper systematizes a set of closure approximations. We develop a system, which we call a power p closure of n moments, where 0≤p≤n. Keeling's (2000a,b) approximation with third order moments is shown to be an instantiation of this system which we call a power 3 closure of 3 moments. We present an epidemiological example and evaluate the system for third and fourth moments compared with Monte Carlo simulations. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Fast life history traits promote invasion success in amphibians and reptiles.

    PubMed

    Allen, William L; Street, Sally E; Capellini, Isabella

    2017-02-01

    Competing theoretical models make different predictions on which life history strategies facilitate growth of small populations. While 'fast' strategies allow for rapid increase in population size and limit vulnerability to stochastic events, 'slow' strategies and bet-hedging may reduce variance in vital rates in response to stochasticity. We test these predictions using biological invasions since founder alien populations start small, compiling the largest dataset yet of global herpetological introductions and life history traits. Using state-of-the-art phylogenetic comparative methods, we show that successful invaders have fast traits, such as large and frequent clutches, at both establishment and spread stages. These results, together with recent findings in mammals and plants, support 'fast advantage' models and the importance of high potential population growth rate. Conversely, successful alien birds are bet-hedgers. We propose that transient population dynamics and differences in longevity and behavioural flexibility can help reconcile apparently contrasting results across terrestrial vertebrate classes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  12. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin.

    PubMed

    Roberts, James J; Fausch, Kurt D; Peterson, Douglas P; Hooten, Mevin B

    2013-05-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. © 2013 Blackwell Publishing Ltd.

  13. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Peterson, Douglas P.; Hooten, Mevin B.

    2013-01-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a greater than or equal to 90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. 

  14. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.

    PubMed

    Calus, M P L; de Haas, Y; Veerkamp, R F

    2013-10-01

    Genomic selection holds the promise to be particularly beneficial for traits that are difficult or expensive to measure, such that access to phenotypes on large daughter groups of bulls is limited. Instead, cow reference populations can be generated, potentially supplemented with existing information from the same or (highly) correlated traits available on bull reference populations. The objective of this study, therefore, was to develop a model to perform genomic predictions and genome-wide association studies based on a combined cow and bull reference data set, with the accuracy of the phenotypes differing between the cow and bull genomic selection reference populations. The developed bivariate Bayesian stochastic search variable selection model allowed for an unbalanced design by imputing residuals in the residual updating scheme for all missing records. The performance of this model is demonstrated on a real data example, where the analyzed trait, being milk fat or protein yield, was either measured only on a cow or a bull reference population, or recorded on both. Our results were that the developed bivariate Bayesian stochastic search variable selection model was able to analyze 2 traits, even though animals had measurements on only 1 of 2 traits. The Bayesian stochastic search variable selection model yielded consistently higher accuracy for fat yield compared with a model without variable selection, both for the univariate and bivariate analyses, whereas the accuracy of both models was very similar for protein yield. The bivariate model identified several additional quantitative trait loci peaks compared with the single-trait models on either trait. In addition, the bivariate models showed a marginal increase in accuracy of genomic predictions for the cow traits (0.01-0.05), although a greater increase in accuracy is expected as the size of the bull population increases. Our results emphasize that the chosen value of priors in Bayesian genomic prediction models are especially important in small data sets. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Preliminary stochastic model for managing Vibrio parahaemolyticus and total viable bacterial counts in a Pacific oyster (Crassostrea gigas) supply chain.

    PubMed

    Fernandez-Piquer, Judith; Bowman, John P; Ross, Tom; Estrada-Flores, Silvia; Tamplin, Mark L

    2013-07-01

    Vibrio parahaemolyticus can accumulate and grow in oysters stored without refrigeration, representing a potential food safety risk. High temperatures during oyster storage can lead to an increase in total viable bacteria counts, decreasing product shelf life. Therefore, a predictive tool that allows the estimation of both V. parahaemolyticus populations and total viable bacteria counts in parallel is needed. A stochastic model was developed to quantitatively assess the populations of V. parahaemolyticus and total viable bacteria in Pacific oysters for six different supply chain scenarios. The stochastic model encompassed operations from oyster farms through consumers and was built using risk analysis software. Probabilistic distributions and predictions for the percentage of Pacific oysters containing V. parahaemolyticus and high levels of viable bacteria at the point of consumption were generated for each simulated scenario. This tool can provide valuable information about V. parahaemolyticus exposure and potential control measures and can help oyster companies and regulatory agencies evaluate the impact of product quality and safety during cold chain management. If coupled with suitable monitoring systems, such models could enable preemptive action to be taken to counteract unfavorable supply chain conditions.

  16. Bubonic plague: a metapopulation model of a zoonosis.

    PubMed Central

    Keeling, M J; Gilligan, C A

    2000-01-01

    Bubonic plague (Yersinia pestis) is generally thought of as a historical disease; however, it is still responsible for around 1000-3000 deaths each year worldwide. This paper expands the analysis of a model for bubonic plague that encompasses the disease dynamics in rat, flea and human populations. Some key variables of the deterministic model, including the force of infection to humans, are shown to be robust to changes in the basic parameters, although variation in the flea searching efficiency, and the movement rates of rats and fleas will be considered throughout the paper. The stochastic behaviour of the corresponding metapopulation model is discussed, with attention focused on the dynamics of rats and the force of infection at the local spatial scale. Short-lived local epidemics in rats govern the invasion of the disease and produce an irregular pattern of human cases similar to those observed. However, the endemic behaviour in a few rat subpopulations allows the disease to persist for many years. This spatial stochastic model is also used to identify the criteria for the spread to human populations in terms of the rat density. Finally, the full stochastic model is reduced to the form of a probabilistic cellular automaton, which allows the analysis of a large number of replicated epidemics in large populations. This simplified model enables us to analyse the spatial properties of rat epidemics and the effects of movement rates, and also to test whether the emergent metapopulation behaviour is a property of the local dynamics rather than the precise details of the model. PMID:11413636

  17. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    PubMed

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  18. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    PubMed

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  19. Solving the problem of negative populations in approximate accelerated stochastic simulations using the representative reaction approach.

    PubMed

    Kadam, Shantanu; Vanka, Kumar

    2013-02-15

    Methods based on the stochastic formulation of chemical kinetics have the potential to accurately reproduce the dynamical behavior of various biochemical systems of interest. However, the computational expense makes them impractical for the study of real systems. Attempts to render these methods practical have led to the development of accelerated methods, where the reaction numbers are modeled by Poisson random numbers. However, for certain systems, such methods give rise to physically unrealistic negative numbers for species populations. The methods which make use of binomial variables, in place of Poisson random numbers, have since become popular, and have been partially successful in addressing this problem. In this manuscript, the development of two new computational methods, based on the representative reaction approach (RRA), has been discussed. The new methods endeavor to solve the problem of negative numbers, by making use of tools like the stochastic simulation algorithm and the binomial method, in conjunction with the RRA. It is found that these newly developed methods perform better than other binomial methods used for stochastic simulations, in resolving the problem of negative populations. Copyright © 2012 Wiley Periodicals, Inc.

  20. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Errormore » analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.« less

  1. Probabilistic measures of persistence and extinction in measles (meta)populations.

    PubMed

    Gunning, Christian E; Wearing, Helen J

    2013-08-01

    Persistence and extinction are fundamental processes in ecological systems that are difficult to accurately measure due to stochasticity and incomplete observation. Moreover, these processes operate on multiple scales, from individual populations to metapopulations. Here, we examine an extensive new data set of measles case reports and associated demographics in pre-vaccine era US cities, alongside a classic England & Wales data set. We first infer the per-population quasi-continuous distribution of log incidence. We then use stochastic, spatially implicit metapopulation models to explore the frequency of rescue events and apparent extinctions. We show that, unlike critical community size, the inferred distributions account for observational processes, allowing direct comparisons between metapopulations. The inferred distributions scale with population size. We use these scalings to estimate extinction boundary probabilities. We compare these predictions with measurements in individual populations and random aggregates of populations, highlighting the importance of medium-sized populations in metapopulation persistence. © 2013 John Wiley & Sons Ltd/CNRS.

  2. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  3. Health safety nets can break cycles of poverty and disease: a stochastic ecological model

    PubMed Central

    Pluciński, Mateusz M.; Ngonghala, Calistus N.; Bonds, Matthew H.

    2011-01-01

    The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a ‘safety net’, defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium. PMID:21593026

  4. The evolution of wealth transmission in human populations: a stochastic model

    NASA Astrophysics Data System (ADS)

    Augustins, G.; Etienne, L.; Ferdy, J.-B.; Ferrer, R.; Godelle, B.; Pitard, E.; Rousset, F.

    2014-03-01

    Reproductive success and survival are influenced by wealth in human populations. Wealth is transmitted to offsprings and strategies of transmission vary over time and among populations, the main variation being how equally wealth is transmitted to children. Here we propose a model where we simulate both the dynamics of wealth in a population and the evolution of a trait that determines how wealth is transmitted from parents to offspring, in a darwinian context.

  5. Star Cluster Properties in Two LEGUS Galaxies Computed with Stochastic Stellar Population Synthesis Models

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Adamo, Angela; Fumagalli, Michele; Wofford, Aida; Calzetti, Daniela; Lee, Janice C.; Whitmore, Bradley C.; Bright, Stacey N.; Grasha, Kathryn; Gouliermis, Dimitrios A.; Kim, Hwihyun; Nair, Preethi; Ryon, Jenna E.; Smith, Linda J.; Thilker, David; Ubeda, Leonardo; Zackrisson, Erik

    2015-10-01

    We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.

  6. Stochastic modelling of shifts in allele frequencies reveals a strongly polygynous mating system in the re-introduced Asiatic wild ass.

    PubMed

    Renan, Sharon; Greenbaum, Gili; Shahar, Naama; Templeton, Alan R; Bouskila, Amos; Bar-David, Shirli

    2015-04-01

    Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is paternity analysis. Yet, as small populations are often rare and elusive, the genetic data required for paternity analysis are frequently unavailable. The endangered Asiatic wild ass (Equus hemionus), like all equids, displays a behaviourally polygynous mating system; however, the level of polygyny has never been measured genetically in wild equids. Combining noninvasive genetic data with stochastic modelling of shifts in allele frequencies, we developed an alternative approach to paternity analysis for studying the genetic mating system of the re-introduced Asiatic wild ass in the Negev Desert, Israel. We compared the shifts in allele frequencies (as a measure of genetic drift) that have occurred in the wild ass population since re-introduction onset to simulated scenarios under different proportions of mating males. We revealed a strongly polygynous mating system in which less than 25% of all males participate in the mating process each generation. This strongly polygynous mating system and its potential effect on the re-introduced population's genetic diversity could have significant consequences for the long-term persistence of the population in the Negev. The stochastic modelling approach and the use of allele-frequency shifts can be further applied to systems that are affected by genetic drift and for which genetic data are limited. © 2015 John Wiley & Sons Ltd.

  7. DEMOGRAPHIC UNCERTAINTY IN ECOLOGICAL RISK ASSESSMENTS. (R825347)

    EPA Science Inventory

    We built a Ricker's model incorporating demographic stochasticity to simulate the effects of demographic uncertainty on responses of gray-tailed vole (Microtus canicaudus) populations to pesticide applications. We constructed models with mark-recapture data collected from populat...

  8. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Dietary Module Version 1: Technical Manual

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  9. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    USGS Publications Warehouse

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution. ?? 2011 by the Ecological Society of America.

  10. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories.

    PubMed

    Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M

    2011-08-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.

  11. Reconstructing the hidden states in time course data of stochastic models.

    PubMed

    Zimmer, Christoph

    2015-11-01

    Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A stochastic simulator of birth-death master equations with application to phylodynamics.

    PubMed

    Vaughan, Timothy G; Drummond, Alexei J

    2013-06-01

    In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be used as the basis for generating either single population histories or large ensembles of such histories. Importantly, phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be recorded in place of the full ensemble, allowing for a reduction in the amount of memory used--an important consideration for models including large numbers of individual subpopulations or demes. In the case of population size histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance relationships.

  13. A Stochastic Simulator of Birth–Death Master Equations with Application to Phylodynamics

    PubMed Central

    Vaughan, Timothy G.; Drummond, Alexei J.

    2013-01-01

    In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be used as the basis for generating either single population histories or large ensembles of such histories. Importantly, phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be recorded in place of the full ensemble, allowing for a reduction in the amount of memory used—an important consideration for models including large numbers of individual subpopulations or demes. In the case of population size histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance relationships. PMID:23505043

  14. A general stochastic model for sporophytic self-incompatibility.

    PubMed

    Billiard, Sylvain; Tran, Viet Chi

    2012-01-01

    Disentangling the processes leading populations to extinction is a major topic in ecology and conservation biology. The difficulty to find a mate in many species is one of these processes. Here, we investigate the impact of self-incompatibility in flowering plants, where several inter-compatible classes of individuals exist but individuals of the same class cannot mate. We model pollen limitation through different relationships between mate availability and fertilization success. After deriving a general stochastic model, we focus on the simple case of distylous plant species where only two classes of individuals exist. We first study the dynamics of such a species in a large population limit and then, we look for an approximation of the extinction probability in small populations. This leads us to consider inhomogeneous random walks on the positive quadrant. We compare the dynamics of distylous species to self-fertile species with and without inbreeding depression, to obtain the conditions under which self-incompatible species can be less sensitive to extinction while they can suffer more pollen limitation. © Springer-Verlag 2011

  15. Stochastic Switching Induced Adaptation in a Starved Escherichia coli Population

    PubMed Central

    Ito, Yoichiro; Ying, Bei-Wen; Yomo, Tetsuya

    2011-01-01

    Population adaptation can be determined by stochastic switching in living cells. To examine how stochastic switching contributes to the fate decision for a population under severe stress, we constructed an Escherichia coli strain crucially dependent on the expression of a rewired gene. The gene essential for tryptophan biosynthesis, trpC, was removed from the native regulatory unit, the Trp operon, and placed under the extraneous control of the lactose utilisation network. Bistability of the network provided the cells two discrete phenotypes: the induced and suppressed level of trpC. The two phenotypes permitted the cells to grow or not, respectively, under conditions of tryptophan depletion. We found that stochastic switching between the two states allowed the initially suppressed cells to form a new population with induced trpC in response to tryptophan starvation. However, the frequency of the transition from suppressed to induced state dropped off dramatically in the starved population, in comparison to that in the nourished population. This reduced switching rate was compensated by increasing the initial population size, which probably provided the cell population more chances to wait for the rarely appearing fit cells from the unfit cells. Taken together, adaptation of a starved bacterial population because of stochasticity in the gene rewired from the ancient regulon was experimentally confirmed, and the nutritional status and the population size played a great role in stochastic adaptation. PMID:21931628

  16. Assessing local population vulnerability to wind energy development with branching process models: an application to wind energy development

    USGS Publications Warehouse

    Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.

    2015-01-01

    Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of extirpation for a local population may rapidly increase with only minimal increases in wind mortality. Conservation biologists and wildlife managers may need to consider this mortality pattern when issuing take permits and developing monitoring protocols for wind facilities. We also describe how our branching process models may be generalized across a wider range of species for a larger assessment project and then describe how our methods may be applied to other stressors in addition to wind.

  17. A stochastic-field description of finite-size spiking neural networks

    PubMed Central

    Longtin, André

    2017-01-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447

  18. Characterizing the dynamics of rubella relative to measles: the role of stochasticity

    PubMed Central

    Rozhnova, Ganna; Metcalf, C. Jessica E.; Grenfell, Bryan T.

    2013-01-01

    Rubella is a completely immunizing and mild infection in children. Understanding its behaviour is of considerable public health importance because of congenital rubella syndrome, which results from infection with rubella during early pregnancy and may entail a variety of birth defects. The recurrent dynamics of rubella are relatively poorly resolved, and appear to show considerable diversity globally. Here, we investigate the behaviour of a stochastic seasonally forced susceptible–infected–recovered model to characterize the determinants of these dynamics and illustrate patterns by comparison with measles. We perform a systematic analysis of spectra of stochastic fluctuations around stable attractors of the corresponding deterministic model and compare them with spectra from full stochastic simulations in large populations. This approach allows us to quantify the effects of demographic stochasticity and to give a coherent picture of measles and rubella dynamics, explaining essential differences in the recurrent patterns exhibited by these diseases. We discuss the implications of our findings in the context of vaccination and changing birth rates as well as the persistence of these two childhood infections. PMID:24026472

  19. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Residential Module Version 4: User Guide, June 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  20. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Residential Module Version 4: Technical Manual, May 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  1. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Dietary Module Version 1: User Guide, June 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  2. Regularity of beating of small clusters of embryonic chick ventricular heart-cells: experiment vs. stochastic single-channel population model

    NASA Astrophysics Data System (ADS)

    Krogh-Madsen, Trine; Kold Taylor, Louise; Skriver, Anne D.; Schaffer, Peter; Guevara, Michael R.

    2017-09-01

    The transmembrane potential is recorded from small isopotential clusters of 2-4 embryonic chick ventricular cells spontaneously generating action potentials. We analyze the cycle-to-cycle fluctuations in the time between successive action potentials (the interbeat interval or IBI). We also convert an existing model of electrical activity in the cluster, which is formulated as a Hodgkin-Huxley-like deterministic system of nonlinear ordinary differential equations describing five individual ionic currents, into a stochastic model consisting of a population of ˜20 000 independently and randomly gating ionic channels, with the randomness being set by a real physical stochastic process (radio static). This stochastic model, implemented using the Clay-DeFelice algorithm, reproduces the fluctuations seen experimentally: e.g., the coefficient of variation (standard deviation/mean) of IBI is 4.3% in the model vs. the 3.9% average value of the 17 clusters studied. The model also replicates all but one of several other quantitative measures of the experimental results, including the power spectrum and correlation integral of the voltage, as well as the histogram, Poincaré plot, serial correlation coefficients, power spectrum, detrended fluctuation analysis, approximate entropy, and sample entropy of IBI. The channel noise from one particular ionic current (IKs), which has channel kinetics that are relatively slow compared to that of the other currents, makes the major contribution to the fluctuations in IBI. Reproduction of the experimental coefficient of variation of IBI by adding a Gaussian white noise-current into the deterministic model necessitates using an unrealistically high noise-current amplitude. Indeed, a major implication of the modelling results is that, given the wide range of time-scales over which the various species of channels open and close, only a cell-specific stochastic model that is formulated taking into consideration the widely different ranges in the frequency content of the channel-noise produced by the opening and closing of several different types of channels will be able to reproduce precisely the various effects due to membrane noise seen in a particular electrophysiological preparation.

  3. Reconsideration of r/K Selection Theory Using Stochastic Control Theory and Nonlinear Structured Population Models.

    PubMed

    Oizumi, Ryo; Kuniya, Toshikazu; Enatsu, Yoichi

    2016-01-01

    Despite the fact that density effects and individual differences in life history are considered to be important for evolution, these factors lead to several difficulties in understanding the evolution of life history, especially when population sizes reach the carrying capacity. r/K selection theory explains what types of life strategies evolve in the presence of density effects and individual differences. However, the relationship between the life schedules of individuals and population size is still unclear, even if the theory can classify life strategies appropriately. To address this issue, we propose a few equations on adaptive life strategies in r/K selection where density effects are absent or present. The equations detail not only the adaptive life history but also the population dynamics. Furthermore, the equations can incorporate temporal individual differences, which are referred to as internal stochasticity. Our framework reveals that maximizing density effects is an evolutionarily stable strategy related to the carrying capacity. A significant consequence of our analysis is that adaptive strategies in both selections maximize an identical function, providing both population growth rate and carrying capacity. We apply our method to an optimal foraging problem in a semelparous species model and demonstrate that the adaptive strategy yields a lower intrinsic growth rate as well as a lower basic reproductive number than those obtained with other strategies. This study proposes that the diversity of life strategies arises due to the effects of density and internal stochasticity.

  4. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    PubMed

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  5. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  6. Study of selected phenotype switching strategies in time varying environment

    NASA Astrophysics Data System (ADS)

    Horvath, Denis; Brutovsky, Branislav

    2016-03-01

    Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback-Leibler functional distances and the Hamming distance.

  7. Population dynamics of Greater Scaup breeding on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Grand, J. Barry; Fondell, Thomas F.; Morse, Julie A.

    2006-01-01

    Using a stochastic model, we estimated that, on average, breeding females produced 0.57 young females/nesting season. We combined this estimate of productivity with our annual estimates of adult survival and an assumed population growth rate of 1.0, then solved for an estimate of first-year survival (0.40). Under these conditions the predicted stable age distribution of breeding females (i.e., the nesting population) was 15.1% 1-year-old, 4.1% 2-year-old first-time breeders, and 80.8% 2-year-old and older, experienced breeders. We subjected this stochastic model to perturbation analyses to examine the relative effects of demographic parameters on k. The relative effects of productivity and adult survival on the population growth rate were 0.26 and 0.72, respectively. Thus, compared to productivity, proportionally equivalent changes in annual survival would have 2.8 times the effect on k. However, when we examined annual variation in predicted population size using standardized regression coefficients, productivity explained twice as much variation as annual survival. Thus, management actions focused on changes in survival or productivity have the ability to influence population size; however, substantially larger changes in productivity are required to influence population trends.

  8. Cold induced mortality of the Burmese Python: An explanation via stochastic analysis

    NASA Astrophysics Data System (ADS)

    Quansah, Emmanuel; Parshad, Rana D.; Mondal, Sumona

    2017-02-01

    The Burmese python (Python bivitatus) is an invasive species, wreaking havoc on indigenous species in the Florida everglades. Data suggests an exponential growth in their population from 1995 to 2009, with a sharp decline however in 2010-2012 (Dorcas et al., 2012). In Mazzotti et al. (2011) an explanation is provided, citing the unusually cold winter that year, as the primary reason for this decline. We provide a first mathematical model, in the form of a system of stochastic differential equations, that supports the explanation in Mazzotti et al. (2011), by accurately matching the field data presented in Dorcas et al. (2012). More generally, our model provides a tool to predict the population dynamics of rapidly growing alien species, in the advent of climate change.

