Sample records for stochastic process amenable

  1. Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style

    NASA Astrophysics Data System (ADS)

    Hillston, Jane; Duguid, Adam

    The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.

  2. Analytical techniques for the study of some parameters of multispectral scanner systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Wiswell, E. R.; Cooper, G. R. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The concept of average mutual information in the received spectral random process about the spectral scene was developed. Techniques amenable to implementation on a digital computer were also developed to make the required average mutual information calculations. These techniques required identification of models for the spectral response process of scenes. Stochastic modeling techniques were adapted for use. These techniques were demonstrated on empirical data from wheat and vegetation scenes.

  3. Short Term Rain Prediction For Sustainability of Tanks in the Tropic Influenced by Shadow Rains

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2007-07-01

    Rainfall and flow prediction, adapting the Venkataraman single time series approach and Wiener multiple time series approach were conducted for Aralikottai tank system, and Kothamangalam tank system, Tamilnadu, India. The results indicated that the raw prediction of daily values is closer to actual values than trend identified predictions. The sister seasonal time series were more amenable for prediction than whole parent time series. Venkataraman single time approach was more suited for rainfall prediction. Wiener approach proved better for daily prediction of flow based on rainfall. The major conclusion is that the sister seasonal time series of rain and flow have their own identities even though they form part of the whole parent time series. Further studies with other tropical small watersheds are necessary to establish this unique characteristic of independent but not exclusive behavior of seasonal stationary stochastic processes as compared to parent non stationary stochastic processes.

  4. Accelerating the Gillespie Exact Stochastic Simulation Algorithm using hybrid parallel execution on graphics processing units.

    PubMed

    Komarov, Ivan; D'Souza, Roshan M

    2012-01-01

    The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.

  5. Computer Simulation of Biological Ageing-A Bird's-Eye View

    NASA Astrophysics Data System (ADS)

    Dasgupta, Subinay

    For living organisms, the process of ageing consists of acquiring good and bad genetic mutations, which increase and decrease (respectively) the survival probability. When a child is born, the hereditary mutations of the parents are transmitted to the offspring. Such stochastic processes seem to be amenable to computer simulation. Over the last 10 years, simulation studies of this sort have been done in different parts of the globe to explain ageing. The objective of these studies have been to attempt an explanation of demographic data and of natural phenomena like preference of nature to the process of sexual reproduction (in comparison to the process of asexual reproduction). Here we shall attempt to discuss briefly the principles and the results of these works, with an emphasis on what is called Penna bit-string model.

  6. Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Ray, Laura R.

    1991-01-01

    A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluations of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variation. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation.

  7. The social costs of homeowner decisions in fire-prone communities: information, insurance, and amenities

    Treesearch

    Gwenlyn Busby; Gregory S. Amacher; Robert G. Haight

    2013-01-01

    In this article, we consider wildfire risk management decisions using a dynamic stochastic model of homeowner interaction in a setting where spatial externalities arise. Our central objective is to apply observations from the social science literature about homeowner preferences to this economic externality problem and determine how assumptions about insurance,...

  8. Public versus Private: Evidence on Health Insurance Selection

    PubMed Central

    Pardo, Cristian; Schott, Whitney

    2012-01-01

    This paper models health insurance choice in Chile (public versus private) as a dynamic, stochastic process, where individuals consider premiums, expected out-of pocket costs, personal characteristics and preferences. Insurance amenities and restrictions against pre-existing conditions among private insurers introduce asymmetry to the model. We confirm that the public system services a less healthy and wealthy population (adverse selection for public insurance). Simulation of choices over time predicts a slight crowding out of private insurance only for the most pessimistic scenario in terms of population aging and the evolution of education. Eliminating the restrictions on pre-existing conditions would slightly ameliorate the level (but not the trend) of the disproportionate accumulation of less healthy individuals in the public insurance program over time. PMID:22374192

  9. Stochastic spectral projection of electrochemical thermal model for lithium-ion cell state estimation

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin

    2017-03-01

    A novel approach for integrating a pseudo-two dimensional electrochemical thermal (P2D-ECT) model and data assimilation algorithm is presented for lithium-ion cell state estimation. This approach refrains from making any simplifications in the P2D-ECT model while making it amenable for online state estimation. Though deterministic, uncertainty in the initial states induces stochasticity in the P2D-ECT model. This stochasticity is resolved by spectrally projecting the stochastic P2D-ECT model on a set of orthogonal multivariate Hermite polynomials. Volume averaging in the stochastic dimensions is proposed for efficient numerical solution of the resultant model. A state estimation framework is developed using a transformation of the orthogonal basis to assimilate the measurables with this system of equations. Effectiveness of the proposed method is first demonstrated by assimilating the cell voltage and temperature data generated using a synthetic test bed. This validated method is used with the experimentally observed cell voltage and temperature data for state estimation at different operating conditions and drive cycle protocols. The results show increased prediction accuracy when the data is assimilated every 30s. High accuracy of the estimated states is exploited to infer temperature dependent behavior of the lithium-ion cell.

  10. A Drosophila Toolkit for the Visualization and Quantification of Viral Replication Launched from Transgenic Genomes

    PubMed Central

    Wernet, Mathias F.; Klovstad, Martha; Clandinin, Thomas R.

    2014-01-01

    Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes (‘replicons’) from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated ‘in trans’, through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to ‘superinfection exclusion’ between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development. PMID:25386852

  11. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    PubMed

    Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2013-01-01

    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  12. Simple stochastic model for El Niño with westerly wind bursts

    PubMed Central

    Thual, Sulian; Majda, Andrew J.; Chen, Nan; Stechmann, Samuel N.

    2016-01-01

    Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between wind burst activity and the ENSO. PMID:27573821

  13. Parallel discrete-event simulation of FCFS stochastic queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  14. Dynamic rain fade compensation techniques for the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.

  15. Basis function models for animal movement

    USGS Publications Warehouse

    Hooten, Mevin B.; Johnson, Devin S.

    2017-01-01

    Advances in satellite-based data collection techniques have served as a catalyst for new statistical methodology to analyze these data. In wildlife ecological studies, satellite-based data and methodology have provided a wealth of information about animal space use and the investigation of individual-based animal–environment relationships. With the technology for data collection improving dramatically over time, we are left with massive archives of historical animal telemetry data of varying quality. While many contemporary statistical approaches for inferring movement behavior are specified in discrete time, we develop a flexible continuous-time stochastic integral equation framework that is amenable to reduced-rank second-order covariance parameterizations. We demonstrate how the associated first-order basis functions can be constructed to mimic behavioral characteristics in realistic trajectory processes using telemetry data from mule deer and mountain lion individuals in western North America. Our approach is parallelizable and provides inference for heterogenous trajectories using nonstationary spatial modeling techniques that are feasible for large telemetry datasets. Supplementary materials for this article are available online.

  16. Mean, covariance, and effective dimension of stochastic distributed delay dynamics

    NASA Astrophysics Data System (ADS)

    René, Alexandre; Longtin, André

    2017-11-01

    Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.

  17. Space-time-modulated stochastic processes

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  18. Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds.

    PubMed

    Pineda, Angel R; Barrett, Harrison H

    2004-02-01

    The current paradigm for evaluating detectors in digital radiography relies on Fourier methods. Fourier methods rely on a shift-invariant and statistically stationary description of the imaging system. The theoretical justification for the use of Fourier methods is based on a uniform background fluence and an infinite detector. In practice, the background fluence is not uniform and detector size is finite. We study the effect of stochastic blurring and structured backgrounds on the correlation between Fourier-based figures of merit and Hotelling detectability. A stochastic model of the blurring leads to behavior similar to what is observed by adding electronic noise to the deterministic blurring model. Background structure does away with the shift invariance. Anatomical variation makes the covariance matrix of the data less amenable to Fourier methods by introducing long-range correlations. It is desirable to have figures of merit that can account for all the sources of variation, some of which are not stationary. For such cases, we show that the commonly used figures of merit based on the discrete Fourier transform can provide an inaccurate estimate of Hotelling detectability.

  19. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com; Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr; Çelik, Nuri, E-mail: ncelik@bartin.edu.tr

    2016-04-18

    The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.

  20. A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space

    NASA Astrophysics Data System (ADS)

    Adkins, T.; Schekochihin, A. A.

    2018-02-01

    A class of simple kinetic systems is considered, described by the one-dimensional Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are -3/2$ at low wavenumbers and high Hermite moments ( ) and -1/2k-2$ at low Hermite moments and high wavenumbers ( ). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.

  1. Quantum stochastic calculus associated with quadratic quantum noises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculusmore » extends the Hudson-Parthasarathy quantum stochastic calculus.« less

  2. Occupants' Perceptions of Amenity and Efficiency for Verification of Spatial Design Adequacy.

    PubMed

    Lee, Sangwon; Wohn, Kwangyun

    2016-01-14

    The best spatial design condition to satisfy the occupancy needs of amenity and efficiency is determined through analyzing the spatial design adequacy (SDA). In this study, the relationship between the space design elements and space on future occupants' perception are analyzed. The thirty-three participants reported their self-evaluated SDA that describes the quality of eight alternative housing living rooms with different spatial factors. The occupants were guided through the perception processing elaboration in order for them to evaluate the actual perception in the real space. The findings demonstrated that the spatial size (e.g., width, depth, and height) is significantly correlated with the overall satisfaction of amenity. It is also found that the spatial shape (e.g., the width-to-depth ratio, the height-to-area ratio, and room shape) may significantly influence the overall satisfaction of efficiency. The findings also demonstrate that the causal relationship between the spatial factors and space is clearly present in the occupants' perception, reflecting the time-sequential characteristics of the actual experience divided into amenity and efficiency. This result indicates that the correlation between the spatial factors and space of SDA under the occupants' perception processing elaboration can be a useful guide to predict the occupancy satisfaction of amenity and efficiency in real spaces.

  3. Occupants’ Perceptions of Amenity and Efficiency for Verification of Spatial Design Adequacy

    PubMed Central

    Lee, Sangwon; Wohn, Kwangyun

    2016-01-01

    The best spatial design condition to satisfy the occupancy needs of amenity and efficiency is determined through analyzing the spatial design adequacy (SDA). In this study, the relationship between the space design elements and space on future occupants’ perception are analyzed. The thirty-three participants reported their self-evaluated SDA that describes the quality of eight alternative housing living rooms with different spatial factors. The occupants were guided through the perception processing elaboration in order for them to evaluate the actual perception in the real space. The findings demonstrated that the spatial size (e.g., width, depth, and height) is significantly correlated with the overall satisfaction of amenity. It is also found that the spatial shape (e.g., the width-to-depth ratio, the height-to-area ratio, and room shape) may significantly influence the overall satisfaction of efficiency. The findings also demonstrate that the causal relationship between the spatial factors and space is clearly present in the occupants’ perception, reflecting the time-sequential characteristics of the actual experience divided into amenity and efficiency. This result indicates that the correlation between the spatial factors and space of SDA under the occupants’ perception processing elaboration can be a useful guide to predict the occupancy satisfaction of amenity and efficiency in real spaces. PMID:26784211

  4. Boosting Bayesian parameter inference of stochastic differential equation models with methods from statistical physics

    NASA Astrophysics Data System (ADS)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.

  5. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension.

    PubMed

    Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung

    2012-09-04

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.

  6. Stochastic models for inferring genetic regulation from microarray gene expression data.

    PubMed

    Tian, Tianhai

    2010-03-01

    Microarray expression profiles are inherently noisy and many different sources of variation exist in microarray experiments. It is still a significant challenge to develop stochastic models to realize noise in microarray expression profiles, which has profound influence on the reverse engineering of genetic regulation. Using the target genes of the tumour suppressor gene p53 as the test problem, we developed stochastic differential equation models and established the relationship between the noise strength of stochastic models and parameters of an error model for describing the distribution of the microarray measurements. Numerical results indicate that the simulated variance from stochastic models with a stochastic degradation process can be represented by a monomial in terms of the hybridization intensity and the order of the monomial depends on the type of stochastic process. The developed stochastic models with multiple stochastic processes generated simulations whose variance is consistent with the prediction of the error model. This work also established a general method to develop stochastic models from experimental information. 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Cox process representation and inference for stochastic reaction-diffusion processes

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Grima, Ramon; Sanguinetti, Guido

    2016-05-01

    Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.

  8. Feynman-Kac formula for stochastic hybrid systems.

    PubMed

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  9. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  10. Stochastic Community Assembly: Does It Matter in Microbial Ecology?

    PubMed

    Zhou, Jizhong; Ning, Daliang

    2017-12-01

    Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.

  11. Langevin equation versus kinetic equation: Subdiffusive behavior of charged particles in a stochastic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Wang, H.; Misguich, J.H.

    1994-12-01

    The running diffusion coefficient [ital D]([ital t]) is evaluated for a system of charged particles undergoing the effect of a fluctuating magnetic field and of their mutual collisions. The latter coefficient can be expressed either in terms of the mean square displacement (MSD) of a test particle, or in terms of a correlation between a fluctuating distribution function and the magnetic field fluctuation. In the first case a stochastic differential equation of Langevin type for the position of a test particle must be solved; the second problem requires the determination of the distribution function from a kinetic equation. Using suitablemore » simplifications, both problems are amenable to exact analytic solution. The conclusion is that the equivalence of the two approaches is by no means automatically guaranteed. A new type of object, the hybrid kinetic equation'' is constructed: it automatically ensures the equivalence with the Langevin results. The same conclusion holds for the generalized Fokker--Planck equation. The (Bhatnagar--Gross--Krook) (BGK) model for the collisions yields a completely wrong result. A linear approximation to the hybrid kinetic equation yields an inexact behavior, but represents an acceptable approximation in the strongly collisional limit.« less

  12. Stochastic architecture for Hopfield neural nets

    NASA Technical Reports Server (NTRS)

    Pavel, Sandy

    1992-01-01

    An expandable stochastic digital architecture for recurrent (Hopfield like) neural networks is proposed. The main features and basic principles of stochastic processing are presented. The stochastic digital architecture is based on a chip with n full interconnected neurons with a pipeline, bit processing structure. For large applications, a flexible way to interconnect many such chips is provided.

  13. Doubly stochastic Poisson processes in artificial neural learning.

    PubMed

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  14. A Stochastic Diffusion Process for the Dirichlet Distribution

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2013-03-01

    The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability ofNcoupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener processes in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating ensemble ofNvariables subject to a conservation principle.more » Similar to the multivariate Wright-Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution.« less

  15. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    PubMed

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  16. Structure and Randomness of Continuous-Time, Discrete-Event Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2017-10-01

    Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.

  17. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    NASA Technical Reports Server (NTRS)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  18. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  19. Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding

    NASA Astrophysics Data System (ADS)

    Susemihl, Alex; Meir, Ron; Opper, Manfred

    2013-03-01

    Neurons in the nervous system convey information to higher brain regions by the generation of spike trains. An important question in the field of computational neuroscience is how these sensory neurons encode environmental information in a way which may be simply analyzed by subsequent systems. Many aspects of the form and function of the nervous system have been understood using the concepts of optimal population coding. Most studies, however, have neglected the aspect of temporal coding. Here we address this shortcoming through a filtering theory of inhomogeneous Poisson processes. We derive exact relations for the minimal mean squared error of the optimal Bayesian filter and, by optimizing the encoder, obtain optimal codes for populations of neurons. We also show that a class of non-Markovian, smooth stimuli are amenable to the same treatment, and provide results for the filtering and prediction error which hold for a general class of stochastic processes. This sets a sound mathematical framework for a population coding theory that takes temporal aspects into account. It also formalizes a number of studies which discussed temporal aspects of coding using time-window paradigms, by stating them in terms of correlation times and firing rates. We propose that this kind of analysis allows for a systematic study of temporal coding and will bring further insights into the nature of the neural code.

  20. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granita, E-mail: granitafc@gmail.com; Bahar, A.

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  1. Interrupted monitoring of a stochastic process

    NASA Technical Reports Server (NTRS)

    Palmer, E.

    1977-01-01

    Normative strategies are developed for tasks where the pilot must interrupt his monitoring of a stochastic process in order to attend to other duties. Results are given as to how characteristics of the stochastic process and the other tasks affect the optimal strategies. The optimum strategy is also compared to the strategies used by subjects in a pilot experiment.

  2. An estimator for the relative entropy rate of path measures for stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opper, Manfred, E-mail: manfred.opper@tu-berlin.de

    2017-02-01

    We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.

  3. Proximity to natural amenities: A seemingly unrelated hedonic regression model with spatial durbin and spatial error processes

    Treesearch

    German M. Izon; Michael S. Hand; Daniel W. Mccollum; Jennifer A. Thacher; Robert P. Berrens

    2016-01-01

    The existing literature suggests that the presence of natural amenities, such as open spaces, can be highly valued and affect economic decisions about where people live and work. This article contributes to previous research by testing this hypothesis using a unique micro-level data set and by examining spatial variations in income levels and housing prices in the...

  4. Stochastic Nature in Cellular Processes

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Liu, Sheng-Jun; Wang, Qi; Yan, Shi-Wei; Geng, Yi-Zhao; Sakata, Fumihiko; Gao, Xing-Fa

    2011-11-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  5. Distributed parallel computing in stochastic modeling of groundwater systems.

    PubMed

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  6. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    PubMed Central

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  7. Stochastic Processes in Physics: Deterministic Origins and Control

    NASA Astrophysics Data System (ADS)

    Demers, Jeffery

    Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.

  8. Stochasticity in materials structure, properties, and processing—A review

    NASA Astrophysics Data System (ADS)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  9. Stochastic modelling of microstructure formation in solidification processes

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu; Stefanescu, Doru M.

    1997-07-01

    To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'

  10. Feasibility tests for treating shampoo and hair colorant wastewaters using anaerobic processes.

    PubMed

    Ahammad, Shaikh Z; Yakubu, A; Dolfing, J; Mota, C; Graham, D W

    2012-01-01

    Wastes from the personal care product (PCP) industry are often high in biodegradable carbon, which makes them amenable to aerobic biological treatment, although process costs are usually high due to aeration inefficiencies, high electricity demand and production of large amounts of sludge. As such, anaerobic treatment technologies are being considered to lower net energy costs by reducing air use and increasing methane production. To assess the amenability of PCP wastes to anaerobic treatment, methane yields and rates were quantified in different anaerobic reactors treating typical PCP wastes, including wastes from shampoo and hair colorant products. Overall, shampoo wastes were more amenable to methanogenesis with almost double the methane yields compared with colour wastes. To assess relevant microbial guilds, qPCR was performed on reactor biomass samples. Methanosaetaceae abundances were always significantly higher than Methanosarcinaceae and Methanomicrobiales abundances (P < 0.05), and did not differ significantly between waste types. Although colour wastes were less amenable to anaerobic treatment than shampoo wastes, differences cannot be explained by relative microbial abundances and probably result from the presence of inhibiting compounds in hair colorants (e.g., oxidants) at higher levels. Results showed that anaerobic technologies have great potential for treating PCP wastes, but additional work is needed to establish the basis of elevated methane yields and inhibition, especially when colorant wastes are present.

  11. Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong

    The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.

  12. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    ERIC Educational Resources Information Center

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  13. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    PubMed

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  14. Effect of nonlinear friction on the motion of an object on solid surface induced by external vibration

    NASA Astrophysics Data System (ADS)

    Gooh Pattader, Partho Sarathi

    There are enumerable examples of natural processes which fall in the class of non-equilibrium stochastic dynamics. In the literature it is prescribed that such a process can be described completely using transition probability that satisfy the Fokker Planck equation. The analytical solutions of transition probability density function are difficult to obtain and are available for linear systems along with few first order nonlinear systems. We studied such nonlinear stochastic systems and tried to identify the important parameters associated with the dynamics and energy dissipative mechanism using statistical tools. We present experimental study of macroscopic systems driven away far from equilibrium with an applied bias and external mechanical noise. This includes sliding of small solid object, gliding of a liquid drop or a rolling of a rigid sphere. We demonstrated that the displacement statistics are non-Gaussian at short observation time, but they tend towards a Gaussian behavior at long time scale. We also found that, the drift velocity increases sub-linearly, but the diffusivity increases super-linearly with the strength of the noise. These observations reflect that the underlying non-linear friction controls the stochastic dynamics in each of these cases. We established a new statistical approach to determine the underlying friction law and identified the operating range of linear and nonlinear friction regime. In all these experiments source of the noise and the origin of the energy dissipation mechanism (i.e. friction) are decoupled. Naturally question arises whether the stochastic dynamics of these athermal systems are amenable to Einstein's Fluctuation dissipation theorem which is valid strictly for a closed thermodynamic system. We addressed these issues by comparing Einstein's ratio of Diffusivity and mobility which are measurable quantities in our experimental systems. As all our experimental systems exhibit substantial negative fluctuations of displacement that diminishes with observation time scale, we used another approach of integrated fluctuation theorem to identify athermal temperature of the system by characterizing a persistence time of negative fluctuations in terms of the measurable quantity. Specific experiments have also been designed to study the crossing of a small object over a physical barrier assisted by an external noise and a bias force. These results mimic the classical Arrhenius behavior from which another effective temperature may be deduced. All these studies confer that the nonlinear system does not possess any unique temperature. Detachment of a solid sphere as well as a liquid drop from a structured rubber surface during subcritical motion in presence of external noise was examined in the light of Arrhenius' activated rate equation. Drift velocity of small drops of water-glycerin solution behaves nonlinearly with viscosity which is reminiscence of Kramers' turn over theory of activated rate. In a designed experiment of barrier crossing of liquid drops we satisfactorily verified the Kramers' formalism of activated rate at the low friction limit.

  15. BACKWARD ESTIMATION OF STOCHASTIC PROCESSES WITH FAILURE EVENTS AS TIME ORIGINS1

    PubMed Central

    Gary Chan, Kwun Chuen; Wang, Mei-Cheng

    2011-01-01

    Stochastic processes often exhibit sudden systematic changes in pattern a short time before certain failure events. Examples include increase in medical costs before death and decrease in CD4 counts before AIDS diagnosis. To study such terminal behavior of stochastic processes, a natural and direct way is to align the processes using failure events as time origins. This paper studies backward stochastic processes counting time backward from failure events, and proposes one-sample nonparametric estimation of the mean of backward processes when follow-up is subject to left truncation and right censoring. We will discuss benefits of including prevalent cohort data to enlarge the identifiable region and large sample properties of the proposed estimator with related extensions. A SEER–Medicare linked data set is used to illustrate the proposed methodologies. PMID:21359167

  16. Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case

    NASA Astrophysics Data System (ADS)

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.

    2010-06-01

    Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.

  17. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    NASA Astrophysics Data System (ADS)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  18. Stochastic foundations of undulatory transport phenomena: generalized Poisson-Kac processes—part III extensions and applications to kinetic theory and transport

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-08-01

    This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.

  19. Adiabatic reduction of a model of stochastic gene expression with jump Markov process.

    PubMed

    Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C

    2014-04-01

    This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.

  20. Stochastic switching in biology: from genotype to phenotype

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2017-03-01

    There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1-1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reactions. One of the major consequences of molecular noise is the occurrence of stochastic biological switching at both the genotypic and phenotypic levels. For example, individual gene regulatory networks can switch between graded and binary responses, exhibit translational/transcriptional bursting, and support metastability (noise-induced switching between states that are stable in the deterministic limit). If random switching persists at the phenotypic level then this can confer certain advantages to cell populations growing in a changing environment, as exemplified by bacterial persistence in response to antibiotics. Gene expression at the single-cell level can also be regulated by changes in cell density at the population level, a process known as quorum sensing. In contrast to noise-driven phenotypic switching, the switching mechanism in quorum sensing is stimulus-driven and thus noise tends to have a detrimental effect. A common approach to modeling stochastic gene expression is to assume a large but finite system and to approximate the discrete processes by continuous processes using a system-size expansion. However, there is a growing need to have some familiarity with the theory of stochastic processes that goes beyond the standard topics of chemical master equations, the system-size expansion, Langevin equations and the Fokker-Planck equation. Examples include stochastic hybrid systems (piecewise deterministic Markov processes), large deviations and the Wentzel-Kramers-Brillouin (WKB) method, adiabatic reductions, and queuing/renewal theory. The major aim of this review is to provide a self-contained survey of these mathematical methods, mainly within the context of biological switching processes at both the genotypic and phenotypic levels. However, applications to other examples of biological switching are also discussed, including stochastic ion channels, diffusion in randomly switching environments, bacterial chemotaxis, and stochastic neural networks.

