STOMP Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode
Ward, Anderson L.; White, Mark D.; Freeman, Eugene J.; Zhang, Z. F.
2005-09-15
The Water-Air-Energy (WAE) Operational Mode of the Subsurface Transport Over Multiple Phases (STOMP) numerical simulator solves the coupled conservation equations for water mass, air mass, and thermal energy in multiple dimensions. This addendum describes the theory, input file formatting, and application of a soil-vegetation-atmosphere transfer (SVAT) scheme for STOMP that is based on a sparse vegetation evapotranspiration model. The SVAT scheme is implemented as a boundary condition on the upper surface of the computational domain and has capabilities for simulating evaporation from bare surfaces as well as evapotranspiration from sparsely vegetated surfaces populated with single or multiple plant species in response to meteorological forcings. With this extension, the model calculates water mass, air mass and thermal energy across a boundary surface in addition to root-water transport between the subsurface and atmosphere. This mode represents the barrier extension of the WAE mode and is designated as STOMP-WAE-B. Input for STOMP-WAE-B is specified via three input cards and include: atmospheric conditions through the Atmospheric Conditions Card; time-invariant plant species data through the Plant Properties Card; and time varying plant species data through the Boundary Conditions Card. Two optional cards, the Observed Data and UCODE Control Cards allow use of STOMP-WAE with UCODE in an inverse mode to estimate model parameters. STOMP-WAE was validated by solving a number of test problems from the literature that included experimental observations as well as analytical or numerical solutions. Several of the UNSAT-H verification problems are included along with a benchmark simulation derived from a recently published intercode comparison for barrier design tools. Results show that STOMP is able to meet, and in most cases, exceed performance of other commonly used simulation codes without having to resort to may of their simplifying assumptions. Use of the fully
ERIC Educational Resources Information Center
Martinez, Luz Adriana
2007-01-01
The Specialized Training of Military Parents, better known by many as STOMP, is a federally funded Parent Training and Information (PTI) center established to assist military families who have children with specialized education or health needs. STOMP exists to empower military parents, individuals with disabilities, and service providers with…
ERIC Educational Resources Information Center
Martinez, Luz Adriana
2007-01-01
The Specialized Training of Military Parents, better known by many as STOMP, is a federally funded Parent Training and Information (PTI) center established to assist military families who have children with specialized education or health needs. STOMP exists to empower military parents, individuals with disabilities, and service providers with…
Modeling the radiant transfers of sparse vegetation canopies
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Norman, J. M.; Walthall, C. L.
1985-01-01
The scattering dynamics of sparse vegetation canopies were studied within the framework of the three-dimensional radiative transfer model of Kimes (1984). The model was upgraded by including an algorithm for the anisotropic scattering of a soil boundary. Validation of the model was carried out using measured directional reflectance data for two canopies exhibiting typical scattering behavior with low and intermediate vegetation density. The canopies were: an orchard grass canopy; and a hard wheat canopy. A number of factors were found contributing to the final reflectance distribution of the canopies, including: (1) the strong anisotropic scattering properties of the soil; (2) the geometric effect of the vegetation probability gap function on the soil anisotropy and solar irradiance; and (3) the anisotropic scattering of vegetation which is controlled by the phase function and the layering of leaves. The application of the theoretical results to the development of earth-observing sensor systems is discussed.
Partitioning evapotranspiration in sparsely vegetated rangeland using a portable chamber
Stannard, D.I.; Weltz, M.A.
2006-01-01
A portable chamber was used to separate evapotranspiration (ET) from a sparse, mixed-species shrub canopy in southeastern Arizona, United States, into vegetation and soil components. Chamber measurements were made of ET from the five dominant species, and from bare soil, on 3 days during the monsoon season when the soil surface was dry. The chamber measurements were assembled into landscape ET using a simple geometric model of the vegetated land surface. Chamber estimates of landscape ET were well correlated with, but about 26% greater than, simultaneous eddy-correlation measurements. Excessive air speed inside the chamber appears to be the primary cause of the overestimate. Overall, transpiration accounted for 84% of landscape ET, and bare soil evaporation for 16%. Desert zinnia, a small (???0.1 m high) but abundant species, was the greatest water user, both per unit area of shrub and of landscape. Partitioning of ET into components varied as a function of air temperature and shallow soil moisture. Transpiration from shorter species was more highly correlated with air temperature whereas transpiration from taller species was more highly correlated with shallow soil moisture. Application of these results to a full drying cycle between rainfalls at a similar site suggests that during the monsoon, ET at such sites may be about equally partitioned between transpiration and bare soil evaporation.