  9. Extinction-effective population index: incorporating life-history variations in population viability analysis.

    PubMed

    Fujiwara, Masami

    2007-09-01

    Viability status of populations is a commonly used measure for decision-making in the management of populations. One of the challenges faced by managers is the need to consistently allocate management effort among populations. This allocation should in part be based on comparison of extinction risks among populations. Unfortunately, common criteria that use minimum viable population size or count-based population viability analysis (PVA) often do not provide results that are comparable among populations, primarily because they lack consistency in determining population size measures and threshold levels of population size (e.g., minimum viable population size and quasi-extinction threshold). Here I introduce a new index called the "extinction-effective population index," which accounts for differential effects of demographic stochasticity among organisms with different life-history strategies and among individuals in different life stages. This index is expected to become a new way of determining minimum viable population size criteria and also complement the count-based PVA. The index accounts for the difference in life-history strategies of organisms, which are modeled using matrix population models. The extinction-effective population index, sensitivity, and elasticity are demonstrated in three species of Pacific salmonids. The interpretation of the index is also provided by comparing them with existing demographic indices. Finally, a measure of life-history-specific effect of demographic stochasticity is derived.

  10. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Dietary Module Version 1: Quick Start Guide, May 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  11. A PROBABILISTIC MODELING FRAMEWORK FOR PREDICTING POPULATION EXPOSURES TO BENZENE

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is modifying their probabilistic Stochastic Human Exposure Dose Simulation (SHEDS) model to assess aggregate exposures to air toxics. Air toxics include urban Hazardous Air Pollutants (HAPS) such as benzene from mobile sources, part...

  12. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Residential Module Version 4: Quick Start Guide, April 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  13. Stochastic landslide vulnerability modeling in space and time in a part of the northern Himalayas, India.

    PubMed

    Das, Iswar; Kumar, Gaurav; Stein, Alfred; Bagchi, Arunabha; Dadhwal, Vinay K

    2011-07-01

    Little is known about the quantitative vulnerability analysis to landslides as not many attempts have been made to assess it comprehensively. This study assesses the spatio-temporal vulnerability of elements at risk to landslides in a stochastic framework. The study includes buildings, persons inside buildings, and traffic as elements at risk to landslides. Building vulnerability is the expected damage and depends on the position of a building with respect to the landslide hazard at a given time. Population and vehicle vulnerability are the expected death toll in a building and vehicle damage in space and time respectively. The study was carried out in a road corridor in the Indian Himalayas that is highly susceptible to landslides. Results showed that 26% of the buildings fall in the high and very high vulnerability categories. Population vulnerability inside buildings showed a value >0.75 during 0800 to 1000 hours and 1600 to 1800 hours in more buildings that other times of the day. It was also observed in the study region that the vulnerability of vehicle is above 0.6 in half of the road stretches during 0800 hours to 1000 hours and 1600 to 1800 hours due to high traffic density on the road section. From this study, we conclude that the vulnerability of an element at risk to landslide is a space and time event, and can be quantified using stochastic modeling. Therefore, the stochastic vulnerability modeling forms the basis for a quantitative landslide risk analysis and assessment.

  14. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  15. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    PubMed

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  16. A Stochastic Model of Eye Lens Growth

    PubMed Central

    Šikić, Hrvoje; Shi, Yanrong; Lubura, Snježana; Bassnett, Steven

    2015-01-01

    The size and shape of the ocular lens must be controlled with precision if light is to be focused sharply on the retina. The lifelong growth of the lens depends on the production of cells in the anterior epithelium. At the lens equator, epithelial cells differentiate into fiber cells, which are added to the surface of the existing fiber cell mass, increasing its volume and area. We developed a stochastic model relating the rates of cell proliferation and death in various regions of the lens epithelium to deposition of fiber cells and lens growth. Epithelial population dynamics were modeled as a branching process with emigration and immigration between various proliferative zones. Numerical simulations were in agreement with empirical measurements and demonstrated that, operating within the strict confines of lens geometry, a stochastic growth engine can produce the smooth and precise growth necessary for lens function. PMID:25816743

  17. On the probabilistic structure of water age

    NASA Astrophysics Data System (ADS)

    Porporato, Amilcare; Calabrese, Salvatore

    2015-05-01

    The age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it can be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. We illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.

  18. On the molecular mechanisms driving pain perception and emergent collective behaviors

    NASA Astrophysics Data System (ADS)

    Di Patti, F.; Fanelli, D.

    2010-05-01

    A stochastic model to investigate the microscopic processes which trigger the sensation of pain is considered. The model, presented in Di Patti and Fanelli [Di Patti F, Fanelli D. Can a microscopic stochastic model explain the emergence of pain cycles in patients? J Stat Mech 2009. doi:10.1088/1742-5468/2009/01/P01004], accounts for the action of analgesic drug and introduces an effect of competition with the inactive species populating the bloodstream. Regular oscillations in the amount of bound receptors are detected, following a resonant amplification of the stochastic component intrinsic to the system. The condition for such oscillations to occur are here studied, resorting to combined numerical and analytical techniques. Extended and connected patches of the admissible parameters space are detected which do correspond to the oscillatory behaviors. These findings are discussed with reference to the existing literature on patients' response to the analgesic treatment.

  19. Environmental Noise Could Promote Stochastic Local Stability of Behavioral Diversity Evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2018-05-01

    In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the fitness of a phenotype is an exponential function of its expected payoff following random pairwise interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a constant interior equilibrium can be promoted by the random environmental noise even if the system may display a complicated nonlinear dynamics. This result provides a new perspective for a better understanding of how environmental fluctuations may contribute to the evolution of behavioral diversity.

  20. The Stochastic Multi-strain Dengue Model: Analysis of the Dynamics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Stollenwerk, Nico; Kooi, Bob W.

    2011-09-01

    Dengue dynamics is well known to be particularly complex with large fluctuations of disease incidences. An epidemic multi-strain model motivated by dengue fever epidemiology shows deterministic chaos in wide parameter regions. The addition of seasonal forcing, mimicking the vectorial dynamics, and a low import of infected individuals, which is realistic in the dynamics of infectious diseases epidemics show complex dynamics and qualitatively a good agreement between empirical DHF monitoring data and the obtained model simulation. The addition of noise can explain the fluctuations observed in the empirical data and for large enough population size, the stochastic system can be well described by the deterministic skeleton.

  1. Stochastic oscillations in models of epidemics on a network of cities

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.; McKane, A. J.

    2011-11-01

    We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.

  2. Synchronization and survival of connected bacterial populations

    NASA Astrophysics Data System (ADS)

    Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff

    Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.

  3. Floaters may buffer the extinction risk of small populations: an empirical assessment

    PubMed Central

    2017-01-01

    The high extinction risk of small populations is commonly explained by reductions in fecundity and breeder survival associated with demographic and environmental stochasticity. However, ecological theory suggests that population extinctions may also arise from reductions in the number of floaters able to replace the lost breeders. This can be particularly plausible under harsh fragmentation scenarios, where species must survive as small populations subjected to severe effects of stochasticity. Using a woodpecker study in fragmented habitats (2004–2016), we provide here empirical support for the largely neglected hypothesis that floaters buffer population extirpation risks. After controlling for population size, patch size and the intrinsic quality of habitat, populations in patches with floaters had a lower extinction probability than populations in patches without floaters (0.013 versus 0.131). Floaters, which often replace the lost breeders, were less likely to occur in small and low-quality patches, showing that population extirpations may arise from unnoticed reductions in floater numbers in poor-quality habitats. We argue that adequate pools of the typically overlooked floaters may buffer extirpation risks by reducing the detrimental impacts of demographic and environmental stochasticity. However, unravelling the influence of floaters in buffering stochastic effects and promoting population stability require additional studies in an ample array of species and stochastic scenarios. PMID:28424345

  4. Floaters may buffer the extinction risk of small populations: an empirical assessment.

    PubMed

    Robles, Hugo; Ciudad, Carlos

    2017-04-26

    The high extinction risk of small populations is commonly explained by reductions in fecundity and breeder survival associated with demographic and environmental stochasticity. However, ecological theory suggests that population extinctions may also arise from reductions in the number of floaters able to replace the lost breeders. This can be particularly plausible under harsh fragmentation scenarios, where species must survive as small populations subjected to severe effects of stochasticity. Using a woodpecker study in fragmented habitats (2004-2016), we provide here empirical support for the largely neglected hypothesis that floaters buffer population extirpation risks. After controlling for population size, patch size and the intrinsic quality of habitat, populations in patches with floaters had a lower extinction probability than populations in patches without floaters (0.013 versus 0.131). Floaters, which often replace the lost breeders, were less likely to occur in small and low-quality patches, showing that population extirpations may arise from unnoticed reductions in floater numbers in poor-quality habitats. We argue that adequate pools of the typically overlooked floaters may buffer extirpation risks by reducing the detrimental impacts of demographic and environmental stochasticity. However, unravelling the influence of floaters in buffering stochastic effects and promoting population stability require additional studies in an ample array of species and stochastic scenarios. © 2017 The Author(s).

  5. Quantifying Stochastic Noise in Cultured Circadian Reporter Cells

    DOE PAGES

    John, Peter C.; Doyle, III, Francis J.

    2015-11-20

    We report that stochastic noise at the cellular level has been shown to play a fundamental role in circadian oscillations, influencing how groups of cells entrain to external cues and likely serving as the mechanism by which cell-autonomous rhythms are generated. Despite this importance, few studies have investigated how clock perturbations affect stochastic noise—even as increasing numbers of high-throughput screens categorize how gene knockdowns or small molecules can change clock period and amplitude. This absence is likely due to the difficulty associated with measuring cell-autonomous stochastic noise directly, which currently requires the careful collection and processing of single-cell data. Inmore » this study, we show that the damping rate of population-level bioluminescence recordings can serve as an accurate measure of overall stochastic noise, and one that can be applied to future and existing high-throughput circadian screens. Using cell-autonomous fibroblast data, we first show directly that higher noise at the single-cell results in faster damping at the population level. Next, we show that the damping rate of cultured cells can be changed in a dose-dependent fashion by small molecule modulators, and confirm that such a change can be explained by single-cell noise using a mathematical model. We further demonstrate the insights that can be gained by applying our method to a genome-wide siRNA screen, revealing that stochastic noise is altered independently from period, amplitude, and phase. Finally, we hypothesize that the unperturbed clock is highly optimized for robust rhythms, as very few gene perturbations are capable of simultaneously increasing amplitude and lowering stochastic noise. Ultimately, this study demonstrates the importance of considering the effect of circadian perturbations on stochastic noise, particularly with regard to the development of small-molecule circadian therapeutics.« less

  6. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  7. A Two-Step Method to Select Major Surge-Producing Extratropical Cyclones from a 10,000-Year Stochastic Catalog

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.

    2016-12-01

    Extratropical cyclones (ETCs) are the primary driver of storm surge events along the UK and northwest mainland Europe coastlines. In an effort to evaluate the storm surge risk in coastal communities in this region, a stochastic catalog is developed by perturbing the historical storm seeds of European ETCs to account for 10,000 years of possible ETCs. Numerical simulation of the storm surge generated by the full 10,000-year stochastic catalog, however, is computationally expensive and may take several months to complete with available computational resources. A new statistical regression model is developed to select the major surge-generating events from the stochastic ETC catalog. This regression model is based on the maximum storm surge, obtained via numerical simulations using a calibrated version of the Delft3D-FM hydrodynamic model with a relatively coarse mesh, of 1750 historical ETC events that occurred over the past 38 years in Europe. These numerically-simulated surge values were regressed to the local sea level pressure and the U and V components of the wind field at the location of 196 tide gauge stations near the UK and northwest mainland Europe coastal areas. The regression model suggests that storm surge values in the area of interest are highly correlated to the U- and V-component of wind speed, as well as the sea level pressure. Based on these correlations, the regression model was then used to select surge-generating storms from the 10,000-year stochastic catalog. Results suggest that roughly 105,000 events out of 480,000 stochastic storms are surge-generating events and need to be considered for numerical simulation using a hydrodynamic model. The selected stochastic storms were then simulated in Delft3D-FM, and the final refinement of the storm population was performed based on return period analysis of the 1750 historical event simulations at each of the 196 tide gauges in preparation for Delft3D-FM fine mesh simulations.

  8. Revisiting node-based SIR models in complex networks with degree correlations

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde; Alofi, Abdulaziz; AL-Mazrooei, Abdullah; Elaiw, Ahmed

    2015-11-01

    In this paper, we consider two growing networks which will lead to the degree-degree correlations between two nearest neighbors in the network. When the network grows to some certain size, we introduce an SIR-like disease such as pandemic influenza H1N1/09 to the population. Due to its rapid spread, the population size changes slowly, and thus the disease spreads on correlated networks with approximately fixed size. To predict the disease evolution on correlated networks, we first review two node-based SIR models incorporating degree correlations and an edge-based SIR model without considering degree correlation, and then compare the predictions of these models with stochastic SIR simulations, respectively. We find that the edge-based model, even without considering degree correlations, agrees much better than the node-based models incorporating degree correlations with stochastic SIR simulations in many respects. Moreover, simulation results show that for networks with positive correlation, the edge-based model provides a better upper bound of the cumulative incidence than the node-based SIR models, whereas for networks with negative correlation, it provides a lower bound of the cumulative incidence.

  9. Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models

    PubMed Central

    Burr, Tom

    2013-01-01

    Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the “go-to” option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example. PMID:24288668

  10. Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.

    PubMed

    Burr, Tom; Skurikhin, Alexei

    2013-01-01

    Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the "go-to" option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example.

  11. Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments

    NASA Astrophysics Data System (ADS)

    Hermsen, Rutger; Hwa, Terence

    2010-12-01

    We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.

  12. Doi-Peliti path integral methods for stochastic systems with partial exclusion

    NASA Astrophysics Data System (ADS)

    Greenman, Chris D.

    2018-09-01

    Doi-Peliti methods are developed for stochastic models with finite maximum occupation numbers per site. We provide a generalized framework for the different Fock spaces reported in the literature. Paragrassmannian techniques are then utilized to construct path integral formulations of factorial moments. We show that for many models of interest, a Magnus expansion is required to construct a suitable action, meaning actions containing a finite number of terms are not always feasible. However, for such systems, perturbative techniques are still viable, and for some examples, including carrying capacity population dynamics, and diffusion with partial exclusion, the expansions are exactly summable.

  13. Modeling the effects of trophy selection and environmental disturbance on a simulated population of African lions.

    PubMed

    Whitman, Karyl L; Starfield, Anthony M; Quadling, Henley; Packer, Craig

    2007-06-01

    Tanzania is a premier destination for trophy hunting of African lions (Panthera leo) and is home to the most extensive long-term study of unhunted lions. Thus, it provides a unique opportunity to apply data from a long-term field study to a conservation dilemma: How can a trophy-hunted species whose reproductive success is closely tied to social stability be harvested sustainably? We used an individually based, spatially explicit, stochastic model, parameterized with nearly 40 years of behavioral and demographic data on lions in the Serengeti, to examine the separate effects of trophy selection and environmental disturbance on the viability of a simulated lion population in response to annual harvesting. Female population size was sensitive to the harvesting of young males (> or = 3 years), whereas hunting represented a relatively trivial threat to population viability when the harvest was restricted to mature males (> or = 6 years). Overall model performance was robust to environmental disturbance and to errors in age assessment based on nose coloration as an index used to age potential trophies. Introducing an environmental disturbance did not eliminate the capacity to maintain a viable breeding population when harvesting only older males, and initially depleted populations recovered within 15-25 years after the disturbance to levels comparable to hunted populations that did not experience a catastrophic event. These results are consistent with empirical observations of lion resilience to environmental stochasticity.

  14. Using stochastic epidemiological models to evaluate conservation strategies for endangered amphibians

    PubMed Central

    Griesemer, Marc; Petzold, Linda R.; Briggs, Cheryl J.

    2017-01-01

    Recent outbreaks of chytridiomycosis, the disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have contributed to population declines of numerous amphibian species worldwide. The devastating impacts of this disease have led researchers to attempt drastic conservation measures to prevent further extinctions and loss of biodiversity. The conservation measures can be labour-intensive or expensive, and in many cases have been unsuccessful. We developed a mathematical model of Bd outbreaks that includes the effects of demographic stochasticity and within-host fungal load dynamics. We investigated the impacts of one-time treatment conservation strategies during the disease outbreak that occurs following the initial arrival of Bd into a previously uninfected frog population. We found that for all versions of the model, for a large fraction of parameter space, none of the one-time treatment strategies are effective at preventing disease-induced extinction of the amphibian population. Of the strategies considered, treating frogs with antifungal agents to reduce their fungal load had the greatest likelihood of a beneficial outcome and the lowest risk of decreasing the persistence of the frog population, suggesting that this disease mitigation strategy should be prioritized over disinfecting the environment or reducing host density. PMID:28855388

  15. Etiology and treatment of hematological neoplasms: stochastic mathematical models.

    PubMed

    Radivoyevitch, Tomas; Li, Huamin; Sachs, Rainer K

    2014-01-01

    Leukemias are driven by stemlike cancer cells (SLCC), whose initiation, growth, response to treatment, and posttreatment behavior are often "stochastic", i.e., differ substantially even among very similar patients for reasons not observable with present techniques. We review the probabilistic mathematical methods used to analyze stochastics and give two specific examples. The first example concerns a treatment protocol, e.g., for acute myeloid leukemia (AML), where intermittent cytotoxic drug dosing (e.g., once each weekday) is used with intent to cure. We argue mathematically that, if independent SLCC are growing stochastically during prolonged treatment, then, other things being equal, front-loading doses are more effective for tumor eradication than back loading. We also argue that the interacting SLCC dynamics during treatment is often best modeled by considering SLCC in microenvironmental niches, with SLCC-SLCC interactions occurring only among SLCC within the same niche, and we present a stochastic dynamics formalism, involving "Poissonization," applicable in such situations. Interactions at a distance due to partial control of total cell numbers are also considered. The second half of this chapter concerns chromosomal aberrations, lesions known to cause some leukemias. A specific example is the induction of a Philadelphia chromosome by ionizing radiation, subsequent development of chronic myeloid leukemia (CML), CML treatment, and treatment outcome. This time evolution involves a coordinated sequence of > 10 steps, each stochastic in its own way, at the subatomic, molecular, macromolecular, cellular, tissue, and population scales, with corresponding time scales ranging from picoseconds to decades. We discuss models of these steps and progress in integrating models across scales.

  16. Stochastic nonlinear mixed effects: a metformin case study.

    PubMed

    Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien

    2016-02-01

    In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.

  17. Neutral evolution in a biological population as diffusion in phenotype space: reproduction with local mutation but without selection.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-02

    The process of "evolutionary diffusion," i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  18. Climate Change and Integrodifference Equations in a Stochastic Environment.

    PubMed

    Bouhours, Juliette; Lewis, Mark A

    2016-09-01

    Climate change impacts population distributions, forcing some species to migrate poleward if they are to survive and keep up with the suitable habitat that is shifting with the temperature isoclines. Previous studies have analysed whether populations have the capacity to keep up with shifting temperature isoclines, and have mathematically determined the combination of growth and dispersal that is needed to achieve this. However, the rate of isocline movement can be highly variable, with much uncertainty associated with yearly shifts. The same is true for population growth rates. Growth rates can be variable and uncertain, even within suitable habitats for growth. In this paper, we reanalyse the question of population persistence in the context of the uncertainty and variability in isocline shifts and rates of growth. Specifically, we employ a stochastic integrodifference equation model on a patch of suitable habitat that shifts poleward at a random rate. We derive a metric describing the asymptotic growth rate of the linearised operator of the stochastic model. This metric yields a threshold criterion for population persistence. We demonstrate that the variability in the yearly shift and in the growth rate has a significant negative effect on the persistence in the sense that it decreases the threshold criterion for population persistence. Mathematically, we show how the persistence metric can be connected to the principal eigenvalue problem for a related integral operator, at least for the case where isocline shifting speed is deterministic. Analysis of dynamics for the case where the dispersal kernel is Gaussian leads to the existence of a critical shifting speed, above which the population will go extinct, and below which the population will persist. This leads to clear bounds on rate of environmental change if the population is to persist. Finally, we illustrate our different results for butterfly population using numerical simulations and demonstrate how increased variances in isocline shifts and growth rates translate into decreased likelihoods of persistence.

  19. Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression

    PubMed Central

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679

  20. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  1. ASSESSING POPULATION EXPOSURES TO MULTIPLE AIR POLLUTANTS USING A MECHANISTIC SOURCE-TO-DOSE MODELING FRAMEWORK

    EPA Science Inventory

    The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...

  2. Which Came First, the MCnest or the MCnugget? A Survey of Markov Chain Applications in Avian Ecology, Population Biology and Chemical Risk Assessment.

    EPA Science Inventory

    Stochastic processes, such as survival and reproductive success, govern the trajectories of animal populations. Models of such processes have become increasingly important in understanding the effects of environmental change and anthropogenic disturbance on the ability of popula...

  3. Heterogeneous population dynamics and scaling laws near epidemic outbreaks.

    PubMed

    Widder, Andreas; Kuehn, Christian

    2016-10-01

    In this paper, we focus on the influence of heterogeneity and stochasticity of the population on the dynamical structure of a basic susceptible-infected-susceptible (SIS) model. First we prove that, upon a suitable mathematical reformulation of the basic reproduction number, the homogeneous system and the heterogeneous system exhibit a completely analogous global behaviour. Then we consider noise terms to incorporate the fluctuation effects and the random import of the disease into the population and analyse the influence of heterogeneity on warning signs for critical transitions (or tipping points). This theory shows that one may be able to anticipate whether a bifurcation point is close before it happens. We use numerical simulations of a stochastic fast-slow heterogeneous population SIS model and show various aspects of heterogeneity have crucial influences on the scaling laws that are used as early-warning signs for the homogeneous system. Thus, although the basic structural qualitative dynamical properties are the same for both systems, the quantitative features for epidemic prediction are expected to change and care has to be taken to interpret potential warning signs for disease outbreaks correctly.