  1. Accelerated probabilistic inference of RNA structure evolution

    PubMed Central

    Holmes, Ian

    2005-01-01

    Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387

  2. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  3. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2017-04-01

    How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.

  4. A stochastic hybrid systems based framework for modeling dependent failure processes

    PubMed Central

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313

  5. A stochastic hybrid systems based framework for modeling dependent failure processes.

    PubMed

    Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying

    2017-01-01

    In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.

  6. Uncertainty Reduction for Stochastic Processes on Complex Networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Castellano, Claudio

    2018-05-01

    Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.

  7. Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities.

    PubMed

    Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T

    2017-05-03

    One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.

  8. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  9. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  10. Gene regulation and noise reduction by coupling of stochastic processes.

    PubMed

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  11. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  12. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo

    PubMed Central

    Golightly, Andrew; Wilkinson, Darren J.

    2011-01-01

    Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583

  13. Stochastic Calculus and Differential Equations for Physics and Finance

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2013-02-01

    1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.

  14. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Treesearch

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  15. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  16. A stochastic maximum principle for backward control systems with random default time

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Kuen Siu, Tak

    2013-05-01

    This paper establishes a necessary and sufficient stochastic maximum principle for backward systems, where the state processes are governed by jump-diffusion backward stochastic differential equations with random default time. An application of the sufficient stochastic maximum principle to an optimal investment and capital injection problem in the presence of default risk is discussed.

  17. Stochastic associative memory

    NASA Astrophysics Data System (ADS)

    Baumann, Erwin W.; Williams, David L.

    1993-08-01

    Artificial neural networks capable of learning and recalling stochastic associations between non-deterministic quantities have received relatively little attention to date. One potential application of such stochastic associative networks is the generation of sensory 'expectations' based on arbitrary subsets of sensor inputs to support anticipatory and investigate behavior in sensor-based robots. Another application of this type of associative memory is the prediction of how a scene will look in one spectral band, including noise, based upon its appearance in several other wavebands. This paper describes a semi-supervised neural network architecture composed of self-organizing maps associated through stochastic inter-layer connections. This 'Stochastic Associative Memory' (SAM) can learn and recall non-deterministic associations between multi-dimensional probability density functions. The stochastic nature of the network also enables it to represent noise distributions that are inherent in any true sensing process. The SAM architecture, training process, and initial application to sensor image prediction are described. Relationships to Fuzzy Associative Memory (FAM) are discussed.

  18. Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces

    NASA Astrophysics Data System (ADS)

    Vacaru, S. I.

    2012-03-01

    We develop an approach to the theory of nonholonomic relativistic stochastic processes in curved spaces. The Itô and Stratonovich calculus are formulated for spaces with conventional horizontal (holonomic) and vertical (nonholonomic) splitting defined by nonlinear connection structures. Geometric models of the relativistic diffusion theory are elaborated for nonholonomic (pseudo) Riemannian manifolds and phase velocity spaces. Applying the anholonomic deformation method, the field equations in Einstein's gravity and various modifications are formally integrated in general forms, with generic off-diagonal metrics depending on some classes of generating and integration functions. Choosing random generating functions we can construct various classes of stochastic Einstein manifolds. We show how stochastic gravitational interactions with mixed holonomic/nonholonomic and random variables can be modelled in explicit form and study their main geometric and stochastic properties. Finally, the conditions when non-random classical gravitational processes transform into stochastic ones and inversely are analyzed.

  19. Modelling and mitigating refractive propagation effects in precision pulsar timing observations

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Cordes, J. M.

    2017-01-01

    To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.

  20. An R package for the design, analysis and operation of reservoir systems

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Ng, Jia Yi; Galelli, Stefano

    2016-04-01

    We present a new R package - named "reservoir" - which has been designed for rapid and easy routing of runoff through storage. The package comprises well-established tools for capacity design (e.g., the sequent peak algorithm), performance analysis (storage-yield-reliability and reliability-resilience-vulnerability analysis) and release policy optimization (Stochastic Dynamic Programming). Operating rules can be optimized for water supply, flood control and amenity objectives, as well as for maximum hydropower production. Storage-depth-area relationships are in-built, allowing users to incorporate evaporation from the reservoir surface. We demonstrate the capabilities of the software for global studies using thousands of reservoirs from the Global Reservoir and Dam (GRanD) database fed by historical monthly inflow time series from a 0.5 degree gridded global runoff dataset. The package is freely available through the Comprehensive R Archive Network (CRAN).

  1. Fluctuation theorem: A critical review

    NASA Astrophysics Data System (ADS)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  2. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  3. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  4. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  5. Analyzing long-term correlated stochastic processes by means of recurrence networks: Potentials and pitfalls

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Donner, Reik V.; Kurths, Jürgen

    2015-02-01

    Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm [Liu et al. Phys. Rev. E 89, 032814 (2014), 10.1103/PhysRevE.89.032814] are mainly due to an inappropriate treatment disregarding the intrinsic nonstationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve RN properties for nonstationary stochastic processes like fBm.

  6. Producing Quantum Dots by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  7. Evolution with Stochastic Fitness and Stochastic Migration

    PubMed Central

    Rice, Sean H.; Papadopoulos, Anthony

    2009-01-01

    Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580

  8. ? filtering for stochastic systems driven by Poisson processes

    NASA Astrophysics Data System (ADS)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  9. Evaluation of Uncertainty in Runoff Analysis Incorporating Theory of Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshimi, Kazuhiro; Wang, Chao-Wen; Yamada, Tadashi

    2015-04-01

    The aim of this paper is to provide a theoretical framework of uncertainty estimate on rainfall-runoff analysis based on theory of stochastic process. SDE (stochastic differential equation) based on this theory has been widely used in the field of mathematical finance due to predict stock price movement. Meanwhile, some researchers in the field of civil engineering have investigated by using this knowledge about SDE (stochastic differential equation) (e.g. Kurino et.al, 1999; Higashino and Kanda, 2001). However, there have been no studies about evaluation of uncertainty in runoff phenomenon based on comparisons between SDE (stochastic differential equation) and Fokker-Planck equation. The Fokker-Planck equation is a partial differential equation that describes the temporal variation of PDF (probability density function), and there is evidence to suggest that SDEs and Fokker-Planck equations are equivalent mathematically. In this paper, therefore, the uncertainty of discharge on the uncertainty of rainfall is explained theoretically and mathematically by introduction of theory of stochastic process. The lumped rainfall-runoff model is represented by SDE (stochastic differential equation) due to describe it as difference formula, because the temporal variation of rainfall is expressed by its average plus deviation, which is approximated by Gaussian distribution. This is attributed to the observed rainfall by rain-gauge station and radar rain-gauge system. As a result, this paper has shown that it is possible to evaluate the uncertainty of discharge by using the relationship between SDE (stochastic differential equation) and Fokker-Planck equation. Moreover, the results of this study show that the uncertainty of discharge increases as rainfall intensity rises and non-linearity about resistance grows strong. These results are clarified by PDFs (probability density function) that satisfy Fokker-Planck equation about discharge. It means the reasonable discharge can be estimated based on the theory of stochastic processes, and it can be applied to the probabilistic risk of flood management.

  10. Stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobczyk, K.

    1990-01-01

    This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less

  11. Relativistic analysis of stochastic kinematics

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.

  12. Anomalous scaling of stochastic processes and the Moses effect

    NASA Astrophysics Data System (ADS)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  13. Anomalous scaling of stochastic processes and the Moses effect.

    PubMed

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  14. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem.

    PubMed

    Zhou, Jizhong; Deng, Ye; Zhang, Ping; Xue, Kai; Liang, Yuting; Van Nostrand, Joy D; Yang, Yunfeng; He, Zhili; Wu, Liyou; Stahl, David A; Hazen, Terry C; Tiedje, James M; Arkin, Adam P

    2014-03-04

    Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession.

  15. Analytical approximations for spatial stochastic gene expression in single cells and tissues

    PubMed Central

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2016-01-01

    Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686

  16. Some remarks on quantum physics, stochastic processes, and nonlinear filtering theory

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2016-05-01

    The mathematical similarities between quantum mechanics and stochastic processes has been studied in the literature. Some of the major results are reviewed, such as the relationship between the Fokker-Planck equation and the Schrödinger equation. Also reviewed are more recent results that show the mathematical similarities between quantum many particle systems and concepts in other areas of applied science, such as stochastic Petri nets. Some connections to filtering theory are discussed.

  17. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    NASA Astrophysics Data System (ADS)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  18. Doubly stochastic Poisson process models for precipitation at fine time-scales

    NASA Astrophysics Data System (ADS)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  19. Markovian limit for a reduced operation-valued stochastic process

    NASA Astrophysics Data System (ADS)

    Barchielli, Alberto

    1987-04-01

    Operation-valued stochastic processes give a formalization of the concept of continuous (in time) measurements in quantum mechanics. In this article, a first stage M of a measuring apparatus coupled to the system S is explicitly introduced, and continuous measurement of some observables of M is considered (one can speak of an indirect continuous measurement on S). When the degrees of freedom of the measuring apparatus M are eliminated and the weak coupling limit is taken, it is shown that an operation-valued stochastic process describing a direct continuous observation of the system S is obtained.

  20. Models for interrupted monitoring of a stochastic process

    NASA Technical Reports Server (NTRS)

    Palmer, E.

    1977-01-01

    As computers are added to the cockpit, the pilot's job is changing from of manually flying the aircraft, to one of supervising computers which are doing navigation, guidance and energy management calculations as well as automatically flying the aircraft. In this supervisorial role the pilot must divide his attention between monitoring the aircraft's performance and giving commands to the computer. Normative strategies are developed for tasks where the pilot must interrupt his monitoring of a stochastic process in order to attend to other duties. Results are given as to how characteristics of the stochastic process and the other tasks affect the optimal strategies.

  1. Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession.

    PubMed

    Mi, Xiangcheng; Swenson, Nathan G; Jia, Qi; Rao, Mide; Feng, Gang; Ren, Haibao; Bebber, Daniel P; Ma, Keping

    2016-09-07

    Deterministic and stochastic processes jointly determine the community dynamics of forest succession. However, it has been widely held in previous studies that deterministic processes dominate forest succession. Furthermore, inference of mechanisms for community assembly may be misleading if based on a single axis of diversity alone. In this study, we evaluated the relative roles of deterministic and stochastic processes along a disturbance gradient by integrating species, functional, and phylogenetic beta diversity in a subtropical forest chronosequence in Southeastern China. We found a general pattern of increasing species turnover, but little-to-no change in phylogenetic and functional turnover over succession at two spatial scales. Meanwhile, the phylogenetic and functional beta diversity were not significantly different from random expectation. This result suggested a dominance of stochastic assembly, contrary to the general expectation that deterministic processes dominate forest succession. On the other hand, we found significant interactions of environment and disturbance and limited evidence for significant deviations of phylogenetic or functional turnover from random expectations for different size classes. This result provided weak evidence of deterministic processes over succession. Stochastic assembly of forest succession suggests that post-disturbance restoration may be largely unpredictable and difficult to control in subtropical forests.

  2. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2014-03-04

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  3. Diffusion Processes Satisfying a Conservation Law Constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, J.; Ristorcelli, J. R.

    We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less

  4. Multivariate moment closure techniques for stochastic kinetic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less

  5. The critical domain size of stochastic population models.

    PubMed

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K

    2017-02-01

    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  6. Time-ordered product expansions for computational stochastic system biology.

    PubMed

    Mjolsness, Eric

    2013-06-01

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.

  7. The Two-On-One Stochastic Duel

    DTIC Science & Technology

    1983-12-01

    ACN 67500 TRASANA-TR-43-83 (.0 (v THE TWO-ON-ONE STOCHASTIC DUEL I • Prepared By A.V. Gafarian C.J. Ancker, Jr. DECEMBER 19833D I°"’" " TIC ELECTE...83 M A IL / _ _ 4. TITLE (and Subtitle) TYPE OF REPORT & PERIOD CO\\,ERED The Two-On-One Stochastic Duel Final Report 6. PERFORMING ORG. REPORT NUMBER...Stochastic Duels , Stochastic Processed, and Attrition. 5-14cIa~c fal roLCS-e ss 120. ABSTRACT (C’ntfMte am reverse Ed& if necesemay and idemtitf by block

  8. Practical Unitary Simulator for Non-Markovian Complex Processes

    NASA Astrophysics Data System (ADS)

    Binder, Felix C.; Thompson, Jayne; Gu, Mile

    2018-06-01

    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.

  9. Importance of vesicle release stochasticity in neuro-spike communication.

    PubMed

    Ramezani, Hamideh; Akan, Ozgur B

    2017-07-01

    Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.

  10. Derivation of kinetic equations from non-Wiener stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2013-12-01

    Kinetic differential-difference equations containing terms with fractional derivatives and describing α -stable Levy processes with 0 < α < 1 have been derived in a unified manner in terms of one-dimensional stochastic differential equations controlled merely by the Poisson processes.

  11. Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Ross, Brian; Imada, Janine

    Genetic programming is used to automatically construct stochastic processes written in the stochastic π-calculus. Grammar-guided genetic programming constrains search to useful process algebra structures. The time-series behaviour of a target process is denoted with a suitable selection of statistical feature tests. Feature tests can permit complex process behaviours to be effectively evaluated. However, they must be selected with care, in order to accurately characterize the desired process behaviour. Multi-objective evaluation is shown to be appropriate for this application, since it permits heterogeneous statistical feature tests to reside as independent objectives. Multiple undominated solutions can be saved and evaluated after a run, for determination of those that are most appropriate. Since there can be a vast number of candidate solutions, however, strategies for filtering and analyzing this set are required.

  12. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    PubMed

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  13. The development of the deterministic nonlinear PDEs in particle physics to stochastic case

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Mahmoud A. E.; Sohaly, M. A.

    2018-06-01

    In the present work, accuracy method called, Riccati-Bernoulli Sub-ODE technique is used for solving the deterministic and stochastic case of the Phi-4 equation and the nonlinear Foam Drainage equation. Also, the control on the randomness input is studied for stability stochastic process solution.

  14. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Binu M.; Stegen, James C.; Kim, Mincheol

    Little is known about the factors affecting the relative influence of stochastic and deterministic processes that governs the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soils data sets, scattered across different regions, with different pH conditions in early and late successional soils. We found that soil pH was the best predictor of bacterial community assembly and the relative importance of stochastic and deterministic processes along successional soils. Extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditionsmore » close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally-distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age.« less

  15. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Zhang, Ping; Xue, Kai; Liang, Yuting; Van Nostrand, Joy D.; Yang, Yunfeng; He, Zhili; Wu, Liyou; Stahl, David A.; Hazen, Terry C.; Tiedje, James M.; Arkin, Adam P.

    2014-01-01

    Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession. PMID:24550501

  16. Data-driven monitoring for stochastic systems and its application on batch process

    NASA Astrophysics Data System (ADS)

    Yin, Shen; Ding, Steven X.; Haghani Abandan Sari, Adel; Hao, Haiyang

    2013-07-01

    Batch processes are characterised by a prescribed processing of raw materials into final products for a finite duration and play an important role in many industrial sectors due to the low-volume and high-value products. Process dynamics and stochastic disturbances are inherent characteristics of batch processes, which cause monitoring of batch processes a challenging problem in practice. To solve this problem, a subspace-aided data-driven approach is presented in this article for batch process monitoring. The advantages of the proposed approach lie in its simple form and its abilities to deal with stochastic disturbances and process dynamics existing in the process. The kernel density estimation, which serves as a non-parametric way of estimating the probability density function, is utilised for threshold calculation. An industrial benchmark of fed-batch penicillin production is finally utilised to verify the effectiveness of the proposed approach.

  17. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    PubMed

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  18. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    PubMed Central

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies. PMID:27761333

  19. Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2018-07-01

    Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.

  20. q-Gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2010-12-01

    This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.

  1. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  2. Research in Stochastic Processes.

    DTIC Science & Technology

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  3. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

    PubMed

    Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

    2018-01-01

    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  4. Pricing foreign equity option under stochastic volatility tempered stable Lévy processes

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoli; Zhuang, Xintian

    2017-10-01

    Considering that financial assets returns exhibit leptokurtosis, asymmetry properties as well as clustering and heteroskedasticity effect, this paper substitutes the logarithm normal jumps in Heston stochastic volatility model by the classical tempered stable (CTS) distribution and normal tempered stable (NTS) distribution to construct stochastic volatility tempered stable Lévy processes (TSSV) model. The TSSV model framework permits infinite activity jump behaviors of return dynamics and time varying volatility consistently observed in financial markets through subordinating tempered stable process to stochastic volatility process, capturing leptokurtosis, fat tailedness and asymmetry features of returns. By employing the analytical characteristic function and fast Fourier transform (FFT) technique, the formula for probability density function (PDF) of TSSV returns is derived, making the analytical formula for foreign equity option (FEO) pricing available. High frequency financial returns data are employed to verify the effectiveness of proposed models in reflecting the stylized facts of financial markets. Numerical analysis is performed to investigate the relationship between the corresponding parameters and the implied volatility of foreign equity option.

  5. Kinetic theory of age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  6. Research in Stochastic Processes

    DTIC Science & Technology

    1988-08-31

    stationary sequence, Stochastic Proc. Appl. 29, 1988, 155-169 T. Hsing, J. Husler and M.R. Leadbetter, On the exceedance point process for a stationary...Nandagopalan, On exceedance point processes for "regular" sample functions, Proc. Volume, Oberxolfach Conf. on Extreme Value Theory, J. Husler and R. Reiss...exceedance point processes for stationary sequences under mild oscillation restrictions, Apr. 88. Obermotfach Conf. on Extremal Value Theory. Ed. J. HUsler

  7. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

    PubMed

    Salis, Howard; Kaznessis, Yiannis

    2005-02-01

    The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.

  8. Online POMDP Algorithms for Very Large Observation Spaces

    DTIC Science & Technology

    2017-06-06

    stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015. • Luo, Yuanfu, Haoyu Bai...and Wee Sun Lee. "Adaptive stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015

  9. An Analysis of Stochastic Duels Involving Fixed Rates of Fire

    DTIC Science & Technology

    The thesis presents an analysis of stochastic duels involving two opposing weapon systems with constant rates of fire. The duel was developed as a...process stochastic duels . The analysis was then extended to the two versus one duel where the three weapon systems were assumed to have fixed rates of fire.

  10. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB.

    PubMed

    Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K

    2011-04-15

    The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information. klingbeil@maths.ox.ac.uk Supplementary data are available at Bioinformatics online.

  11. A kinetic theory for age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Greenman, Chris

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but they are structurally unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Conversely, current theories that include size-dependent population dynamics (e.g., carrying capacity) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a BBGKY-like hierarchy. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution. NSF.

  12. Chaotic Expansions of Elements of the Universal Enveloping Superalgebra Associated with a Z2-graded Quantum Stochastic Calculus

    NASA Astrophysics Data System (ADS)

    Eyre, T. M. W.

    Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as We establish an analogue of this formula in the form of a chaotic decomposition for Z2-graded theories of quantum stochastic calculus based on the natural coalgebra structure of the universal enveloping superalgebra.

  13. Stochastic dynamics of melt ponds and sea ice-albedo climate feedback

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.

  14. Effects of Stochastic Traffic Flow Model on Expected System Performance

    DTIC Science & Technology

    2012-12-01

    NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs

  15. Proteins QSAR with Markov average electrostatic potentials.

    PubMed

    González-Díaz, Humberto; Uriarte, Eugenio

    2005-11-15

    Classic physicochemical and topological indices have been largely used in small molecules QSAR but less in proteins QSAR. In this study, a Markov model is used to calculate, for the first time, average electrostatic potentials xik for an indirect interaction between aminoacids placed at topologic distances k within a given protein backbone. The short-term average stochastic potential xi1 for 53 Arc repressor mutants was used to model the effect of Alanine scanning on thermal stability. The Arc repressor is a model protein of relevance for biochemical studies on bioorganics and medicinal chemistry. A linear discriminant analysis model developed correctly classified 43 out of 53, 81.1% of proteins according to their thermal stability. More specifically, the model classified 20/28, 71.4% of proteins with near wild-type stability and 23/25, 92.0% of proteins with reduced stability. Moreover, predictability in cross-validation procedures was of 81.0%. Expansion of the electrostatic potential in the series xi0, xi1, xi2, and xi3, justified the use of the abrupt truncation approach, being the overall accuracy >70.0% for xi0 but equal for xi1, xi2, and xi3. The xi1 model compared favorably with respect to others based on D-Fire potential, surface area, volume, partition coefficient, and molar refractivity, with less than 77.0% of accuracy [Ramos de Armas, R.; González-Díaz, H.; Molina, R.; Uriarte, E. Protein Struct. Func. Bioinf.2004, 56, 715]. The xi1 model also has more tractable interpretation than others based on Markovian negentropies and stochastic moments. Finally, the model is notably simpler than the two models based on quadratic and linear indices. Both models, reported by Marrero-Ponce et al., use four-to-five time more descriptors. Introduction of average stochastic potentials may be useful for QSAR applications; having xik amenable physical interpretation and being very effective.

  16. Stochastic description of quantum Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yun-An; Shao, Jiushu

    2016-08-01

    Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

  17. Inter-species competition-facilitation in stochastic riparian vegetation dynamics.

    PubMed

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2013-02-07

    Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Research in Stochastic Processes.

    DTIC Science & Technology

    1983-10-01

    increases. A more detailed investigation for the exceedances themselves (rather than Just the cluster centers) was undertaken, together with J. HUsler and...J. HUsler and M.R. Leadbetter, Compoung Poisson limit theorems for high level exceedances by stationary sequences, Center for Stochastic Processes...stability by a random linear operator. C.D. Hardin, General (asymmetric) stable variables and processes. T. Hsing, J. HUsler and M.R. Leadbetter, Compound

  19. The Reference Process and the Philosophy of Karl Popper.

    ERIC Educational Resources Information Center

    Neill, S. D.

    1985-01-01

    Two aspects of Karl Popper's philosophy are applied to reference process: process is viewed as series of problem-solving situations amenable to analysis using Popper's problem-solving schema. Reference interview is analyzed in context of Popper's postulate that books contain autonomous world of ideas existing apart from mind of knower. (30…

  20. Simultaneous estimation of deterministic and fractal stochastic components in non-stationary time series

    NASA Astrophysics Data System (ADS)

    García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.

    2018-07-01

    In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.

  1. Modeling stochasticity and robustness in gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  2. O the Derivation of the Schroedinger Equation from Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Wallstrom, Timothy Clarke

    The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schrodinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time -integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p^{t} (x,y) > cp(y), and this result is applied to show that the set of spin-1over2 diffusions is uniformly ergodic. In stochastic mechanics, the Bopp-Haag-Dankel diffusions on IR^3times SO(3) are used to represent particles with spin. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp -Haag-Dankel diffusions onto IR^3 converge to a Markovian limit process. This conjecture is proved for the spin-1over2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schrodinger equation, and that there are solutions to the Schrodinger equation which do not satisfy the Guerra-Morato Lagrangian variational principle. These observations are shown to apply equally to other existing formulations of stochastic mechanics, and it is argued that these difficulties represent fundamental inadequacies in the physical foundation of stochastic mechanics.