Li, Xiao-Song; Gao, Zhi-Hai; Li, Zeng-Yuan; Bai, Li-Na; Wang, Beng-Yu
2010-01-01
Based on Hyperion hyperspectral image data, the image-derived shifting sand, false-Gobi spectra, and field-measured sparse vegetation spectra were taken as endmembers, and the sparse vegetation coverage (< 40%) in Minqin oasis-desert transitional zone of Gansu Province was estimated by using fully constrained linear spectral mixture model (LSMM) and non-constrained LSMM, respectively. The results showed that the sparse vegetation fraction based on fully constrained LSMM described the actual sparse vegetation distribution. The differences between sparse vegetation fraction and field-measured vegetation coverage were less than 5% for all samples, and the RMSE was 3.0681. However, the sparse vegetation fraction based on non-constrained LSMM was lower than the field-measured vegetation coverage obviously, and the correlation between them was poor, with a low R2 of 0.5855. Compared with McGwire's corresponding research, the sparse vegetation coverage estimation in this study was more accurate and reliable, having expansive prospect for application in the future.
STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e Guide: Version 1.0
White, Mark D.; Bacon, Diana H.; McGrail, B. Peter; Watson, David J.; White, Signe K.; Zhang, Z. F.
2012-04-03
This STOMP (Subsurface Transport Over Multiple Phases) guide document describes the theory, use, and application of the STOMP-CO2 and STOMP-CO2e operational modes. These operational modes of the STOMP simulator are configured to solve problems involving the sequestration of CO2 in geologic saline reservoirs. STOMP-CO2 is the isothermal version and STOMP-CO2e is the nonisothermal version. These core operational modes solve the governing conservation equations for component flow and transport through geologic media; where, the STOMP-CO2 components are water, CO2 and salt and the STOMP-CO2e operational mode also includes an energy conservation equation. Geochemistry can be included in the problem solution via the ECKEChem (Equilibrium-Conservation-Kinetic-Equation Chemistry) module, and geomechanics via the EPRMech (Elastic-Plastic-Rock Mechanics) module. This addendum is designed to provide the new user with a full guide for the core capabilities of the STOMP-CO2 and -CO2e simulators, and to provide the experienced user with a quick reference on implementing features. Several benchmark problems are provided in this addendum, which serve as starting points for developing inputs for more complex problems and as demonstrations of the simulator’s capabilities.
Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing
2014-03-01
In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.
Controls on sinuosity in the sparsely vegetated Fossálar River, southern Iceland
NASA Astrophysics Data System (ADS)
Ielpi, Alessandro
2017-06-01
Vegetation exerts strong controls on fluvial sinuosity, providing bank stability and buffering surface runoff. These controls are manifest in densely vegetated landscapes, whereas sparsely vegetated fluvial systems have been so far overlooked. This study integrates remote sensing and gauging records of the meandering to wandering Fossálar River, a relatively steep-sloped (< 2.5%) Icelandic river featuring well-developed point bars (79%-85% of total active bar surface) despite the lack of thick, arborescent vegetation. Over four decades, fluctuations in the sinuosity index (1.15-1.43) and vegetation cover (63%-83%) are not significantly correlated (r = 0.28, p > 0.05), suggesting that relationships between the two are mediated by intervening variables and uncertain lag times. By comparison, discharge regime and fluvial planform show direct correlation over monthly to yearly time scales, with stable discharge stages accompanying the accretion of meander bends and peak floods related to destructive point-bar reworking. Rapid planform change is aided by the unconsolidated nature of unrooted alluvial banks, with recorded rates of lateral channel-belt migration averaging 18 m/yr. Valley confinement and channel mobility also control the geometry and evolution of individual point bars, with the highest degree of spatial geomorphic variability recorded in low-gradient stretches where lateral migration is unimpeded. Point bars in the Fossálar River display morphometric values comparable to those of other sparsely vegetated rivers, suggesting shared scalar properties. This conjecture prompts the need for more sophisticated integrations between remote sensing and gauging records on modern rivers lacking widespread plant life. While a large volume of experimental and field-based work maintains that thick vegetation has a critical role in limiting braiding, thus favouring sinuosity, this study demonstrates the stronger controls of discharge regime and alluvial morphology on
Energy budgets and resistances to energy transport in sparsely vegetated rangeland
Nichols, W.D.
1992-01-01
Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.
STOMP, Subsurface Transport Over Multiple Phases, theory guide
White, M.D.; Oostrom, M.
1996-10-01
This guide describes the simulator`s governing equations, constitutive functions and numerical solution algorithms of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing multiple phase subsurface flow and transport. The STOMP simulator`s fundamental purpose is to produce numerical predictions of thermal and hydrologic flow and transport phenomena in variably saturated subsurface environments, which are contaminated with volatile or nonvolatile organic compounds. Auxiliary applications include numerical predictions of solute transport processes including radioactive chain decay processes. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and nonhysteretic relative permeability, saturation-capillary pressure constitutive functions. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. The STOMP simulator requires an ANSI FORTRAN 77 compiler to generate an executable code. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. One-dimensional problems of moderate complexity can be solved on conventional desktop computers, but multidimensional problems involving complex flow and transport phenomena typically require the power and memory capabilities of workstation or mainframe type computer systems.