  4. Quantifying introgression risk with realistic population genetics.

    PubMed

    Ghosh, Atiyo; Meirmans, Patrick G; Haccou, Patsy

    2012-12-07

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, repeated invasions and stochasticity. In addition, the use of linkage as a risk mitigation strategy has not been studied properly yet with genetic introgression models. Current genetic introgression studies fail to take repeated invasions and demographic stochasticity into account properly, and use incorrect measures of introgression risk that can be manipulated by arbitrary choices. In this study, we present proper methods for risk quantification that overcome these difficulties. We generalize a probabilistic risk measure, the so-called hazard rate of introgression, for application to introgression models with complex genetics and small natural population sizes. We illustrate the method by studying the effects of linkage and recombination on transgene introgression risk at different population sizes.

  5. Quantifying introgression risk with realistic population genetics

    PubMed Central

    Ghosh, Atiyo; Meirmans, Patrick G.; Haccou, Patsy

    2012-01-01

    Introgression is the permanent incorporation of genes from the genome of one population into another. This can have severe consequences, such as extinction of endemic species, or the spread of transgenes. Quantification of the risk of introgression is an important component of genetically modified crop regulation. Most theoretical introgression studies aimed at such quantification disregard one or more of the most important factors concerning introgression: realistic genetical mechanisms, repeated invasions and stochasticity. In addition, the use of linkage as a risk mitigation strategy has not been studied properly yet with genetic introgression models. Current genetic introgression studies fail to take repeated invasions and demographic stochasticity into account properly, and use incorrect measures of introgression risk that can be manipulated by arbitrary choices. In this study, we present proper methods for risk quantification that overcome these difficulties. We generalize a probabilistic risk measure, the so-called hazard rate of introgression, for application to introgression models with complex genetics and small natural population sizes. We illustrate the method by studying the effects of linkage and recombination on transgene introgression risk at different population sizes. PMID:23055068

  6. Modeling ecological traps for the control of feral pigs

    PubMed Central

    Dexter, Nick; McLeod, Steven R

    2015-01-01

    Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density-dependent immigration from the high-density uncontrolled area to the low-density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density-dependent immigration for feral pigs could affect the long-term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density-dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long-term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density-dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density-dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables. These models demonstrate that pest eradication is theoretically possible without the pest being controlled throughout its range because of density-dependent immigration into the area controlled. The stronger the density-dependent immigration, the better the overall control in controlled and uncontrolled habitat combined. However, the stronger the density-dependent immigration, the poorer the control in the area controlled. For feral pigs, incorporating environmental stochasticity improves the prospects for eradication, but adding a realistic density-dependent control function eliminates these prospects. PMID:26045954

  7. Rare events in stochastic populations under bursty reproduction

    NASA Astrophysics Data System (ADS)

    Be'er, Shay; Assaf, Michael

    2016-11-01

    Recently, a first step was made by the authors towards a systematic investigation of the effect of reaction-step-size noise—uncertainty in the step size of the reaction—on the dynamics of stochastic populations. This was done by investigating the effect of bursty influx on the switching dynamics of stochastic populations. Here we extend this formalism to account for bursty reproduction processes, and improve the accuracy of the formalism to include subleading-order corrections. Bursty reproduction appears in various contexts, where notable examples include bursty viral production from infected cells, and reproduction of mammals involving varying number of offspring. The main question we quantitatively address is how bursty reproduction affects the overall fate of the population. We consider two complementary scenarios: population extinction and population survival; in the former a population gets extinct after maintaining a long-lived metastable state, whereas in the latter a population proliferates despite undergoing a deterministic drift towards extinction. In both models reproduction occurs in bursts, sampled from an arbitrary distribution. Using the WKB approach, we show in the extinction problem that bursty reproduction broadens the quasi-stationary distribution of population sizes in the metastable state, which results in a drastic reduction of the mean time to extinction compared to the non-bursty case. In the survival problem, it is shown that bursty reproduction drastically increases the survival probability of the population. Close to the bifurcation limit our analytical results simplify considerably and are shown to depend solely on the mean and variance of the burst-size distribution. Our formalism is demonstrated on several realistic distributions which all compare well with numerical Monte-Carlo simulations.

  8. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    PubMed

    Lawless, Conor; Jurk, Diana; Gillespie, Colin S; Shanley, Daryl; Saretzki, Gabriele; von Zglinicki, Thomas; Passos, João F

    2012-01-01

    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage). However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS). We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  9. A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations

    PubMed Central

    Lawless, Conor; Jurk, Diana; Gillespie, Colin S.; Shanley, Daryl; Saretzki, Gabriele; von Zglinicki, Thomas; Passos, João F.

    2012-01-01

    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells. One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage). However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS). We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence. PMID:22359661

  10. Evolutionary Dynamics of Fearfulness and Boldness: A Stochastic Simulation Model

    PubMed Central

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced. PMID:22412859

  11. Evolutionary dynamics of fearfulness and boldness: a stochastic simulation model.

    PubMed

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced.

  12. Reserve design to maximize species persistence

    Treesearch

    Robert G. Haight; Laurel E. Travis

    2008-01-01

    We develop a reserve design strategy to maximize the probability of species persistence predicted by a stochastic, individual-based, metapopulation model. Because the population model does not fit exact optimization procedures, our strategy involves deriving promising solutions from theory, obtaining promising solutions from a simulation optimization heuristic, and...

  13. About the discrete-continuous nature of a hematopoiesis model for Chronic Myeloid Leukemia.

    PubMed

    Gaudiano, Marcos E; Lenaerts, Tom; Pacheco, Jorge M

    2016-12-01

    Blood of mammals is composed of a variety of cells suspended in a fluid medium known as plasma. Hematopoiesis is the biological process of birth, replication and differentiation of blood cells. Despite of being essentially a stochastic phenomenon followed by a huge number of discrete entities, blood formation has naturally an associated continuous dynamics, because the cellular populations can - on average - easily be described by (e.g.) differential equations. This deterministic dynamics by no means contemplates some important stochastic aspects related to abnormal hematopoiesis, that are especially significant for studying certain blood cancer deceases. For instance, by mere stochastic competition against the normal cells, leukemic cells sometimes do not reach the population thereshold needed to kill the organism. Of course, a pure discrete model able to follow the stochastic paths of billons of cells is computationally impossible. In order to avoid this difficulty, we seek a trade-off between the computationally feasible and the biologically realistic, deriving an equation able to size conveniently both the discrete and continuous parts of a model for hematopoiesis in terrestrial mammals, in the context of Chronic Myeloid Leukemia. Assuming the cancer is originated from a single stem cell inside of the bone marrow, we also deduce a theoretical formula for the probability of non-diagnosis as a function of the mammal average adult mass. In addition, this work cellular dynamics analysis may shed light on understanding Peto's paradox, which is shown here as an emergent property of the discrete-continuous nature of the system. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Phenotypic switching of populations of cells in a stochastic environment

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias

    2018-02-01

    In biology phenotypic switching is a common bet-hedging strategy in the face of uncertain environmental conditions. Existing mathematical models often focus on periodically changing environments to determine the optimal phenotypic response. We focus on the case in which the environment switches randomly between discrete states. Starting from an individual-based model we derive stochastic differential equations to describe the dynamics, and obtain analytical expressions for the mean instantaneous growth rates based on the theory of piecewise-deterministic Markov processes. We show that optimal phenotypic responses are non-trivial for slow and intermediate environmental processes, and systematically compare the cases of periodic and random environments. The best response to random switching is more likely to be heterogeneity than in the case of deterministic periodic environments, net growth rates tend to be higher under stochastic environmental dynamics. The combined system of environment and population of cells can be interpreted as host-pathogen interaction, in which the host tries to choose environmental switching so as to minimise growth of the pathogen, and in which the pathogen employs a phenotypic switching optimised to increase its growth rate. We discuss the existence of Nash-like mutual best-response scenarios for such host-pathogen games.

  15. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.

    PubMed

    García, Míriam R; Vázquez, José A; Teixeira, Isabel G; Alonso, Antonio A

    2017-01-01

    A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  16. Effects of Lead Exposure, Environmental Conditions, and Metapopulation Processes on Population Dynamics of Spectacled Eiders.

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Petersen, Margaret; Rockwell, Robert F.

    2016-01-01

    Spectacled eider Somateria fischeri numbers have declined and they are considered threatened in accordance with the US Endangered Species Act throughout their range. We synthesized the available information for spectacled eiders to construct deterministic, stochastic, and metapopulation models for this species that incorporated current estimates of vital rates such as nest success, adult survival, and the impact of lead poisoning on survival. Elasticities of our deterministic models suggested that the populations would respond most dramatically to changes in adult female survival and that the reductions in adult female survival related to lead poisoning were locally important. We also examined the sensitivity of the population to changes in lead exposure rates. With the knowledge that some vital rates vary with environmental conditions, we cast stochastic models that mimicked observed variation in productivity. We also used the stochastic model to examine the probability that a specific population will persist for periods of up to 50 y. Elasticity analysis of these models was consistent with that for the deterministic models, with perturbations to adult female survival having the greatest effect on population projections. When used in single population models, demographic data for some localities predicted rapid declines that were inconsistent with our observations in the field. Thus, we constructed a metapopulation model and examined the predictions for local subpopulations and the metapopulation over a wide range of dispersal rates. Using the metapopulation model, we were able to simulate the observed stability of local subpopulations as well as that of the metapopulation. Finally, we developed a global metapopulation model that simulates periodic winter habitat limitation, similar to that which might be experienced in years of heavy sea ice in the core wintering area of spectacled eiders in the central Bering Sea. Our metapopulation analyses suggested that no subpopulation is independent and that future management actions may be improved through a metapopulation framework. For example, management actions could include displacement of breeding females from"sink" areas that reduce the growth potential of the population as a whole. However, this action is contingent upon dispersal among local populations, for which there is limited information. Thus, we recommend that researchers examine dispersal behavior among areas on the Yukon-Kuskokwim Delta in western Alaska. The metapopulation framework could also be applied at the rangewide scale to address the density-dependent limitation of available polynya habitat during winter that may limit the recovery of small subpopulations, such as that on the Yukon-Kuskokwim Delta. Reductions in other subpopulations may be necessary to ensure an increase in the Yukon-Kuskokwim Delta population. Thus, we recommend that managers consider the interpopulation dynamics of spectacled eiders at different spatial scales in future management actions.

  17. A core stochastic population projection model for Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Runge, Michael C.; Sanders-Reed, Carol A.; Fonnesbeck, Christopher J.

    2007-01-01

    A stochastic, stage-based population model was developed to describe the life history and forecast the population dynamics of the Florida manatee (Trichechus manatus latirostris) in four separate regions of Florida. This population model includes annual variability in survival and reproductive rates, demographic stochasticity, effects of changes in warm-water capacity, and catastrophes. Further, the model explicitly accounts for uncertainty in parameter estimates. This model is meant to serve as a flexible tool for use in assessments relevant to management decision making, and was used in the State of Florida's recent biological status review. The parameter estimates and model structure described herein reflect our understanding of manatee demography at the time that this status review was completed. In the Northwest and Upper St. Johns regions, the model predicts that the populations will increase over time until warm-water capacity is reached, at which point growth will taper off. In the Atlantic region, the model predicts a stable or slightly increasing population over the next decade or so, and then a decrease as industrial warm-water capacity is lost. In the Southwest region, the model predicts a decline over time, driven by high annual mortality in the short-term and exacerbated by loss of industrial warm-water winter refuges over the next 40 years. Statewide, the likelihood of a 50% or greater decline in three manatee generations was 12%; the likelihood of a 20% or greater decline in two generations was 56%. These declines are largely driven by the anticipated loss of warm-water capacity, especially in the Atlantic and Southwest regions. The estimates of probability of extinction within 100 years were 11.9% for the Southwest region, 0.6% for the Northwest, 0.04% for the Atlantic, and <0.02% for the Upper St. Johns. The estimated probability that the statewide population will fall below 1000 animals within 100 years was 2.3%. Thus, while the estimated probability of extinction is low, the model predicts that current and emerging threats are likely to result in a long-term decline in the statewide population and a change in the regional distribution of manatees. Analyses of sensitivity and variance contribution highlight the importance of reducing uncertainty in some life-history parameters, particularly adult survival, temporal variance of adult survival, and long-term warm-water capacity. This core biological model is expected to evolve over time, as better information becomes available about manatees and their habitat, and as new assessment needs arise. We anticipate that this core model will be customized for other state and federal assessments in the near future.

  18. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    USGS Publications Warehouse

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  19. A diffusion-based approach to stochastic individual growth and energy budget, with consequences to life-history optimization and population dynamics.

    PubMed

    Filin, I

    2009-06-01

    Using diffusion processes, I model stochastic individual growth, given exogenous hazards and starvation risk. By maximizing survival to final size, optimal life histories (e.g. switching size for habitat/dietary shift) are determined by two ratios: mean growth rate over growth variance (diffusion coefficient) and mortality rate over mean growth rate; all are size dependent. For example, switching size decreases with either ratio, if both are positive. I provide examples and compare with previous work on risk-sensitive foraging and the energy-predation trade-off. I then decompose individual size into reversibly and irreversibly growing components, e.g. reserves and structure. I provide a general expression for optimal structural growth, when reserves grow stochastically. I conclude that increased growth variance of reserves delays structural growth (raises threshold size for its commencement) but may eventually lead to larger structures. The effect depends on whether the structural trait is related to foraging or defence. Implications for population dynamics are discussed.

  20. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    NASA Astrophysics Data System (ADS)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  1. Economic Analysis of Biological Invasions in Forests

    Treesearch

    Tomas P. Holmes; Julian Aukema; Jeffrey Englin; Robert G. Haight; Kent Kovacs; Brian Leung

    2014-01-01

    Biological invasions of native forests by nonnative pests result from complex stochastic processes that are difficult to predict. Although economic optimization models describe efficient controls across the stages of an invasion, the ability to calibrate such models is constrained by lack of information on pest population dynamics and consequent economic damages. Here...

  2. ESTIMATING CHILDREN'S DERMAL AND NON-DIETARY INGESTION EXPOSURE AND DOSE WITH EPA'S SHEDS MODEL

    EPA Science Inventory

    A physically-based stochastic model (SHEDS) has been developed to estimate pesticide exposure and dose to children via dermal residue contact and non-dietary ingestion. Time-location-activity data are sampled from national survey results to generate a population of simulated ch...

  3. Optimal exploitation strategies for an animal population in a Markovian environment: A theory and an example

    USGS Publications Warehouse

    Anderson, D.R.

    1975-01-01

    Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general formulation for realistic solutions to the general optimal exploitation problem. The concepts of state vectors and stage transformations are completely general. Populations can be modeled stochastically and the objective function can include extra-biological factors. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, or harvest rate, or designed to maintain a constant breeding population size is inefficient.

  4. Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity

    Treesearch

    Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bj& #248rnstad

    2006-01-01

    Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity ("Moran effect") can act to synchronize populations. In this study...

  5. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  6. On the probabilistic structure of water age: Probabilistic Water Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porporato, Amilcare; Calabrese, Salvatore

    We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less

  7. On the probabilistic structure of water age: Probabilistic Water Age

    DOE PAGES

    Porporato, Amilcare; Calabrese, Salvatore

    2015-04-23

    We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less

  8. Stochastic epidemic outbreaks: why epidemics are like lasers

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira B.; Billings, Lora

    2004-05-01

    Many diseases, such as childhood diseases, dengue fever, and West Nile virus, appear to oscillate randomly as a function of seasonal environmental or social changes. Such oscillations appear to have a chaotic bursting character, although it is still uncertain how much is due to random fluctuations. Such bursting in the presence of noise is also observed in driven lasers. In this talk, I will show how noise can excite random outbreaks in simple models of seasonally driven outbreaks, as well as lasers. The models for both population dynamics will be shown to share the same class of underlying topology, which plays a major role in the cause of observed stochastic bursting.

  9. Diffusion of multiple species with excluded-volume effects.

    PubMed

    Bruna, Maria; Chapman, S Jonathan

    2012-11-28

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.

  10. Fish and fire: Post-wildfire sediment dynamics and implications for the viability of trout populations

    NASA Astrophysics Data System (ADS)

    Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.

    2017-12-01

    Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the Intermountain West to the increasing threat of wildfire.

  11. Stochastic modelling of infectious diseases for heterogeneous populations.

    PubMed

    Ming, Rui-Xing; Liu, Ji-Ming; W Cheung, William K; Wan, Xiang

    2016-12-22

    Infectious diseases such as SARS and H1N1 can significantly impact people's lives and cause severe social and economic damages. Recent outbreaks have stressed the urgency of effective research on the dynamics of infectious disease spread. However, it is difficult to predict when and where outbreaks may emerge and how infectious diseases spread because many factors affect their transmission, and some of them may be unknown. One feasible means to promptly detect an outbreak and track the progress of disease spread is to implement surveillance systems in regional or national health and medical centres. The accumulated surveillance data, including temporal, spatial, clinical, and demographic information can provide valuable information that can be exploited to better understand and model the dynamics of infectious disease spread. The aim of this work is to develop and empirically evaluate a stochastic model that allows the investigation of transmission patterns of infectious diseases in heterogeneous populations. We test the proposed model on simulation data and apply it to the surveillance data from the 2009 H1N1 pandemic in Hong Kong. In the simulation experiment, our model achieves high accuracy in parameter estimation (less than 10.0 % mean absolute percentage error). In terms of the forward prediction of case incidence, the mean absolute percentage errors are 17.3 % for the simulation experiment and 20.0 % for the experiment on the real surveillance data. We propose a stochastic model to study the dynamics of infectious disease spread in heterogeneous populations from temporal-spatial surveillance data. The proposed model is evaluated using both simulated data and the real data from the 2009 H1N1 epidemic in Hong Kong and achieves acceptable prediction accuracy. We believe that our model can provide valuable insights for public health authorities to predict the effect of disease spread and analyse its underlying factors and to guide new control efforts.

  12. A stochastic evolution model for residue Insertion-Deletion Independent from Substitution.

    PubMed

    Lèbre, Sophie; Michel, Christian J

    2010-12-01

    We develop here a new class of stochastic models of gene evolution based on residue Insertion-Deletion Independent from Substitution (IDIS). Indeed, in contrast to all existing evolution models, insertions and deletions are modeled here by a concept in population dynamics. Therefore, they are not only independent from each other, but also independent from the substitution process. After a separate stochastic analysis of the substitution and the insertion-deletion processes, we obtain a matrix differential equation combining these two processes defining the IDIS model. By deriving a general solution, we give an analytical expression of the residue occurrence probability at evolution time t as a function of a substitution rate matrix, an insertion rate vector, a deletion rate and an initial residue probability vector. Various mathematical properties of the IDIS model in relation with time t are derived: time scale, time step, time inversion and sequence length. Particular expressions of the nucleotide occurrence probability at time t are given for classical substitution rate matrices in various biological contexts: equal insertion rate, insertion-deletion only and substitution only. All these expressions can be directly used for biological evolutionary applications. The IDIS model shows a strongly different stochastic behavior from the classical substitution only model when compared on a gene dataset. Indeed, by considering three processes of residue insertion, deletion and substitution independently from each other, it allows a more realistic representation of gene evolution and opens new directions and applications in this research field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Joint  effects of habitat configuration and temporal stochasticity on population dynamics

    Treesearch

    Jennifer M. Fraterrigo; Scott M. Pearson; Monica G. Turner

    2009-01-01

    Habitat configuration and temporal stochasticity in the environment are recognized as important drivers of population structure, yet few studies have examined the combined influence of these factors....

  14. Cumulative Effects of Human Activities on Marine Mammal Populations

    DTIC Science & Technology

    2015-09-30

    marine mammals and sea turtles. She has studied habitat use of whales and dolphins, underwater sound levels and environmental impacts of offshore wind ... turbines on marine mammals, and migration pathways and hot spots of marine predators at the National Oceanic and Atmospheric Administration as part...distribution of wild animal and plant populations, and the use of computer-intensive methods to fit and compare stochastic models of wildlife population

  15. Neutral Evolution in a Biological Population as Diffusion in Phenotype Space: Reproduction with Local Mutation but without Selection

    NASA Astrophysics Data System (ADS)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-01

    The process of “evolutionary diffusion,” i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  16. White-nose syndrome is likely to extirpate the endangered Indiana bat over large parts of its range

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Sanders-Reed, Carol A.; Szymanski, Jennifer A.; McKann, Patrick C.; Pruitt, Lori; King, R. Andrew; Runge, Michael C.; Russell, Robin E.

    2013-01-01

    White-nose syndrome, a novel fungal pathogen spreading quickly through cave-hibernating bat species in east and central North America, is responsible for killing millions of bats. We developed a stochastic, stage-based population model to forecast the population dynamics of the endangered Indiana bat (Myotis sodalis) subject to white-nose syndrome. Our population model explicitly incorporated environmentally imposed annual variability in survival and reproductive rates and demographic stochasticity in predictions of extinction. With observed rates of disease spread, >90% of wintering populations were predicted to experience white-nose syndrome within 20 years, causing the proportion of populations at the quasi-extinction threshold of less than 250 females to increase by 33.9% over 50 years. At the species’ lowest median population level, ca. year 2022, we predicted 13.7% of the initial population to remain, totaling 28,958 females (95% CI = 13,330; 92,335). By 2022, only 12 of the initial 52 wintering populations were expected to possess wintering populations of >250 females. If the species can acquire immunity to the disease, we predict 3.7% of wintering populations to be above 250 females after 50 years (year 2057) after a 69% decline in abundance (from 210,741 to 64,768 [95% CI = 49,386; 85,360] females). At the nadir of projections, we predicted regional quasi-extirpation of wintering populations in 2 of 4 Recovery Units while in a third region, where the species is currently most abundant, >95% of the wintering populations were predicted to be below 250 females. Our modeling suggests white-nose syndrome is capable of bringing about severe numerical reduction in population size and local and regional extirpation of the Indiana bat.