  3. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    NASA Astrophysics Data System (ADS)

    Naous, Rawan; AlShedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled Nabil

    2016-11-01

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

  4. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  5. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    NASA Technical Reports Server (NTRS)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.

  6. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.; Hinnov, Linda A.

    2010-08-01

    Deterministic orbital controls on climate variability are commonly inferred to dominate across timescales of 104-106 years, although some studies have suggested that stochastic processes may be of equal or greater importance. Here we explicitly quantify changes in deterministic orbital processes (forcing and/or pacing) versus stochastic climate processes during the Plio-Pleistocene, via time-frequency analysis of two prominent foraminifera oxygen isotopic stacks. Our results indicate that development of the Northern Hemisphere ice sheet is paralleled by an overall amplification of both deterministic and stochastic climate energy, but their relative dominance is variable. The progression from a more stochastic early Pliocene to a strongly deterministic late Pleistocene is primarily accommodated during two transitory phases of Northern Hemisphere ice sheet growth. This long-term trend is punctuated by “stochastic events,” which we interpret as evidence for abrupt reorganization of the climate system at the initiation and termination of the mid-Pleistocene transition and at the onset of Northern Hemisphere glaciation. In addition to highlighting a complex interplay between deterministic and stochastic climate change during the Plio-Pleistocene, our results support an early onset for Northern Hemisphere glaciation (between 3.5 and 3.7 Ma) and reveal some new characteristics of the orbital signal response, such as the puzzling emergence of 100 ka and 400 ka cyclic climate variability during theoretical eccentricity nodes.

  7. Socioeconomic inequalities in mortality from conditions amenable to medical interventions: do they reflect inequalities in access or quality of health care?

    PubMed Central

    2012-01-01

    Background Previous studies have reported large socioeconomic inequalities in mortality from conditions amenable to medical intervention, but it is unclear whether these can be attributed to inequalities in access or quality of health care, or to confounding influences such as inequalities in background risk of diseases. We therefore studied whether inequalities in mortality from conditions amenable to medical intervention vary between countries in patterns which differ from those observed for other (non-amenable) causes of death. More specifically, we hypothesized that, as compared to non-amenable causes, inequalities in mortality from amenable causes are more strongly associated with inequalities in health care use and less strongly with inequalities in common risk factors for disease such as smoking. Methods Cause-specific mortality data for people aged 30–74 years were obtained for 14 countries, and were analysed by calculating age-standardized mortality rates and relative risks comparing a lower with a higher educational group. Survey data on health care use and behavioural risk factors for people aged 30–74 years were obtained for 12 countries, and were analysed by calculating age-and sex-adjusted odds ratios comparing a low with a higher educational group. Patterns of association were explored by calculating correlation coefficients. Results In most countries and for most amenable causes of death substantial inequalities in mortality were observed, but inequalities in mortality from amenable causes did not vary between countries in patterns that are different from those seen for inequalities in non-amenable mortality. As compared to non-amenable causes, inequalities in mortality from amenable causes are not more strongly associated with inequalities in health care use. Inequalities in mortality from amenable causes are also not less strongly associated with common risk factors such as smoking. Conclusions We did not find evidence that inequalities in mortality from amenable conditions are related to inequalities in access or quality of health care. Further research is needed to find the causes of socio-economic inequalities in mortality from amenable conditions, and caution should be exercised in interpreting these inequalities as indicating health care deficiencies. PMID:22578154

  8. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks

    PubMed Central

    Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.

    2015-01-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406

  9. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  10. Trends and socioeconomic inequalities in amenable mortality in Switzerland with international comparisons.

    PubMed

    Feller, Anita; Schmidlin, Kurt; Clough-Gorr, Kerri M

    2017-08-14

    Amenable mortality is a composite measure of deaths from conditions that might be avoided by timely and effective healthcare. It was developed as an indicator to study health care quality. We calculated mortality rates for the population aged 0-74 years for the time-period 1996-2010 and the following groups of causes of death: amenable conditions, ischaemic heart diseases (IHD, defined as partly amenable) and remaining conditions. We compared the Swiss results with those published for 16 other high-income countries. To examine the association between amenable mortality and socioeconomic position, we calculated hazard ratios (HRs) by using Cox regression. Amenable mortality fell from 49.5 (95% confidence interval [CI] 48.2-51.0) to 35.7 (34.6-36.9) in males and from 55.0 (53.6-56.4) to 43.4 (42.2-44.6) per 100 000 person-years in females, when 1996-1998 was compared with 2008-2010. IHD mortality declined from 64.7 (95% CI 63.1-66.3) to 33.8 (32.8-34.8) in males and from 18.0 (17.2-18.7) to 8.5 (8.0-9.0) in females. However, between 1996-1998 and 2008-2010 the proportion of all-cause mortality attributed to amenable causes remained stable in both sexes (around 12% in males and 26% in females). Compared with 16 other high-income countries, Switzerland had the lowest rates of amenable mortality and ranked among the top five with the lowest ischaemic heart disease mortality. HRs of amenable causes in the lowest socioeconomic position quintile were 1.77 (95% CI 1.66-1.90) for males and 1.78 (1.47-2.16) for females compared with 1.62 (1.58-1.66) and 1.38 (1.33-1.43) for unamenable mortality. For ischaemic heart disease, HRs in the lowest socioeconomic position quintile were 1.76 (95% CI 1.66-1.87) for males and 2.33 (2.07-2.62) for females. Amenable mortality declined substantially in Switzerland with comparably low death rates for amenable causes. Similar to previous international studies, these Swiss results showed substantial socioeconomic inequalities in amenable mortality. Proportions of amenable mortality remained constant over time and patterns of inequalities observed for amenable causes in men did not substantially differ from those observed for non-amenable causes of death. Additional amenable mortality research is needed to better understand the factors contributing to mortality changes and social inequalities including information on disease characteristics and health care supply measures.

  11. 40 CFR 408.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS CANNED AND PRESERVED SEAFOOD PROCESSING POINT SOURCE CATEGORY Farm-Raised Catfish Processing... apply to this subpart. (b) The term oil and grease shall mean those components of a waste water amenable to measurement by the method described in Methods for Chemical Analysis of Water and Wastes, 1971...

  12. Stochastic flow shop scheduling of overlapping jobs on tandem machines in application to optimizing the US Army's deliberate nuclear, biological, and chemical decontamination process, (final report). Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, V.

    1991-05-01

    The U.S. Army's detailed equipment decontamination process is a stochastic flow shop which has N independent non-identical jobs (vehicles) which have overlapping processing times. This flow shop consists of up to six non-identical machines (stations). With the exception of one station, the processing times of the jobs are random variables. Based on an analysis of the processing times, the jobs for the 56 Army heavy division companies were scheduled according to the best shortest expected processing time - longest expected processing time (SEPT-LEPT) sequence. To assist in this scheduling the Gap Comparison Heuristic was developed to select the best SEPT-LEPTmore » schedule. This schedule was then used in balancing the detailed equipment decon line in order to find the best possible site configuration subject to several constraints. The detailed troop decon line, in which all jobs are independent and identically distributed, was then balanced. Lastly, an NBC decon optimization computer program was developed using the scheduling and line balancing results. This program serves as a prototype module for the ANBACIS automated NBC decision support system.... Decontamination, Stochastic flow shop, Scheduling, Stochastic scheduling, Minimization of the makespan, SEPT-LEPT Sequences, Flow shop line balancing, ANBACIS.« less

  13. Unified picture of strong-coupling stochastic thermodynamics and time reversals

    NASA Astrophysics Data System (ADS)

    Aurell, Erik

    2018-04-01

    Strong-coupling statistical thermodynamics is formulated as the Hamiltonian dynamics of an observed system interacting with another unobserved system (a bath). It is shown that the entropy production functional of stochastic thermodynamics, defined as the log ratio of forward and backward system path probabilities, is in a one-to-one relation with the log ratios of the joint initial conditions of the system and the bath. A version of strong-coupling statistical thermodynamics where the system-bath interaction vanishes at the beginning and at the end of a process is, as is also weak-coupling stochastic thermodynamics, related to the bath initially in equilibrium by itself. The heat is then the change of bath energy over the process, and it is discussed when this heat is a functional of the system history alone. The version of strong-coupling statistical thermodynamics introduced by Seifert and Jarzynski is related to the bath initially in conditional equilibrium with respect to the system. This leads to heat as another functional of the system history which needs to be determined by thermodynamic integration. The log ratio of forward and backward system path probabilities in a stochastic process is finally related to log ratios of the initial conditions of a combined system and bath. It is shown that the entropy production formulas of stochastic processes under a general class of time reversals are given by the differences of bath energies in a larger underlying Hamiltonian system. The paper highlights the centrality of time reversal in stochastic thermodynamics, also in the case of strong coupling.

  14. A stochastic diffusion process for Lochner's generalized Dirichlet distribution

    DOE PAGES

    Bakosi, J.; Ristorcelli, J. R.

    2013-10-01

    The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N stochastic variables with Lochner’s generalized Dirichlet distribution as its asymptotic solution. Individual samples of a discrete ensemble, obtained from the system of stochastic differential equations, equivalent to the Fokker-Planck equation developed here, satisfy a unit-sum constraint at all times and ensure a bounded sample space, similarly to the process developed in for the Dirichlet distribution. Consequently, the generalized Dirichlet diffusion process may be used to represent realizations of a fluctuating ensemble of N variables subject to a conservation principle.more » Compared to the Dirichlet distribution and process, the additional parameters of the generalized Dirichlet distribution allow a more general class of physical processes to be modeled with a more general covariance matrix.« less

  15. Measurement of metabolizable energy in poultry feeds by an in vitro system.

    PubMed

    Valdes, E V; Leeson, S

    1992-09-01

    A two-stage in vitro system (IVDE) for estimating AMEn in poultry feeds was investigated. For 71 diets ranging from 2.2 to 3.4 kcal/g, the average AMEn was 2.889 kcal/g and the mean IVDE value was 3.005 kcal/g. From the 71 diets, 30 (42.2%) showed differences between AMEn and IVDE of less than .100 kcal/g and represented diets across the AMEn range of values. The statistical analysis of the data showed a standard error of the estimate (SEE) of .152 kcal/g for the 71 diets assayed. No clear differences in accuracy of AMEn among the diets, as related to the composition and proportion of ingredients, were observed. Thus, the IVDE method gave different AMEn for diets of similar composition. The application of the IVDE system to selected ingredients showed that the AMEn of corn was underestimated by the method. However the AMEn of roasted, extruded soybeans and oats was estimated accurately by the IVDE method. Other ingredients were greatly overestimated by the in vitro technique (soybean meal, corn gluten meal, and barley). The results of applying the IVDE method for estimating AMEn showed the limitations of this technique with regard to the universality of its application. Although the method was successful in estimating AMEn values of diets and ingredients, for many samples the IVDE technique did not give acceptable results.

  16. Stochastic hybrid systems for studying biochemical processes.

    PubMed

    Singh, Abhyudai; Hespanha, João P

    2010-11-13

    Many protein and mRNA species occur at low molecular counts within cells, and hence are subject to large stochastic fluctuations in copy numbers over time. Development of computationally tractable frameworks for modelling stochastic fluctuations in population counts is essential to understand how noise at the cellular level affects biological function and phenotype. We show that stochastic hybrid systems (SHSs) provide a convenient framework for modelling the time evolution of population counts of different chemical species involved in a set of biochemical reactions. We illustrate recently developed techniques that allow fast computations of the statistical moments of the population count, without having to run computationally expensive Monte Carlo simulations of the biochemical reactions. Finally, we review different examples from the literature that illustrate the benefits of using SHSs for modelling biochemical processes.

  17. Stochastic reaction-diffusion algorithms for macromolecular crowding

    NASA Astrophysics Data System (ADS)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  18. Modification of the SAS4A Safety Analysis Code for Integration with the ADAPT Discrete Dynamic Event Tree Framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary Kyle; Denman, Matthew R.

    It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through themore » analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.« less

  19. Systems analysis of the single photon response in invertebrate photoreceptors.

    PubMed

    Pumir, Alain; Graves, Jennifer; Ranganathan, Rama; Shraiman, Boris I

    2008-07-29

    Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.

  20. Scale-Resolving simulations (SRS): How much resolution do we really need?

    NASA Astrophysics Data System (ADS)

    Pereira, Filipe M. S.; Girimaji, Sharath

    2017-11-01

    Scale-resolving simulations (SRS) are emerging as the computational approach of choice for many engineering flows with coherent structures. The SRS methods seek to resolve only the most important features of the coherent structures and model the remainder of the flow field with canonical closures. With reference to a typical Large-Eddy Simulation (LES), practical SRS methods aim to resolve a considerably narrower range of scales (reduced physical resolution) to achieve an adequate degree of accuracy at reasonable computational effort. While the objective of SRS is well-founded, the criteria for establishing the optimal degree of resolution required to achieve an acceptable level of accuracy are not clear. This study considers the canonical case of the flow around a circular cylinder to address the issue of `optimal' resolution. Two important criteria are developed. The first condition addresses the issue of adequate resolution of the flow field. The second guideline provides an assessment of whether the modeled field is canonical (stochastic) turbulence amenable to closure-based computations.

  1. The Value of Information for Populations in Varying Environments

    NASA Astrophysics Data System (ADS)

    Rivoire, Olivier; Leibler, Stanislas

    2011-04-01

    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory.

  2. Valuation of Capabilities and System Architecture Options to Meet Affordability Requirement

    DTIC Science & Technology

    2014-04-30

    is an extension of the historic volatility and trend of the stock using Brownian motion . In finance , the Black-Scholes equation is used to value...the underlying asset whose value is modeled as a stochastic process. In finance , the underlying asset is a tradeable stock and the stochastic process

  3. On a Result for Finite Markov Chains

    ERIC Educational Resources Information Center

    Kulathinal, Sangita; Ghosh, Lagnojita

    2006-01-01

    In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…

  4. Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation

    PubMed Central

    Schwarzkopf, Dietrich Samuel; Silvanto, Juha; Rees, Geraint

    2011-01-01

    Transcranial magnetic stimulation (TMS) is a popular method for studying causal relationships between neural activity and behavior. However its mode of action remains controversial, and so far there is no framework to explain its wide range of facilitatory and inhibitory behavioral effects. While some theoretical accounts suggests that TMS suppresses neuronal processing, other competing accounts propose that the effects of TMS result from the addition of noise to neuronal processing. Here we exploited the stochastic resonance phenomenon to distinguish these theoretical accounts and determine how TMS affects neuronal processing. Specifically, we showed that online TMS can induce stochastic resonance in the human brain. At low intensity, TMS facilitated the detection of weak motion signals but with higher TMS intensities and stronger motion signals we found only impairment in detection. These findings suggest that TMS acts by adding noise to neuronal processing, at least in an online TMS protocol. Importantly, such stochastic resonance effects may also explain why TMS parameters that under normal circumstances impair behavior, can induce behavioral facilitations when the stimulated area is in an adapted or suppressed state. PMID:21368025

  5. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  6. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  7. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE PAGES

    Wang, Yong; Zhang, Guang J.

    2016-09-29

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  8. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Zhang, Guang J.

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  9. Stochastic simulation by image quilting of process-based geological models

    NASA Astrophysics Data System (ADS)

    Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef

    2017-09-01

    Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.

  10. Exploring empirical rank-frequency distributions longitudinally through a simple stochastic process.

    PubMed

    Finley, Benjamin J; Kilkki, Kalevi

    2014-01-01

    The frequent appearance of empirical rank-frequency laws, such as Zipf's law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process's complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications.

  11. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.

    2015-07-01

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  12. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  13. Asymmetric and Stochastic Behavior in Magnetic Vortices Studied by Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Im, Mi-Young

    Asymmetry and stochasticity in spin processes are not only long-standing fundamental issues but also highly relevant to technological applications of nanomagnetic structures to memory and storage nanodevices. Those nontrivial phenomena have been studied by direct imaging of spin structures in magnetic vortices utilizing magnetic transmission soft x-ray microscopy (BL6.1.2 at ALS). Magnetic vortices have attracted enormous scientific interests due to their fascinating spin structures consisting of circularity rotating clockwise (c = + 1) or counter-clockwise (c = -1) and polarity pointing either up (p = + 1) or down (p = -1). We observed a symmetry breaking in the formation process of vortex structures in circular permalloy (Ni80Fe20) disks. The generation rates of two different vortex groups with the signature of cp = + 1 and cp =-1 are completely asymmetric. The asymmetric nature was interpreted to be triggered by ``intrinsic'' Dzyaloshinskii-Moriya interaction (DMI) arising from the spin-orbit coupling due to the lack of inversion symmetry near the disk surface and ``extrinsic'' factors such as roughness and defects. We also investigated the stochastic behavior of vortex creation in the arrays of asymmetric disks. The stochasticity was found to be very sensitive to the geometry of disk arrays, particularly interdisk distance. The experimentally observed phenomenon couldn't be explained by thermal fluctuation effect, which has been considered as a main reason for the stochastic behavior in spin processes. We demonstrated for the first time that the ultrafast dynamics at the early stage of vortex creation, which has a character of classical chaos significantly affects the stochastic nature observed at the steady state in asymmetric disks. This work provided the new perspective of dynamics as a critical factor contributing to the stochasticity in spin processes and also the possibility for the control of the intrinsic stochastic nature by optimizing the design of asymmetric disk arrays. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by Leading Foreign Research Institute Recruitment Program through the NRF.

  14. Stochastic scheduling on a repairable manufacturing system

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cao, Jinhua

    1995-08-01

    In this paper, we consider some stochastic scheduling problems with a set of stochastic jobs on a manufacturing system with a single machine that is subject to multiple breakdowns and repairs. When the machine processing a job fails, the job processing must restart some time later when the machine is repaired. For this typical manufacturing system, we find the optimal policies that minimize the following objective functions: (1) the weighed sum of the completion times; (2) the weighed number of late jobs having constant due dates; (3) the weighted number of late jobs having random due dates exponentially distributed, which generalize some previous results.

  15. Conference on Stochastic Processes and Their Applications (12th) held at Ithaca, New York on 11-15 Jul 83,

    DTIC Science & Technology

    1983-07-15

    RD- R136 626 CONFERENCE ON STOCHASTIC PROCESSES AND THEIR APPLICATIONS (12TH> JULY 11 15 1983 ITHACA NEW YORK(U) CORNELL UNIV ITHACA NY 15 JUL 83...oscillator phase Instability" 2t53 - 3s15 p.m. M.N. GOPALAN, Indian Institute of Technoloy, Bombay "Cost benefit analysis of systems subject to inspection...p.m. W. KLIEDANN, Univ. Bremen, Fed. Rep. Germany "Controllability of stochastic systems 8sO0 - lOsO0 p.m. RECEPTION Johnson Art Museum ’q % , t

  16. Variational processes and stochastic versions of mechanics

    NASA Astrophysics Data System (ADS)

    Zambrini, J. C.

    1986-09-01

    The dynamical structure of any reasonable stochastic version of classical mechanics is investigated, including the version created by Nelson [E. Nelson, Quantum Fluctuations (Princeton U.P., Princeton, NJ, 1985); Phys. Rev. 150, 1079 (1966)] for the description of quantum phenomena. Two different theories result from this common structure. One of them is the imaginary time version of Nelson's theory, whose existence was unknown, and yields a radically new probabilistic interpretation of the heat equation. The existence and uniqueness of all the involved stochastic processes is shown under conditions suggested by the variational approach of Yasue [K. Yasue, J. Math. Phys. 22, 1010 (1981)].

  17. Solving difficult problems creatively: a role for energy optimised deterministic/stochastic hybrid computing

    PubMed Central

    Palmer, Tim N.; O’Shea, Michael

    2015-01-01

    How is the brain configured for creativity? What is the computational substrate for ‘eureka’ moments of insight? Here we argue that creative thinking arises ultimately from a synergy between low-energy stochastic and energy-intensive deterministic processing, and is a by-product of a nervous system whose signal-processing capability per unit of available energy has become highly energy optimised. We suggest that the stochastic component has its origin in thermal (ultimately quantum decoherent) noise affecting the activity of neurons. Without this component, deterministic computational models of the brain are incomplete. PMID:26528173

  18. 77 FR 9696 - Notice of Public Meeting; Central Montana Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Moccasin Travel Plan, amenity fee proposal, oil and gas fracking, presentation led by the council's Category 2, reserved water rights compact commission process, and administrative details. All RAC meetings...

  19. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  20. Constructing a community-level amenity index

    Treesearch

    Joanna Paulson Ganning; Courtney G. Flint

    2010-01-01

    The study of amenity-driven regional change has proliferated in recent years, especially in the American West. While methods of quantifying amenity levels have progressed, they usually rely on traditional and inflexible methods of creating indices. This research note describes a method of manual indexing that allows a flexible and replicable way of assessing amenity...

  1. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent permafrost thaw.

  2. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China

    PubMed Central

    Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C.; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent permafrost thaw. PMID:26699734

  3. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    ERIC Educational Resources Information Center

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  4. General Results in Optimal Control of Discrete-Time Nonlinear Stochastic Systems

    DTIC Science & Technology

    1988-01-01

    P. J. McLane, "Optimal Stochastic Control of Linear System. with State- and Control-Dependent Distur- bances," ZEEE Trans. 4uto. Contr., Vol. 16, No...Vol. 45, No. 1, pp. 359-362, 1987 (9] R. R. Mohler and W. J. Kolodziej, "An Overview of Stochastic Bilinear Control Processes," ZEEE Trans. Syst...34 J. of Math. anal. App.:, Vol. 47, pp. 156-161, 1974 [14) E. Yaz, "A Control Scheme for a Class of Discrete Nonlinear Stochastic Systems," ZEEE Trans

  5. Effective stochastic generator with site-dependent interactions

    NASA Astrophysics Data System (ADS)

    Khamehchi, Masoumeh; Jafarpour, Farhad H.

    2017-11-01

    It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.

  6. Study on Stationarity of Random Load Spectrum Based on the Special Road

    NASA Astrophysics Data System (ADS)

    Yan, Huawen; Zhang, Weigong; Wang, Dong

    2017-09-01

    In the special road quality assessment method, there is a method using a wheel force sensor, the essence of this method is collecting the load spectrum of the car to reflect the quality of road. According to the definition of stochastic process, it is easy to find that the load spectrum is a stochastic process. However, the analysis method and application range of different random processes are very different, especially in engineering practice, which will directly affect the design and development of the experiment. Therefore, determining the type of a random process has important practical significance. Based on the analysis of the digital characteristics of road load spectrum, this paper determines that the road load spectrum in this experiment belongs to a stationary stochastic process, paving the way for the follow-up modeling and feature extraction of the special road.

  7. A Stochastic Detection and Retrieval Model for the Study of Metacognition

    ERIC Educational Resources Information Center

    Jang, Yoonhee; Wallsten, Thomas S.; Huber, David E.

    2012-01-01

    We present a signal detection-like model termed the stochastic detection and retrieval model (SDRM) for use in studying metacognition. Focusing on paradigms that relate retrieval (e.g., recall or recognition) and confidence judgments, the SDRM measures (1) variance in the retrieval process, (2) variance in the confidence process, (3) the extent to…

  8. Stochastic processes, estimation theory and image enhancement

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1978-01-01

    An introductory account of stochastic processes, estimation theory, and image enhancement is presented. The book is primarily intended for first-year graduate students and practicing engineers and scientists whose work requires an acquaintance with the theory. Fundamental concepts of probability were reviewed that are required to support the main topics. The appendices discuss the remaining mathematical background.