  17. Modeling Cell Size Regulation: From Single-Cell-Level Statistics to Molecular Mechanisms and Population-Level Effects.

    PubMed

    Ho, Po-Yi; Lin, Jie; Amir, Ariel

    2018-05-20

    Most microorganisms regulate their cell size. In this article, we review some of the mathematical formulations of the problem of cell size regulation. We focus on coarse-grained stochastic models and the statistics that they generate. We review the biologically relevant insights obtained from these models. We then describe cell cycle regulation and its molecular implementations, protein number regulation, and population growth, all in relation to size regulation. Finally, we discuss several future directions for developing understanding beyond phenomenological models of cell size regulation.

  18. Beating Cheaters at Their Own Game

    NASA Astrophysics Data System (ADS)

    Rauch, Joseph; Kondev, Jane; Sanchez, Alvaro

    2014-03-01

    Public goods games occur over many different scales in nature, from microbial biofilms to the human commons. On each scale stable populations of cooperators (members who invest into producing some good shared by the entire population) and cheaters (members who make no investment yet still share the common goods) has been observed. This observation raises interesting questions, like how do cooperators maintain their presence in a game that seems to heavily favor cheaters, and what strategies for cooperation could populations employ to increase their success? We propose a model of a public goods game with two different player populations, S and D, which employ two different strategies: the D population always cheats and the S population makes a stochastic decision whether to cooperate or not. We find that stochastic cooperation improves the success of the S population over the competing D population, but at a price. As the probability of cheating by the S players increases they outcompete the D players but the total population becomes more ecologically unstable (i.e., the likelihood of its extinction grows). We investigate this trade off between evolutionary success and ecological stability and propose experiments using populations of yeast cells to test our predictions.

  19. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  20. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  1. Epidemic patch models applied to pandemic influenza: contact matrix, stochasticity, robustness of predictions.

    PubMed

    Lunelli, Antonella; Pugliese, Andrea; Rizzo, Caterina

    2009-07-01

    Due to the recent emergence of H5N1 virus, the modelling of pandemic influenza has become a relevant issue. Here we present an SEIR model formulated to simulate a possible outbreak in Italy, analysing its structure and, more generally, the effect of including specific details into a model. These details regard population heterogeneities, such as age and spatial distribution, as well as stochasticity, that regulates the epidemic dynamics when the number of infectives is low. We discuss and motivate the specific modelling choices made when building the model and investigate how the model details influence the predicted dynamics. Our analysis may help in deciding which elements of complexity are worth including in the design of a deterministic model for pandemic influenza, in a balance between, on the one hand, keeping the model computationally efficient and the number of parameters low and, on the other hand, maintaining the necessary realistic features.

  2. Hierarchy of forward-backward stochastic Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2016-07-01

    Driven by the impetus to simulate quantum dynamics in photosynthetic complexes or even larger molecular aggregates, we have established a hierarchy of forward-backward stochastic Schrödinger equation in the light of stochastic unravelling of the symmetric part of the influence functional in the path-integral formalism of reduced density operator. The method is numerically exact and is suited for Debye-Drude spectral density, Ohmic spectral density with an algebraic or exponential cutoff, as well as discrete vibrational modes. The power of this method is verified by performing the calculations of time-dependent population differences in the valuable spin-boson model from zero to high temperatures. By simulating excitation energy transfer dynamics of the realistic full FMO trimer, some important features are revealed.

  3. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.

    PubMed

    Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc

    2015-01-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  4. Human salmonellosis: estimation of dose-illness from outbreak data.

    PubMed

    Bollaerts, Kaatje; Aerts, Marc; Faes, Christel; Grijspeerdt, Koen; Dewulf, Jeroen; Mintiens, Koen

    2008-04-01

    The quantification of the relationship between the amount of microbial organisms ingested and a specific outcome such as infection, illness, or mortality is a key aspect of quantitative risk assessment. A main problem in determining such dose-response models is the availability of appropriate data. Human feeding trials have been criticized because only young healthy volunteers are selected to participate and low doses, as often occurring in real life, are typically not considered. Epidemiological outbreak data are considered to be more valuable, but are more subject to data uncertainty. In this article, we model the dose-illness relationship based on data of 20 Salmonella outbreaks, as discussed by the World Health Organization. In particular, we model the dose-illness relationship using generalized linear mixed models and fractional polynomials of dose. The fractional polynomial models are modified to satisfy the properties of different types of dose-illness models as proposed by Teunis et al. Within these models, differences in host susceptibility (susceptible versus normal population) are modeled as fixed effects whereas differences in serovar type and food matrix are modeled as random effects. In addition, two bootstrap procedures are presented. A first procedure accounts for stochastic variability whereas a second procedure accounts for both stochastic variability and data uncertainty. The analyses indicate that the susceptible population has a higher probability of illness at low dose levels when the combination pathogen-food matrix is extremely virulent and at high dose levels when the combination is less virulent. Furthermore, the analyses suggest that immunity exists in the normal population but not in the susceptible population.

  5. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    NASA Astrophysics Data System (ADS)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  6. Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar

    2018-07-01

    A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.

  7. Contribution of inorganic arsenic sources to population exposure risk on a regional scale.

    PubMed

    Chou, Wei-Chun; Chen, Jein-Wen; Liao, Chung-Min

    2016-07-01

    Chronic exposure to inorganic arsenic (iAs) in the human population is associated with various internal cancers and other adverse outcomes. The purpose of this study was to estimate a population-scale exposure risk attributable to iAs consumptions by linking a stochastic physiological-based pharmacokinetic (PBPK) model and biomonitoring data of iAs in urine. The urinary As concentrations were obtained from a total of 1,043 subjects living in an industrial area of Taiwan. The results showed that the study subjects had an iAs exposure risk of 27 % (the daily iAs intake for 27 % study subjects exceeded the WHO-recommended value, 2.1 μg iAs day(-1) kg(-1) body weight). Moreover, drinking water and cooked rice contributed to the iAs exposure risk by 10 and 41 %, respectively. The predicted risks in the current study were 4.82, 27.21, 34.69, and 64.17 %, respectively, among the mid-range of Mexico, Taiwan (this study), Korea, and Bangladesh reported in the literature. In conclusion, we developed a population-scale-based risk model that covered the broad range of iAS exposure by integrating stochastic PBPK modeling and reverse dosimetry to generate probabilistic distribution of As intake corresponding to urinary As measured from the cohort study. The model can also be updated as new urinary As information becomes available.

  8. Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes.

    PubMed

    Sardanyés, Josep; Arderiu, Andreu; Elena, Santiago F; Alarcón, Tomás

    2018-05-01

    Evolutionary and dynamical investigations into real viral populations indicate that RNA replication can range between the two extremes represented by so-called 'stamping machine replication' (SMR) and 'geometric replication' (GR). The impact of asymmetries in replication for single-stranded (+) sense RNA viruses has been mainly studied with deterministic models. However, viral replication should be better described by including stochasticity, as the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasi-neutral coexistence scenario, with a line of fixed points involving different strands' equilibrium ratios depending on the initial conditions. Recent research into the quasi-neutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alter the mean-field scenario, and one of the two species outcompetes the other. In this article, we study this phenomenon for viral RNA replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNAs, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication. © 2018 The Author(s).

  9. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  10. Establishment probability in newly founded populations.

    PubMed

    Gusset, Markus; Müller, Michael S; Grimm, Volker

    2012-06-20

    Establishment success in newly founded populations relies on reaching the established phase, which is defined by characteristic fluctuations of the population's state variables. Stochastic population models can be used to quantify the establishment probability of newly founded populations; however, so far no simple but robust method for doing so existed. To determine a critical initial number of individuals that need to be released to reach the established phase, we used a novel application of the "Wissel plot", where -ln(1 - P0(t)) is plotted against time t. This plot is based on the equation P(0)t=1-c(1)e(-ω(1t)), which relates the probability of extinction by time t, P(0)(t), to two constants: c(1) describes the probability of a newly founded population to reach the established phase, whereas ω(1) describes the population's probability of extinction per short time interval once established. For illustration, we applied the method to a previously developed stochastic population model of the endangered African wild dog (Lycaon pictus). A newly founded population reaches the established phase if the intercept of the (extrapolated) linear parts of the "Wissel plot" with the y-axis, which is -ln(c(1)), is negative. For wild dogs in our model, this is the case if a critical initial number of four packs, consisting of eight individuals each, are released. The method we present to quantify the establishment probability of newly founded populations is generic and inferences thus are transferable to other systems across the field of conservation biology. In contrast to other methods, our approach disaggregates the components of a population's viability by distinguishing establishment from persistence.

  11. Effect of Inherited Genetic Information on Stochastic Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Duda, Artur; Dyś, Paweł; Nowicka, Alekandra; Dudek, Mirosław R.

    We discuss the Lotka-Volterra dynamics of two populations, preys and predators, in the case when the predators posses a genetic information. The genetic information is inherited according to the rules of the Penna model of genetic evolution. Each individual of the predator population is uniquely determined by sex, genotype and phenotype. In our case, the genes are represented by 8-bit integers and the phenotypes are defined with the help of the 8-state Potts model Hamiltonian. We showed that during time evolution, the population of the predators can experience a series of dynamical phase transitions which are connected with the different types of the dominant phenotypes present in the population.

  12. Method of confidence domains in the analysis of noise-induced extinction for tritrophic population system

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana

    2017-09-01

    A problem of the analysis of the noise-induced extinction in multidimensional population systems is considered. For the investigation of conditions of the extinction caused by random disturbances, a new approach based on the stochastic sensitivity function technique and confidence domains is suggested, and applied to tritrophic population model of interacting prey, predator and top predator. This approach allows us to analyze constructively the probabilistic mechanisms of the transition to the noise-induced extinction from both equilibrium and oscillatory regimes of coexistence. In this analysis, a method of principal directions for the reducing of the dimension of confidence domains is suggested. In the dispersion of random states, the principal subspace is defined by the ratio of eigenvalues of the stochastic sensitivity matrix. A detailed analysis of two scenarios of the noise-induced extinction in dependence on parameters of considered tritrophic system is carried out.

  13. Disturbance frequency and vertical distribution of seeds affect long-term population dynamics: a mechanistic seed bank model.

    PubMed

    Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte

    2013-08-01

    Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.

  14. Critical factors in the establishment of allopolyploids.

    PubMed

    Fowler, Norma L; Levin, Donald A

    2016-07-01

    The growth and spread of new polyploid populations have been explained in terms of fitness advantages over their diploid progenitors. However, a fitness advantage is not sufficient to insure the establishment of a polyploid; it must also overcome the obstacles of demographic stochasticity and minority disadvantage. Several studies have addressed the population dynamics of autopolyploids, but the present study is the first to consider allopolyploids, which are affected by more factors than autopolyploids. We constructed a population dynamic model of four types of plants (two parent species, hybrids, allopolyploids) that also included an explicit breeding system. The numbers of plants of each type were the most important factors determining whether the new allopolyploid would become established. More polyploid plants greatly increased the likelihood of polyploid persistence. More plants of the parent species and more hybrids resulted in more polyploids being produced. The model parameters with the most effect on polyploid establishment were potential population size (K), individual plant fecundity, and niche separation (α). The most important breeding system parameters were selfing rates, which mitigated minority disadvantage imposed by pollen limitation. The importance of population sizes, and the parameters that controlled them, in overcoming demographic stochasticity parallels the well-recognized role of propagule pressure in determining the success of invasive species. We modeled the establishment of a new allopolyploid; analogous considerations would affect the establishment of a new autopolyploid. The critical role of population sizes in polyploid establishment should be more widely recognized. © 2016 Botanical Society of America.

  15. Life-Game, with Glass Beads and Molecules, on the Principles of the Origin of Life

    ERIC Educational Resources Information Center

    Eigen, Manfred; Haglund, Herman

    1976-01-01

    Discusses a theoretical model that uses a game as a base for studying processes of a stochastic nature, which involve chemical reactions, molecular systems, biological processes, cells, or people in a population. (MLH)

  16. How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system.

    PubMed

    O'Regan, Suzanne M

    2018-12-01

    Anticipating critical transitions in spatially extended systems is a key topic of interest to ecologists. Gradually declining metapopulations are an important example of a spatially extended biological system that may exhibit a critical transition. Theory for spatially extended systems approaching extinction that accounts for environmental stochasticity and coupling is currently lacking. Here, we develop spatially implicit two-patch models with additive and multiplicative forms of environmental stochasticity that are slowly forced through population collapse, through changing environmental conditions. We derive patch-specific expressions for candidate indicators of extinction and test their performance via a simulation study. Coupling and spatial heterogeneities decrease the magnitude of the proposed indicators in coupled populations relative to isolated populations, and the noise regime and the degree of coupling together determine trends in summary statistics. This theory may be readily applied to other spatially extended ecological systems, such as coupled infectious disease systems on the verge of elimination.

  17. Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method

    NASA Astrophysics Data System (ADS)

    Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.

    2017-03-01

    We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.

  18. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise.

    PubMed

    Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J

    2017-10-10

    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.

  19. Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2018-02-01

    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.

  20. Stochastic models for inferring genetic regulation from microarray gene expression data.

    PubMed

    Tian, Tianhai

    2010-03-01

    Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Stochastic switching in biology: from genotype to phenotype

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2017-03-01

    There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1-1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker-Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel-Kramers-Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of this review is to provide a self-contained survey of these mathematical methods, mainly within the context of biological switching processes at both the genotypic and phenotypic levels. However, applications to other examples of biological switching are also discussed, including stochastic ion channels, diffusion in randomly switching environments, bacterial chemotaxis, and stochastic neural networks.

  2. Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences

    NASA Astrophysics Data System (ADS)

    Chisholm, Rebecca H.; Lorenzi, Tommaso; Desvillettes, Laurent; Hughes, Barry D.

    2016-08-01

    Epigenetic mechanisms are increasingly recognised as integral to the adaptation of species that face environmental changes. In particular, empirical work has provided important insights into the contribution of epigenetic mechanisms to the persistence of clonal species, from which a number of verbal explanations have emerged that are suited to logical testing by proof-of-concept mathematical models. Here, we present a stochastic agent-based model and a related deterministic integrodifferential equation model for the evolution of a phenotype-structured population composed of asexually-reproducing and competing organisms which are exposed to novel environmental conditions. This setting has relevance to the study of biological systems where colonising asexual populations must survive and rapidly adapt to hostile environments, like pathogenesis, invasion and tumour metastasis. We explore how evolution might proceed when epigenetic variation in gene expression can change the reproductive capacity of individuals within the population in the new environment. Simulations and analyses of our models clarify the conditions under which certain evolutionary paths are possible and illustrate that while epigenetic mechanisms may facilitate adaptation in asexual species faced with environmental change, they can also lead to a type of "epigenetic load" and contribute to extinction. Moreover, our results offer a formal basis for the claim that constant environments favour individuals with low rates of stochastic phenotypic variation. Finally, our model provides a "proof of concept" of the verbal hypothesis that phenotypic stability is a key driver in rescuing the adaptive potential of an asexual lineage and supports the notion that intense selection pressure can, to an extent, offset the deleterious effects of high phenotypic instability and biased epimutations, and steer an asexual population back from the brink of an evolutionary dead end.

  3. Learning-based stochastic object models for characterizing anatomical variations

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  4. Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa.

    PubMed

    Caranica, C; Al-Omari, A; Deng, Z; Griffith, J; Nilsen, R; Mao, L; Arnold, J; Schüttler, H-B

    2018-01-01

    A major challenge in systems biology is to infer the parameters of regulatory networks that operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to distinguish noise from the real signal and to infer the noise contribution to the dynamical behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the parameters that produce the oscillations. To address this issue we introduce a new estimation method built on a combination of stochastic simulations, mass action kinetics and ensemble network simulations in which we match the average periodogram and phase of the model to that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) single cell expression data sets, and it quantifies the noise impact on the observed dynamics. Standard errors of estimated rate coefficients are typically two orders of magnitude smaller than the mean from single cell experiments with on the order of ~1000 cells. We also provide a method to assess the goodness of fit of the stochastic network using the Hilbert phase of single cells. An analysis of phase departures from the null model with no communication between cells is consistent with a hypothesis of Stochastic Resonance describing single cell oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise plays a positive role in establishing oscillatory behavior, but may require model parameters, such as rate coefficients, that differ substantially from those extracted at the macroscopic level from measurements on populations of millions of communicating, synchronized cells.

  5. Intermittency inhibited by transport: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Zanette, Damián H.

    1994-04-01

    Transport is incorporated in a discrete-time stochastic model of a system undergoing autocatalytic reactions of the type A-->2A and A-->0, whose population field is known to exhibit spatiotemporal intermittency. The temporal evolution is exactly solved, and it is shown that if the transport process is strong enough, intermittency is inhibited. This inhibition is nonuniform, in the sense that, as transport is strengthened, low-order population moments are affected before the high-order ones. Numerical simulations are presented to support the analytical results.

  6. Optimal Vaccination in a Stochastic Epidemic Model of Two Non-Interacting Populations

    DTIC Science & Technology

    2015-02-17

    of diminishing returns from vacci- nation will generally take place at smaller vaccine allocations V compared to the deterministic model. Optimal...take place and small r0 values where it does not is illustrat- ed in Fig. 4C. As r0 is decreased, the region between the two instances of switching...approximately distribute vaccine in proportion to population size. For large r0 (r0 ≳ 2.9), two switches take place . In the deterministic optimal solution, a

  7. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  8. Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Kliebenstein, Daniel J

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

  9. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.

    PubMed

    Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis

    2008-10-01

    We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*)

  10. Assessing the causal effect of policies: an example using stochastic interventions.

    PubMed

    Díaz, Iván; van der Laan, Mark J

    2013-11-19

    Assessing the causal effect of an exposure often involves the definition of counterfactual outcomes in a hypothetical world in which the stochastic nature of the exposure is modified. Although stochastic interventions are a powerful tool to measure the causal effect of a realistic intervention that intends to alter the population distribution of an exposure, their importance to answer questions about plausible policy interventions has been obscured by the generalized use of deterministic interventions. In this article, we follow the approach described in Díaz and van der Laan (2012) to define and estimate the effect of an intervention that is expected to cause a truncation in the population distribution of the exposure. The observed data parameter that identifies the causal parameter of interest is established, as well as its efficient influence function under the non-parametric model. Inverse probability of treatment weighted (IPTW), augmented IPTW and targeted minimum loss-based estimators (TMLE) are proposed, their consistency and efficiency properties are determined. An extension to longitudinal data structures is presented and its use is demonstrated with a real data example.

  11. Biophysics, environmental stochasticity, and the evolution of thermal safety margins in intertidal limpets.

    PubMed

    Denny, M W; Dowd, W W

    2012-03-15

    As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts - an urgent task for ecologists - will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial 'safety margin': the average lethal limit is 5-7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model - and thereby potentially to predict differential evolution among populations and among species - will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.

  12. An Empirically Calibrated Model of Cell Fate Decision Following Viral Infection

    NASA Astrophysics Data System (ADS)

    Coleman, Seth; Igoshin, Oleg; Golding, Ido

    The life cycle of the virus (phage) lambda is an established paradigm for the way genetic networks drive cell fate decisions. But despite decades of interrogation, we are still unable to theoretically predict whether the infection of a given cell will result in cell death or viral dormancy. The poor predictive power of current models reflects the absence of quantitative experimental data describing the regulatory interactions between different lambda genes. To address this gap, we are constructing a theoretical model that captures the known interactions in the lambda network. Model assumptions and parameters are calibrated using new single-cell data from our lab, describing the activity of lambda genes at single-molecule resolution. We began with a mean-field model, aimed at exploring the population averaged gene-expression trajectories under different initial conditions. Next, we will develop a stochastic formulation, to capture the differences between individual cells within the population. The eventual goal is to identify how the post-infection decision is driven by the interplay between network topology, initial conditions, and stochastic effects. The insights gained here will inform our understanding of cell fate choices in more complex cellular systems.

  13. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study

    PubMed Central

    He, Daihai; Ionides, Edward L.; King, Aaron A.

    2010-01-01

    Statistical inference for mechanistic models of partially observed dynamic systems is an active area of research. Most existing inference methods place substantial restrictions upon the form of models that can be fitted and hence upon the nature of the scientific hypotheses that can be entertained and the data that can be used to evaluate them. In contrast, the so-called plug-and-play methods require only simulations from a model and are thus free of such restrictions. We show the utility of the plug-and-play approach in the context of an investigation of measles transmission dynamics. Our novel methodology enables us to ask and answer questions that previous analyses have been unable to address. Specifically, we demonstrate that plug-and-play methods permit the development of a modelling and inference framework applicable to data from both large and small populations. We thereby obtain novel insights into the nature of heterogeneity in mixing and comment on the importance of including extra-demographic stochasticity as a means of dealing with environmental stochasticity and model misspecification. Our approach is readily applicable to many other epidemiological and ecological systems. PMID:19535416

  14. WKB theory of large deviations in stochastic populations

    NASA Astrophysics Data System (ADS)

    Assaf, Michael; Meerson, Baruch

    2017-06-01

    Stochasticity can play an important role in the dynamics of biologically relevant populations. These span a broad range of scales: from intra-cellular populations of molecules to population of cells and then to groups of plants, animals and people. Large deviations in stochastic population dynamics—such as those determining population extinction, fixation or switching between different states—are presently in a focus of attention of statistical physicists. We review recent progress in applying different variants of dissipative WKB approximation (after Wentzel, Kramers and Brillouin) to this class of problems. The WKB approximation allows one to evaluate the mean time and/or probability of population extinction, fixation and switches resulting from either intrinsic (demographic) noise, or a combination of the demographic noise and environmental variations, deterministic or random. We mostly cover well-mixed populations, single and multiple, but also briefly consider populations on heterogeneous networks and spatial populations. The spatial setting also allows one to study large fluctuations of the speed of biological invasions. Finally, we briefly discuss possible directions of future work.