  9. Stochastic Multiscale Analysis and Design of Engine Disks

    DTIC Science & Technology

    2010-07-28

    shown recently to fail when used with data-driven non-linear stochastic input models (KPCA, IsoMap, etc.). Need for scalable exascale computing algorithms Materials Process Design and Control Laboratory Cornell University

  10. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  11. Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis

    NASA Astrophysics Data System (ADS)

    Jia, Ningning; Y Lam, Edmund

    2010-04-01

    Inverse lithography technology (ILT) synthesizes photomasks by solving an inverse imaging problem through optimization of an appropriate functional. Much effort on ILT is dedicated to deriving superior masks at a nominal process condition. However, the lower k1 factor causes the mask to be more sensitive to process variations. Robustness to major process variations, such as focus and dose variations, is desired. In this paper, we consider the focus variation as a stochastic variable, and treat the mask design as a machine learning problem. The stochastic gradient descent approach, which is a useful tool in machine learning, is adopted to train the mask design. Compared with previous work, simulation shows that the proposed algorithm is effective in producing robust masks.

  12. An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros

    2007-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.

  13. Exploring Empirical Rank-Frequency Distributions Longitudinally through a Simple Stochastic Process

    PubMed Central

    Finley, Benjamin J.; Kilkki, Kalevi

    2014-01-01

    The frequent appearance of empirical rank-frequency laws, such as Zipf’s law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process’s complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications. PMID:24755621

  14. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    NASA Astrophysics Data System (ADS)

    González Arenas, Zochil; Barci, Daniel G.

    2012-12-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.

  15. Valuation of Forest Amenities: A Macro Approach

    Treesearch

    Ronald Raunikar; Joseph Buongiorno

    2001-01-01

    A method of estimating forest amenity value based on macroeconomic growth theory is presented. It relies on the assumption that more valuable forest amenities are provided by a forest with a more natural stand structure. We construct a forest naturalness index from stand data that provides a relative measure of the forest amenity provided regionally. This naturalness...

  16. Optimal regulation in systems with stochastic time sampling

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1980-01-01

    An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.

  17. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks

    PubMed Central

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-01-01

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400

  18. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks.

    PubMed

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-11-30

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network.

  19. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  20. Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach.

    PubMed

    Rosso, O A; Zunino, L; Pérez, D G; Figliola, A; Larrondo, H A; Garavaglia, M; Martín, M T; Plastino, A

    2007-12-01

    By recourse to appropriate information theory quantifiers (normalized Shannon entropy and Martín-Plastino-Rosso intensive statistical complexity measure), we revisit the characterization of Gaussian self-similar stochastic processes from a Bandt-Pompe viewpoint. We show that the ensuing approach exhibits considerable advantages with respect to other treatments. In particular, clear quantifiers gaps are found in the transition between the continuous processes and their associated noises.

  1. The economics of amenities and migration in the Pacific Northwest: review of selected literature with implications for national forest management.

    Treesearch

    Brian E. Garber-Yonts

    2004-01-01

    This paper reviews literature on the influence of nonmarket amenity resources on population migration. Literature reviewed includes migration and demographic studies; urban and regional economics studies of amenities in labor markets, retirement migration, and firm location decisions; nonmarket valuation studies using hedonic price analysis of amenity resource values;...

  2. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  3. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    PubMed

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  4. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    PubMed Central

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885

  5. The capital-asset-pricing model and arbitrage pricing theory: A unification

    PubMed Central

    Khan, M. Ali; Sun, Yeneng

    1997-01-01

    We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset’s return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen–Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting. PMID:11038614

  6. The capital-asset-pricing model and arbitrage pricing theory: a unification.

    PubMed

    Ali Khan, M; Sun, Y

    1997-04-15

    We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset's return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen-Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting.

  7. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    NASA Astrophysics Data System (ADS)

    Zhu, Z. W.; Zhang, W. D.; Xu, J.

    2014-03-01

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  8. Patterned functional carbon fibers from polyethylene.

    PubMed

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-05-08

    Carbon fibers having unique morphologies, from hollow circular to gear-shaped, are produced from a novel melt-processable precursor and method. The resulting carbon fiber exhibits microstructural and topological properties that are dependent on processing conditions, rendering them highly amenable to myriad applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 1/f Noise from nonlinear stochastic differential equations.

    PubMed

    Ruseckas, J; Kaulakys, B

    2010-03-01

    We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.

  10. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    PubMed

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  11. Refractory pulse counting processes in stochastic neural computers.

    PubMed

    McNeill, Dean K; Card, Howard C

    2005-03-01

    This letter quantitiatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.

  12. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects

    PubMed Central

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity. PMID:27010993

  13. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects.

    PubMed

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity.

  14. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    PubMed

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  15. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  16. A Simplified Treatment of Brownian Motion and Stochastic Differential Equations Arising in Financial Mathematics

    ERIC Educational Resources Information Center

    Parlar, Mahmut

    2004-01-01

    Brownian motion is an important stochastic process used in modelling the random evolution of stock prices. In their 1973 seminal paper--which led to the awarding of the 1997 Nobel prize in Economic Sciences--Fischer Black and Myron Scholes assumed that the random stock price process is described (i.e., generated) by Brownian motion. Despite its…

  17. Mathematics Education. Selected Papers from the Conference on Stochastic Processes and Their Applications. (15th, Nagoya, Japan, July 2-5, 1985).

    ERIC Educational Resources Information Center

    Hida, Takeyuki; Shimizu, Akinobu

    This volume contains the papers and comments from the Workshop on Mathematics Education, a special session of the 15th Conference on Stochastic Processes and Their Applications, held in Nagoya, Japan, July 2-5, 1985. Topics covered include: (1) probability; (2) statistics; (3) deviation; (4) Japanese mathematics curriculum; (5) statistical…

  18. Quantum stochastic walks on networks for decision-making.

    PubMed

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-03-31

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce's response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process' degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.

  19. Intrinsic Information Processing and Energy Dissipation in Stochastic Input-Output Dynamical Systems

    DTIC Science & Technology

    2015-07-09

    Crutchfield. Information Anatomy of Stochastic Equilibria, Entropy , (08 2014): 0. doi: 10.3390/e16094713 Virgil Griffith, Edwin Chong, Ryan James...Christopher Ellison, James Crutchfield. Intersection Information Based on Common Randomness, Entropy , (04 2014): 0. doi: 10.3390/e16041985 TOTAL: 5 Number...Learning Group Seminar, Complexity Sciences Center, UC Davis. Korana Burke and Greg Wimsatt (UCD), reviewed PRL “Measurement of Stochastic Entropy

  20. Stochastically gated local and occupation times of a Brownian particle

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.

    2017-01-01

    We generalize the Feynman-Kac formula to analyze the local and occupation times of a Brownian particle moving in a stochastically gated one-dimensional domain. (i) The gated local time is defined as the amount of time spent by the particle in the neighborhood of a point in space where there is some target that only receives resources from (or detects) the particle when the gate is open; the target does not interfere with the motion of the Brownian particle. (ii) The gated occupation time is defined as the amount of time spent by the particle in the positive half of the real line, given that it can only cross the origin when a gate placed at the origin is open; in the closed state the particle is reflected. In both scenarios, the gate randomly switches between the open and closed states according to a two-state Markov process. We derive a stochastic, backward Fokker-Planck equation (FPE) for the moment-generating function of the two types of gated Brownian functional, given a particular realization of the stochastic gate, and analyze the resulting stochastic FPE using a moments method recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment-generating function, averaged with respect to realizations of the stochastic gate.

  1. Approximation methods of European option pricing in multiscale stochastic volatility model

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Canhanga, Betuel; Malyarenko, Anatoliy; Silvestrov, Sergei

    2017-01-01

    In the classical Black-Scholes model for financial option pricing, the asset price follows a geometric Brownian motion with constant volatility. Empirical findings such as volatility smile/skew, fat-tailed asset return distributions have suggested that the constant volatility assumption might not be realistic. A general stochastic volatility model, e.g. Heston model, GARCH model and SABR volatility model, in which the variance/volatility itself follows typically a mean-reverting stochastic process, has shown to be superior in terms of capturing the empirical facts. However in order to capture more features of the volatility smile a two-factor, of double Heston type, stochastic volatility model is more useful as shown in Christoffersen, Heston and Jacobs [12]. We consider one modified form of such two-factor volatility models in which the volatility has multiscale mean-reversion rates. Our model contains two mean-reverting volatility processes with a fast and a slow reverting rate respectively. We consider the European option pricing problem under one type of the multiscale stochastic volatility model where the two volatility processes act as independent factors in the asset price process. The novelty in this paper is an approximating analytical solution using asymptotic expansion method which extends the authors earlier research in Canhanga et al. [5, 6]. In addition we propose a numerical approximating solution using Monte-Carlo simulation. For completeness and for comparison we also implement the semi-analytical solution by Chiarella and Ziveyi [11] using method of characteristics, Fourier and bivariate Laplace transforms.

  2. Compensating Differentials and Income Taxes: Are the Wages of Dangerous Jobs More Responsive to Tax Changes than the Wages of Safe Jobs?

    ERIC Educational Resources Information Center

    Powell, David

    2012-01-01

    Income taxes distort the relationship between wages and nontaxable amenities. When the marginal tax rate increases, amenities become more valuable as the compensating differential for low-amenity jobs is taxed away. While there is evidence that the provision of amenities responds to taxes, the literature has ignored the consequences for job…

  3. The response analysis of fractional-order stochastic system via generalized cell mapping method.

    PubMed

    Wang, Liang; Xue, Lili; Sun, Chunyan; Yue, Xiaole; Xu, Wei

    2018-01-01

    This paper is concerned with the response of a fractional-order stochastic system. The short memory principle is introduced to ensure that the response of the system is a Markov process. The generalized cell mapping method is applied to display the global dynamics of the noise-free system, such as attractors, basins of attraction, basin boundary, saddle, and invariant manifolds. The stochastic generalized cell mapping method is employed to obtain the evolutionary process of probability density functions of the response. The fractional-order ϕ 6 oscillator and the fractional-order smooth and discontinuous oscillator are taken as examples to give the implementations of our strategies. Studies have shown that the evolutionary direction of the probability density function of the fractional-order stochastic system is consistent with the unstable manifold. The effectiveness of the method is confirmed using Monte Carlo results.

  4. A DG approach to the numerical solution of the Stein-Stein stochastic volatility option pricing model

    NASA Astrophysics Data System (ADS)

    Hozman, J.; Tichý, T.

    2017-12-01

    Stochastic volatility models enable to capture the real world features of the options better than the classical Black-Scholes treatment. Here we focus on pricing of European-style options under the Stein-Stein stochastic volatility model when the option value depends on the time, on the price of the underlying asset and on the volatility as a function of a mean reverting Orstein-Uhlenbeck process. A standard mathematical approach to this model leads to the non-stationary second-order degenerate partial differential equation of two spatial variables completed by the system of boundary and terminal conditions. In order to improve the numerical valuation process for a such pricing equation, we propose a numerical technique based on the discontinuous Galerkin method and the Crank-Nicolson scheme. Finally, reference numerical experiments on real market data illustrate comprehensive empirical findings on options with stochastic volatility.

  5. A large deviations principle for stochastic flows of viscous fluids

    NASA Astrophysics Data System (ADS)

    Cipriano, Fernanda; Costa, Tiago

    2018-04-01

    We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2 (0 , T ;H1 (T2)) . The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier-Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.

  6. The cardiorespiratory interaction: a nonlinear stochastic model and its synchronization properties

    NASA Astrophysics Data System (ADS)

    Bahraminasab, A.; Kenwright, D.; Stefanovska, A.; McClintock, P. V. E.

    2007-06-01

    We address the problem of interactions between the phase of cardiac and respiration oscillatory components. The coupling between these two quantities is experimentally investigated by the theory of stochastic Markovian processes. The so-called Markov analysis allows us to derive nonlinear stochastic equations for the reconstruction of the cardiorespiratory signals. The properties of these equations provide interesting new insights into the strength and direction of coupling which enable us to divide the couplings to two parts: deterministic and stochastic. It is shown that the synchronization behaviors of the reconstructed signals are statistically identical with original one.

  7. Stochastic IMT (Insulator-Metal-Transition) Neurons: An Interplay of Thermal and Threshold Noise at Bifurcation

    PubMed Central

    Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit

    2018-01-01

    Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO2) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms. PMID:29670508

  8. Stochastic IMT (Insulator-Metal-Transition) Neurons: An Interplay of Thermal and Threshold Noise at Bifurcation.

    PubMed

    Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit

    2018-01-01

    Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO 2 ) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms.

  9. On convergence of the unscented Kalman-Bucy filter using contraction theory

    NASA Astrophysics Data System (ADS)

    Maree, J. P.; Imsland, L.; Jouffroy, J.

    2016-06-01

    Contraction theory entails a theoretical framework in which convergence of a nonlinear system can be analysed differentially in an appropriate contraction metric. This paper is concerned with utilising stochastic contraction theory to conclude on exponential convergence of the unscented Kalman-Bucy filter. The underlying process and measurement models of interest are Itô-type stochastic differential equations. In particular, statistical linearisation techniques are employed in a virtual-actual systems framework to establish deterministic contraction of the estimated expected mean of process values. Under mild conditions of bounded process noise, we extend the results on deterministic contraction to stochastic contraction of the estimated expected mean of the process state. It follows that for the regions of contraction, a result on convergence, and thereby incremental stability, is concluded for the unscented Kalman-Bucy filter. The theoretical concepts are illustrated in two case studies.

  10. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  11. Random-order fractional bistable system and its stochastic resonance

    NASA Astrophysics Data System (ADS)

    Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia

    2017-01-01

    In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.

  12. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  13. Stochastic goal-oriented error estimation with memory

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Marotzke, Jochem; Korn, Peter

    2017-11-01

    We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.

  14. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  15. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  16. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  17. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  18. Ignition probability of polymer-bonded explosives accounting for multiple sources of material stochasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Barua, A.; Zhou, M., E-mail: min.zhou@me.gatech.edu

    2014-05-07

    Accounting for the combined effect of multiple sources of stochasticity in material attributes, we develop an approach that computationally predicts the probability of ignition of polymer-bonded explosives (PBXs) under impact loading. The probabilistic nature of the specific ignition processes is assumed to arise from two sources of stochasticity. The first source involves random variations in material microstructural morphology; the second source involves random fluctuations in grain-binder interfacial bonding strength. The effect of the first source of stochasticity is analyzed with multiple sets of statistically similar microstructures and constant interfacial bonding strength. Subsequently, each of the microstructures in the multiple setsmore » is assigned multiple instantiations of randomly varying grain-binder interfacial strengths to analyze the effect of the second source of stochasticity. Critical hotspot size-temperature states reaching the threshold for ignition are calculated through finite element simulations that explicitly account for microstructure and bulk and interfacial dissipation to quantify the time to criticality (t{sub c}) of individual samples, allowing the probability distribution of the time to criticality that results from each source of stochastic variation for a material to be analyzed. Two probability superposition models are considered to combine the effects of the multiple sources of stochasticity. The first is a parallel and series combination model, and the second is a nested probability function model. Results show that the nested Weibull distribution provides an accurate description of the combined ignition probability. The approach developed here represents a general framework for analyzing the stochasticity in the material behavior that arises out of multiple types of uncertainty associated with the structure, design, synthesis and processing of materials.« less

  19. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on 16-21 August 1987.

    DTIC Science & Technology

    1987-08-21

    property. 3.. 32’ " ~a-CHAOS " by-" Ron C. BMe ". University of Connecticut f.Storrs, CT l. 𔃾 ABSTRACT Although presented from two different vantage...either an abort or a restart fashion. *1 pal 58.- S~. , 2~ ./ ON CRITERIA OF OPTIMALITY IN ESTIMATION FOR STOCHASTIC PROCESSES by C. C. Heyde Australian

  20. Mathematical Sciences Division 1992 Programs

    DTIC Science & Technology

    1992-10-01

    statistical theory that underlies modern signal analysis . There is a strong emphasis on stochastic processes and time series , particularly those which...include optimal resource planning and real- time scheduling of stochastic shop-floor processes. Scheduling systems will be developed that can adapt to...make forecasts for the length-of-service time series . Protocol analysis of these sessions will be used to idenify relevant contextual features and to

  1. Modeling spiking behavior of neurons with time-dependent Poisson processes.

    PubMed

    Shinomoto, S; Tsubo, Y

    2001-10-01

    Three kinds of interval statistics, as represented by the coefficient of variation, the skewness coefficient, and the correlation coefficient of consecutive intervals, are evaluated for three kinds of time-dependent Poisson processes: pulse regulated, sinusoidally regulated, and doubly stochastic. Among these three processes, the sinusoidally regulated and doubly stochastic Poisson processes, in the case when the spike rate varies slowly compared with the mean interval between spikes, are found to be consistent with the three statistical coefficients exhibited by data recorded from neurons in the prefrontal cortex of monkeys.

  2. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    NASA Astrophysics Data System (ADS)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  3. Codifference as a practical tool to measure interdependence

    NASA Astrophysics Data System (ADS)

    Wyłomańska, Agnieszka; Chechkin, Aleksei; Gajda, Janusz; Sokolov, Igor M.

    2015-03-01

    Correlation and spectral analysis represent the standard tools to study interdependence in statistical data. However, for the stochastic processes with heavy-tailed distributions such that the variance diverges, these tools are inadequate. The heavy-tailed processes are ubiquitous in nature and finance. We here discuss codifference as a convenient measure to study statistical interdependence, and we aim to give a short introductory review of its properties. By taking different known stochastic processes as generic examples, we present explicit formulas for their codifferences. We show that for the Gaussian processes codifference is equivalent to covariance. For processes with finite variance these two measures behave similarly with time. For the processes with infinite variance the covariance does not exist, however, the codifference is relevant. We demonstrate the practical importance of the codifference by extracting this function from simulated as well as real data taken from turbulent plasma of fusion device and financial market. We conclude that the codifference serves as a convenient practical tool to study interdependence for stochastic processes with both infinite and finite variances as well.

  4. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  5. On time-dependent diffusion coefficients arising from stochastic processes with memory

    NASA Astrophysics Data System (ADS)

    Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

    2017-08-01

    Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

  6. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis

    DTIC Science & Technology

    2015-08-13

    is due to Reiman [36] who considered the case where the arrivals and services are mutually independent renewal processes with square integrable summands...to a reflected diffusion process with drift and diffusion coefficients that depend on the state of the process. In models considered in works of Reiman ...the infinity Laplacian. Jour. AMS, to appear [36] M. I. Reiman . Open queueing networks in heavy traffic. Mathematics of Operations Research, 9(3): 441

  7. Simulation of anaerobic digestion processes using stochastic algorithm.

    PubMed

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  8. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  9. Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Bobrowski, Adam; Lipniacki, Tomasz; Pichór, Katarzyna; Rudnicki, Ryszard

    2007-09-01

    The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.RE Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, JE Theor. Biol. 238 (2006) 348-367] in modelling gene expression in eukaryotes. Starting from the full generator of the process we show that its distributions satisfy a (Fokker-Planck-type) system of partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.

  10. Constraints on Fluctuations in Sparsely Characterized Biological Systems.

    PubMed

    Hilfinger, Andreas; Norman, Thomas M; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-05

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  11. Stochastic phase segregation on surfaces

    PubMed Central

    Gera, Prerna

    2017-01-01

    Phase separation and coarsening is a phenomenon commonly seen in binary physical and chemical systems that occur in nature. Often, thermal fluctuations, modelled as stochastic noise, are present in the system and the phase segregation process occurs on a surface. In this work, the segregation process is modelled via the Cahn–Hilliard–Cook model, which is a fourth-order parabolic stochastic system. Coarsening is analysed on two sample surfaces: a unit sphere and a dumbbell. On both surfaces, a statistical analysis of the growth rate is performed, and the influence of noise level and mobility is also investigated. For the spherical interface, it is also shown that a lognormal distribution fits the growth rate well. PMID:28878994

  12. Constraints on Fluctuations in Sparsely Characterized Biological Systems

    NASA Astrophysics Data System (ADS)

    Hilfinger, Andreas; Norman, Thomas M.; Vinnicombe, Glenn; Paulsson, Johan

    2016-02-01

    Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical cells. Such "noise" is widespread but has proven difficult to analyze because most systems are sparsely characterized at the single cell level and because nonlinear stochastic models are analytically intractable. Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of components in complex stochastic reaction systems even when the dynamics of other components are left unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems. These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component requires creating heterogeneity in another.

  13. Stochastic sensitivity analysis of the variability of dynamics and transition to chaos in the business cycles model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana

    2018-01-01

    A problem of mathematical modeling of complex stochastic processes in macroeconomics is discussed. For the description of dynamics of income and capital stock, the well-known Kaldor model of business cycles is used as a basic example. The aim of the paper is to give an overview of the variety of stochastic phenomena which occur in Kaldor model forced by additive and parametric random noise. We study a generation of small- and large-amplitude stochastic oscillations, and their mixed-mode intermittency. To analyze these phenomena, we suggest a constructive approach combining the study of the peculiarities of deterministic phase portrait, and stochastic sensitivity of attractors. We show how parametric noise can stabilize the unstable equilibrium and transform dynamics of Kaldor system from order to chaos.

  14. 3D aquifer characterization using stochastic streamline calibration

    NASA Astrophysics Data System (ADS)

    Jang, Minchul

    2007-03-01

    In this study, a new inverse approach, stochastic streamline calibration is proposed. Using both a streamline concept and a stochastic technique, stochastic streamline calibration optimizes an identified field to fit in given observation data in a exceptionally fast and stable fashion. In the stochastic streamline calibration, streamlines are adopted as basic elements not only for describing fluid flow but also for identifying the permeability distribution. Based on the streamline-based inversion by Agarwal et al. [Agarwal B, Blunt MJ. Streamline-based method with full-physics forward simulation for history matching performance data of a North sea field. SPE J 2003;8(2):171-80], Wang and Kovscek [Wang Y, Kovscek AR. Streamline approach for history matching production data. SPE J 2000;5(4):353-62], permeability is modified rather along streamlines than at the individual gridblocks. Permeabilities in the gridblocks which a streamline passes are adjusted by being multiplied by some factor such that we can match flow and transport properties of the streamline. This enables the inverse process to achieve fast convergence. In addition, equipped with a stochastic module, the proposed technique supportively calibrates the identified field in a stochastic manner, while incorporating spatial information into the field. This prevents the inverse process from being stuck in local minima and helps search for a globally optimized solution. Simulation results indicate that stochastic streamline calibration identifies an unknown permeability exceptionally quickly. More notably, the identified permeability distribution reflected realistic geological features, which had not been achieved in the original work by Agarwal et al. with the limitations of the large modifications along streamlines for matching production data only. The constructed model by stochastic streamline calibration forecasted transport of plume which was similar to that of a reference model. By this, we can expect the proposed approach to be applied to the construction of an aquifer model and forecasting of the aquifer performances of interest.

  15. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin; Zhang, W. D., E-mail: zhangwenditju@126.com

    2014-03-15

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposedmore » in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.« less

  16. A Functional Central Limit Theorem for the Becker-Döring Model

    NASA Astrophysics Data System (ADS)

    Sun, Wen

    2018-04-01

    We investigate the fluctuations of the stochastic Becker-Döring model of polymerization when the initial size of the system converges to infinity. A functional central limit problem is proved for the vector of the number of polymers of a given size. It is shown that the stochastic process associated to fluctuations is converging to the strong solution of an infinite dimensional stochastic differential equation (SDE) in a Hilbert space. We also prove that, at equilibrium, the solution of this SDE is a Gaussian process. The proofs are based on a specific representation of the evolution equations, the introduction of a convenient Hilbert space and several technical estimates to control the fluctuations, especially of the first coordinate which interacts with all components of the infinite dimensional vector representing the state of the process.

  17. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series

    PubMed Central

    Ferguson, Jake M; Ponciano, José M

    2014-01-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. PMID:24304946

  18. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  19. Investigation of the stochastic nature of temperature and humidity for energy management

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Evanthis; Demetriou, Evangelos; Sakellari, Katerina; Tyralis, Hristos; Iliopoulou, Theano; Koutsoyiannis, Demetris

    2017-04-01

    Atmospheric temperature and dew point, in addition to their role in atmospheric processes, influence the management of energy systems since they highly affect the energy demand and production. Both temperature and humidity depend on the climate conditions and geographical location. In this context, we analyze numerous of observations around the globe and we investigate the long-term behaviour and periodicities of the temperature and humidity processes. Also, we present and apply a parsimonious stochastic double-cyclostationary model for these processes to an island in the Aegean Sea and investigate their link to energy management. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  20. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    PubMed

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  1. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times

    PubMed Central

    Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems. PMID:27907163

  2. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  3. Stochastic growth logistic model with aftereffect for batch fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  4. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  5. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  6. Analytical pricing formulas for hybrid variance swaps with regime-switching

    NASA Astrophysics Data System (ADS)

    Roslan, Teh Raihana Nazirah; Cao, Jiling; Zhang, Wenjun

    2017-11-01

    The problem of pricing discretely-sampled variance swaps under stochastic volatility, stochastic interest rate and regime-switching is being considered in this paper. An extension of the Heston stochastic volatility model structure is done by adding the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. In addition, the parameters of the model are permitted to have transitions following a Markov chain process which is continuous and discoverable. This hybrid model can be used to illustrate certain macroeconomic conditions, for example the changing phases of business stages. The outcome of our regime-switching hybrid model is presented in terms of analytical pricing formulas for variance swaps.

  7. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.

    PubMed

    Coron, Camille

    2016-01-01

    We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter K that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order K, the sequence of stochastic processes indexed by K converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy-Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches.

  8. Introduction to Focus Issue: nonlinear and stochastic physics in biology.

    PubMed

    Bahar, Sonya; Neiman, Alexander B; Jung, Peter; Kurths, Jürgen; Schimansky-Geier, Lutz; Showalter, Kenneth

    2011-12-01

    Frank Moss was a leading figure in the study of nonlinear and stochastic processes in biological systems. His work, particularly in the area of stochastic resonance, has been highly influential to the interdisciplinary scientific community. This Focus Issue pays tribute to Moss with articles that describe the most recent advances in the field he helped to create. In this Introduction, we review Moss's seminal scientific contributions and introduce the articles that make up this Focus Issue.

  9. Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation.

    PubMed

    Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai

    2006-09-08

    Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

  10. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

  11. Machine learning from computer simulations with applications in rail vehicle dynamics

    NASA Astrophysics Data System (ADS)

    Taheri, Mehdi; Ahmadian, Mehdi

    2016-05-01

    The application of stochastic modelling for learning the behaviour of a multibody dynamics (MBD) models is investigated. Post-processing data from a simulation run are used to train the stochastic model that estimates the relationship between model inputs (suspension relative displacement and velocity) and the output (sum of suspension forces). The stochastic model can be used to reduce the computational burden of the MBD model by replacing a computationally expensive subsystem in the model (suspension subsystem). With minor changes, the stochastic modelling technique is able to learn the behaviour of a physical system and integrate its behaviour within MBD models. The technique is highly advantageous for MBD models where real-time simulations are necessary, or with models that have a large number of repeated substructures, e.g. modelling a train with a large number of railcars. The fact that the training data are acquired prior to the development of the stochastic model discards the conventional sampling plan strategies like Latin Hypercube sampling plans where simulations are performed using the inputs dictated by the sampling plan. Since the sampling plan greatly influences the overall accuracy and efficiency of the stochastic predictions, a sampling plan suitable for the process is developed where the most space-filling subset of the acquired data with ? number of sample points that best describes the dynamic behaviour of the system under study is selected as the training data.

  12. CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

    PubMed Central

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  13. Multiple social disadvantage does it have an effect on amenable mortality: a brief report.

    PubMed

    Manderbacka, Kristiina; Arffman, Martti; Sund, Reijo; Karvonen, Sakari

    2014-08-01

    Most studies on inequalities in health and health-care focus on single indicators of social position, e.g. income or education. Recent research has suggested that multiple social circumstances need to be analysed simultaneously to disentangle their influence on health. In past decades mortality amenable to health-care, i.e. premature mortality that should not occur given timely and effective health-care, has increasingly been used to study the effect of health-care on health outcomes. This study elaborates the effect of social and regional deprivation and unemployment on the association between income and mortality amenable to health-care in Finland. Individual-level data for deaths were gathered by disease category between 1992 and 2008 for the resident Finnish population aged 25 to 59 years. Differences in amenable mortality and changes over time were assessed using individual-level linked register data. We used gender- and age-standardised rates and Poisson regression models to examine the simultaneous effect of these indicators on amenable mortality. Altogether 22,663 persons aged 25-59 years died from causes amenable to health-care during the study period. An inverse pattern was found in amenable mortality for income. The mortality rate in the lowest income quintile was 98 (93-104) per 100,000 in the period 1991-1996 while in the highest group the figure was 40 (38-42) for the same period. Whereas the level of amenable mortality decreased, mortality differences between income groups steepened and amenable mortality increased in the lowest income group towards the end of the study period. Those in poor labour market position or living alone had significantly larger income differences in amenable mortality. Risk of regional deprivation was not associated with amenable mortality. In order to prevent and treat at an early phase conditions that otherwise may lead to premature and unnecessary deaths more attention should be focused on groups with increased social and economic deprivation risk in municipal health centres with the aim at improving access to primary care. Our results also call for joint action by both health-care and social services, since health services alone cannot deal with the risks posed by accumulating social disadvantage.

  14. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on August 17-21, 1987.

    DTIC Science & Technology

    1987-08-01

    ESTIMATION FOR STOCHASTIC PROCESSES by C. C. Heyde Australian National University Canberra, Australia ABSTRACT Optimality is a widely and loosely used...Case 240 S. Australia 1211 Geneva 24 Switzerland Christopher C. Heyde Dept. of Statistics, IAS Patricia Jacobs . Australian National University...Universitat Regensburg USA Postfach D-8400 Regensburg Anatole Joffe W. Germany Dept. of Mathematics & Statatistics Frank Kelly Universite de Montreal

  15. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  16. A Learning Framework for Winner-Take-All Networks with Stochastic Synapses.

    PubMed

    Mostafa, Hesham; Cauwenberghs, Gert

    2018-06-01

    Many recent generative models make use of neural networks to transform the probability distribution of a simple low-dimensional noise process into the complex distribution of the data. This raises the question of whether biological networks operate along similar principles to implement a probabilistic model of the environment through transformations of intrinsic noise processes. The intrinsic neural and synaptic noise processes in biological networks, however, are quite different from the noise processes used in current abstract generative networks. This, together with the discrete nature of spikes and local circuit interactions among the neurons, raises several difficulties when using recent generative modeling frameworks to train biologically motivated models. In this letter, we show that a biologically motivated model based on multilayer winner-take-all circuits and stochastic synapses admits an approximate analytical description. This allows us to use the proposed networks in a variational learning setting where stochastic backpropagation is used to optimize a lower bound on the data log likelihood, thereby learning a generative model of the data. We illustrate the generality of the proposed networks and learning technique by using them in a structured output prediction task and a semisupervised learning task. Our results extend the domain of application of modern stochastic network architectures to networks where synaptic transmission failure is the principal noise mechanism.

  17. Optimization under variability and uncertainty: a case study for NOx emissions control for a gasification system.

    PubMed

    Chen, Jianjun; Frey, H Christopher

    2004-12-15

    Methods for optimization of process technologies considering the distinction between variability and uncertainty are developed and applied to case studies of NOx control for Integrated Gasification Combined Cycle systems. Existing methods of stochastic optimization (SO) and stochastic programming (SP) are demonstrated. A comparison of SO and SP results provides the value of collecting additional information to reduce uncertainty. For example, an expected annual benefit of 240,000 dollars is estimated if uncertainty can be reduced before a final design is chosen. SO and SP are typically applied to uncertainty. However, when applied to variability, the benefit of dynamic process control is obtained. For example, an annual savings of 1 million dollars could be achieved if the system is adjusted to changes in process conditions. When variability and uncertainty are treated distinctively, a coupled stochastic optimization and programming method and a two-dimensional stochastic programming method are demonstrated via a case study. For the case study, the mean annual benefit of dynamic process control is estimated to be 700,000 dollars, with a 95% confidence range of 500,000 dollars to 940,000 dollars. These methods are expected to be of greatest utility for problems involving a large commitment of resources, for which small differences in designs can produce large cost savings.

  18. Ensemble modeling of stochastic unsteady open-channel flow in terms of its time-space evolutionary probability distribution - Part 1: theoretical development

    NASA Astrophysics Data System (ADS)

    Dib, Alain; Kavvas, M. Levent

    2018-03-01

    The Saint-Venant equations are commonly used as the governing equations to solve for modeling the spatially varied unsteady flow in open channels. The presence of uncertainties in the channel or flow parameters renders these equations stochastic, thus requiring their solution in a stochastic framework in order to quantify the ensemble behavior and the variability of the process. While the Monte Carlo approach can be used for such a solution, its computational expense and its large number of simulations act to its disadvantage. This study proposes, explains, and derives a new methodology for solving the stochastic Saint-Venant equations in only one shot, without the need for a large number of simulations. The proposed methodology is derived by developing the nonlocal Lagrangian-Eulerian Fokker-Planck equation of the characteristic form of the stochastic Saint-Venant equations for an open-channel flow process, with an uncertain roughness coefficient. A numerical method for its solution is subsequently devised. The application and validation of this methodology are provided in a companion paper, in which the statistical results computed by the proposed methodology are compared against the results obtained by the Monte Carlo approach.

  19. Stochastic dynamic modeling of regular and slow earthquakes

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.

  20. Stochastic response of human blood platelets to stimulation of shape changes and secretion.

    PubMed Central

    Deranleau, D A; Lüthy, R; Lüscher, E F

    1986-01-01

    Stopped-flow turbidimetric data indicate that platelets stimulated with low levels of thrombin undergo a shape transformation from disc to "sphere" to smaller spiny sphere that is indistinguishable from the shape change induced by ADP through different membrane receptor sites and a dissimilar receptor trigger mechanism. Under conditions where neither secretion nor aggregation occur, the extinction coefficients for total scattering by each of the three platelet forms are independent of the stimulus applied, and both reaction mechanisms can be described as stochastic (Poisson) processes in which the rate constant for the formation of the transient species is equal to the rate constant for its disappearance. This observation is independent of the shape assignment, and as the concentration of thrombin is increased and various storage organelles secrete increasing amounts of their contents into the external medium, the stochastic pattern persists. Progressively larger decreases in the extinction coefficients of the intermediate and final platelet forms, over and above those that reflect shape alterations alone, accompany or parallel the reaction induced by the higher thrombin concentrations. The excess turbidity decrease observed when full secretion occurs can be wholly accounted for by a decrease in platelet volume equal in magnitude to the fraction of the total platelet volume occupied by alpha granules. Platelet activation, as reported by the whole body light scattering of either shape changes alone or shape changes plus parallel (but not necessarily also stochastic) alpha granule secretion, thus manifests itself as a random series of transient events conceivably with its origins in the superposition of a set of more elementary stochastic processes that could include microtubule depolymerization, actin polymerization, and possibly diffusion. Although the real nature of the control mechanism remains obscure, certain properties of pooled stochastic processes suggest that a reciprocal connection between microtubule fragmentation and the assembly of actin-containing pseudopodal structures and contractile elements--processes that may exhibit reciprocal requirements for calcium--might provide a hypothetical basis for a rate-limiting step. PMID:3457375

  1. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less

  2. Adaptive hybrid simulations for multiscale stochastic reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less

  3. Adaptive hybrid simulations for multiscale stochastic reaction networks.

    PubMed

    Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa

    2015-01-21

    The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.

  4. Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks.

    PubMed

    Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick

    2015-01-01

    Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.

  5. Mortality Amenable to Health Care in European Union Countries and Its Limitations.

    PubMed

    Jarčuška, Peter; Janičko, Martin; Barták, Miroslav; Gavurová, Beáta; Vagašová, Tatiana

    2017-12-01

    The concept of amenable mortality is intended to assess health care system performance. It is defined as "premature deaths that should not occur in the presence of timely and effective health care". The purpose of paper is to analyse differences in amenable mortality across European Union countries and to determine the associations between amenable mortality and life expectancy at birth. This is a cross-country and time trend analysis. Data on deaths by cause, and five-year age groups were obtained from the World Health Organization database for the 20 European Union countries, throughout the period from 2002 to 2013. The rates of amenable mortality were expressed by the age-standardised death rates per 100,000 inhabitants. We applied the method of direct standardisation using the European Standard Population. Throughout the explored period, the statistically significant variations of the age-standardised death rates in a relation to the European Union average fluctuated from 78.7 per 100,000 inhabitants (95% CI 72.4-84.9) in France to 374.3 per 100,000 inhabitants (95% CI 350.8-397.7) in Latvia. The leading causes of amenable mortality were ischaemic heart disease, cerebrovascular diseases, and colorectal cancer that accounted for, respectively, 42.2%, 19.5%, and 11.3% of overall amenable mortality. As expected, statistically significant strong negative relationship (R 2 =0.95; ρ=-0.98) between amenable mortality and life expectancy at birth was proved by linear regression. The concept has several limitations relating to the selection of causes of death and setting age threshold over time, not consideration actually available health care resources in each country, as well as differences in the prevalence of diseases among countries. We found an explicit divide in amenable mortality rates between more developed countries of Western, Northern and Southern Europe, and less developed countries of Central and Eastern Europe. Increasing of amenable mortality may suggest deterioration in health care system performance. Copyright© by the National Institute of Public Health, Prague 2017.

  6. Investigation of the stochastic nature of solar radiation for renewable resources management

    NASA Astrophysics Data System (ADS)

    Koudouris, Giannis; Dimitriadis, Panayiotis; Iliopoulou, Theano; Mamasis, Nikos; Koutsoyiannis, Demetris

    2017-04-01

    A detailed investigation of the variability of solar radiation can be proven useful towards more efficient and sustainable design of renewable resources systems. This variability is mainly caused from the regular seasonal and diurnal variation, as well as its stochastic nature of the atmospheric processes, i.e. sunshine duration. In this context, we analyze numerous observations in Greece (Hellenic National Meteorological Service; http://www.hnms.gr/) and around the globe (NASA SSE - Surface meteorology and Solar Energy; http://www.soda-pro.com/web-services/radiation/nasa-sse) and we investigate the long-term behaviour and double periodicity of the solar radiation process. Also, we apply a parsimonious double-cyclostationary stochastic model to a theoretical scenario of solar energy production for an island in the Aegean Sea. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  7. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes

    NASA Astrophysics Data System (ADS)

    Yuan, Ruoshi; Tang, Ying; Ao, Ping

    2017-12-01

    An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.

  8. Statistical nature of infrared dynamics on de Sitter background

    NASA Astrophysics Data System (ADS)

    Tokuda, Junsei; Tanaka, Takahiro

    2018-02-01

    In this study, we formulate a systematic way of deriving an effective equation of motion(EoM) for long wavelength modes of a massless scalar field with a general potential V(phi) on de Sitter background, and investigate whether or not the effective EoM can be described as a classical stochastic process. Our formulation gives an extension of the usual stochastic formalism to including sub-leading secular growth coming from the nonlinearity of short wavelength modes. Applying our formalism to λ phi4 theory, we explicitly derive an effective EoM which correctly recovers the next-to-leading secularly growing part at a late time, and show that this effective EoM can be seen as a classical stochastic process. Our extended stochastic formalism can describe all secularly growing terms which appear in all correlation functions with a specific operator ordering. The restriction of the operator ordering will not be a big drawback because the commutator of a light scalar field becomes negligible at large scales owing to the squeezing.

  9. Extinction in neutrally stable stochastic Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  10. Extinction in neutrally stable stochastic Lotka-Volterra models.

    PubMed

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  11. Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism

    NASA Astrophysics Data System (ADS)

    Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.

    2015-04-01

    We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.

  12. Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system

    NASA Astrophysics Data System (ADS)

    Yang, J. H.; Sanjuán, Miguel A. F.; Liu, H. G.; Litak, G.; Li, X.

    2016-12-01

    We investigate the stochastic response of a noisy bistable fractional-order system when the fractional-order lies in the interval (0, 2]. We focus mainly on the stochastic P-bifurcation and the phenomenon of the stochastic resonance. We compare the generalized Euler algorithm and the predictor-corrector approach which are commonly used for numerical calculations of fractional-order nonlinear equations. Based on the predictor-corrector approach, the stochastic P-bifurcation and the stochastic resonance are investigated. Both the fractional-order value and the noise intensity can induce an stochastic P-bifurcation. The fractional-order may lead the stationary probability density function to turn from a single-peak mode to a double-peak mode. However, the noise intensity may transform the stationary probability density function from a double-peak mode to a single-peak mode. The stochastic resonance is investigated thoroughly, according to the linear and the nonlinear response theory. In the linear response theory, the optimal stochastic resonance may occur when the value of the fractional-order is larger than one. In previous works, the fractional-order is usually limited to the interval (0, 1]. Moreover, the stochastic resonance at the subharmonic frequency and the superharmonic frequency are investigated respectively, by using the nonlinear response theory. When it occurs at the subharmonic frequency, the resonance may be strong and cannot be ignored. When it occurs at the superharmonic frequency, the resonance is weak. We believe that the results in this paper might be useful for the signal processing of nonlinear systems.

  13. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less

  14. Stochastic approximation methods-Powerful tools for simulation and optimization: A survey of some recent work on multi-agent systems and cyber-physical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, George; Wang, Le Yi; Zhang, Hongwei

    2014-12-10

    Stochastic approximation methods have found extensive and diversified applications. Recent emergence of networked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a general framework to support algorithm development for information processing and decisions in such systems. This paper presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct features of networked systems with randomlymore » switching topologies, dynamically evolving parameters, and unknown delays are presented, and control strategies are provided.« less

  15. Variance decomposition in stochastic simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Maître, O. P., E-mail: olm@limsi.fr; Knio, O. M., E-mail: knio@duke.edu; Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance.more » Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.« less

  16. Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Ping; Li, Hongyu; Gan, Chun

    Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes itmore » very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.« less

  17. Stochastic collective dynamics of charged-particle beams in the stability regime

    NASA Astrophysics Data System (ADS)

    Petroni, Nicola Cufaro; de Martino, Salvatore; de Siena, Silvio; Illuminati, Fabrizio

    2001-01-01

    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time-reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by λcN, where N is the number of particles in the beam and λc the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schrödinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so-called ``quantum-like approaches'' to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.

  18. Quantum stochastic walks on networks for decision-making

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-03-01

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.

  19. Quantum stochastic walks on networks for decision-making

    PubMed Central

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-01-01

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making. PMID:27030372

  20. Stochastic calculus of protein filament formation under spatial confinement

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Dear, Alexander J.; Knowles, Tuomas P. J.

    2018-05-01

    The growth of filamentous aggregates from precursor proteins is a process of central importance to both normal and aberrant biology, for instance as the driver of devastating human disorders such as Alzheimer's and Parkinson's diseases. The conventional theoretical framework for describing this class of phenomena in bulk is based upon the mean-field limit of the law of mass action, which implicitly assumes deterministic dynamics. However, protein filament formation processes under spatial confinement, such as in microdroplets or in the cellular environment, show intrinsic variability due to the molecular noise associated with small-volume effects. To account for this effect, in this paper we introduce a stochastic differential equation approach for investigating protein filament formation processes under spatial confinement. Using this framework, we study the statistical properties of stochastic aggregation curves, as well as the distribution of reaction lag-times. Moreover, we establish the gradual breakdown of the correlation between lag-time and normalized growth rate under spatial confinement. Our results establish the key role of spatial confinement in determining the onset of stochasticity in protein filament formation and offer a formalism for studying protein aggregation kinetics in small volumes in terms of the kinetic parameters describing the aggregation dynamics in bulk.

  1. Statistical description and transport in stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Eijnden, E.; Balescu, R.

    1996-03-01

    The statistical description of particle motion in a stochastic magnetic field is presented. Starting form the stochastic Liouville equation (or, hybrid kinetic equation) associated with the equations of motion of a test particle, the probability distribution function of the system is obtained for various magnetic fields and collisional processes. The influence of these two ingredients on the statistics of the particle dynamics is stressed. In all cases, transport properties of the system are discussed. {copyright} {ital 1996 American Institute of Physics.}

  2. LETTER TO THE EDITOR: Thermally activated processes in magnetic systems consisting of rigid dipoles: equivalence of the Ito and Stratonovich stochastic calculus

    NASA Astrophysics Data System (ADS)

    Berkov, D. V.; Gorn, N. L.

    2002-04-01

    We demonstrate that the Ito and the Stratonovich stochastic calculus lead to identical results when applied to the stochastic dynamics study of magnetic systems consisting of dipoles with the constant magnitude, despite the multiplicative noise appearing in the corresponding Langevin equations. The immediate consequence of this statement is that any numerical method used for the solution of these equations will lead to the physically correct results.

  3. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    PubMed

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  4. Analysis of the stochastic excitability in the flow chemical reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  5. Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation

    PubMed Central

    Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai

    2006-01-01

    Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein. PMID:16965175

  6. Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadtke, J.B.; Bulsara, A.

    These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)

  7. Pricing foreign equity option with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Xu, Weidong

    2015-11-01

    In this paper we propose a general foreign equity option pricing framework that unifies the vast foreign equity option pricing literature and incorporates the stochastic volatility into foreign equity option pricing. Under our framework, the time-changed Lévy processes are used to model the underlying assets price of foreign equity option and the closed form pricing formula is obtained through the use of characteristic function methodology. Numerical tests indicate that stochastic volatility has a dramatic effect on the foreign equity option prices.

  8. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  9. Analysis of the stochastic excitability in the flow chemical reactor

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina

    2015-11-01

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  10. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  11. Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms.

    PubMed

    Yedid, G; Ofria, C A; Lenski, R E

    2008-09-01

    Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.

  12. Lithographic Printing Via Two-Photon Polymerization of Engineered Foams

    DOE PAGES

    Herman, Matthew J.; Peterson, Dominic; Henderson, Kevin; ...

    2017-11-29

    Understanding deuterium-tritium mix in capsules is critical to achieving fusion within inertial confined fusion experiments. One method of understanding how the mix of hydrogen fuels can be controlled is by creating various structured deuterated foams and filling the capsule with liquid tritium. Historically, these materials have been a stochastically structured gas-blown foam. Later, to improve the uniformity of this material, pore formers have been used which are then chemically removed, leaving behind a foam of monodisperse voids. However, this technique is still imperfect in that fragments of the pore templating particles may not be completely removed and the void distributionmore » may not be uniform over the size scale of the capsule. Recently, advances in three-dimensional printing suggest that it can be used to create microlattices and capsule walls in one single print. Demonstrated in this paper are proof-of-concept microlattices produced using two-photon polymerization with submicrometer resolution of various structures as well as a microlattice-containing capsule. Finally, with this technology, complete control of the mixing structure is possible, amenable to modeling and easily modified for tailored target design.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, Matthew J.; Peterson, Dominic; Henderson, Kevin

    Understanding deuterium-tritium mix in capsules is critical to achieving fusion within inertial confined fusion experiments. One method of understanding how the mix of hydrogen fuels can be controlled is by creating various structured deuterated foams and filling the capsule with liquid tritium. Historically, these materials have been a stochastically structured gas-blown foam. Later, to improve the uniformity of this material, pore formers have been used which are then chemically removed, leaving behind a foam of monodisperse voids. However, this technique is still imperfect in that fragments of the pore templating particles may not be completely removed and the void distributionmore » may not be uniform over the size scale of the capsule. Recently, advances in three-dimensional printing suggest that it can be used to create microlattices and capsule walls in one single print. Demonstrated in this paper are proof-of-concept microlattices produced using two-photon polymerization with submicrometer resolution of various structures as well as a microlattice-containing capsule. Finally, with this technology, complete control of the mixing structure is possible, amenable to modeling and easily modified for tailored target design.« less

  14. Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control

    NASA Astrophysics Data System (ADS)

    Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel

    2009-10-01

    Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.