  15. Stochastic foundations in nonlinear density-regulation growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Horsthemke, Werner; Campos, Daniel

    2017-08-01

    In this work we construct individual-based models that give rise to the generalized logistic model at the mean-field deterministic level and that allow us to interpret the parameters of these models in terms of individual interactions. We also study the effect of internal fluctuations on the long-time dynamics for the different models that have been widely used in the literature, such as the theta-logistic and Savageau models. In particular, we determine the conditions for population extinction and calculate the mean time to extinction. If the population does not become extinct, we obtain analytical expressions for the population abundance distribution. Our theoretical results are based on WKB theory and the probability generating function formalism and are verified by numerical simulations.

  16. Desynchronization of stochastically synchronized chemical oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  17. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.

  18. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. Demographic stochasticity in small remnant populations of the declining distylous plant Primula veris

    USGS Publications Warehouse

    Kery, M.; Matthies, D.; Schmid, B.

    2003-01-01

    We studied ecological consequences of distyly for the declining perennial plant Primula veris in the Swiss Jura. Distyly favours cross-fertilization and avoids inbreeding, but may lead to pollen limitation and reduced reproduction if morph frequencies deviate from 50 %. Disassortative mating is promoted by the reciprocal position of stigmas and anthers in the two morphs (pin and thrum) and by intramorph incompatibility and should result in equal frequencies of morphs at equilibrium. However, deviations could arise because of demographic stochasticity, the lower intra-morph incompatibility of the pin morph, and niche differentiation between morphs. Demographic stochasticity should result in symmetric deviations from an even morph frequency among populations and in increased deviations with decreasing population size. If crosses between pins occurred, these would only generate pins, and this could result in a pin-bias of morph frequencies in general and in small populations in particular. If the morphs have different niches, morph frequencies should be related to environmental factors, morphs might be spatially segregated, and morphological differences between morphs would be expected. We tested these hypotheses in the declining distylous P. veris. We studied morph frequencies in relation to environmental conditions and population size, spatial segregation in field populations, morphological differences between morphs, and growth responses to nutrient addition. Morph frequencies in 76 populations with 1 - 80000 flowering plants fluctuated symmetrically about 50 %. Deviations from 50 % were much larger in small populations, and sixof the smallest populations had lost one morph altogether. In contrast, morph frequencies were neither related to population size nor to 17 measures of environmental conditions. We found no spatial segregation or morphological differences in the field or in the common garden. The results suggest that demographic stochasticity caused deviations of the morph ratiofrom unity in small populations. Demographic stochasticity was probably caused by the random elimination of plants during the fragmentation of formerly large continuous populations. Biased morph frequencies may be one of the reasons for the strongly reduced reproduction in small populations of P. veris.

  20. Modeling the Dynamics of Disease States in Depression

    PubMed Central

    Demic, Selver; Cheng, Sen

    2014-01-01

    Major depressive disorder (MDD) is a common and costly disorder associated with considerable morbidity, disability, and risk for suicide. The disorder is clinically and etiologically heterogeneous. Despite intense research efforts, the response rates of antidepressant treatments are relatively low and the etiology and progression of MDD remain poorly understood. Here we use computational modeling to advance our understanding of MDD. First, we propose a systematic and comprehensive definition of disease states, which is based on a type of mathematical model called a finite-state machine. Second, we propose a dynamical systems model for the progression, or dynamics, of MDD. The model is abstract and combines several major factors (mechanisms) that influence the dynamics of MDD. We study under what conditions the model can account for the occurrence and recurrence of depressive episodes and how we can model the effects of antidepressant treatments and cognitive behavioral therapy within the same dynamical systems model through changing a small subset of parameters. Our computational modeling suggests several predictions about MDD. Patients who suffer from depression can be divided into two sub-populations: a high-risk sub-population that has a high risk of developing chronic depression and a low-risk sub-population, in which patients develop depression stochastically with low probability. The success of antidepressant treatment is stochastic, leading to widely different times-to-remission in otherwise identical patients. While the specific details of our model might be subjected to criticism and revisions, our approach shows the potential power of computationally modeling depression and the need for different type of quantitative data for understanding depression. PMID:25330102

  1. Two approaches to forecast Ebola synthetic epidemics.

    PubMed

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Developing stochastic epidemiological models to quantify the dynamics of infectious diseases in domestic livestock.

    PubMed

    MacKenzie, K; Bishop, S C

    2001-08-01

    A stochastic model describing disease transmission dynamics for a microparasitic infection in a structured domestic animal population is developed and applied to hypothetical epidemics on a pig farm. Rational decision making regarding appropriate control strategies for infectious diseases in domestic livestock requires an understanding of the disease dynamics and risk profiles for different groups of animals. This is best achieved by means of stochastic epidemic models. Methodologies are presented for 1) estimating the probability of an epidemic, given the presence of an infected animal, whether this epidemic is major (requires intervention) or minor (dies out without intervention), and how the location of the infected animal on the farm influences the epidemic probabilities; 2) estimating the basic reproductive ratio, R0 (i.e., the expected number of secondary cases on the introduction of a single infected animal) and the variability of the estimate of this parameter; and 3) estimating the total proportion of animals infected during an epidemic and the total proportion infected at any point in time. The model can be used for assessing impact of altering farm structure on disease dynamics, as well as disease control strategies, including altering farm structure, vaccination, culling, and genetic selection.

  3. The timing and targeting of treatment in influenza pandemics influences the emergence of resistance in structured populations.

    PubMed

    Althouse, Benjamin M; Patterson-Lomba, Oscar; Goerg, Georg M; Hébert-Dufresne, Laurent

    2013-01-01

    Antiviral resistance in influenza is rampant and has the possibility of causing major morbidity and mortality. Previous models have identified treatment regimes to minimize total infections and keep resistance low. However, the bulk of these studies have ignored stochasticity and heterogeneous contact structures. Here we develop a network model of influenza transmission with treatment and resistance, and present both standard mean-field approximations as well as simulated dynamics. We find differences in the final epidemic sizes for identical transmission parameters (bistability) leading to different optimal treatment timing depending on the number initially infected. We also find, contrary to previous results, that treatment targeted by number of contacts per individual (node degree) gives rise to more resistance at lower levels of treatment than non-targeted treatment. Finally we highlight important differences between the two methods of analysis (mean-field versus stochastic simulations), and show where traditional mean-field approximations fail. Our results have important implications not only for the timing and distribution of influenza chemotherapy, but also for mathematical epidemiological modeling in general. Antiviral resistance in influenza may carry large consequences for pandemic mitigation efforts, and models ignoring contact heterogeneity and stochasticity may provide misleading policy recommendations.

  4. Limiting similarity and functional diversity along environmental gradients

    USGS Publications Warehouse

    Schwilk, D.W.; Ackerly, D.D.

    2005-01-01

    Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.

  5. Great Britain Storm Surge Modeling for a 10,000-Year Stochastic Catalog with the Effect of Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Keshtpoor, M.; Carnacina, I.; Blair, A.; Yablonsky, R. M.

    2017-12-01

    Storm surge caused by Extratropical Cyclones (ETCs) has significantly impacted not only the life of private citizens but also the insurance and reinsurance industry in Great Britain. The storm surge risk assessment requires a larger dataset of storms than the limited recorded historical ETCs. Thus, historical ETCs were perturbed to generate a 10,000-year stochastic catalog that accounts for surge-generating ETCs in the study area with return periods from one year to 10,000 years. Delft3D-Flexible Mesh hydrodynamic model was used to numerically simulate the storm surge along the Great Britain coastline. A nested grid technique was used to increase the simulation grid resolution up to 200 m near the highly populated coastal areas. Coarse and fine mesh models were calibrated and validated using historical recorded water elevations. Then, numerical simulations were performed on a 10,000-year stochastic catalog. The 50-, 100-, and 500-year return period maps were generated for Great Britain coastal areas. The corresponding events with return periods of 50-, 100-, and 500-years in Humber Bay and Thames River coastal areas were identified, and simulated with the consideration of projected sea level rises to reveal the effect of rising sea levels on the inundation return period maps in two highly-populated coastal areas. Finally, the return period of Storm Xaver (2013) was determined with and without the effect of rising sea levels.

  6. Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations.

    PubMed

    Lee, UnJin; Skinner, John J; Reinitz, John; Rosner, Marsha Rich; Kim, Eun-Jin

    2015-01-01

    There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.

  7. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  8. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts.

    PubMed

    Viñuelas, José; Kaneko, Gaël; Coulon, Antoine; Vallin, Elodie; Morin, Valérie; Mejia-Pous, Camila; Kupiec, Jean-Jacques; Beslon, Guillaume; Gandrillon, Olivier

    2013-02-25

    A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.

  9. Suppression of Beneficial Mutations in Dynamic Microbial Populations

    NASA Astrophysics Data System (ADS)

    Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.

    2017-01-01

    Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.

  10. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    PubMed Central

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  11. How successful are mutants in multiplayer games with fluctuating environments? Sojourn times, fixation and optimal switching

    PubMed Central

    Galla, Tobias

    2018-01-01

    Using a stochastic model, we investigate the probability of fixation, and the average time taken to achieve fixation, of a mutant in a population of wild-types. We do this in a context where the environment in which the competition takes place is subject to stochastic change. Our model takes into account interactions which can involve multiple participants. That is, the participants take part in multiplayer games. We find that under certain circumstances, there are environmental switching dynamics which minimize the time that it takes for the mutants to fixate. To analyse the dynamics more closely, we develop a method by which to calculate the sojourn times for general birth–death processes in fluctuating environments. PMID:29657810

  12. Stochastic Epidemic Outbreaks, or Why Epidemics Behave Like Lasers

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira; Billings, Lora; Bollt, Erik; Carr, Thomas

    2004-03-01

    Many diseases, such childhood diseases, dengue fever, and West Nile virus, appear to oscillate randomly as a function of seasonal environmental or social changes. Such oscillations appear to have a chaotic bursting character, although it is still uncertain how much is due to random fluctuations. Such bursting in the presence of noise is also observed in driven lasers. In this talk, I will show how noise can excite random outbreaks in simple models of seasonally driven outbreaks, as well as lasers. The models for both population dynamics will be shown to share the same class of underlying topology, which plays a major role in the cause of observed stochastic bursting. New tools for predicting stcohastic outbreaks will be presented.

  13. How successful are mutants in multiplayer games with fluctuating environments? Sojourn times, fixation and optimal switching

    NASA Astrophysics Data System (ADS)

    Baron, Joseph W.; Galla, Tobias

    2018-03-01

    Using a stochastic model, we investigate the probability of fixation, and the average time taken to achieve fixation, of a mutant in a population of wild-types. We do this in a context where the environment in which the competition takes place is subject to stochastic change. Our model takes into account interactions which can involve multiple participants. That is, the participants take part in multiplayer games. We find that under certain circumstances, there are environmental switching dynamics which minimize the time that it takes for the mutants to fixate. To analyse the dynamics more closely, we develop a method by which to calculate the sojourn times for general birth-death processes in fluctuating environments.

  14. Confounding environmental colour and distribution shape leads to underestimation of population extinction risk.

    PubMed

    Fowler, Mike S; Ruokolainen, Lasse

    2013-01-01

    The colour of environmental variability influences the size of population fluctuations when filtered through density dependent dynamics, driving extinction risk through dynamical resonance. Slow fluctuations (low frequencies) dominate in red environments, rapid fluctuations (high frequencies) in blue environments and white environments are purely random (no frequencies dominate). Two methods are commonly employed to generate the coloured spatial and/or temporal stochastic (environmental) series used in combination with population (dynamical feedback) models: autoregressive [AR(1)] and sinusoidal (1/f) models. We show that changing environmental colour from white to red with 1/f models, and from white to red or blue with AR(1) models, generates coloured environmental series that are not normally distributed at finite time-scales, potentially confounding comparison with normally distributed white noise models. Increasing variability of sample Skewness and Kurtosis and decreasing mean Kurtosis of these series alter the frequency distribution shape of the realised values of the coloured stochastic processes. These changes in distribution shape alter patterns in the probability of single and series of extreme conditions. We show that the reduced extinction risk for undercompensating (slow growing) populations in red environments previously predicted with traditional 1/f methods is an artefact of changes in the distribution shapes of the environmental series. This is demonstrated by comparison with coloured series controlled to be normally distributed using spectral mimicry. Changes in the distribution shape that arise using traditional methods lead to underestimation of extinction risk in normally distributed, red 1/f environments. AR(1) methods also underestimate extinction risks in traditionally generated red environments. This work synthesises previous results and provides further insight into the processes driving extinction risk in model populations. We must let the characteristics of known natural environmental covariates (e.g., colour and distribution shape) guide us in our choice of how to best model the impact of coloured environmental variation on population dynamics.

  15. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  16. Boundary effects on population dynamics in stochastic lattice Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Heiba, Bassel; Chen, Sheng; Täuber, Uwe C.

    2018-02-01

    We investigate spatially inhomogeneous versions of the stochastic Lotka-Volterra model for predator-prey competition and coexistence by means of Monte Carlo simulations on a two-dimensional lattice with periodic boundary conditions. To study boundary effects for this paradigmatic population dynamics system, we employ a simulation domain split into two patches: Upon setting the predation rates at two distinct values, one half of the system resides in an absorbing state where only the prey survives, while the other half attains a stable coexistence state wherein both species remain active. At the domain boundary, we observe a marked enhancement of the predator population density. The predator correlation length displays a minimum at the boundary, before reaching its asymptotic constant value deep in the active region. The frequency of the population oscillations appears only very weakly affected by the existence of two distinct domains, in contrast to their attenuation rate, which assumes its largest value there. We also observe that boundary effects become less prominent as the system is successively divided into subdomains in a checkerboard pattern, with two different reaction rates assigned to neighboring patches. When the domain size becomes reduced to the scale of the correlation length, the mean population densities attain values that are very similar to those in a disordered system with randomly assigned reaction rates drawn from a bimodal distribution.

  17. Adaptive non-linear control for cancer therapy through a Fokker-Planck observer.

    PubMed

    Shakeri, Ehsan; Latif-Shabgahi, Gholamreza; Esmaeili Abharian, Amir

    2018-04-01

    In recent years, many efforts have been made to present optimal strategies for cancer therapy through the mathematical modelling of tumour-cell population dynamics and optimal control theory. In many cases, therapy effect is included in the drift term of the stochastic Gompertz model. By fitting the model with empirical data, the parameters of therapy function are estimated. The reported research works have not presented any algorithm to determine the optimal parameters of therapy function. In this study, a logarithmic therapy function is entered in the drift term of the Gompertz model. Using the proposed control algorithm, the therapy function parameters are predicted and adaptively adjusted. To control the growth of tumour-cell population, its moments must be manipulated. This study employs the probability density function (PDF) control approach because of its ability to control all the process moments. A Fokker-Planck-based non-linear stochastic observer will be used to determine the PDF of the process. A cost function based on the difference between a predefined desired PDF and PDF of tumour-cell population is defined. Using the proposed algorithm, the therapy function parameters are adjusted in such a manner that the cost function is minimised. The existence of an optimal therapy function is also proved. The numerical results are finally given to demonstrate the effectiveness of the proposed method.

  18. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    PubMed

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs

    PubMed Central

    Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno

    2008-01-01

    We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. PMID:19255631

  20. Host mating system and the spread of a disease-resistant allele in a population

    USGS Publications Warehouse

    DeAngelis, D.L.; Koslow, Jennifer M.; Jiang, J.; Ruan, S.

    2008-01-01

    The model presented here modifies a susceptible-infected (SI) host-pathogen model to determine the influence of mating system on the outcome of a host-pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.

  1. Extinction dynamics of a discrete population in an oasis.

    PubMed

    Berti, Stefano; Cencini, Massimo; Vergni, Davide; Vulpiani, Angelo

    2015-07-01

    Understanding the conditions ensuring the persistence of a population is an issue of primary importance in population biology. The first theoretical approach to the problem dates back to the 1950s with the Kierstead, Slobodkin, and Skellam (KiSS) model, namely a continuous reaction-diffusion equation for a population growing on a patch of finite size L surrounded by a deadly environment with infinite mortality, i.e., an oasis in a desert. The main outcome of the model is that only patches above a critical size allow for population persistence. Here we introduce an individual-based analog of the KiSS model to investigate the effects of discreteness and demographic stochasticity. In particular, we study the average time to extinction both above and below the critical patch size of the continuous model and investigate the quasistationary distribution of the number of individuals for patch sizes above the critical threshold.

  2. Application of stochastic weighted algorithms to a multidimensional silica particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang

    2013-09-01

    Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less

  3. Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion

    DOE PAGES

    Golkaram, Mahdi; Hellander, Stefan; Drawert, Brian; ...

    2016-11-28

    We seek to elucidate the role of macromolecular crowding in transcription and translation. It is well known that stochasticity in gene expression can lead to differential gene expression and heterogeneity in a cell population. Recent experimental observations by Tan et al. have improved our understanding of the functional role of macromolecular crowding. It can be inferred from their observations that macromolecular crowding can lead to robustness in gene expression, resulting in a more homogeneous cell population. We introduce a spatial stochastic model to provide insight into this process. Our results show that macromolecular crowding reduces noise (as measured by themore » kurtosis of the mRNA distribution) in a cell population by limiting the diffusion of transcription factors (i.e. removing the unstable intermediate states), and that crowding by large molecules reduces noise more efficiently than crowding by small molecules. Finally, our simulation results provide evidence that the local variation in chromatin density as well as the total volume exclusion of the chromatin in the nucleus can induce a homogenous cell population« less

  4. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    PubMed

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  5. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    PubMed Central

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  6. ASSESSING CHILDREN'S EXPOSURES TO PESTICIDES: AN IMPORTANT APPLICATION OF THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL (SHEDS)

    EPA Science Inventory

    Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...

  7. Stochastic Modeling of the Persistence of HIV: Early Population Dynamics

    DTIC Science & Technology

    2013-05-10

    fluid, Brownian motion is named after the botanist Robert Brown. In the late nineteenth century, he observed that pollen floating in water appeared...to move about in a random manner. When he replaced the pollen with inorganic material, he noticed that the motion persisted. Upon plotting the motion

  8. Hierarchial mark-recapture models: a framework for inference about demographic processes

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.

    2004-01-01

    The development of sophisticated mark-recapture models over the last four decades has provided fundamental tools for the study of wildlife populations, allowing reliable inference about population sizes and demographic rates based on clearly formulated models for the sampling processes. Mark-recapture models are now routinely described by large numbers of parameters. These large models provide the next challenge to wildlife modelers: the extraction of signal from noise in large collections of parameters. Pattern among parameters can be described by strong, deterministic relations (as in ultrastructural models) but is more flexibly and credibly modeled using weaker, stochastic relations. Trend in survival rates is not likely to be manifest by a sequence of values falling precisely on a given parametric curve; rather, if we could somehow know the true values, we might anticipate a regression relation between parameters and explanatory variables, in which true value equals signal plus noise. Hierarchical models provide a useful framework for inference about collections of related parameters. Instead of regarding parameters as fixed but unknown quantities, we regard them as realizations of stochastic processes governed by hyperparameters. Inference about demographic processes is based on investigation of these hyperparameters. We advocate the Bayesian paradigm as a natural, mathematically and scientifically sound basis for inference about hierarchical models. We describe analysis of capture-recapture data from an open population based on hierarchical extensions of the Cormack-Jolly-Seber model. In addition to recaptures of marked animals, we model first captures of animals and losses on capture, and are thus able to estimate survival probabilities w (i.e., the complement of death or permanent emigration) and per capita growth rates f (i.e., the sum of recruitment and immigration rates). Covariation in these rates, a feature of demographic interest, is explicitly described in the model.

  9. Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion.

    PubMed

    Fröhlich, Fabian; Thomas, Philipp; Kazeroonian, Atefeh; Theis, Fabian J; Grima, Ramon; Hasenauer, Jan

    2016-07-01

    Quantitative mechanistic models are valuable tools for disentangling biochemical pathways and for achieving a comprehensive understanding of biological systems. However, to be quantitative the parameters of these models have to be estimated from experimental data. In the presence of significant stochastic fluctuations this is a challenging task as stochastic simulations are usually too time-consuming and a macroscopic description using reaction rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider moment-closure approximation (MA) and the system size expansion (SSE), which approximate the statistical moments of stochastic processes and tend to be more precise than macroscopic descriptions. We introduce gradient-based parameter optimization methods and uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are assessed using simulation examples as well as by an application to data for Epo-induced JAK/STAT signaling. The application revealed that even if merely population-average data are available, MA and SSE improve parameter identifiability in comparison to RRE. Furthermore, the simulation examples revealed that the resulting estimates are more reliable for an intermediate volume regime. In this regime the estimation error is reduced and we propose methods to determine the regime boundaries. These results illustrate that inference using MA and SSE is feasible and possesses a high sensitivity.

  10. Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion

    PubMed Central

    Thomas, Philipp; Kazeroonian, Atefeh; Theis, Fabian J.; Grima, Ramon; Hasenauer, Jan

    2016-01-01

    Quantitative mechanistic models are valuable tools for disentangling biochemical pathways and for achieving a comprehensive understanding of biological systems. However, to be quantitative the parameters of these models have to be estimated from experimental data. In the presence of significant stochastic fluctuations this is a challenging task as stochastic simulations are usually too time-consuming and a macroscopic description using reaction rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider moment-closure approximation (MA) and the system size expansion (SSE), which approximate the statistical moments of stochastic processes and tend to be more precise than macroscopic descriptions. We introduce gradient-based parameter optimization methods and uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are assessed using simulation examples as well as by an application to data for Epo-induced JAK/STAT signaling. The application revealed that even if merely population-average data are available, MA and SSE improve parameter identifiability in comparison to RRE. Furthermore, the simulation examples revealed that the resulting estimates are more reliable for an intermediate volume regime. In this regime the estimation error is reduced and we propose methods to determine the regime boundaries. These results illustrate that inference using MA and SSE is feasible and possesses a high sensitivity. PMID:27447730

  11. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae

    DOE PAGES

    Dar, R. D.; Karig, D. K.; Cooke, J. F.; ...