  15. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    ERIC Educational Resources Information Center

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  16. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  17. Fractional Stochastic Field Theory

    NASA Astrophysics Data System (ADS)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  18. Models of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2005-06-01

    Gene expression is an inherently stochastic process: Genes are activated and inactivated by random association and dissociation events, transcription is typically rare, and many proteins are present in low numbers per cell. The last few years have seen an explosion in the stochastic modeling of these processes, predicting protein fluctuations in terms of the frequencies of the probabilistic events. Here I discuss commonalities between theoretical descriptions, focusing on a gene-mRNA-protein model that includes most published studies as special cases. I also show how expression bursts can be explained as simplistic time-averaging, and how generic approximations can allow for concrete interpretations without requiring concrete assumptions. Measures and nomenclature are discussed to some extent and the modeling literature is briefly reviewed.

  19. Telegraph noise in Markovian master equation for electron transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Kosov, Daniel S.

    2018-05-01

    We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.

  20. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  1. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  2. Marcus canonical integral for non-Gaussian processes and its computation: pathwise simulation and tau-leaping algorithm.

    PubMed

    Li, Tiejun; Min, Bin; Wang, Zhiming

    2013-03-14

    The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.

  3. Nonlinear Markov Control Processes and Games

    DTIC Science & Technology

    2012-11-15

    the analysis of a new class of stochastic games , nonlinear Markov games , as they arise as a ( competitive ) controlled version of nonlinear Markov... competitive interests) a nonlinear Markov game that we are investigating. I 0. :::tUt::JJt:.l.. I I t:t11VI;:, nonlinear Markov game , nonlinear Markov...corresponding stochastic game Γ+(T, h). In a slightly different setting one can assume that changes in a competitive control process occur as a

  4. Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series.

    PubMed

    Ferguson, Jake M; Ponciano, José M

    2014-02-01

    Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  5. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  6. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak, E-mail: Lorin_Matthews@baylor.edu

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface ofmore » an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.« less

  7. Aquatic bacterial assemblage structure in Pozas Azules, Cuatro Cienegas Basin, Mexico: Deterministic vs. stochastic processes.

    PubMed

    Espinosa-Asuar, Laura; Escalante, Ana Elena; Gasca-Pineda, Jaime; Blaz, Jazmín; Peña, Lorena; Eguiarte, Luis E; Souza, Valeria

    2015-06-01

    The aim of this study was to determine the contributions of stochastic vs. deterministic processes in the distribution of microbial diversity in four ponds (Pozas Azules) within a temporally stable aquatic system in the Cuatro Cienegas Basin, State of Coahuila, Mexico. A sampling strategy for sites that were geographically delimited and had low environmental variation was applied to avoid obscuring distance effects. Aquatic bacterial diversity was characterized following a culture-independent approach (16S sequencing of clone libraries). The results showed a correlation between bacterial beta diversity (1-Sorensen) and geographic distance (distance decay of similarity), which indicated the influence of stochastic processes related to dispersion in the assembly of the ponds' bacterial communities. Our findings are the first to show the influence of dispersal limitation in the prokaryotic diversity distribution of Cuatro Cienegas Basin. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  8. Effect of increasing levels of apparent metabolizable energy on laying hens in barn system.

    PubMed

    Kang, Hwan Ku; Park, Seong Bok; Jeon, Jin Joo; Kim, Hyun Soo; Park, Ki Tae; Kim, Sang Ho; Hong, Eui Chul; Kim, Chan Ho

    2018-04-12

    This experiment was to investigate the effect of increasing levels of apparent metabolizable energy (AMEn) on the laying performance, egg quality, blood parameter, blood biochemistry, intestinal morphology, and apparent total tract digestibility (ATTD) of energy and nutrients in diets fed to laying hens. A total of three-hundred twenty 33-week-old Hy-Line Brown laying hens (Gallus domesticus) were evenly assigned to four experimental diets of 2,750, 2,850, 2,950, and 3,050 kcal AMEn/kg in floor with deep litter of rice hulls. There were four replicates of each treatment, each consisting of 20 birds in a pen. AMEn intake was increased (linear, p < 0.05) with inclusion level of AMEn in diets increased. Feed intake and feed conversion ratio were improved (linear, p < 0.01), but hen-day egg production tended to be increased as increasing level of AMEn in diets increased. During the experiment, leukocyte concentration and blood biochemistry (total cholesterol, triglyceride, glucose, total protein, calcium, asparate aminotransferase (AST), and alanine transferase (ALT) were not influenced by increasing level of AMEn in diets. Gross energy and ether extract were increased (linear, p < 0.01) with inclusion level of AMEn in diets increased. Laying hens fed high AMEn diet (i.e., 3,050 kcal/kg in the current experiment) tended to overconsume energy with a positive effect on feed intake, feed conversion ratio, nutrient digestibility, and intestinal morphology but not in egg production and egg mass.

  9. Digital hardware implementation of a stochastic two-dimensional neuron model.

    PubMed

    Grassia, F; Kohno, T; Levi, T

    2016-11-01

    This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which realizes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of current noise in the silicon neuron using an Ornstein-Uhlenbeck process. This approach uses digital computation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron model's computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible for future hybrid experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stochastic gain in finite populations

    NASA Astrophysics Data System (ADS)

    Röhl, Torsten; Traulsen, Arne; Claussen, Jens Christian; Schuster, Heinz Georg

    2008-08-01

    Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper [Traulsen , Phys. Rev. Lett. 93, 028701 (2004)], we have demonstrated this effect based on a replicator dynamics model which is subject to external noise. Here, we utilize recent advances on finite population dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the population size and the intensity of selection, which measures the balance between the deterministic and the stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate microscopic update process, even if learning rates are constant.

  11. ON NONSTATIONARY STOCHASTIC MODELS FOR EARTHQUAKES.

    USGS Publications Warehouse

    Safak, Erdal; Boore, David M.

    1986-01-01

    A seismological stochastic model for earthquake ground-motion description is presented. Seismological models are based on the physical properties of the source and the medium and have significant advantages over the widely used empirical models. The model discussed here provides a convenient form for estimating structural response by using random vibration theory. A commonly used random process for ground acceleration, filtered white-noise multiplied by an envelope function, introduces some errors in response calculations for structures whose periods are longer than the faulting duration. An alternate random process, filtered shot-noise process, eliminates these errors.

  12. Simple and Hierarchical Models for Stochastic Test Misgrading.

    ERIC Educational Resources Information Center

    Wang, Jianjun

    1993-01-01

    Test misgrading is treated as a stochastic process. The expected number of misgradings, inter-occurrence time of misgradings, and waiting time for the "n"th misgrading are discussed based on a simple Poisson model and a hierarchical Beta-Poisson model. Examples of model construction are given. (SLD)

  13. Nonlinear Stochastic Markov Processes and Modeling Uncertainty in Populations

    DTIC Science & Technology

    2011-07-06

    219–232. [26] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer, New York, 1991. [27] F. Klebaner...ubiquitous in mathematics and physics (e.g., particle transport, filtering), biology (population models), finance (e.g., Black-Scholes equations) among other

  14. Generalized Poisson-Kac Processes: Basic Properties and Implications in Extended Thermodynamics and Transport

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2016-04-01

    We introduce a new class of stochastic processes in Rn,{{{mathbb R}}^n}, referred to as generalized Poisson-Kac (GPK) processes, that generalizes the Poisson-Kac telegrapher's random motion in higher dimensions. These stochastic processes possess finite propagation velocity, almost everywhere smooth trajectories, and converge in the Kac limit to Brownian motion. GPK processes are defined by coupling the selection of a bounded velocity vector from a family of N distinct ones with a Markovian dynamics controlling probabilistically this selection. This model can be used as a probabilistic tool for a stochastically consistent formulation of extended thermodynamic theories far from equilibrium.

  15. Timber and Amenities on Nonindustrial Private Forest Land

    Treesearch

    Subhrendu K. Pattanayak; Karen Lee Abt; Thomas P. Holmes

    2003-01-01

    Economic analyses of the joint production timber and amenities from nonindustrial private forest lands (NIPF) have been conducted for several decades. Binkley (1981) summarized this strand of research and elegantly articulated a microeconomic household model in which NIPF owners maximize utility by choosing optimal combinations of timber income and amenities. Most...

  16. NDMA Treatability Studies.

    DTIC Science & Technology

    1976-12-01

    This investigation evaluated the feasibility of destruction of NDMA using the wet air oxidation process. From the limited data evaluated, it was...determined that NDMA was amenable to destruction by wet air oxidation to approximately the 1.0 mg/l level with relative ease. Reduction below the 1.0 mg

  17. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shuta J.; Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include themore » energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.« less

  18. Neuromorphic Optical Signal Processing and Image Understanding for Automated Target Recognition

    DTIC Science & Technology

    1989-12-01

    34 Stochastic Learning Machine " Neuromorphic Target Identification * Cognitive Networks 3. Conclusions ..... ................ .. 12 4. Publications...16 5. References ...... ................... . 17 6. Appendices ....... .................. 18 I. Optoelectronic Neural Networks and...Learning Machines. II. Stochastic Optical Learning Machine. III. Learning Network for Extrapolation AccesFon For and Radar Target Identification

  19. Impact of number of realizations on the suitability of simulated weather data for hydrologic and environmental applications

    USDA-ARS?s Scientific Manuscript database

    Stochastic weather generators are widely used in hydrological, environmental, and agricultural applications to simulate and forecast weather time series. However, such stochastic processes usually produce random outputs hence the question on how representative the generated data are if obtained fro...

  20. FERN - a Java framework for stochastic simulation and evaluation of reaction networks.

    PubMed

    Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf

    2008-08-29

    Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new systems biology applications. Finally, complex scenarios requiring intervention during the simulation progress can be modelled easily with FERN.

  1. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    NASA Astrophysics Data System (ADS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.

  2. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    NASA Astrophysics Data System (ADS)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  3. Automated Flight Routing Using Stochastic Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  4. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  5. Debates—Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for?

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Cvetkovic, V.; Dagan, G.; Attinger, S.; Bellin, A.; Dietrich, P.; Zech, A.; Teutsch, G.

    2016-12-01

    The emergence of stochastic subsurface hydrology stemmed from the realization that the random spatial variability of aquifer properties has a profound impact on solute transport. The last four decades witnessed a tremendous expansion of the discipline, many fundamental processes and principal mechanisms being identified. However, the research findings have not impacted significantly the application in practice, for several reasons which are discussed. The paper discusses the current status of stochastic subsurface hydrology, the relevance of the scientific results for applications and it also provides a perspective to a few possible future directions. In particular, we discuss how the transfer of knowledge can be facilitated by identifying clear goals for characterization and modeling application, relying on recent recent advances in research in these areas.

  6. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  7. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    PubMed Central

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  8. Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense.

    PubMed

    Joseph, Bindu; Corwin, Jason A; Kliebenstein, Daniel J

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.

  9. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    PubMed

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  10. Distributed delays in a hybrid model of tumor-immune system interplay.

    PubMed

    Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto

    2013-02-01

    A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.

  11. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications.

    PubMed

    Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J

    2017-07-01

    A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    PubMed

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  13. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance

    PubMed Central

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents. PMID:27525414

  14. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  15. Space, race, and poverty: Spatial inequalities in walkable neighborhood amenities?

    PubMed Central

    Aldstadt, Jared; Whalen, John; White, Kellee; Castro, Marcia C.; Williams, David R.

    2017-01-01

    BACKGROUND Multiple and varied benefits have been suggested for increased neighborhood walkability. However, spatial inequalities in neighborhood walkability likely exist and may be attributable, in part, to residential segregation. OBJECTIVE Utilizing a spatial demographic perspective, we evaluated potential spatial inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US). METHODS The independent variables included minority racial/ethnic population percentages and percent of families in poverty. Walkable neighborhood amenities were assessed with a composite measure. Spatial autocorrelation in key study variables were first calculated with the Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were calculated as well as Spearman correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression and spatial autoregressive models, when appropriate, as a final step. RESULTS Significant positive spatial autocorrelation was found in neighborhood socio-demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-demographic characteristics and walkable neighborhood amenities were not statistically significant, nor were neighborhood socio-demographic characteristics significantly associated with walkable neighborhood amenities in OLS regression models. CONCLUSIONS Our results suggest that there is residential segregation in Boston and that spatial inequalities do not necessarily show up using a composite measure. COMMENTS Future research in other geographic areas (including international contexts) and using different definitions of neighborhoods (including small-area definitions) should evaluate if spatial inequalities are found using composite measures but also should use measures of specific neighborhood amenities. PMID:29046612

  16. Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency.

    PubMed

    de Verdal, Hugues; Narcy, Agnès; Bastianelli, Denis; Chapuis, Hervé; Même, Nathalie; Urvoix, Séverine; Le Bihan-Duval, Elisabeth; Mignon-Grasteau, Sandrine

    2011-07-06

    Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens.Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum. The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density. GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits.

  17. Summarizing the Effect of a Wide Array of Amenity Measures into Simple Components

    ERIC Educational Resources Information Center

    Gunderson, Ronald J.; Ng, Pin T.

    2006-01-01

    A significant issue existing within the rural economic development literature revolves around the difficulty with sorting out the controversy of the effects of amenity activities on rural economic growth. This problem is due to the different ways amenity attributes are linked to regional economic performance. Numerous researchers utilize principal…

  18. Community Amenity Measurement for the Great Fly-Over Zones

    ERIC Educational Resources Information Center

    Besser, Terry L.; Miller, Nancy J.; Malik, Roshan

    2012-01-01

    The purpose of this paper is to provide an alternative operationalization of amenities that does not privilege certain kinds of natural resources and climatic conditions and that can be used for assessing the quality of life in small towns. The amenity inventory presented here extends previous literature by including a broad range of amenities…

  19. If you build it, will they come?

    Treesearch

    Geoffrey H. Donovan; Lee K. Cerveny; Demetrios Gatziolis

    2016-01-01

    National forests have a wealth of natural amenities that attract over 175 million recreational visitors a year. Although natural amenities draw visitors to national forests, many of the recreational activities that they engage in require built amenities, such as roads, campgrounds, boat ramps, and trails. We estimate regression models of the effect of two common built...

  20. Stochastic transformation of points in polygons according to the Voronoi tessellation: microstructural description.

    PubMed

    Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo

    2010-12-01

    Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.

  1. Design Tool Using a New Optimization Method Based on a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    Conventional optimization methods are based on a deterministic approach since their purpose is to find out an exact solution. However, such methods have initial condition dependence and the risk of falling into local solution. In this paper, we propose a new optimization method based on the concept of path integrals used in quantum mechanics. The method obtains a solution as an expected value (stochastic average) using a stochastic process. The advantages of this method are that it is not affected by initial conditions and does not require techniques based on experiences. We applied the new optimization method to a hang glider design. In this problem, both the hang glider design and its flight trajectory were optimized. The numerical calculation results prove that performance of the method is sufficient for practical use.

  2. Theoretical consideration of the energy resolution in planar HPGe detectors for low energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samedov, Victor V.

    In this work, theoretical consideration of the processes in planar High Purity Ge (HPGe) detectors for low energy X-rays using the random stochastic processes formalism was carried out. Using the random stochastic processes formalism, the generating function of the processes of X-rays registration in a planar HPGe detector was derived. The power serial expansions of the detector amplitude and the variance in terms of the inverse bias voltage were derived. The coefficients of these expansions allow determining the Fano factor, electron mobility lifetime product, nonuniformity of the trap density, and other characteristics of the semiconductor material. (authors)

  3. Extended forms of the second law for general time-dependent stochastic processes.

    PubMed

    Ge, Hao

    2009-08-01

    The second law of thermodynamics represents a universal principle applicable to all natural processes, physical systems, and engineering devices. Hatano and Sasa have recently put forward an extended form of the second law for transitions between nonequilibrium stationary states [Phys. Rev. Lett. 86, 3463 (2001)]. In this paper we further extend this form to an instantaneous interpretation, which is satisfied by quite general time-dependent stochastic processes including master-equation models and Langevin dynamics without the requirements of the stationarity for the initial and final states. The theory is applied to several thermodynamic processes, and its consistence with the classical thermodynamics is shown.

  4. Changes in assembly processes in soil bacterial communities following a wildfire disturbance.

    PubMed

    Ferrenberg, Scott; O'Neill, Sean P; Knelman, Joseph E; Todd, Bryan; Duggan, Sam; Bradley, Daniel; Robinson, Taylor; Schmidt, Steven K; Townsend, Alan R; Williams, Mark W; Cleveland, Cory C; Melbourne, Brett A; Jiang, Lin; Nemergut, Diana R

    2013-06-01

    Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.

  5. Markov vs. Hurst-Kolmogorov behaviour identification in hydroclimatic processes

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Gournari, Naya; Koutsoyiannis, Demetris

    2016-04-01

    Hydroclimatic processes are usually modelled either by exponential decay of the autocovariance function, i.e., Markovian behaviour, or power type decay, i.e., long-term persistence (or else Hurst-Kolmogorov behaviour). For the identification and quantification of such behaviours several graphical stochastic tools can be used such as the climacogram (i.e., plot of the variance of the averaged process vs. scale), autocovariance, variogram, power spectrum etc. with the former usually exhibiting smaller statistical uncertainty as compared to the others. However, most methodologies including these tools are based on the expected value of the process. In this analysis, we explore a methodology that combines both the practical use of a graphical representation of the internal structure of the process as well as the statistical robustness of the maximum-likelihood estimation. For validation and illustration purposes, we apply this methodology to fundamental stochastic processes, such as Markov and Hurst-Kolmogorov type ones. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  6. Changes in assembly processes in soil bacterial communities following a wildfire disturbance

    PubMed Central

    Ferrenberg, Scott; O'Neill, Sean P; Knelman, Joseph E; Todd, Bryan; Duggan, Sam; Bradley, Daniel; Robinson, Taylor; Schmidt, Steven K; Townsend, Alan R; Williams, Mark W; Cleveland, Cory C; Melbourne, Brett A; Jiang, Lin; Nemergut, Diana R

    2013-01-01

    Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function. PMID:23407312

  7. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    NASA Technical Reports Server (NTRS)

    Hartman, Brian Davis

    1995-01-01

    A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal resolution of solutions obtained from standard sequential filtering methods and process noise sequential filtering methods shows that the accuracy is significantly improved using process noise. The results show that the positional accuracy of the orbit is improved as well. The temporal resolution of the resulting solutions are detailed, and conclusions drawn about the results. Benefits and drawbacks of using process noise filtering in this type of scenario are also identified.

  8. Quantum learning of classical stochastic processes: The completely positive realization problem

    NASA Astrophysics Data System (ADS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].

  9. Emotion-Related Self-Regulation in Children

    ERIC Educational Resources Information Center

    Eisenberg, Nancy; Sulik, Michael J.

    2012-01-01

    In this article, the authors review basic conceptual issues in research on children's emotion-related self-regulation, including the differentiation between self-regulation that is effortful and voluntary and control-related processes that are less amenable to effortful control. In addition, the authors summarize what researchers know about…

  10. Computational Evaluation of the Traceback Method

    ERIC Educational Resources Information Center

    Kol, Sheli; Nir, Bracha; Wintner, Shuly

    2014-01-01

    Several models of language acquisition have emerged in recent years that rely on computational algorithms for simulation and evaluation. Computational models are formal and precise, and can thus provide mathematically well-motivated insights into the process of language acquisition. Such models are amenable to robust computational evaluation,…

  11. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    USDA-ARS?s Scientific Manuscript database

    Epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogalloyl (B-ring) moieties in EGCG underwent ...

  12. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  13. Algorithms and analyses for stochastic optimization for turbofan noise reduction using parallel reduced-order modeling

    NASA Astrophysics Data System (ADS)

    Yang, Huanhuan; Gunzburger, Max

    2017-06-01

    Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes can dramatically reduce the cost and time needed for experimental designs. Because uncertainties are inevitable in the design process, a stochastic optimization algorithm is posed based on the conditional value-at-risk measure so that an ideal acoustic liner impedance is determined that is robust in the presence of uncertainties. A parallel reduced-order modeling framework is developed that dramatically improves the computational efficiency of the stochastic optimization solver for a realistic nacelle geometry. The reduced stochastic optimization solver takes less than 500 seconds to execute. In addition, well-posedness and finite element error analyses of the state system and optimization problem are provided.

  14. Global behavior analysis for stochastic system of 1,3-PD continuous fermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Kliemann, Wolfgang; Li, Chunfa; Feng, Enmin; Xiu, Zhilong

    2017-12-01

    Global behavior for stochastic system of continuous fermentation in glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae is analyzed in this paper. This bioprocess cannot avoid the stochastic perturbation caused by internal and external disturbance which reflect on the growth rate. These negative factors can limit and degrade the achievable performance of controlled systems. Based on multiplicity phenomena, the equilibriums and bifurcations of the deterministic system are analyzed. Then, a stochastic model is presented by a bounded Markov diffusion process. In order to analyze the global behavior, we compute the control sets for the associated control system. The probability distributions of relative supports are also computed. The simulation results indicate that how the disturbed biosystem tend to stationary behavior globally.

  15. Arbitrage with fractional Gaussian processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xili; Xiao, Weilin

    2017-04-01

    While the arbitrage opportunity in the Black-Scholes model driven by fractional Brownian motion has a long history, the arbitrage strategy in the Black-Scholes model driven by general fractional Gaussian processes is in its infancy. The development of stochastic calculus with respect to fractional Gaussian processes allowed us to study such models. In this paper, following the idea of Shiryaev (1998), an arbitrage strategy is constructed for the Black-Scholes model driven by fractional Gaussian processes, when the stochastic integral is interpreted in the Riemann-Stieltjes sense. Arbitrage opportunities in some fractional Gaussian processes, including fractional Brownian motion, sub-fractional Brownian motion, bi-fractional Brownian motion, weighted-fractional Brownian motion and tempered fractional Brownian motion, are also investigated.

  16. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  17. Reflected stochastic differential equation models for constrained animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  18. A statistical approach to quasi-extinction forecasting.

    PubMed

    Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric

    2007-12-01

    Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.

  19. Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert

    1995-05-01

    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.

  20. Path integrals and large deviations in stochastic hybrid systems.

    PubMed

    Bressloff, Paul C; Newby, Jay M

    2014-04-01

    We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.

  1. Algorithm refinement for stochastic partial differential equations: II. Correlated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.

    2005-08-10

    We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less

  2. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient formore » the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.« less

  3. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  4. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    PubMed

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  5. Random variable transformation for generalized stochastic radiative transfer in finite participating slab media

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.

    2015-10-01

    The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.

  6. Stochastic Models of Human Errors

    NASA Technical Reports Server (NTRS)

    Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)

    2002-01-01

    Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.

  7. A Resume of Stochastic, Time-Varying, Linear System Theory with Application to Active-Sonar Signal-Processing Problems

    DTIC Science & Technology

    1981-06-15

    relationships 5 3. Normalized energy in ambiguity function for i = 0 14 k ilI SACLANTCEN SR-50 A RESUME OF STOCHASTIC, TIME-VARYING, LINEAR SYSTEM THEORY WITH...the order in which systems are concatenated is unimportant. These results are exactly analogous to the results of time-invariant linear system theory in...REFERENCES 1. MEIER, L. A rdsum6 of deterministic time-varying linear system theory with application to active sonar signal processing problems, SACLANTCEN

  8. Introduction to Econophysics

    NASA Astrophysics Data System (ADS)

    Mantegna, Rosario N.; Stanley, H. Eugene

    2007-08-01

    Preface; 1. Introduction; 2. Efficient market hypothesis; 3. Random walk; 4. Lévy stochastic processes and limit theorems; 5. Scales in financial data; 6. Stationarity and time correlation; 7. Time correlation in financial time series; 8. Stochastic models of price dynamics; 9. Scaling and its breakdown; 10. ARCH and GARCH processes; 11. Financial markets and turbulence; 12. Correlation and anti-correlation between stocks; 13. Taxonomy of a stock portfolio; 14. Options in idealized markets; 15. Options in real markets; Appendix A: notation guide; Appendix B: martingales; References; Index.

  9. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors.

    PubMed

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A; Coca, Daniel; Hardie, Roger C; Juusola, Mikko

    2012-08-07

    In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (~100-200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors

    PubMed Central

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A.; Coca, Daniel; Hardie, Roger C.; Juusola, Mikko

    2012-01-01

    Summary Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. PMID:22704990

  11. Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity

    Treesearch

    Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bj& #248rnstad

    2006-01-01

    Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity ("Moran effect") can act to synchronize populations. In this study...

  12. Neural Correlates of Sequence Learning with Stochastic Feedback

    ERIC Educational Resources Information Center

    Averbeck, Bruno B.; Kilner, James; Frith, Christopher D.

    2011-01-01

    Although much is known about decision making under uncertainty when only a single step is required in the decision process, less is known about sequential decision making. We carried out a stochastic sequence learning task in which subjects had to use noisy feedback to learn sequences of button presses. We compared flat and hierarchical behavioral…

  13. Fluctuations and Noise in Stochastic Spread of Respiratory Infection Epidemics in Social Networks

    NASA Astrophysics Data System (ADS)

    Yulmetyev, Renat; Emelyanova, Natalya; Demin, Sergey; Gafarov, Fail; Hänggi, Peter; Yulmetyeva, Dinara

    2003-05-01

    For the analysis of epidemic and disease dynamics complexity, it is necessary to understand the basic principles and notions of its spreading in long-time memory media. Here we considering the problem from a theoretical and practical viewpoint, presenting the quantitative evidence confirming the existence of stochastic long-range memory and robust chaos in a real time series of respiratory infections of human upper respiratory track. In this work we present a new statistical method of analyzing the spread of grippe and acute respiratory track infections epidemic process of human upper respiratory track by means of the theory of discrete non-Markov stochastic processes. We use the results of our recent theory (Phys. Rev. E 65, 046107 (2002)) for the study of statistical effects of memory in real data series, describing the epidemic dynamics of human acute respiratory track infections and grippe. The obtained results testify to an opportunity of the strict quantitative description of the regular and stochastic components in epidemic dynamics of social networks with a view to time discreteness and effects of statistical memory.

  14. Stochastic effects in a thermochemical system with Newtonian heat exchange.

    PubMed

    Nowakowski, B; Lemarchand, A

    2001-12-01

    We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.

  15. Quality of life attributes spur growth in high amenity communities.

    Treesearch

    Linda Kruger

    2006-01-01

    Many communities located near high amenity public lands are growing rapidly (McGranahan 2005). The phenomenon behind the change is amenity migration-the relocation of people to areas rich in environmental and cultural resources and recreation opportunities (Johnson and Beale 2002, McCool and Kruger 2003; Green, Deller, and Marcouiller 2006). Migrants often visit an...

  16. The role of amenities and quality of life in rural economic growth

    Treesearch

    Steven C. Deller; Tsung-Hsiu (Sue) Tsai; David W. Marcouiller; Donald B.K. English

    2001-01-01

    A structural model of regional economic growth is estimated using data for 2243 rural US. counties. Five indices designed to capture specific amenity and quality of life characteristics are constructed using 54 separate indicators. Results suggest that amenity characteristics can be organized into consistent and meaningful empirical measures that move beyond ad hoc...

  17. Natural amenities and rural population migration: a technical document supporting the Forest Service 2010 RPA Assessment

    Treesearch

    H. Ken Cordell; Vahé Heboyan; Florence Santos; John C. Bergstrom

    2011-01-01

    Research has suggested that significant relationships exist between rural population change and natural amenities. Thus, understanding and predicting domestic migration trends as a function of changes in natural amenities is important for effective regional growth and development policies and strategies. In this study, we first estimated an econometric model which...

  18. The Association between Natural Amenities, Rural Population Growth, and Long-Term Residents' Economic Well-Being

    ERIC Educational Resources Information Center

    Hunter, Lori M; Boardman, Jason D.; Saint Onge, Jarron M.

    2005-01-01

    Population growth in rural areas characterized by high levels of natural amenities has recently received substantial research attention. A noted concern with amenity-driven rural population growth is its potential to raise local costs-of-living while yielding only low-wage service sector employment for long-term residents. The work presented here…

  19. A stochastic automata network for earthquake simulation and hazard estimation

    NASA Astrophysics Data System (ADS)

    Belubekian, Maya Ernest

    1998-11-01

    This research develops a model for simulation of earthquakes on seismic faults with available earthquake catalog data. The model allows estimation of the seismic hazard at a site of interest and assessment of the potential damage and loss in a region. There are two approaches for studying the earthquakes: mechanistic and stochastic. In the mechanistic approach, seismic processes, such as changes in stress or slip on faults, are studied in detail. In the stochastic approach, earthquake occurrences are simulated as realizations of a certain stochastic process. In this dissertation, a stochastic earthquake occurrence model is developed that uses the results from dislocation theory for the estimation of slip released in earthquakes. The slip accumulation and release laws and the event scheduling mechanism adopted in the model result in a memoryless Poisson process for the small and moderate events and in a time- and space-dependent process for large events. The minimum and maximum of the hazard are estimated by the model when the initial conditions along the faults correspond to a situation right after a largest event and after a long seismic gap, respectively. These estimates are compared with the ones obtained from a Poisson model. The Poisson model overestimates the hazard after the maximum event and underestimates it in the period of a long seismic quiescence. The earthquake occurrence model is formulated as a stochastic automata network. Each fault is divided into cells, or automata, that interact by means of information exchange. The model uses a statistical method called bootstrap for the evaluation of the confidence bounds on its results. The parameters of the model are adjusted to the target magnitude patterns obtained from the catalog. A case study is presented for the city of Palo Alto, where the hazard is controlled by the San Andreas, Hayward and Calaveras faults. The results of the model are used to evaluate the damage and loss distribution in Palo Alto. The sensitivity analysis of the model results to the variation in basic parameters shows that the maximum magnitude has the most significant impact on the hazard, especially for long forecast periods.

  20. Do residents’ perceptions of being well-placed and objective presence of local amenities match? A case study in West Central Scotland, UK

    PubMed Central

    2013-01-01

    Background Recently there has been growing interest in how neighbourhood features, such as the provision of local facilities and amenities, influence residents’ health and well-being. Prior research has measured amenity provision through subjective measures (surveying residents’ perceptions) or objective (GIS mapping of distance) methods. The latter may provide a more accurate measure of physical access, but residents may not use local amenities if they do not perceive them as ‘local’. We believe both subjective and objective measures should be explored, and use West Central Scotland data to investigate correspondence between residents’ subjective assessments of how well-placed they are for everyday amenities (food stores, primary and secondary schools, libraries, pharmacies, public recreation), and objective GIS-modelled measures, and examine correspondence by various sub-groups. Methods ArcMap was used to map the postal locations of ‘Transport, Health and Well-being 2010 Study’ respondents (n = 1760), and the six amenities, and the presence/absence of each of them within various straight-line and network buffers around respondents’ homes was recorded. SPSS was used to investigate whether objective presence of an amenity within a specified buffer was perceived by a respondent as being well-placed for that amenity. Kappa statistics were used to test agreement between measures for all respondents, and by sex, age, social class, area deprivation, car ownership, dog ownership, walking in the local area, and years lived in current home. Results In general, there was poor agreement (Kappa <0.20) between perceptions of being well-placed for each facility and objective presence, within 800 m and 1000 m straight-line and network buffers, with the exception of pharmacies (at 1000 m straight-line) (Kappa: 0.21). Results varied between respondent sub-groups, with some showing better agreement than others. Amongst sub-groups, at 800 m straight-line buffers, the highest correspondence between subjective and objective measures was for pharmacies and primary schools, and at 1000 m, for pharmacies, primary schools and libraries. For road network buffers under 1000 m, agreement was generally poor. Conclusion Respondents did not necessarily regard themselves as well-placed for specific amenities when these amenities were present within specified boundaries around their homes, with some exceptions; the picture is not clear-cut with varying findings between different amenities, buffers, and sub-groups. PMID:23651734

  1. Mindfulness in the Treatment of Suicidal Individuals

    ERIC Educational Resources Information Center

    Luoma, Jason B.; Villatte, Jennifer L.

    2012-01-01

    Suicidal behavior is exhibited by a diverse population of individuals and spans many diagnostic categories. In order to develop effective prevention and treatment programs, it is important to identify transdiagnostic processes that impact the many pathways to suicidality, are amenable to intervention, and affect clinical outcomes when modified. A…

  2. An Algebraic Construction of Duality Functions for the Stochastic {U_q( A_n^{(1)})} Vertex Model and Its Degenerations

    NASA Astrophysics Data System (ADS)

    Kuan, Jeffrey

    2018-03-01

    A recent paper (Kuniba in Nucl Phys B 913:248-277, 2016) introduced the stochastic U}_q(A_n^{(1)})} vertex model. The stochastic S-matrix is related to the R-matrix of the quantum group {U_q(A_n^{(1)})} by a gauge transformation. We will show that a certain function {D^+_{m intertwines with the transfer matrix and its space reversal. When interpreting the transfer matrix as the transition matrix of a discrete-time totally asymmetric particle system on the one-dimensional lattice Z , the function {D^+m} becomes a Markov duality function {Dm} which only depends on q and the vertical spin parameters μ_x. By considering degenerations in the spectral parameter, the duality results also hold on a finite lattice with closed boundary conditions, and for a continuous-time degeneration. This duality function had previously appeared in a multi-species ASEP(q, j) process (Kuan in A multi-species ASEP(q, j) and q-TAZRP with stochastic duality, 2017). The proof here uses that the R-matrix intertwines with the co-product, but does not explicitly use the Yang-Baxter equation. It will also be shown that the stochastic U}_q(A_n^{(1)})} is a multi-species version of a stochastic vertex model studied in Borodin and Petrov (Higher spin six vertex model and symmetric rational functions, 2016) and Corwin and Petrov (Commun Math Phys 343:651-700, 2016). This will be done by generalizing the fusion process of Corwin and Petrov (2016) and showing that it matches the fusion of Kulish and yu (Lett Math Phys 5:393-403, 1981) up to the gauge transformation. We also show, by direct computation, that the multi-species q-Hahn Boson process (which arises at a special value of the spectral parameter) also satisfies duality with respect to D_∞, generalizing the single-species result of Corwin (Int Math Res Not 2015:5577-5603, 2015).

  3. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  4. Stochastic multi-scale models of competition within heterogeneous cellular populations: Simulation methods and mean-field analysis.

    PubMed

    Cruz, Roberto de la; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás

    2016-10-21

    We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i.e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. A variational method for analyzing limit cycle oscillations in stochastic hybrid systems

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; MacLaurin, James

    2018-06-01

    Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .

  6. Modelling stock order flows with non-homogeneous intensities from high-frequency data

    NASA Astrophysics Data System (ADS)

    Gorshenin, Andrey K.; Korolev, Victor Yu.; Zeifman, Alexander I.; Shorgin, Sergey Ya.; Chertok, Andrey V.; Evstafyev, Artem I.; Korchagin, Alexander Yu.

    2013-10-01

    A micro-scale model is proposed for the evolution of such information system as the limit order book in financial markets. Within this model, the flows of orders (claims) are described by doubly stochastic Poisson processes taking account of the stochastic character of intensities of buy and sell orders that determine the price discovery mechanism. The proposed multiplicative model of stochastic intensities makes it possible to analyze the characteristics of the order flows as well as the instantaneous proportion of the forces of buyers and sellers, that is, the imbalance process, without modelling the external information background. The proposed model gives the opportunity to link the micro-scale (high-frequency) dynamics of the limit order book with the macro-scale models of stock price processes of the form of subordinated Wiener processes by means of limit theorems of probability theory and hence, to use the normal variance-mean mixture models of the corresponding heavy-tailed distributions. The approach can be useful in different areas with similar properties (e.g., in plasma physics).

  7. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale

    PubMed Central

    Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal. PMID:26102202

  8. Modified parton branching model for multi-particle production in hadronic collisions: Application to SUSY particle branching

    NASA Astrophysics Data System (ADS)

    Yuanyuan, Zhang

    The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.

  9. Estimation of Kubo number and correlation length of fluctuating magnetic fields and pressure in BOUT + + edge pedestal collapse simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Lee, W.-J.; Jhang, Hogun; Kaang, H. H.; Ghim, Y.-C.

    2017-10-01

    Stochastic magnetic fields are thought to be as one of the possible mechanisms for anomalous transport of density, momentum and heat across the magnetic field lines. Kubo number and Chirikov parameter are quantifications of the stochasticity, and previous studies show that perpendicular transport strongly depends on the magnetic Kubo number (MKN). If MKN is smaller than one, diffusion process will follow Rechester-Rosenbluth model; whereas if it is larger than one, percolation theory dominates the diffusion process. Thus, estimation of Kubo number plays an important role to understand diffusion process caused by stochastic magnetic fields. However, spatially localized experimental measurement of fluctuating magnetic fields in a tokamak is difficult, and we attempt to estimate MKNs using BOUT + + simulation data with pedestal collapse. In addition, we calculate correlation length of fluctuating pressures and Chirikov parameters to investigate variation correlation lengths in the simulation. We, then, discuss how one may experimentally estimate MKNs.

  10. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    PubMed

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  11. Asymptotic Equivalence of Probability Measures and Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Touchette, Hugo

    2018-03-01

    Let P_n and Q_n be two probability measures representing two different probabilistic models of some system (e.g., an n-particle equilibrium system, a set of random graphs with n vertices, or a stochastic process evolving over a time n) and let M_n be a random variable representing a "macrostate" or "global observable" of that system. We provide sufficient conditions, based on the Radon-Nikodym derivative of P_n and Q_n, for the set of typical values of M_n obtained relative to P_n to be the same as the set of typical values obtained relative to Q_n in the limit n→ ∞. This extends to general probability measures and stochastic processes the well-known thermodynamic-limit equivalence of the microcanonical and canonical ensembles, related mathematically to the asymptotic equivalence of conditional and exponentially-tilted measures. In this more general sense, two probability measures that are asymptotically equivalent predict the same typical or macroscopic properties of the system they are meant to model.

  12. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process

    PubMed Central

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L.; Engert, Florian

    2015-01-01

    ABSTRACT Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (<10 mm s−1) and then plateaus for higher values. Typical latencies are >1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. PMID:25792753

  13. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    PubMed

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (<10 mm s(-1)) and then plateaus for higher values. Typical latencies are >1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. © 2015. Published by The Company of Biologists Ltd.

  14. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  15. Stochastic modeling of the hypothalamic pulse generator activity.

    PubMed

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  16. An invariance property of generalized Pearson random walks in bounded geometries

    NASA Astrophysics Data System (ADS)

    Mazzolo, Alain

    2009-03-01

    Invariance properties of random walks in bounded domains are a topic of growing interest since they contribute to improving our understanding of diffusion in confined geometries. Recently, limited to Pearson random walks with exponentially distributed straight paths, it has been shown that under isotropic uniform incidence, the average length of the trajectories through the domain is independent of the random walk characteristic and depends only on the ratio of the volume's domain over its surface. In this paper, thanks to arguments of integral geometry, we generalize this property to any isotropic bounded stochastic process and we give the conditions of its validity for isotropic unbounded stochastic processes. The analytical form for the traveled distance from the boundary to the first scattering event that ensures the validity of the Cauchy formula is also derived. The generalization of the Cauchy formula is an analytical constraint that thus concerns a very wide range of stochastic processes, from the original Pearson random walk to a Rayleigh distribution of the displacements, covering many situations of physical importance.

  17. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale.

    PubMed

    Martins, Clarissa de Araújo; Roque, Fabio de Oliveira; Santos, Bráulio A; Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.

  18. Application of an NLME-Stochastic Deconvolution Approach to Level A IVIVC Modeling.

    PubMed

    Kakhi, Maziar; Suarez-Sharp, Sandra; Shepard, Terry; Chittenden, Jason

    2017-07-01

    Stochastic deconvolution is a parameter estimation method that calculates drug absorption using a nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using clinical pharmacokinetic (PK) data generated for an in vitro-in vivo correlation (IVIVC) study of extended release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The preliminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction absorbed (F abs ) versus time profiles when supplied with exactly the same externally determined unit impulse response parameters. In a separate analysis, a full population-PK/stochastic deconvolution was applied to the clinical PK data. Scenarios were considered in which immediate release (IR) data were either retained or excluded to inform parameter estimation. The resulting F abs profiles were then used to model level A IVIVCs. All the considered stochastic deconvolution scenarios, and numerical deconvolution, yielded on average similar results with respect to the IVIVC validation. These results could be achieved with stochastic deconvolution without recourse to IR data. Unlike numerical deconvolution, this also implies that in crossover studies where certain individuals do not receive an IR treatment, their ER data alone can still be included as part of the IVIVC analysis. Published by Elsevier Inc.

  19. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  20. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The effects of wildfire and environmental amenities on property values in northwest Montana, USA

    Treesearch

    Kyle M. Stetler; Tyron J. Venn; David E. Calkin

    2010-01-01

    This study employed the hedonic price framework to examine the effects of 256 wildfires and environmental amenities on home values in northwest Montana between June 1996 and January 2007. The study revealed environmental amenities, including proximity to lakes, national forests, Glacier National Park and golf courses, have large positive effects on property values in...

  2. Sparse learning of stochastic dynamical equations

    NASA Astrophysics Data System (ADS)

    Boninsegna, Lorenzo; Nüske, Feliks; Clementi, Cecilia

    2018-06-01

    With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastic SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential and the projected dynamics of a two-dimensional diffusion process.

  3. The Tool for Designing Engineering Systems Using a New Optimization Method Based on a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    The conventional optimization methods were based on a deterministic approach, since their purpose is to find out an exact solution. However, these methods have initial condition dependence and risk of falling into local solution. In this paper, we propose a new optimization method based on a concept of path integral method used in quantum mechanics. The method obtains a solutions as an expected value (stochastic average) using a stochastic process. The advantages of this method are not to be affected by initial conditions and not to need techniques based on experiences. We applied the new optimization method to a design of the hang glider. In this problem, not only the hang glider design but also its flight trajectory were optimized. The numerical calculation results showed that the method has a sufficient performance.

  4. On the generation of log-Lévy distributions and extreme randomness

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2011-10-01

    The log-normal distribution is prevalent across the sciences, as it emerges from the combination of multiplicative processes and the central limit theorem (CLT). The CLT, beyond yielding the normal distribution, also yields the class of Lévy distributions. The log-Lévy distributions are the Lévy counterparts of the log-normal distribution, they appear in the context of ultraslow diffusion processes, and they are categorized by Mandelbrot as belonging to the class of extreme randomness. In this paper, we present a natural stochastic growth model from which both the log-normal distribution and the log-Lévy distributions emerge universally—the former in the case of deterministic underlying setting, and the latter in the case of stochastic underlying setting. In particular, we establish a stochastic growth model which universally generates Mandelbrot’s extreme randomness.

  5. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parametermore » estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.« less

  6. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    NASA Astrophysics Data System (ADS)

    Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd

    2015-02-01

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.

  7. Towards a Stochastic Predictive Understanding of Ecosystem Functioning and Resilience to Environmental Changes

    NASA Astrophysics Data System (ADS)

    Pappas, C.

    2017-12-01

    Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not captured by simulation results with process-based models. Our analysis offers a perspective for terrestrial ecosystem modelling, combining current process understanding with stochastic methods, and paves the way for new model-data integration opportunities in Earth system sciences.

  8. Stochastic effects in EUV lithography: random, local CD variability, and printing failures

    NASA Astrophysics Data System (ADS)

    De Bisschop, Peter

    2017-10-01

    Stochastic effects in lithography are usually quantified through local CD variability metrics, such as line-width roughness or local CD uniformity (LCDU), and these quantities have been measured and studied intensively, both in EUV and optical lithography. Next to the CD-variability, stochastic effects can also give rise to local, random printing failures, such as missing contacts or microbridges in spaces. When these occur, there often is no (reliable) CD to be measured locally, and then such failures cannot be quantified with the usual CD-measuring techniques. We have developed algorithms to detect such stochastic printing failures in regular line/space (L/S) or contact- or dot-arrays from SEM images, leading to a stochastic failure metric that we call NOK (not OK), which we consider a complementary metric to the CD-variability metrics. This paper will show how both types of metrics can be used to experimentally quantify dependencies of stochastic effects to, e.g., CD, pitch, resist, exposure dose, etc. As it is also important to be able to predict upfront (in the OPC verification stage of a production-mask tape-out) whether certain structures in the layout are likely to have a high sensitivity to stochastic effects, we look into the feasibility of constructing simple predictors, for both stochastic CD-variability and printing failure, that can be calibrated for the process and exposure conditions used and integrated into the standard OPC verification flow. Finally, we briefly discuss the options to reduce stochastic variability and failure, considering the entire patterning ecosystem.

  9. A developmental basis for stochasticity in floral organ numbers

    PubMed Central

    Kitazawa, Miho S.; Fujimoto, Koichi

    2014-01-01

    Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning. PMID:25404932

  10. Relative frequencies of constrained events in stochastic processes: An analytical approach.

    PubMed

    Rusconi, S; Akhmatskaya, E; Sokolovski, D; Ballard, N; de la Cal, J C

    2015-10-01

    The stochastic simulation algorithm (SSA) and the corresponding Monte Carlo (MC) method are among the most common approaches for studying stochastic processes. They relies on knowledge of interevent probability density functions (PDFs) and on information about dependencies between all possible events. Analytical representations of a PDF are difficult to specify in advance, in many real life applications. Knowing the shapes of PDFs, and using experimental data, different optimization schemes can be applied in order to evaluate probability density functions and, therefore, the properties of the studied system. Such methods, however, are computationally demanding, and often not feasible. We show that, in the case where experimentally accessed properties are directly related to the frequencies of events involved, it may be possible to replace the heavy Monte Carlo core of optimization schemes with an analytical solution. Such a replacement not only provides a more accurate estimation of the properties of the process, but also reduces the simulation time by a factor of order of the sample size (at least ≈10(4)). The proposed analytical approach is valid for any choice of PDF. The accuracy, computational efficiency, and advantages of the method over MC procedures are demonstrated in the exactly solvable case and in the evaluation of branching fractions in controlled radical polymerization (CRP) of acrylic monomers. This polymerization can be modeled by a constrained stochastic process. Constrained systems are quite common, and this makes the method useful for various applications.

  11. A stochastic evolution model for residue Insertion-Deletion Independent from Substitution.

    PubMed

    Lèbre, Sophie; Michel, Christian J

    2010-12-01

    We develop here a new class of stochastic models of gene evolution based on residue Insertion-Deletion Independent from Substitution (IDIS). Indeed, in contrast to all existing evolution models, insertions and deletions are modeled here by a concept in population dynamics. Therefore, they are not only independent from each other, but also independent from the substitution process. After a separate stochastic analysis of the substitution and the insertion-deletion processes, we obtain a matrix differential equation combining these two processes defining the IDIS model. By deriving a general solution, we give an analytical expression of the residue occurrence probability at evolution time t as a function of a substitution rate matrix, an insertion rate vector, a deletion rate and an initial residue probability vector. Various mathematical properties of the IDIS model in relation with time t are derived: time scale, time step, time inversion and sequence length. Particular expressions of the nucleotide occurrence probability at time t are given for classical substitution rate matrices in various biological contexts: equal insertion rate, insertion-deletion only and substitution only. All these expressions can be directly used for biological evolutionary applications. The IDIS model shows a strongly different stochastic behavior from the classical substitution only model when compared on a gene dataset. Indeed, by considering three processes of residue insertion, deletion and substitution independently from each other, it allows a more realistic representation of gene evolution and opens new directions and applications in this research field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes

    PubMed Central

    2018-01-01

    Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site. PMID:29386401

  13. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    PubMed

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.