    2010-09-01

    Stochasticity is an inherent feature of complex systems with nanoscale structure. In such systems information is represented by small collections of elements (e.g. a few electrons on a quantum dot), and small variations in the populations of these elements may lead to big uncertainties in the information. Unfortunately, little is known about how to work within this inherently noisy environment to design robust functionality into complex nanoscale systems. Here, we look to the biological cell as an intriguing model system where evolution has mediated the trade-offs between fluctuations and function, and in particular we look at the relationships and trade-offsmore » between stochastic and deterministic responses in the gene expression of budding yeast (Saccharomyces cerevisiae). We find gene regulatory arrangements that control the stochastic and deterministic components of expression, and show that genes that have evolved to respond to stimuli (stress) in the most strongly deterministic way exhibit the most noise in the absence of the stimuli. We show that this relationship is consistent with a bursty 2-state model of gene expression, and demonstrate that this regulatory motif generates the most uncertainty in gene expression when there is the greatest uncertainty in the optimal level of gene expression.« less

  12. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  13. The anatomy of a (potential) disaster: Volcanoes, behavior, and population viability of the short-tailed albatross (Phoebastria albatrus)

    USGS Publications Warehouse

    Finkelstein, M.E.; Wolf, S.; Goldman, M.; Doak, D.F.; Sievert, P.R.; Balogh, G.; Hasegawa, H.

    2010-01-01

    Catastrophic events, either from natural (e.g., hurricane) or human-induced (e.g., forest clear-cut) processes, are a well-known threat to wild populations. However, our lack of knowledge about population-level effects of catastrophic events has inhibited the careful examination of how catastrophes affect population growth and persistence. For the critically endangered short-tailed albatross (Phoebastria albatrus), episodic volcanic eruptions are considered a serious catastrophic threat since approximately 80% of the global population of ???2500 birds (in 2006) currently breeds on an active volcano, Torishima Island. We evaluated how short-tailed albatross population persistence is affected by the catastrophic threat of a volcanic eruption relative to chronic threats. We also provide an example for overcoming the seemingly overwhelming problems created by modelling the population dynamics of a species with limited demographic data by incorporating uncertainty in our analysis. As such, we constructed a stochastic age-based matrix model that incorporated both catastrophic mortality due to volcanic eruptions and chronic mortality from several potential sources (e.g., contaminant exposure, fisheries bycatch) to determine the relative effects of these two types of threats on short-tailed albatross population growth and persistence. Modest increases (1%) in chronic (annual) mortality had a 2.5-fold greater effect on predicted short-tailed albatross stochastic population growth rate (lambda) than did the occurrence of periodic volcanic eruptions that follow historic eruption frequencies (annual probability of eruption 2.2%). Our work demonstrates that periodic catastrophic volcanic eruptions, despite their dramatic nature, are less likely to affect the population viability and recovery of short-tailed albatross than low-level chronic mortality. ?? 2009 Elsevier Ltd.

  14. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  15. Exploring the effect of drought extent and interval on the Florida snail kite: Interplay between spatial and temporal scales

    USGS Publications Warehouse

    Mooij, Wolf M.; Bennetts, Robert E.; Kitchens, Wiley M.; DeAngelis, Donald L.

    2002-01-01

    The paper aims at exploring the viability of the Florida snail kite population under various drought regimes in its wetland habitat. The population dynamics of snail kites are strongly linked with the hydrology of the system due to the dependence of this bird species on one exclusive prey species, the apple snail, which is negatively affected by a drying out of habitat. Based on empirical evidence, it has been hypothesised that the viability of the snail kite population critically depends not only on the time interval between droughts, but also on the spatial extent of these droughts. A system wide drought is likely to result in reduced reproduction and increased mortality, whereas the birds can respond to local droughts by moving to sites where conditions are still favourable. This paper explores the implications of this hypothesis by means of a spatially-explicit individual-based model. The specific aim of the model is to study in a factorial design the dynamics of the kite population in relation to two scale parameters, the temporal interval between droughts and the spatial correlation between droughts. In the model high drought frequencies led to reduced numbers of kites. Also, habitat degradation due to prolonged periods of inundation led to lower predicted numbers of kites. Another main result was that when the spatial correlation between droughts was low, the model showed little variability in the predicted numbers of kites. But when droughts occurred mostly on a system wide level, environmental stochasticity strongly increased the stochasticity in kite numbers and in the worst case the viability of the kite population was seriously threatened.

  16. InterSpread Plus: a spatial and stochastic simulation model of disease in animal populations.

    PubMed

    Stevenson, M A; Sanson, R L; Stern, M W; O'Leary, B D; Sujau, M; Moles-Benfell, N; Morris, R S

    2013-04-01

    We describe the spatially explicit, stochastic simulation model of disease spread, InterSpread Plus, in terms of its epidemiological framework, operation, and mode of use. The input data required by the model, the method for simulating contact and infection spread, and methods for simulating disease control measures are described. Data and parameters that are essential for disease simulation modelling using InterSpread Plus are distinguished from those that are non-essential, and it is suggested that a rational approach to simulating disease epidemics using this tool is to start with core data and parameters, adding additional layers of complexity if and when the specific requirements of the simulation exercise require it. We recommend that simulation models of disease are best developed as part of epidemic contingency planning so decision makers are familiar with model outputs and assumptions and are well-positioned to evaluate their strengths and weaknesses to make informed decisions in times of crisis. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mathematical observations on the relation between eclosion periods and the copulation rate of cicadas.

    PubMed

    Saisho, Yasumasa

    2010-04-01

    In many species of cicadas the peak of eclosion of males precedes that of females. In this paper, we construct a stochastic model and consider whether this sexual difference of eclosion periods works against mating or not. We also discuss the relation between the peak period of copulations and the development of population number by using this model.

  18. The origin of human complex diversity: Stochastic epistatic modules and the intrinsic compatibility between distributional robustness and phenotypic changeability.

    PubMed

    Ijichi, Shinji; Ijichi, Naomi; Ijichi, Yukina; Imamura, Chikako; Sameshima, Hisami; Kawaike, Yoichi; Morioka, Hirofumi

    2018-01-01

    The continuing prevalence of a highly heritable and hypo-reproductive extreme tail of a human neurobehavioral quantitative diversity suggests the possibility that the reproductive majority retains the genetic mechanism for the extremes. From the perspective of stochastic epistasis, the effect of an epistatic modifier variant can randomly vary in both phenotypic value and effect direction among the careers depending on the genetic individuality, and the modifier careers are ubiquitous in the population distribution. The neutrality of the mean genetic effect in the careers warrants the survival of the variant under selection pressures. Functionally or metabolically related modifier variants make an epistatic network module and dozens of modules may be involved in the phenotype. To assess the significance of stochastic epistasis, a simplified module-based model was employed. The individual repertoire of the modifier variants in a module also participates in the genetic individuality which determines the genetic contribution of each modifier in the career. Because the entire contribution of a module to the phenotypic outcome is consequently unpredictable in the model, the module effect represents the total contribution of the related modifiers as a stochastic unit in the simulations. As a result, the intrinsic compatibility between distributional robustness and quantitative changeability could mathematically be simulated using the model. The artificial normal distribution shape in large-sized simulations was preserved in each generation even if the lowest fitness tail was un-reproductive. The robustness of normality beyond generations is analogous to the real situations of human complex diversity including neurodevelopmental conditions. The repeated regeneration of the un-reproductive extreme tail may be inevitable for the reproductive majority's competence to survive and change, suggesting implications of the extremes for others. Further model-simulations to illustrate how the fitness of extreme individuals can be low through generations may be warranted to increase the credibility of this stochastic epistasis model.

  19. Stochastic theory of log-periodic patterns

    NASA Astrophysics Data System (ADS)

    Canessa, Enrique

    2000-12-01

    We introduce an analytical model based on birth-death clustering processes to help in understanding the empirical log-periodic corrections to power law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastic theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of co-operative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t0 is derived in terms of birth-death clustering coefficients.

  20. Finite metapopulation models with density-dependent migration and stochastic local dynamics

    PubMed Central

    Saether, B.-E.; Engen, S.; Lande, R.

    1999-01-01

    The effects of small density-dependent migration on the dynamics of a metapopulation are studied in a model with stochastic local dynamics. We use a diffusion approximation to study how changes in the migration rate and habitat occupancy affect the rates of local colonization and extinction. If the emigration rate increases or if the immigration rate decreases with local population size, a positive expected rate of change in habitat occupancy is found for a greater range of habitat occupancies than when the migration is density-independent. In contrast, the reverse patterns of density dependence in respective emigration and immigration reduce the range of habitat occupancies where the metapopulation will be viable. This occurs because density-dependent migration strongly influences both the establishment and rescue effects in the local dynamics of metapopulations.

  1. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVille, R.E.L., E-mail: rdeville@illinois.edu; Riemer, N., E-mail: nriemer@illinois.edu; West, M., E-mail: mwest@illinois.edu

    2011-09-20

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangianmore » trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.« less

  2. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    NASA Astrophysics Data System (ADS)

    DeVille, R. E. L.; Riemer, N.; West, M.

    2011-09-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  3. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  4. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands.

    PubMed

    Tredennick, Andrew T; de Mazancourt, Claire; Loreau, Michel; Adler, Peter B

    2017-04-01

    Temporal asynchrony among species helps diversity to stabilize ecosystem functioning, but identifying the mechanisms that determine synchrony remains a challenge. Here, we refine and test theory showing that synchrony depends on three factors: species responses to environmental variation, interspecific interactions, and demographic stochasticity. We then conduct simulation experiments with empirical population models to quantify the relative influence of these factors on the synchrony of dominant species in five semiarid grasslands. We found that the average synchrony of per capita growth rates, which can range from 0 (perfect asynchrony) to 1 (perfect synchrony), was higher when environmental variation was present (0.62) rather than absent (0.43). Removing interspecific interactions and demographic stochasticity had small effects on synchrony. For the dominant species in these plant communities, where species interactions and demographic stochasticity have little influence, synchrony reflects the covariance in species' responses to the environment. © 2017 by the Ecological Society of America.

  5. The adaptation rate of a quantitative trait in an environmental gradient

    NASA Astrophysics Data System (ADS)

    Hermsen, R.

    2016-12-01

    The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.

  6. The adaptation rate of a quantitative trait in an environmental gradient.

    PubMed

    Hermsen, R

    2016-11-30

    The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.

  7. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2014-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130

  8. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    NASA Astrophysics Data System (ADS)

    Chevalier, Michael W.; El-Samad, Hana

    2014-12-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.

  9. Effects of Noise on Ecological Invasion Processes: Bacteriophage-mediated Competition in Bacteria

    NASA Astrophysics Data System (ADS)

    Joo, Jaewook; Eric, Harvill; Albert, Reka

    2007-03-01

    Pathogen-mediated competition, through which an invasive species carrying and transmitting a pathogen can be a superior competitor to a more vulnerable resident species, is one of the principle driving forces influencing biodiversity in nature. Using an experimental system of bacteriophage-mediated competition in bacterial populations and a deterministic model, we have shown in [Joo et al 2005] that the competitive advantage conferred by the phage depends only on the relative phage pathology and is independent of the initial phage concentration and other phage and host parameters such as the infection-causing contact rate, the spontaneous and infection-induced lysis rates, and the phage burst size. Here we investigate the effects of stochastic fluctuations on bacterial invasion facilitated by bacteriophage, and examine the validity of the deterministic approach. We use both numerical and analytical methods of stochastic processes to identify the source of noise and assess its magnitude. We show that the conclusions obtained from the deterministic model are robust against stochastic fluctuations, yet deviations become prominently large when the phage are more pathological to the invading bacterial strain.

  10. Noise shaping in populations of coupled model neurons.

    PubMed

    Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J

    1999-08-31

    Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.

  11. Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Gao, Rui-Mei; Fan, Xiao-Ming; Han, Qi-Xing

    2014-09-01

    We discuss in this paper a deterministic multi-group MSIR epidemic model with a vaccination rate, the basic reproduction number ℛ0, a key parameter in epidemiology, is a threshold which determines the persistence or extinction of the disease. By using Lyapunov function techniques, we show if ℛ0 is greater than 1 and the deterministic model obeys some conditions, then the disease will prevail, the infective persists and the endemic state is asymptotically stable in a feasible region. If ℛ0 is less than or equal to 1, then the infective disappear so the disease dies out. In addition, stochastic noises around the endemic equilibrium will be added to the deterministic MSIR model in order that the deterministic model is extended to a system of stochastic ordinary differential equations. In the stochastic version, we carry out a detailed analysis on the asymptotic behavior of the stochastic model. In addition, regarding the value of ℛ0, when the stochastic system obeys some conditions and ℛ0 is greater than 1, we deduce the stochastic system is stochastically asymptotically stable. Finally, the deterministic and stochastic model dynamics are illustrated through computer simulations.

  12. Extinction times in the subcritical stochastic SIS logistic epidemic.

    PubMed

    Brightwell, Graham; House, Thomas; Luczak, Malwina

    2018-01-31

    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size N. We study the behaviour of the process as the population size N tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as [Formula: see text] but more slowly than [Formula: see text]. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.

  13. A simple branching model that reproduces language family and language population distributions

    NASA Astrophysics Data System (ADS)

    Schwämmle, Veit; de Oliveira, Paulo Murilo Castro

    2009-07-01

    Human history leaves fingerprints in human languages. Little is known about language evolution and its study is of great importance. Here we construct a simple stochastic model and compare its results to statistical data of real languages. The model is based on the recent finding that language changes occur independently of the population size. We find agreement with the data additionally assuming that languages may be distinguished by having at least one among a finite, small number of different features. This finite set is also used in order to define the distance between two languages, similarly to linguistics tradition since Swadesh.

  14. Spreading dynamics on complex networks: a general stochastic approach.

    PubMed

    Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J

    2014-12-01

    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.

  15. Species survival emerge from rare events of individual migration

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Solomon, Sorin; Yaari, Gur

    2015-01-01

    Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable resilience to external influences. Recent experiments have highlighted the significant effects of spatial structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to demographic and environmental noise, we were able to systematically study emergent properties of this rich system. By scanning the relevant parameter space, we show that both survival and extinction processes often result from a combination of habitat fragmentation and individual rare events of recolonization.

  16. Spatial vs. individual variability with inheritance in a stochastic Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Tauber, Uwe C.

    2012-02-01

    We investigate a stochastic spatial Lotka-Volterra predator-prey model with randomized interaction rates that are either affixed to the lattice sites and quenched, and / or specific to individuals in either population. In the latter situation, we include rate inheritance with mutations from the particles' progenitors. Thus we arrive at a simple model for competitive evolution with environmental variability and selection pressure. We employ Monte Carlo simulations in zero and two dimensions to study the time evolution of both species' densities and their interaction rate distributions. The predator and prey concentrations in the ensuing steady states depend crucially on the environmental variability, whereas the temporal evolution of the individualized rate distributions leads to largely neutral optimization. Contrary to, e.g., linear gene expression models, this system does not experience fixation at extreme values. An approximate description of the resulting data is achieved by means of an effective master equation approach for the interaction rate distribution.

  17. Species survival emerge from rare events of individual migration.

    PubMed

    Zelnik, Yuval R; Solomon, Sorin; Yaari, Gur

    2015-01-19

    Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable resilience to external influences. Recent experiments have highlighted the significant effects of spatial structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to demographic and environmental noise, we were able to systematically study emergent properties of this rich system. By scanning the relevant parameter space, we show that both survival and extinction processes often result from a combination of habitat fragmentation and individual rare events of recolonization.

  18. Evidence for r- and K-selection in a wild bird population: a reciprocal link between ecology and evolution.

    PubMed

    Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar

    2016-04-27

    Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).

  19. Spectral analysis of a two-species competition model: Determining the effects of extreme conditions on the color of noise generated from simulated time series

    NASA Astrophysics Data System (ADS)

    Golinski, M. R.

    2006-07-01

    Ecologists have observed that environmental noise affects population variance in the logistic equation for one-species growth. Interactions between deterministic and stochastic dynamics in a one-dimensional system result in increased variance in species population density over time. Since natural populations do not live in isolation, the present paper simulates a discrete-time two-species competition model with environmental noise to determine the type of colored population noise generated by extreme conditions in the long-term population dynamics of competing populations. Discrete Fourier analysis is applied to the simulation results and the calculated Hurst exponent ( H) is used to determine how the color of population noise for the two species corresponds to extreme conditions in population dynamics. To interpret the biological meaning of the color of noise generated by the two-species model, the paper determines the color of noise generated by three reference models: (1) A two-dimensional discrete-time white noise model (0⩽ H<1/2); (2) A two-dimensional fractional Brownian motion model (H=1/2); and (3) A two-dimensional discrete-time model with noise for unbounded growth of two uncoupled species (1/2< H⩽1).

  20. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  1. Fixation of slightly beneficial mutations: effects of life history.

    PubMed

    Vindenes, Yngvild; Lee, Aline Magdalena; Engen, Steinar; Saether, Bernt-Erik

    2010-04-01

    Recent studies of rates of evolution have revealed large systematic differences among organisms with different life histories, both within and among taxa. Here, we consider how life history may affect the rate of evolution via its influence on the fixation probability of slightly beneficial mutations. Our approach is based on diffusion modeling for a finite, stage-structured population with stochastic population dynamics. The results, which are verified by computer simulations, demonstrate that even with complex population structure just two demographic parameters are sufficient to give an accurate approximation of the fixation probability of a slightly beneficial mutation. These are the reproductive value of the stage in which the mutation first occurs and the demographic variance of the population. The demographic variance also determines what influence population size has on the fixation probability. This model represents a substantial generalization of earlier models, covering a large range of life histories.

  2. Factors leading to different viability predictions for a grizzly bear data set

    USGS Publications Warehouse

    Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.

    1996-01-01

    Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.

  3. Asteroid Impact Risk: Ground Hazard versus Impactor Size

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan; Wheeler, Lorien; Dotson, Jessie; Aftosmis, Michael; Tarano, Ana

    2017-01-01

    We utilized a probabilistic asteroid impact risk (PAIR) model to stochastically assess the impact risk due to an ensemble population of Near-Earth Objects (NEOs). Concretely, we present the variation of risk with impactor size. Results suggest that large impactors dominate the average risk, even when only considering the subset of undiscovered NEOs.

  4. Trichotomous noise controlled signal amplification in a generalized Verhulst model

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Soika, Erkki; Lumi, Neeme

    2014-10-01

    The long-time limit of the probability distribution and statistical moments for a population size are studied by means of a stochastic growth model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacity of a population is modeled by a multiplicative three-level Markovian noise and by a time periodic deterministic component. Exact expressions for the moments of the population size have been calculated. It is shown that an interplay of a small periodic forcing and colored noise can cause large oscillations of the mean population size. The conditions for the appearance of such a phenomenon are found and illustrated by graphs. Implications of the results on models of symbiotic metapopulations are also discussed. Particularly, it is demonstrated that the effect of noise-generated amplification of an input signal gets more pronounced as the intensity of symbiotic interaction increases.

  5. The effect of loss of immunity on noise-induced sustained oscillations in epidemics.

    PubMed

    Chaffee, J; Kuske, R

    2011-11-01

    The effect of loss of immunity on sustained population oscillations about an endemic equilibrium is studied via a multiple scales analysis of a SIRS model. The analysis captures the key elements supporting the nearly regular oscillations of the infected and susceptible populations, namely, the interaction of the deterministic and stochastic dynamics together with the separation of time scales of the damping and the period of these oscillations. The derivation of a nonlinear stochastic amplitude equation describing the envelope of the oscillations yields two criteria providing explicit parameter ranges where they can be observed. These conditions are similar to those found for other applications in the context of coherence resonance, in which noise drives nearly regular oscillations in a system that is quiescent without noise. In this context the criteria indicate how loss of immunity and other factors can lead to a significant increase in the parameter range for prevalence of the sustained oscillations, without any external driving forces. Comparison of the power spectral densities of the full model and the approximation confirms that the multiple scales analysis captures nonlinear features of the oscillations.

  6. On the Problem of Patient-Specific Endogenous Glucose Production in Neonates on Stochastic Targeted Glycemic Control

    PubMed Central

    Dickson, Jennifer L.; Hewett, James N.; Gunn, Cameron A.; Lynn, Adrienne; Shaw, Geoffrey M.; Chase, Geoffrey

    2013-01-01

    Background: Both stress and prematurity can induce hyperglycemia in the neonatal intensive care unit, which, in turn, is associated with worsened outcomes. Endogenous glucose production (EGP) is the formation of glucose by the body from substrates and contributes to blood glucose (BG) levels. Due to the inherent fragility of the extremely low birth weight (ELBW) neonates, true fasting EGP cannot be explicitly determined, introducing uncertainty into glycemic models that rely on quantifying glucose sources. Stochastic targeting, or STAR, is one such glycemic control framework. Methods: A literature review was carried out to gather metabolic and EGP values on preterm infants with a gestational age (GA) <32 weeks and a birth weight (BW) <2 kg. The data were analyzed for EGP trends with BW, GA, BG, plasma insulin, and glucose infusion (GI) rates. Trends were modeled and compared with a literature-derived range of population constant EGP models using clinically validated virtual trials on retrospective clinical data. Results: No clear relationship was found for EGP and BW, GA, or plasma insulin. Some evidence of suppression of EGP with increasing GI or BG was seen. Virtual trial results showed that population-constant EGP models fit clinical data best and gave tighter control performance to a target band in virtual trials. Conclusions: Variation in EGP cannot easily be quantified, and EGP is sufficiently modeled as a population constant in the neonatal intensive care insulin–nutrition–glucose model. Analysis of the clinical data and fitting error suggests that ELBW hyperglycemic preterm neonates have unsuppressed EGP in the higher range than that seen in literature. PMID:23911173

  7. PROTECTED POLYMORPHISMS AND EVOLUTIONARY STABILITY OF PATCH-SELECTION STRATEGIES IN STOCHASTIC ENVIRONMENTS

    PubMed Central

    EVANS, STEVEN N.; HENING, ALEXANDRU; SCHREIBER, SEBASTIAN J.

    2015-01-01

    We consider a population living in a patchy environment that varies stochastically in space and time. The population is composed of two morphs (that is, individuals of the same species with different genotypes). In terms of survival and reproductive success, the associated phenotypes differ only in their habitat selection strategies. We compute invasion rates corresponding to the rates at which the abundance of an initially rare morph increases in the presence of the other morph established at equilibrium. If both morphs have positive invasion rates when rare, then there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when rare, then it is asymptotically displaced by the other morph under all initial conditions where both morphs are present. We refine the characterization of an evolutionary stable strategy for habitat selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary and sufficient condition for the existence of an ESS that uses all patches and determine when using a single patch is an ESS. We also provide an explicit formula for the ESS when there are two habitat types. We show that adding environmental stochasticity results in an ESS that, when compared to the ESS for the corresponding model without stochasticity, spends less time in patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing a spatial form of bet hedging. PMID:25151369

  8. Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach.

    PubMed

    Boonen, Tim J; Li, Hong

    2017-10-01

    Research on mortality modeling of multiple populations focuses mainly on extrapolating past mortality trends and summarizing these trends by one or more common latent factors. This article proposes a multipopulation stochastic mortality model that uses the explanatory power of economic growth. In particular, we extend the Li and Lee model (Li and Lee 2005) by including economic growth, represented by the real gross domestic product (GDP) per capita, to capture the common mortality trend for a group of populations with similar socioeconomic conditions. We find that our proposed model provides a better in-sample fit and an out-of-sample forecast performance. Moreover, it generates lower (higher) forecasted period life expectancy for countries with high (low) GDP per capita than the Li and Lee model.

  9. Role of Demographic Dynamics and Conflict in the Population-Area Relationship for Human Languages

    PubMed Central

    Manrubia, Susanna C.; Axelsen, Jacob B.; Zanette, Damián H.

    2012-01-01

    Many patterns displayed by the distribution of human linguistic groups are similar to the ecological organization described for biological species. It remains a challenge to identify simple and meaningful processes that describe these patterns. The population size distribution of human linguistic groups, for example, is well fitted by a log-normal distribution that may arise from stochastic demographic processes. As we show in this contribution, the distribution of the area size of home ranges of those groups also agrees with a log-normal function. Further, size and area are significantly correlated: the number of speakers and the area spanned by linguistic groups follow the allometric relation , with an exponent varying accross different world regions. The empirical evidence presented leads to the hypothesis that the distributions of and , and their mutual dependence, rely on demographic dynamics and on the result of conflicts over territory due to group growth. To substantiate this point, we introduce a two-variable stochastic multiplicative model whose analytical solution recovers the empirical observations. Applied to different world regions, the model reveals that the retreat in home range is sublinear with respect to the decrease in population size, and that the population-area exponent grows with the typical strength of conflicts. While the shape of the population size and area distributions, and their allometric relation, seem unavoidable outcomes of demography and inter-group contact, the precise value of could give insight on the cultural organization of those human groups in the last thousand years. PMID:22815726

  10. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    NASA Astrophysics Data System (ADS)

    Seif, Dariush; Ghoniem, Nasr M.

    2014-12-01

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the implementation of a path-integral approach may proceed if the distribution is known experimentally to significantly stray from a Gaussian description.

  11. Breeding site heterogeneity reduces variability in frog recruitment and population dynamics

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Eby, Lisa A.; Maxell, Bryce A.; Corn, Paul Stephen

    2013-01-01

    Environmental stochasticity can have profound effects on the dynamics and viability of wild populations, and habitat heterogeneity provides one mechanism by which populations may be buffered against the negative effects of environmental fluctuations. Heterogeneity in breeding pond hydroperiod across the landscape may allow amphibian populations to persist despite variable interannual precipitation. We examined recruitment dynamics over 10 yr in a high-elevation Columbia spotted frog (Rana luteiventris) population that breeds in ponds with a variety of hydroperiods. We combined these data with matrix population models to quantify the consequences of heterogeneity in pond hydroperiod on net recruitment (i.e. number of metamorphs produced) and population growth rates. We compared our heterogeneous system to hypothetical homogeneous environments with only ephemeral ponds, only semi-permanent ponds, and only permanent ponds. We also examined the effects of breeding pond habitat loss on population growth rates. Most eggs were laid in permanent ponds each year, but survival to metamorphosis was highest in the semi-permanent ponds. Recruitment success varied by both year and pond type. Net recruitment and stochastic population growth rate were highest under a scenario with homogeneous semi-permanent ponds, but variability in recruitment was lowest in the scenario with the observed heterogeneity in hydroperiods. Loss of pond habitat decreased population growth rate, with greater decreases associated with loss of permanent and semi-permanent habitat. The presence of a diversity of pond hydroperiods on the landscape will influence population dynamics, including reducing variability in recruitment in an uncertain climatic future.

  12. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides

    DTIC Science & Technology

    2009-01-01

    STOCHASTIC LANCHESTER AIR-TO-AIR CAMPAIGN MODEL MODEL DESCRIPTION AND USERS GUIDES—2009 REPORT PA702T1 Rober t V. Hemm Jr. Dav id A . Lee...LMI © 2009. ALL RIGHTS RESERVED. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides—2009 PA702T1/JANUARY...2009 Executive Summary This report documents the latest version of the Stochastic Lanchester Air-to-Air Campaign Model (SLAACM), developed by LMI for

  13. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations.

    PubMed

    Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai

    2016-06-01

    The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.

  14. Stochastic Multi-Timescale Power System Operations With Variable Wind Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongyu; Krad, Ibrahim; Florita, Anthony

    This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less

  15. Moving forward in circles: challenges and opportunities in modelling population cycles.

    PubMed

    Barraquand, Frédéric; Louca, Stilianos; Abbott, Karen C; Cobbold, Christina A; Cordoleani, Flora; DeAngelis, Donald L; Elderd, Bret D; Fox, Jeremy W; Greenwood, Priscilla; Hilker, Frank M; Murray, Dennis L; Stieha, Christopher R; Taylor, Rachel A; Vitense, Kelsey; Wolkowicz, Gail S K; Tyson, Rebecca C

    2017-08-01

    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer-resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research. © 2017 John Wiley & Sons Ltd/CNRS.

  16. Moving forward in circles: Challenges and opportunities in modeling population cycles

    USGS Publications Warehouse

    Barraquand, Frederic; Louca, Stilianos; Abbott, Karen C; Cobbold, Christina A; Cordoleani, Flora; DeAngelis, Donald L.; Elderd, Bret D; Fox, Jeremy W; Greenwood, Priscilla; Hilker, Frank M; Murray, Dennis; Stieha, Christopher R; Taylor, Rachel A; Vitense, Kelsey; Wolkowicz, Gail; Tyson, Rebecca C

    2017-01-01

    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research.

  17. Stochastic modelling of microstructure formation in solidification processes

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu; Stefanescu, Doru M.

    1997-07-01

    To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'

  18. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    PubMed

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  19. Projecting the Population-level Effects of Mercury on the Common Loon in the Northeast

    NASA Astrophysics Data System (ADS)

    Evers, D. C.; Mitro, M. G.; Gleason, T. R.

    2001-05-01

    The Common Loon (Gavia immer) is a top-level predator in aquatic systems and is at risk to mercury contamination. This risk is of particular concern in the Northeast, the region of North America in which loons have the highest mean body concentration of methylmercury (MeHg). We used matrix population models to project the population-level effects of mercury on loons in four states in the Northeast (New York, Vermont, New Hampshire, and Maine) exhibiting different levels of risk to MeHg. Four categories of risk to MeHg (low, moderate, high, and extra high) were established based on MeHg levels observed in loons and associated effects observed at the individual and population levels in the field (e.g., behavior and reproductive success). We parameterized deterministic matrix population models using survival estimates from a 12-year band-resight data set and productivity estimates from a 25-year data set of nesting loon observations in NH. The juvenile loon survival rate was 0.55 (minimum) and 0.63 (maximum) (ages 1-3), and the adult loon survival rate was 0.95 (ages 4-30). The mean age at first reproduction was 7. The mean fertility was 0.26 fledgelings per individual at low to moderate risk; there were 53% fewer fledged young per individual at high to extra high risk. Productivity was weighted by risk for each state. The portion of the breeding population at high to extra high risk was 10% in NY, 15% in VT, 17% in NH, and 28% in ME. We also constructed a stochastic model in which productivity was randomly selected in each time step from the 25 estimates in the NH data set. Model results indicated a negative population growth rate for some states. There was a decreasing trend in population growth rate as the percentage of the loon population at high to extra high risk increased. The stochastic model showed that the population growth rate varied over a range of about 0.05 from year to year, and this range decreased as the percentage of the loon population at high to extra high risk increased. These results suggest that an increase in risk to mercury that effects a change in reproductive success may have a negative population-level effect on loons.

  20. Stochastic effects in a seasonally forced epidemic model

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  1. Stochastic empirical loading and dilution model (SELDM) version 1.0.0

    USGS Publications Warehouse

    Granato, Gregory E.

    2013-01-01

    The Stochastic Empirical Loading and Dilution Model (SELDM) is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. Planning-level estimates are defined as the results of analyses used to evaluate alternative management measures; planning-level estimates are recognized to include substantial uncertainties (commonly orders of magnitude). SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. SELDM provides input statistics for precipitation, prestorm flow, runoff coefficients, and concentrations of selected water-quality constituents from National datasets. Input statistics may be selected on the basis of the latitude, longitude, and physical characteristics of the site of interest and the upstream basin. The user also may derive and input statistics for each variable that are specific to a given site of interest or a given area. SELDM is a stochastic model because it uses Monte Carlo methods to produce the random combinations of input variable values needed to generate the stochastic population of values for each component variable. SELDM calculates the dilution of runoff in the receiving waters and the resulting downstream event mean concentrations and annual average lake concentrations. Results are ranked, and plotting positions are calculated, to indicate the level of risk of adverse effects caused by runoff concentrations, flows, and loads on receiving waters by storm and by year. Unlike deterministic hydrologic models, SELDM is not calibrated by changing values of input variables to match a historical record of values. Instead, input values for SELDM are based on site characteristics and representative statistics for each hydrologic variable. Thus, SELDM is an empirical model based on data and statistics rather than theoretical physiochemical equations. SELDM is a lumped parameter model because the highway site, the upstream basin, and the lake basin each are represented as a single homogeneous unit. Each of these source areas is represented by average basin properties, and results from SELDM are calculated as point estimates for the site of interest. Use of the lumped parameter approach facilitates rapid specification of model parameters to develop planning-level estimates with available data. The approach allows for parsimony in the required inputs to and outputs from the model and flexibility in the use of the model. For example, SELDM can be used to model runoff from various land covers or land uses by using the highway-site definition as long as representative water quality and impervious-fraction data are available.

  2. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation

    PubMed Central

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation. PMID:26761487

  3. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    PubMed

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation. Our model is able to quantify the evolution of the assimilation because it characterizes the fitness consequences of variation.

  4. The individual tolerance concept is not the sole explanation for the probit dose-effect model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, M.C.; McCloskey, J.T.

    2000-02-01

    Predominant methods for analyzing dose- or concentration-effect data (i.e., probit analysis) are based on the concept of individual tolerance or individual effective dose (IED, the smallest characteristic dose needed to kill an individual). An alternative explanation (stochasticity hypothesis) is that individuals do not have unique tolerances: death results from stochastic processes occurring similarly in all individuals. These opposing hypotheses were tested with two types of experiments. First, time to stupefaction (TTS) was measured for zebra fish (Brachydanio rerio) exposed to benzocaine. The same 40 fish were exposed during five trials to test if the same order for TTS was maintainedmore » among trials. The IED hypothesis was supported with a minor stochastic component being present. Second, eastern mosquitofish (Gambusia holbrooki) were exposed to sublethal or lethal NaCl concentrations until a large portion of the lethally exposed fish died. After sufficient time for recovery, fish sublethally exposed and fish surviving lethal exposure were exposed simultaneously to lethal NaCl concentrations. No statistically significant effect was found of previous exposure on survival time but a large stochastic component to the survival dynamics was obvious. Repetition of this second type of test with pentachlorophenol also provided no support for the IED hypothesis. The authors conclude that neither hypothesis alone was the sole or dominant explanation for the lognormal (probit) model. Determination of the correct explanation (IED or stochastic) or the relative contributions of each is crucial to predicting consequences to populations after repeated or chronic exposures to any particular toxicant.« less

  5. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    NASA Astrophysics Data System (ADS)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  6. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  7. Climate Change and Human Disturbance Can Lead to Local Extinction of Alpine Rock Ptarmigan: New Insight from the Western Italian Alps

    PubMed Central

    Imperio, Simona; Bionda, Radames; Viterbi, Ramona; Provenzale, Antonello

    2013-01-01

    Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used) decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence. PMID:24260581

  8. Climate change and human disturbance can lead to local extinction of Alpine rock ptarmigan: new insight from the western Italian Alps.

    PubMed

    Imperio, Simona; Bionda, Radames; Viterbi, Ramona; Provenzale, Antonello

    2013-01-01

    Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used) decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence.

  9. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment II.

    PubMed

    Liu, Meng; Wang, Ke

    2010-12-07

    This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Metapopulation extinction risk: dispersal's duplicity.

    PubMed

    Higgins, Kevin

    2009-09-01

    Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation's extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation's extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation's extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation's extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation's extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation's extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.

  11. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spill, Fabian, E-mail: fspill@bu.edu; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Guerrero, Pilar

    2015-10-15

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and smallmore » in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.« less

  12. Stochastic empirical loading and dilution model for analysis of flows, concentrations, and loads of highway runoff constituents

    USGS Publications Warehouse

    Granato, Gregory E.; Jones, Susan C.

    2014-01-01

    In cooperation with FHWA, the U.S. Geological Survey developed the stochastic empirical loading and dilution model (SELDM) to supersede the 1990 FHWA runoff quality model. The SELDM tool is designed to transform disparate and complex scientific data into meaningful information about the adverse risks of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such measures for reducing such risks. The SELDM tool is easy to use because much of the information and data needed to run it are embedded in the model and obtained by defining the site location and five simple basin properties. Information and data from thousands of sites across the country were compiled to facilitate the use of the SELDM tool. A case study illustrates how to use the SELDM tool for conducting the types of sensitivity analyses needed to properly assess water quality risks. For example, the use of deterministic values to model upstream stormflows instead of representative variations in prestorm flow and runoff may substantially overestimate the proportion of highway runoff in downstream flows. Also, the risks for total phosphorus excursions are substantially affected by the selected criteria and the modeling methods used. For example, if a single deterministic concentration is used rather than a stochastic population of values to model upstream concentrations, then the percentage of water quality excursions in the downstream receiving waters may depend entirely on the selected upstream concentration.

  13. Strong self-limitation promotes the persistence of rare species.

    PubMed

    Yenni, Glenda; Adler, Peter B; Ernest, S K Morgan

    2012-03-01

    Theory has recognized a combination of niche and neutral processes each contributing, with varying importance, to species coexistence. However, long-term persistence of rare species has been difficult to produce in trait-based models of coexistence that incorporate stochastic dynamics, raising questions about how rare species persist despite such variability. Following recent evidence that rare species may experience significantly different population dynamics than dominant species, we use a plant community model to simulate the effect of disproportionately strong negative frequency dependence on the long-term persistence of the rare species in a simulated community. This strong self-limitation produces long persistence times for the rare competitors, which otherwise succumb quickly to stochastic extinction. The results suggest that the mechanism causing species to be rare in this case is the same mechanism allowing those species to persist.

  14. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  15. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-01

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars.

  16. Modeling heterogeneous responsiveness of intrinsic apoptosis pathway

    PubMed Central

    2013-01-01

    Background Apoptosis is a cell suicide mechanism that enables multicellular organisms to maintain homeostasis and to eliminate individual cells that threaten the organism’s survival. Dependent on the type of stimulus, apoptosis can be propagated by extrinsic pathway or intrinsic pathway. The comprehensive understanding of the molecular mechanism of apoptotic signaling allows for development of mathematical models, aiming to elucidate dynamical and systems properties of apoptotic signaling networks. There have been extensive efforts in modeling deterministic apoptosis network accounting for average behavior of a population of cells. Cellular networks, however, are inherently stochastic and significant cell-to-cell variability in apoptosis response has been observed at single cell level. Results To address the inevitable randomness in the intrinsic apoptosis mechanism, we develop a theoretical and computational modeling framework of intrinsic apoptosis pathway at single-cell level, accounting for both deterministic and stochastic behavior. Our deterministic model, adapted from the well-accepted Fussenegger model, shows that an additional positive feedback between the executioner caspase and the initiator caspase plays a fundamental role in yielding the desired property of bistability. We then examine the impact of intrinsic fluctuations of biochemical reactions, viewed as intrinsic noise, and natural variation of protein concentrations, viewed as extrinsic noise, on behavior of the intrinsic apoptosis network. Histograms of the steady-state output at varying input levels show that the intrinsic noise could elicit a wider region of bistability over that of the deterministic model. However, the system stochasticity due to intrinsic fluctuations, such as the noise of steady-state response and the randomness of response delay, shows that the intrinsic noise in general is insufficient to produce significant cell-to-cell variations at physiologically relevant level of molecular numbers. Furthermore, the extrinsic noise represented by random variations of two key apoptotic proteins, namely Cytochrome C and inhibitor of apoptosis proteins (IAP), is modeled separately or in combination with intrinsic noise. The resultant stochasticity in the timing of intrinsic apoptosis response shows that the fluctuating protein variations can induce cell-to-cell stochastic variability at a quantitative level agreeing with experiments. Finally, simulations illustrate that the mean abundance of fluctuating IAP protein is positively correlated with the degree of cellular stochasticity of the intrinsic apoptosis pathway. Conclusions Our theoretical and computational study shows that the pronounced non-genetic heterogeneity in intrinsic apoptosis responses among individual cells plausibly arises from extrinsic rather than intrinsic origin of fluctuations. In addition, it predicts that the IAP protein could serve as a potential therapeutic target for suppression of the cell-to-cell variation in the intrinsic apoptosis responsiveness. PMID:23875784

  17. Gompertzian stochastic model with delay effect to cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  18. A stochastic risk assessment for Eastern Europe and Central Asian countries for earthquakes

    NASA Astrophysics Data System (ADS)

    Daniell, James; Schaefer, Andreas; Toro, Joaquin; Murnane, Rick; Tijssen, Annegien; Simpson, Alanna; Saito, Keiko; Winsemius, Hessel; Ward, Philip

    2015-04-01

    This systematic assessment of earthquake risk for 33 countries in the ECA region was motivated by the interest of the World Bank and the Global Facility for Disaster Reduction and Recovery (GFDRR) in supporting Disaster Risk Management (DRM) efforts. They envisaged an exposure-based analysis that looked at the potential economic and/or social exposure of the populations of various countries to earthquake risk. Using a stochastic earthquake hazard model and historical catalogues, a unified earthquake catalogue was created for the 33 countries. A combined fault and background source model was created using data from many authors. The maximum magnitude and seismotectonic source zone discretization was undertaken using logic tree approaches. Site effects were taken into account on the basis of local topography and tectonic regime. Two approaches were used to calculate local ground motion - intensity prediction equations for MMI and a combination of GMPEs for stable and active settings. A 1km grid was used for analysis with aggregations of exposure quantified in terms of GDP and capital stock using disaggregated provincial analysis from CATDAT, as well as population data from Deltares. Vulnerability functions were calculated using socio-economic empirical functions derived by Daniell (2014) for the countries taking into account historical losses, seismic resistant code implementation and building typologies in each country. PML curves were created for each province in the 33 nations, through 3 methods; the 1st using direct historical values via the CATDAT Damaging Earthquakes Database; the 2nd using normalization procedures in order to provide a quick estimate of the historical record quantified in today's terms filling in gaps; and the 3rd being a traditional stochastic modelling approach over a period of 10,000 years taking all uncertainties into account. SSP projections of growth from the OECD were used to quantify the risk in 2010, 2030 and 2080 in order to examine future loss potential. Four loss metrics were quantified as PML curves - (1) Population affected in damaged areas (I>6), (2) GDP affected in damaged areas (I>6), (3) Deaths, (4) Economic Losses. The approach taken has large uncertainties, as with any stochastic earthquake risk analysis, and more detailed and refined analysis can be undertaken in any one of the countries, but the approach showed a ballpark figure for planning and development as well as a view as to expected losses where existing detailed models do not exist.

  19. Factors Influencing M.S.W. Students' Interest in Clinical Practice

    ERIC Educational Resources Information Center

    Perry, Robin

    2009-01-01

    This study utilizes linear and log-linear stochastic models to examine the impact that a variety of variables (including graduate education) have on M.S.W. students' desires to work in clinical practice. Data was collected biannually (between 1992 and 1998) from a complete population sample of all students entering and exiting accredited graduate…

  20. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics

    PubMed Central

    Wells, Konstans; Brook, Barry W.; Lacy, Robert C.; Mutze, Greg J.; Peacock, David E.; Sinclair, Ron G.; Schwensow, Nina; Cassey, Phillip; O'Hara, Robert B.; Fordham, Damien A.

    2015-01-01

    Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species. PMID:25566883

  1. Effective size of density-dependent two-sex populations: the effect of mating systems.

    PubMed

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2017-04-01

    How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.

  3. A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks

    PubMed Central

    Khammash, Mustafa

    2014-01-01

    Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed. PMID:24968191

  4. Parsing Social Network Survey Data from Hidden Populations Using Stochastic Context-Free Grammars

    PubMed Central

    Poon, Art F. Y.; Brouwer, Kimberly C.; Strathdee, Steffanie A.; Firestone-Cruz, Michelle; Lozada, Remedios M.; Kosakovsky Pond, Sergei L.; Heckathorn, Douglas D.; Frost, Simon D. W.