    PubMed

    Xu, Xiaoguang; Kypraios, Theodore; O'Neill, Philip D

    2016-10-01

    This paper considers novel Bayesian non-parametric methods for stochastic epidemic models. Many standard modeling and data analysis methods use underlying assumptions (e.g. concerning the rate at which new cases of disease will occur) which are rarely challenged or tested in practice. To relax these assumptions, we develop a Bayesian non-parametric approach using Gaussian Processes, specifically to estimate the infection process. The methods are illustrated with both simulated and real data sets, the former illustrating that the methods can recover the true infection process quite well in practice, and the latter illustrating that the methods can be successfully applied in different settings. © The Author 2016. Published by Oxford University Press.

  15. Granger-causality maps of diffusion processes.

    PubMed

    Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A

    2016-02-01

    Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.

  16. Using stochastic models to incorporate spatial and temporal variability [Exercise 14

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...

  17. Disentangling Mechanisms That Mediate the Balance Between Stochastic and Deterministic Processes in Microbial Succession

    DOE PAGES

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; ...

    2015-03-17

    Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic mattermore » (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.« less

  18. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  19. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Liu, Qing; Thompson, Jayne; Vedral, Vlatko; Gu, mile

    2017-10-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.

  20. Heart rate variability as determinism with jump stochastic parameters.

    PubMed

    Zheng, Jiongxuan; Skufca, Joseph D; Bollt, Erik M

    2013-08-01

    We use measured heart rate information (RR intervals) to develop a one-dimensional nonlinear map that describes short term deterministic behavior in the data. Our study suggests that there is a stochastic parameter with persistence which causes the heart rate and rhythm system to wander about a bifurcation point. We propose a modified circle map with a jump process noise term as a model which can qualitatively capture such this behavior of low dimensional transient determinism with occasional (stochastically defined) jumps from one deterministic system to another within a one parameter family of deterministic systems.

  1. Stochastic optimization algorithms for barrier dividend strategies

    NASA Astrophysics Data System (ADS)

    Yin, G.; Song, Q. S.; Yang, H.

    2009-01-01

    This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.

  2. Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes

    PubMed Central

    Dobos, László; Király, András; Abonyi, János

    2012-01-01

    Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298

  3. The influence of choice feeding and cereal type (corn or triticale) during the finishing period on performance of mule ducks.

    PubMed

    Arroyo, J; Fortun-Lamothe, L; Dubois, J P; Lavigne, F; Bijja, M; Molette, C

    2014-09-01

    The aim of this trial was to study the influence of choice feeding and cereal type (corn or triticale) during the finishing period on performance of ducks. In total, 624 one-day-old male mule ducks (Cairina moschata × Anas platyrhynchos) were divided into 3 groups differing in the diet they received between 56 and 84 d of age: a commercial complete pelleted diet (control group; AMEn 12.1 MJ/kg, CP 15%), or corn whole seeds (AMEn 14.4 MJ/kg, CP 7.3%) and protein-rich pellets (AMEn 9.9 MJ/kg, CP 22.7%) in 2 separated feeders [choice feeding with corn (CFC) group]; or triticale whole seeds (AMEn 13.0 MJ/kg, CP 10.5%) and protein-rich pellets (AMEn 11.2 MJ/kg, CP 19.5%) in 2 separated feeders [choice feeding with triticale (CFT) group]. From 85 to 96 d, 96 birds/group were overfed with corn. Feed intake (complete pellets or cereal and protein-rich pellets) per pen was measured at 60, 62, 65, 69, 78, and 84 d of age. Body weight and body traits were measured at 56 to 84 d of age. Over the entire period, from 56 to 84 d, the feed intake of the CFC group was 7% lower than the control group, and 5% lower than that in the CFT group (P = 0.002). Whatever the diet tested, at 56 and 84 d of age, the BW (4,099 and 4,779 g, P = 0.42 and P = 0.35, respectively) and the carcass traits (P > 0.05) of ducks were similar in the 3 groups. During and after overfeeding, the performances of the ducks were also similar (P > 0.05). The present results suggest that CFC during the finishing period is a solution to reduce the cost of diet destined to ducks. Indeed, using locally grown grains could reduce the economic and environmental impacts of duck feeding, reducing the transportation and crushing processes. © 2014 Poultry Science Association Inc.

  4. Discrimination of shot-noise-driven Poisson processes by external dead time - Application of radioluminescence from glass

    NASA Technical Reports Server (NTRS)

    Saleh, B. E. A.; Tavolacci, J. T.; Teich, M. C.

    1981-01-01

    Ways in which dead time can be used to constructively enhance or diminish the effects of point processes that display bunching in the shot-noise-driven doubly stochastic Poisson point process (SNDP) are discussed. Interrelations between photocount bunching arising in the SNDP and the antibunching character arising from dead-time effects are investigated. It is demonstrated that the dead-time-modified count mean and variance for an arbitrary doubly stochastic Poisson point process can be obtained from the Laplace transform of the single-fold and joint-moment-generating functions for the driving rate process. The theory is in good agreement with experimental values for radioluminescence radiation in fused silica, quartz, and glass, and the process has many applications in pulse, particle, and photon detection.

  5. The relationship between environmental amenities and changing human settlement patterns between 1980 and 2000 in the Midwestern USA

    Treesearch

    Eric J. Gustafson; Volker C. Radeloff; Robert Potts

    2005-01-01

    Natural resource amenities may be an attractor as people decide where they will live and invest in property. In the American Midwest these amenities range from lakes to forests to pastoral landscapes, depending on the ecological province. We used simple linear regression models to test the hypotheses that physiographic, land cover (composition and spatial pattern),...

  6. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<

  7. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks

    PubMed Central

    Vestergaard, Christian L.; Génois, Mathieu

    2015-01-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860

  8. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.

    PubMed

    Vestergaard, Christian L; Génois, Mathieu

    2015-10-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.

  9. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  10. Two stochastic models useful in petroleum exploration

    NASA Technical Reports Server (NTRS)

    Kaufman, G. M.; Bradley, P. G.

    1972-01-01

    A model of the petroleum exploration process that tests empirically the hypothesis that at an early stage in the exploration of a basin, the process behaves like sampling without replacement is proposed along with a model of the spatial distribution of petroleum reserviors that conforms to observed facts. In developing the model of discovery, the following topics are discussed: probabilitistic proportionality, likelihood function, and maximum likelihood estimation. In addition, the spatial model is described, which is defined as a stochastic process generating values of a sequence or random variables in a way that simulates the frequency distribution of areal extent, the geographic location, and shape of oil deposits

  11. Control Improvement for Jump-Diffusion Processes with Applications to Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu; Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de

    2012-02-15

    We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

  12. Finite-size effects and switching times for Moran process with mutation.

    PubMed

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  13. Stochastic Parameterization: Toward a New View of Weather and Climate Models

    DOE PAGES

    Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...

    2017-03-31

    The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less

  14. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    NASA Astrophysics Data System (ADS)

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-10-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype.

  15. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  16. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  17. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa

    PubMed Central

    Deng, Zhaojie; Arsenault, Sam; Caranica, Cristian; Griffith, James; Zhu, Taotao; Al-Omari, Ahmad; Schüttler, Heinz-Bernd; Arnold, Jonathan; Mao, Leidong

    2016-01-01

    The synchronization of stochastic coupled oscillators is a central problem in physics and an emerging problem in biology, particularly in the context of circadian rhythms. Most measurements on the biological clock are made at the macroscopic level of millions of cells. Here measurements are made on the oscillators in single cells of the model fungal system, Neurospora crassa, with droplet microfluidics and the use of a fluorescent recorder hooked up to a promoter on a clock controlled gene-2 (ccg-2). The oscillators of individual cells are stochastic with a period near 21 hours (h), and using a stochastic clock network ensemble fitted by Markov Chain Monte Carlo implemented on general-purpose graphical processing units (or GPGPUs) we estimated that >94% of the variation in ccg-2 expression was stochastic (as opposed to experimental error). To overcome this stochasticity at the macroscopic level, cells must synchronize their oscillators. Using a classic measure of similarity in cell trajectories within droplets, the intraclass correlation (ICC), the synchronization surface ICC is measured on >25,000 cells as a function of the number of neighboring cells within a droplet and of time. The synchronization surface provides evidence that cells communicate, and synchronization varies with genotype. PMID:27786253

  18. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  19. Stochastic Parameterization: Toward a New View of Weather and Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berner, Judith; Achatz, Ulrich; Batté, Lauriane

    The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less

  20. Place affinities, lifestyle mobilities and quality-of-life

    Treesearch

    Daniel R. Williams; Norman McIntyre

    2012-01-01

    Tourism is a spatial practice involving two seemingly opposing geographic processes. One is aptly captured by McHugh's (2006b) phrase "nomads of desire" referring to the ways amenity-seeking mobilities and travel are deeply rooted in the Western imagination. The other is succinctly expressed in Lippard's (1997) book titled "The Lure of the...

  1. Variables Associated with Treatment Failure among Adolescent Sex Offenders

    ERIC Educational Resources Information Center

    Eastman, Brenda J.

    2005-01-01

    While an adolescent sexual offender's response to treatment is thought to be impacted by both static and dynamic factors, there is no objective method of assessing the likelihood of success or failure in treatment. The assessment of amenability to treatment is generally a subjective process completed by clinicians in the field. Using descriptive…

  2. Revisiting adverse effects of cross-hybridization in Affymetrix gene expression data: do they matter for correlation analysis?

    PubMed

    Klebanov, Lev; Chen, Linlin; Yakovlev, Andrei

    2007-11-07

    This work was undertaken in response to a recently published paper by Okoniewski and Miller (BMC Bioinformatics 2006, 7: Article 276). The authors of that paper came to the conclusion that the process of multiple targeting in short oligonucleotide microarrays induces spurious correlations and this effect may deteriorate the inference on correlation coefficients. The design of their study and supporting simulations cast serious doubt upon the validity of this conclusion. The work by Okoniewski and Miller drove us to revisit the issue by means of experimentation with biological data and probabilistic modeling of cross-hybridization effects. We have identified two serious flaws in the study by Okoniewski and Miller: (1) The data used in their paper are not amenable to correlation analysis; (2) The proposed simulation model is inadequate for studying the effects of cross-hybridization. Using two other data sets, we have shown that removing multiply targeted probe sets does not lead to a shift in the histogram of sample correlation coefficients towards smaller values. A more realistic approach to mathematical modeling of cross-hybridization demonstrates that this process is by far more complex than the simplistic model considered by the authors. A diversity of correlation effects (such as the induction of positive or negative correlations) caused by cross-hybridization can be expected in theory but there are natural limitations on the ability to provide quantitative insights into such effects due to the fact that they are not directly observable. The proposed stochastic model is instrumental in studying general regularities in hybridization interaction between probe sets in microarray data. As the problem stands now, there is no compelling reason to believe that multiple targeting causes a large-scale effect on the correlation structure of Affymetrix gene expression data. Our analysis suggests that the observed long-range correlations in microarray data are of a biological nature rather than a technological flaw.

  3. Compensating differentials, labor market segmentation, and wage inequality.

    PubMed

    Daw, Jonathan; Hardie, Jessica Halliday

    2012-09-01

    Two literatures on work and the labor market draw attention to the importance of non-pecuniary job amenities. Social psychological perspectives on work suggest that workers have preferences for a range of job amenities (e.g. Halaby, 2003). The compensating differentials hypothesis predicts that workers navigate tradeoffs among different job amenities such that wage inequality overstates inequality in utility (Smith, 1979). This paper joins these perspectives by constructing a new measure of labor market success that evaluates the degree to which workers' job amenity preferences and outcomes match. This measure of subjective success is used to predict workers' job satisfaction and to test the hypothesis that some degree of labor force inequality in wages is due to preference-based tradeoffs among all job amenities. Findings demonstrate that the new measure predicts workers' job satisfaction and provides evidence for the presence of compensating differentials in the primary and intermediate, but not secondary, labor markets. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Switchable vanadium oxide films by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Partlow, D. P.; Gurkovich, S. R.; Radford, K. C.; Denes, L. J.

    1991-07-01

    Thin polycrystalline films of VO2 and V2O3 were deposited on a variety of substrates using a sol-gel process. The orientation, microstructure, optical constants, and optical and electrical switching behavior are presented. These films exhibited sharp optical switching behavior even on an amorphous substrate such as fused silica. The method yields reproducible results and is amenable to the coating of large substrates and curved surfaces such as mirrors and lenses.

  5. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  6. Optimal growth trajectories with finite carrying capacity.

    PubMed

    Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  7. Stochastic Model of Vesicular Sorting in Cellular Organelles

    NASA Astrophysics Data System (ADS)

    Vagne, Quentin; Sens, Pierre

    2018-02-01

    The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.

  8. Large-deviation properties of Brownian motion with dry friction.

    PubMed

    Chen, Yaming; Just, Wolfram

    2014-10-01

    We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.

  9. Empirical method to measure stochasticity and multifractality in nonlinear time series

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  10. The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection

    DOE PAGES

    Romps, David M.

    2016-03-01

    Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less

  11. Optimal growth trajectories with finite carrying capacity

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.

    2016-08-01

    We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.

  12. A stochastic model for eye movements during fixation on a stationary target.

    NASA Technical Reports Server (NTRS)

    Vasudevan, R.; Phatak, A. V.; Smith, J. D.

    1971-01-01

    A stochastic model describing small eye movements occurring during steady fixation on a stationary target is presented. Based on eye movement data for steady gaze, the model has a hierarchical structure; the principal level represents the random motion of the image point within a local area of fixation, while the higher level mimics the jump processes involved in transitions from one local area to another. Target image motion within a local area is described by a Langevin-like stochastic differential equation taking into consideration the microsaccadic jumps pictured as being due to point processes and the high frequency muscle tremor, represented as a white noise. The transform of the probability density function for local area motion is obtained, leading to explicit expressions for their means and moments. Evaluation of these moments based on the model is comparable with experimental results.

  13. Diffusion with stochastic resetting at power-law times.

    PubMed

    Nagar, Apoorva; Gupta, Shamik

    2016-06-01

    What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ∼τ^{-(1+α)};α>0? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α<1, to one that is time independent for α>1. The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.

  14. Solution of the finite Milne problem in stochastic media with RVT Technique

    NASA Astrophysics Data System (ADS)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  15. Stochastic nonlinear dynamics pattern formation and growth models

    PubMed Central

    Yaroslavsky, Leonid P

    2007-01-01

    Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341

  16. Impact of a Stochastic Parameterization Scheme on El Nino-Southern Oscillation in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Berner, J.; Sardeshmukh, P. D.

    2017-12-01

    Stochastic parameterizations have been used for more than a decade in atmospheric models. They provide a way to represent model uncertainty through representing the variability of unresolved sub-grid processes, and have been shown to have a beneficial effect on the spread and mean state for medium- and extended-range forecasts. There is increasing evidence that stochastic parameterization of unresolved processes can improve the bias in mean and variability, e.g. by introducing a noise-induced drift (nonlinear rectification), and by changing the residence time and structure of flow regimes. We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. SPPT results in a significant improvement in the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. We use a Linear Inverse Modelling framework to gain insight into the mechanisms by which SPPT has improved ENSO-variability.

  17. Stochastic dynamics of extended objects in driven systems II: Current quantization in the low-temperature limit

    NASA Astrophysics Data System (ADS)

    Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R.

    2016-12-01

    Driven Langevin processes have appeared in a variety of fields due to the relevance of natural phenomena having both deterministic and stochastic effects. The stochastic currents and fluxes in these systems provide a convenient set of observables to describe their non-equilibrium steady states. Here we consider stochastic motion of a (k - 1) -dimensional object, which sweeps out a k-dimensional trajectory, and gives rise to a higher k-dimensional current. By employing the low-temperature (low-noise) limit, we reduce the problem to a discrete Markov chain model on a CW complex, a topological construction which generalizes the notion of a graph. This reduction allows the mean fluxes and currents of the process to be expressed in terms of solutions to the discrete Supersymmetric Fokker-Planck (SFP) equation. Taking the adiabatic limit, we show that generic driving leads to rational quantization of the generated higher dimensional current. The latter is achieved by implementing the recently developed tools, coined the higher-dimensional Kirchhoff tree and co-tree theorems. This extends the study of motion of extended objects in the continuous setting performed in the prequel (Catanzaro et al.) to this manuscript.

  18. Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion

    NASA Astrophysics Data System (ADS)

    Sposini, Vittoria; Chechkin, Aleksei V.; Seno, Flavio; Pagnini, Gianni; Metzler, Ralf

    2018-04-01

    A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time-dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.

  19. Quantum learning of classical stochastic processes: The completely positive realization problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less

  20. Mathematical issues in eternal inflation

    NASA Astrophysics Data System (ADS)

    Singh Kohli, Ikjyot; Haslam, Michael C.

    2015-04-01

    In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.

  1. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Many roads to synchrony: natural time scales and their algorithms.

    PubMed

    James, Ryan G; Mahoney, John R; Ellison, Christopher J; Crutchfield, James P

    2014-04-01

    We consider two important time scales-the Markov and cryptic orders-that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ε-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.

  3. Poverty index with time-varying consumption and income distributions

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Kumar, T. Krishna; Mallick, Sushanta K.

    2017-03-01

    Starting from a stochastic agent-based model to represent market exchange in a developing economy, we study time variations of the probability density function of income with simultaneous variation of the consumption deprivation (CD), where CD represents the shortfall in consumption from the saturation level of an essential commodity, cereal. Together, these two models combine income-expenditure-based market dynamics with time variations in consumption due to income. In this new unified theoretical structure, exchange of trade in assets is only allowed when the income exceeds consumption-deprivation while CD itself is endogenously obtained from a separate kinetic model. Our results reveal that the nature of time variation of the CD function leads to a downward trend in the threshold level of consumption of basic necessities, suggesting a possible dietary transition in terms of lower saturation level of food-grain consumption, possibly through an improvement in the level of living. The new poverty index, defined as CD, is amenable to approximate probabilistic prediction within a short time horizon. A major achievement of this work is the intrinsic independence of the poverty index from an exogenous poverty line, making it more objective for policy formulation as opposed to existing poverty indices in the literature.

  4. Poverty index with time-varying consumption and income distributions.

    PubMed

    Chattopadhyay, Amit K; Kumar, T Krishna; Mallick, Sushanta K

    2017-03-01

    Starting from a stochastic agent-based model to represent market exchange in a developing economy, we study time variations of the probability density function of income with simultaneous variation of the consumption deprivation (CD), where CD represents the shortfall in consumption from the saturation level of an essential commodity, cereal. Together, these two models combine income-expenditure-based market dynamics with time variations in consumption due to income. In this new unified theoretical structure, exchange of trade in assets is only allowed when the income exceeds consumption-deprivation while CD itself is endogenously obtained from a separate kinetic model. Our results reveal that the nature of time variation of the CD function leads to a downward trend in the threshold level of consumption of basic necessities, suggesting a possible dietary transition in terms of lower saturation level of food-grain consumption, possibly through an improvement in the level of living. The new poverty index, defined as CD, is amenable to approximate probabilistic prediction within a short time horizon. A major achievement of this work is the intrinsic independence of the poverty index from an exogenous poverty line, making it more objective for policy formulation as opposed to existing poverty indices in the literature.

  5. Quantum noise spectra for periodically driven cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  6. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.

  7. Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method

    PubMed Central

    Zhang, Tingting; Kou, S. C.

    2010-01-01

    Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure. PMID:21258615

  8. Stochastic investigation of wind process for climatic variability identification

    NASA Astrophysics Data System (ADS)

    Deligiannis, Ilias; Tyrogiannis, Vassilis; Daskalou, Olympia; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris

    2016-04-01

    The wind process is considered one of the hydrometeorological processes that generates and drives the climate dynamics. We use a dataset comprising hourly wind records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  9. Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method.

    PubMed

    Zhang, Tingting; Kou, S C

    2010-01-01

    Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure.

  10. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    PubMed

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  11. Stochastic processes on multiple scales: averaging, decimation and beyond

    NASA Astrophysics Data System (ADS)

    Bo, Stefano; Celani, Antonio

    The recent advances in handling microscopic systems are increasingly motivating stochastic modeling in a large number of physical, chemical and biological phenomena. Relevant processes often take place on widely separated time scales. In order to simplify the description, one usually focuses on the slower degrees of freedom and only the average effect of the fast ones is retained. It is then fundamental to eliminate such fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. We shall present how this can be done by either decimating or coarse-graining the fast processes and discuss applications to physical, biological and chemical examples. With the same tools we will address the fate of functionals of the stochastic trajectories (such as residence times, counting statistics, fluxes, entropy production, etc.) upon elimination of the fast variables. In general, for functionals, such elimination can present additional difficulties. In some cases, it is not possible to express them in terms of the effective trajectories on the slow degrees of freedom but additional details of the fast processes must be retained. We will focus on such cases and show how naive procedures can lead to inconsistent results.

  12. Physical Models of Cognition

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    This paper presents and discusses physical models for simulating some aspects of neural intelligence, and, in particular, the process of cognition. The main departure from the classical approach here is in utilization of a terminal version of classical dynamics introduced by the author earlier. Based upon violations of the Lipschitz condition at equilibrium points, terminal dynamics attains two new fundamental properties: it is spontaneous and nondeterministic. Special attention is focused on terminal neurodynamics as a particular architecture of terminal dynamics which is suitable for modeling of information flows. Terminal neurodynamics possesses a well-organized probabilistic structure which can be analytically predicted, prescribed, and controlled, and therefore which presents a powerful tool for modeling real-life uncertainties. Two basic phenomena associated with random behavior of neurodynamic solutions are exploited. The first one is a stochastic attractor ; a stable stationary stochastic process to which random solutions of a closed system converge. As a model of the cognition process, a stochastic attractor can be viewed as a universal tool for generalization and formation of classes of patterns. The concept of stochastic attractor is applied to model a collective brain paradigm explaining coordination between simple units of intelligence which perform a collective task without direct exchange of information. The second fundamental phenomenon discussed is terminal chaos which occurs in open systems. Applications of terminal chaos to information fusion as well as to explanation and modeling of coordination among neurons in biological systems are discussed. It should be emphasized that all the models of terminal neurodynamics are implementable in analog devices, which means that all the cognition processes discussed in the paper are reducible to the laws of Newtonian mechanics.

  13. Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating.

    PubMed

    Schmandt, Nicolaus T; Galán, Roberto F

    2012-09-14

    Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.

  14. Resources alter the structure and increase stochasticity in bromeliad microfauna communities.

    PubMed

    Petermann, Jana S; Kratina, Pavel; Marino, Nicholas A C; MacDonald, A Andrew M; Srivastava, Diane S

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.

  15. Resources Alter the Structure and Increase Stochasticity in Bromeliad Microfauna Communities

    PubMed Central

    Petermann, Jana S.; Kratina, Pavel; Marino, Nicholas A. C.; MacDonald, A. Andrew M.; Srivastava, Diane S.

    2015-01-01

    Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined. PMID:25775464

  16. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yen Ting; Buchler, Nicolas E.

    Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less

  17. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  18. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  19. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes

    DOE PAGES

    Lin, Yen Ting; Buchler, Nicolas E.

    2018-01-31

    Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less

  20. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

Top