    2009-01-01

    Background Human populations are structured by social networks, in which individuals tend to form relationships based on shared attributes. Certain attributes that are ambiguous, stigmatized or illegal can create a ÔhiddenÕ population, so-called because its members are difficult to identify. Many hidden populations are also at an elevated risk of exposure to infectious diseases. Consequently, public health agencies are presently adopting modern survey techniques that traverse social networks in hidden populations by soliciting individuals to recruit their peers, e.g., respondent-driven sampling (RDS). The concomitant accumulation of network-based epidemiological data, however, is rapidly outpacing the development of computational methods for analysis. Moreover, current analytical models rely on unrealistic assumptions, e.g., that the traversal of social networks can be modeled by a Markov chain rather than a branching process. Methodology/Principal Findings Here, we develop a new methodology based on stochastic context-free grammars (SCFGs), which are well-suited to modeling tree-like structure of the RDS recruitment process. We apply this methodology to an RDS case study of injection drug users (IDUs) in Tijuana, México, a hidden population at high risk of blood-borne and sexually-transmitted infections (i.e., HIV, hepatitis C virus, syphilis). Survey data were encoded as text strings that were parsed using our custom implementation of the inside-outside algorithm in a publicly-available software package (HyPhy), which uses either expectation maximization or direct optimization methods and permits constraints on model parameters for hypothesis testing. We identified significant latent variability in the recruitment process that violates assumptions of Markov chain-based methods for RDS analysis: firstly, IDUs tended to emulate the recruitment behavior of their own recruiter; and secondly, the recruitment of like peers (homophily) was dependent on the number of recruits. Conclusions SCFGs provide a rich probabilistic language that can articulate complex latent structure in survey data derived from the traversal of social networks. Such structure that has no representation in Markov chain-based models can interfere with the estimation of the composition of hidden populations if left unaccounted for, raising critical implications for the prevention and control of infectious disease epidemics. PMID:19738904

  5. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.

    PubMed

    Mino, Hiroyuki; Grill, Warren M

    2002-06-01

    The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.

  6. Modeling stochasticity and robustness in gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  7. Consentaneous Agent-Based and Stochastic Model of the Financial Markets

    PubMed Central

    Gontis, Vygintas; Kononovicius, Aleksejus

    2014-01-01

    We are looking for the agent-based treatment of the financial markets considering necessity to build bridges between microscopic, agent based, and macroscopic, phenomenological modeling. The acknowledgment that agent-based modeling framework, which may provide qualitative and quantitative understanding of the financial markets, is very ambiguous emphasizes the exceptional value of well defined analytically tractable agent systems. Herding as one of the behavior peculiarities considered in the behavioral finance is the main property of the agent interactions we deal with in this contribution. Looking for the consentaneous agent-based and macroscopic approach we combine two origins of the noise: exogenous one, related to the information flow, and endogenous one, arising form the complex stochastic dynamics of agents. As a result we propose a three state agent-based herding model of the financial markets. From this agent-based model we derive a set of stochastic differential equations, which describes underlying macroscopic dynamics of agent population and log price in the financial markets. The obtained solution is then subjected to the exogenous noise, which shapes instantaneous return fluctuations. We test both Gaussian and q-Gaussian noise as a source of the short term fluctuations. The resulting model of the return in the financial markets with the same set of parameters reproduces empirical probability and spectral densities of absolute return observed in New York, Warsaw and NASDAQ OMX Vilnius Stock Exchanges. Our result confirms the prevalent idea in behavioral finance that herding interactions may be dominant over agent rationality and contribute towards bubble formation. PMID:25029364

  8. Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates

    NASA Astrophysics Data System (ADS)

    Chang, Zhengbo; Meng, Xinzhu; Lu, Xiao

    2017-04-01

    This paper presents a stochastic SIRS epidemic model with two different nonlinear incidence rates and double epidemic asymmetrical hypothesis, and we devote to develop a mathematical method to obtain the threshold of the stochastic epidemic model. We firstly investigate the boundness and extinction of the stochastic system. Furthermore, we use Ito's formula, the comparison theorem and some new inequalities techniques of stochastic differential systems to discuss persistence in mean of two diseases on three cases. The results indicate that stochastic fluctuations can suppress the disease outbreak. Finally, numerical simulations about different noise disturbance coefficients are carried out to illustrate the obtained theoretical results.

  9. Plant toxins and trophic cascades alter fire regime and succession on a boral forest landscape

    USGS Publications Warehouse

    Feng, Zhilan; Alfaro-Murillo, Jorge A.; DeAngelis, Donald L.; Schmidt, Jennifer; Barga, Matthew; Zheng, Yiqiang; Ahmad Tamrin, Muhammad Hanis B.; Olson, Mark; Glaser, Tim; Kielland, Knut; Chapin, F. Stuart; Bryant, John

    2012-01-01

    Two models were integrated in order to study the effect of plant toxicity and a trophic cascade on forest succession and fire patterns across a boreal landscape in central Alaska. One of the models, ALFRESCO, is a cellular automata model that stochastically simulates transitions from spruce dominated 1 km2 spatial cells to deciduous woody vegetation based on stochastic fires, and from deciduous woody vegetation to spruce based on age of the cell with some stochastic variation. The other model, the ‘toxin-dependent functional response’ model (TDFRM) simulates woody vegetation types with different levels of toxicity, an herbivore browser (moose) that can forage selectively on these types, and a carnivore (wolf) that preys on the herbivore. Here we replace the simple succession rules in each ALFRESCO cell by plant–herbivore–carnivore dynamics from TDFRM. The central hypothesis tested in the integrated model is that the herbivore, by feeding selectively on low-toxicity deciduous woody vegetation, speeds succession towards high-toxicity evergreens, like spruce. Wolves, by keeping moose populations down, can help slow the succession. Our results confirmed this hypothesis for the model calibrated to the Tanana floodplain of Alaska. We used the model to estimate the effects of different levels of wolf control. Simulations indicated that management reductions in wolf densities could reduce the mean time to transition from deciduous to spruce by more than 15 years, thereby increasing landscape flammability. The integrated model can be useful in estimating ecosystem impacts of wolf control and moose harvesting in central Alaska.

  10. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    NASA Technical Reports Server (NTRS)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend treatment gaps during radiotherapy, apart from decreasing the probability of eradicating the primary cancer, substantially increase the risk of later second cancers.

  11. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.

    PubMed

    Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H

    2006-11-15

    The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.

  12. Separating intrinsic from extrinsic fluctuations in dynamic biological systems

    PubMed Central

    Paulsson, Johan

    2011-01-01

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems. PMID:21730172

  13. Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

    PubMed

    Hilfinger, Andreas; Paulsson, Johan

    2011-07-19

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

  14. A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian

    2013-06-01

    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast-subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension-two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.

  15. Optimal growth entails risky localization in population dynamics

    NASA Astrophysics Data System (ADS)

    Gueudré, Thomas; Martin, David G.

    2018-03-01

    Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.

  16. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.

    PubMed

    Lejeune, Emma; Linder, Christian

    2018-06-01

    Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.

  17. Stochastic agent-based modeling of tuberculosis in Canadian Indigenous communities.

    PubMed

    Tuite, Ashleigh R; Gallant, Victor; Randell, Elaine; Bourgeois, Annie-Claude; Greer, Amy L

    2017-01-13

    In Canada, active tuberculosis (TB) disease rates remain disproportionately higher among the Indigenous population, especially among the Inuit in the north. We used mathematical modeling to evaluate how interventions might enhance existing TB control efforts in a region of Nunavut. We developed a stochastic, agent-based model of TB transmission that captured the unique household and community structure. Evaluated interventions included: (i) rapid treatment of active cases; (ii) rapid contact tracing; (iii) expanded screening programs for latent TB infection (LTBI); and (iv) reduced household density. The outcomes of interest were incident TB infections and total diagnosed active TB disease over a 10- year time period. Model-projected incidence in the absence of additional interventions was highly variable (range: 33-369 cases) over 10 years. Compared to the 'no additional intervention' scenario, reducing the time between onset of active TB disease and initiation of treatment reduced both the number of new TB infections (47% reduction, relative risk of TB = 0.53) and diagnoses of active TB disease (19% reduction, relative risk of TB = 0.81). Expanding general population screening was also projected to reduce the burden of TB, although these findings were sensitive to assumptions around the relative amount of transmission occurring outside of households. Other potential interventions examined in the model (school-based screening, rapid contact tracing, and reduced household density) were found to have limited effectiveness. In a region of northern Canada experiencing a significant TB burden, more rapid treatment initiation in active TB cases was the most impactful intervention evaluated. Mathematical modeling can provide guidance for allocation of limited resources in a way that minimizes disease transmission and protects population health.

  18. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty

    PubMed Central

    Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications. PMID:28961262

  19. Optimal exploitation strategies for an animal population in a stochastic serially correlated environment

    USGS Publications Warehouse

    Anderson, D.R.

    1974-01-01

    Optimal exploitation strategies were studied for an animal population in a stochastic, serially correlated environment. This is a general case and encompasses a number of important cases as simplifications. Data on the mallard (Anas platyrhynchos) were used to explore the exploitation strategies and test several hypotheses because relatively much is known concerning the life history and general ecology of this species and extensive empirical data are available for analysis. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. Desirable properties of an optimal exploitation strategy were defined. A mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. Both the literature and the analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, alternative hypotheses were formulated: (1) exploitation mortality represents a largely additive form of mortality, or (2 ) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. Assuming that exploitation is largely an additive force of mortality, optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slightly concave function of the environmental conditions. Optimal exploitation under this hypothesis tends to reduce the variance of the size of the population. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the breeding population. Environmental variables may be somewhat more important than the size of the breeding population to the production of young mallards. In contrast, the size of the breeding population appears to be more important in the exploitation process than is the state of the environment. The form of the exploitation strategy appears to be relatively insensitive to small changes in the production rate. In general, the relative importance of the size of the breeding population may decrease as fecundity increases. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, harvest rate, or designed to maintain a constant breeding population size is inefficient.

  20. Kinetic Network Study of the Diversity and Temperature Dependence of Trp-Cage Folding Pathways: Combining Transition Path Theory with Stochastic Simulations

    PubMed Central

    Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.

    2011-01-01

    We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways. PMID:21254767

  1. Kinetic network study of the diversity and temperature dependence of Trp-Cage folding pathways: combining transition path theory with stochastic simulations.

    PubMed

    Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M

    2011-02-17

    We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.

  2. The advantage of being slow: The quasi-neutral contact process.

    PubMed

    de Oliveira, Marcelo Martins; Dickman, Ronald

    2017-01-01

    According to the competitive exclusion principle, in a finite ecosystem, extinction occurs naturally when two or more species compete for the same resources. An important question that arises is: when coexistence is not possible, which mechanisms confer an advantage to a given species against the other(s)? In general, it is expected that the species with the higher reproductive/death ratio will win the competition, but other mechanisms, such as asymmetry in interspecific competition or unequal diffusion rates, have been found to change this scenario dramatically. In this work, we examine competitive advantage in the context of quasi-neutral population models, including stochastic models with spatial structure as well as macroscopic (mean-field) descriptions. We employ a two-species contact process in which the "biological clock" of one species is a factor of α slower than that of the other species. Our results provide new insights into how stochasticity and competition interact to determine extinction in finite spatial systems. We find that a species with a slower biological clock has an advantage if resources are limited, winning the competition against a species with a faster clock, in relatively small systems. Periodic or stochastic environmental variations also favor the slower species, even in much larger systems.

  3. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less

  4. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  5. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  6. Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise

    NASA Astrophysics Data System (ADS)

    Chen, Can; Kang, Yanmei

    2017-01-01

    A stochastic multi-strain SIS epidemic model is formulated by introducing Lévy noise into the disease transmission rate of each strain. First, we prove that the stochastic model admits a unique global positive solution, and, by the comparison theorem, we show that the solution remains within a positively invariant set almost surely. Next we investigate stochastic stability of the disease-free equilibrium, including stability in probability and pth moment asymptotic stability. Then sufficient conditions for persistence in the mean of the disease are established. Finally, based on an Euler scheme for Lévy-driven stochastic differential equations, numerical simulations for a stochastic two-strain model are carried out to verify the theoretical results. Moreover, numerical comparison results of the stochastic two-strain model and the deterministic version are also given. Lévy noise can cause the two strains to become extinct almost surely, even though there is a dominant strain that persists in the deterministic model. It can be concluded that the introduction of Lévy noise reduces the disease extinction threshold, which indicates that Lévy noise may suppress the disease outbreak.

  7. Stochastic dynamics of melt ponds and sea ice-albedo climate feedback

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.

  8. Effects of Stochastic Traffic Flow Model on Expected System Performance

    DTIC Science & Technology

    2012-12-01

    NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs

  9. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics.

    PubMed

    Helaers, Raphaël; Milinkovitch, Michel C

    2010-07-15

    The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org.

  10. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics

    PubMed Central

    2010-01-01

    Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org. PMID:20633263

  11. Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.

    PubMed

    Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M

    2016-12-01

    Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.

  12. Critical thresholds for eventual extinction in randomly disturbed population growth models.

    PubMed

    Peckham, Scott D; Waymire, Edward C; De Leenheer, Patrick

    2018-02-16

    This paper considers several single species growth models featuring a carrying capacity, which are subject to random disturbances that lead to instantaneous population reduction at the disturbance times. This is motivated in part by growing concerns about the impacts of climate change. Our main goal is to understand whether or not the species can persist in the long run. We consider the discrete-time stochastic process obtained by sampling the system immediately after the disturbances, and find various thresholds for several modes of convergence of this discrete process, including thresholds for the absence or existence of a positively supported invariant distribution. These thresholds are given explicitly in terms of the intensity and frequency of the disturbances on the one hand, and the population's growth characteristics on the other. We also perform a similar threshold analysis for the original continuous-time stochastic process, and obtain a formula that allows us to express the invariant distribution for this continuous-time process in terms of the invariant distribution of the discrete-time process, and vice versa. Examples illustrate that these distributions can differ, and this sends a cautionary message to practitioners who wish to parameterize these and related models using field data. Our analysis relies heavily on a particular feature shared by all the deterministic growth models considered here, namely that their solutions exhibit an exponentially weighted averaging property between a function of the initial condition, and the same function applied to the carrying capacity. This property is due to the fact that these systems can be transformed into affine systems.

  13. The relationship between stochastic and deterministic quasi-steady state approximations.

    PubMed

    Kim, Jae Kyoung; Josić, Krešimir; Bennett, Matthew R

    2015-11-23

    The quasi steady-state approximation (QSSA) is frequently used to reduce deterministic models of biochemical networks. The resulting equations provide a simplified description of the network in terms of non-elementary reaction functions (e.g. Hill functions). Such deterministic reductions are frequently a basis for heuristic stochastic models in which non-elementary reaction functions are used to define reaction propensities. Despite their popularity, it remains unclear when such stochastic reductions are valid. It is frequently assumed that the stochastic reduction can be trusted whenever its deterministic counterpart is accurate. However, a number of recent examples show that this is not necessarily the case. Here we explain the origin of these discrepancies, and demonstrate a clear relationship between the accuracy of the deterministic and the stochastic QSSA for examples widely used in biological systems. With an analysis of a two-state promoter model, and numerical simulations for a variety of other models, we find that the stochastic QSSA is accurate whenever its deterministic counterpart provides an accurate approximation over a range of initial conditions which cover the likely fluctuations from the quasi steady-state (QSS). We conjecture that this relationship provides a simple and computationally inexpensive way to test the accuracy of reduced stochastic models using deterministic simulations. The stochastic QSSA is one of the most popular multi-scale stochastic simulation methods. While the use of QSSA, and the resulting non-elementary functions has been justified in the deterministic case, it is not clear when their stochastic counterparts are accurate. In this study, we show how the accuracy of the stochastic QSSA can be tested using their deterministic counterparts providing a concrete method to test when non-elementary rate functions can be used in stochastic simulations.

  14. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model.

    PubMed

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional one appears to be illuminating.

  15. Stochastic Petri Net extension of a yeast cell cycle model.

    PubMed

    Mura, Ivan; Csikász-Nagy, Attila

    2008-10-21

    This paper presents the definition, solution and validation of a stochastic model of the budding yeast cell cycle, based on Stochastic Petri Nets (SPN). A specific family of SPNs is selected for building a stochastic version of a well-established deterministic model. We describe the procedure followed in defining the SPN model from the deterministic ODE model, a procedure that can be largely automated. The validation of the SPN model is conducted with respect to both the results provided by the deterministic one and the experimental results available from literature. The SPN model catches the behavior of the wild type budding yeast cells and a variety of mutants. We show that the stochastic model matches some characteristics of budding yeast cells that cannot be found with the deterministic model. The SPN model fine-tunes the simulation results, enriching the breadth and the quality of its outcome.

  16. Stochasticity and determinism in models of hematopoiesis.

    PubMed

    Kimmel, Marek

    2014-01-01

    This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.

  17. Turing patterns and a stochastic individual-based model for predator-prey systems

    NASA Astrophysics Data System (ADS)

    Nagano, Seido

    2012-02-01

    Reaction-diffusion theory has played a very important role in the study of pattern formations in biology. However, a group of individuals is described by a single state variable representing population density in reaction-diffusion models and interaction between individuals can be included only phenomenologically. Recently, we have seamlessly combined individual-based models with elements of reaction-diffusion theory. To include animal migration in the scheme, we have adopted a relationship between the diffusion and the random numbers generated according to a two-dimensional bivariate normal distribution. Thus, we have observed the transition of population patterns from an extinction mode, a stable mode, or an oscillatory mode to the chaotic mode as the population growth rate increases. We show our phase diagram of predator-prey systems and discuss the microscopic mechanism for the stable lattice formation in detail.

  18. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  19. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    PubMed Central

    2012-01-01

    Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662

  20. Hybrid ODE/SSA methods and the cell cycle model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  1. p-adic stochastic hidden variable model

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrew

    1998-03-01

    We propose stochastic hidden variables model in which hidden variables have a p-adic probability distribution ρ(λ) and at the same time conditional probabilistic distributions P(U,λ), U=A,A',B,B', are ordinary probabilities defined on the basis of the Kolmogorov measure-theoretical axiomatics. A frequency definition of p-adic probability is quite similar to the ordinary frequency definition of probability. p-adic frequency probability is defined as the limit of relative frequencies νn but in the p-adic metric. We study a model with p-adic stochastics on the level of the hidden variables description. But, of course, responses of macroapparatuses have to be described by ordinary stochastics. Thus our model describes a mixture of p-adic stochastics of the microworld and ordinary stochastics of macroapparatuses. In this model probabilities for physical observables are the ordinary probabilities. At the same time Bell's inequality is violated.

  2. Study on individual stochastic model of GNSS observations for precise kinematic applications

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  3. Colored-noise-induced discontinuous transitions in symbiotic ecosystems.

    PubMed

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [Phys. Rev. E 65, 051108 (2002)

  4. Full circumpolar migration ensures evolutionary unity in the Emperor penguin.

    PubMed

    Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J; Stenseth, Nils Chr; Trathan, Phil N; Whittington, Jason D; Zanetti, Enrico; Zitterbart, Daniel P; Le Bohec, Céline; Trucchi, Emiliano

    2016-06-14

    Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory.

  5. Full circumpolar migration ensures evolutionary unity in the Emperor penguin

    PubMed Central

    Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J.; Stenseth, Nils Chr; Trathan, Phil N.; Whittington, Jason D.; Zanetti, Enrico; Zitterbart, Daniel P.; Le Bohec, Céline; Trucchi, Emiliano

    2016-01-01

    Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory. PMID:27296726

  6. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.

  7. Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Valenti, Davide; Adorno, Dominique Persano; Spagnolo, Bernardo

    2009-09-01

    The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.

  8. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios.

    PubMed

    Hoppe, Philipp S; Schwarzfischer, Michael; Loeffler, Dirk; Kokkaliaris, Konstantinos D; Hilsenbeck, Oliver; Moritz, Nadine; Endele, Max; Filipczyk, Adam; Gambardella, Adriana; Ahmed, Nouraiz; Etzrodt, Martin; Coutu, Daniel L; Rieger, Michael A; Marr, Carsten; Strasser, Michael K; Schauberger, Bernhard; Burtscher, Ingo; Ermakova, Olga; Bürger, Antje; Lickert, Heiko; Nerlov, Claus; Theis, Fabian J; Schroeder, Timm

    2016-07-14

    The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.

  9. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    ERIC Educational Resources Information Center

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  10. Some Stochastic-Duel Models of Combat.

    DTIC Science & Technology

    1983-03-01

    AD-R127 879 SOME STOCHASTIC- DUEL MODELS OF CONBAT(U) NAVAL - / POSTGRADUATE SCHOOL MONTEREY CA J S CHOE MAR 83 UNCLASSiIED FC1/Ehhh1; F/ 12/ ,iE...SCHOOL Monterey, California DTIC ELECTE :MAY 10 1983 "T !H ES IS SOME STOCHASTIC- DUEL MODELS OF COMBAT by Jum Soo Choe March 1983 Thesis Advisor: J. G...TYPE OF RETORT a PERIOD COVIOCe Master’s Thesis Some Stochastic- Duel Models of Combat March 1983 S. PERFORINGi *no. 44POOi umet 7. AUTHORW.) a

  11. Stochastic population dynamics under resource constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavane, Ajinkya S., E-mail: ajinkyagavane@gmail.com; Nigam, Rahul, E-mail: rahul.nigam@hyderabad.bits-pilani.ac.in

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations formore » such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.« less

  12. Fisher-Wright model with deterministic seed bank and selection.

    PubMed

    Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel

    2017-04-01

    Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  15. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  16. A spatial stochastic programming model for timber and core area management under risk of stand-replacing fire

    Treesearch

    Dung Tuan Nguyen

    2012-01-01

    Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...

  17. A spatial stochastic programming model for timber and core area management under risk of fires

    Treesearch

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  18. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.

    2015-07-01

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  19. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  20. IBSEM: An Individual-Based Atlantic Salmon Population Model.

    PubMed

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.

Top