NASA Astrophysics Data System (ADS)
Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.
2016-12-01
Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.
Turbulent heat transfer from a sparsely vegetated surface - Two-component representation
NASA Technical Reports Server (NTRS)
Otterman, J.; Novak, M. D.; Starr, D. O'C.
1993-01-01
The conventional calculation of heat fluxes from a vegetated surface involving the coefficient of turbulent heat transfer which increases logarithmically with surface roughness, is inappropriate such highly structured surfaces as desert scrub or open forest. An approach is developed here for computing sensible heat flux from sparsely vegetated surfaces, where the absorption of insolation and the transfer of absorbed heat to the atmosphere are calculated separately for the plants and for the soil. This approach is applied to a desert-scrub surface in the northern Sinai, for which the turbulent transfer coefficient of sensible heat flux from the plants is much larger than that from the soil below, as shown by an analysis of plant, soil, and air temperatures. The plant density is expressed as the sum of products (plant-height) x (plant-diameter) of plants per unit horizontal surface area. The solar heat absorbed by the plants is assumed to be transferred immediately to the airflow. The effective turbulent transfer coefficient k(g-eff) for sensible heat from the desert-scrub/soil surface computed under this assumption increases sharply with increasing solar zenith angle, as the plants absorb a greater fraction of the incoming irradiation. The surface absorptivity (the coalbedo) also increases sharply with increasing solar zenith angle, and thus the sensible heat flux from such complex surfaces is a much broader function of time of day than when computed under constant k(g-eff) and constant albedo assumptions.
STOMP Subsurface Transport Over Multiple Phases: User`s guide
White, M.D.; Oostrom, M.
1997-10-01
The U.S. Department of Energy, through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and groundwater at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride, on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineer simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest National Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator theory and discussions on the governing equations, constitutive relations, and numerical solution algorithms for the STOMP simulator.
STOMP Subsurface Transport Over Multiple Phases: Application guide
Nichols, W.E.; Aimo, N.J.; Oostrom, M.; White, M.D.
1997-09-01
The U.S. Department of Energy (DOE), through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and ground water at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstrated Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineering simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator are documented in three companion guide guides. This document, the Application Guide, provides a suite of example applications of the STOMP simulator.
NASA Astrophysics Data System (ADS)
Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo
2013-01-01
A critical analysis of a thermal inertia approach to map surface soil water content on bare and sparsely vegetated soils by means of remotely sensed data is reported. The study area is an experimental field located in Barrax, Spain. In situ data were acquired within the Barrax 2011 research project. An advanced hyperspectral scanner airborne imager provides images in the visible/near-infrared and thermal infrared bands. Images were acquired both in day and night times by the Instituto Nacional de Técnica Aeroespacial between 12th and 13th of June 2011. The scene covers a corn irrigation pivot surrounded by bare soil, where a set of in situ data have been collected both previously and simultaneously to overpasses. To validate remotely sensed estimations, an ad hoc dataset has been produced by measuring spectra, radiometric temperatures, surface soil water content, and soil thermal properties. These data were collected on two transects covering bare and sparsely vegetated soils. This ground dataset was used (1) to verify if a thermal inertia method can be applied to map the water content on soil covered by sparse vegetation and (2) to quantify a correction factor accounting for solar radiation reduction due to sky cloudiness. The experiment intended to test a spatially constant and a spatially distributed approach to estimate the phase difference. Both methods were then applied to the airborne images collected during the following days to obtain the spatial distribution of surface soil water content. Results confirm that the thermal inertia method can be applied to sparsely vegetated soil characterized by low fractional cover if the solar radiation reaching the ground is accurately estimated. A spatially constant value of the phase difference allows a good assessment of thermal inertia, whereas the comparison with the three-temperature approach did not give conclusive responses. Results also show that clear sky, only at the time of the acquisition, does not provide
NASA Astrophysics Data System (ADS)
Maltese, Antonino; Capodici, Fulvio; Corbari, Chiara; Ciraolo, Giuseppe; La Loggia, Goffredo; Sobrino, José Antonio
2012-09-01
The paper reports a critical analysis of the thermal inertia approach to map surface soil water content on bare and sparsely vegetated soils by means of remotely sensed data. The study area is an experimental area located in Barrax (Spain). Field data were acquired within the Barrax 2011 research project. AHS airborne images including VIS/NIR and TIR bands were acquired both day and night time by the INTA (Instituto Nacional de Técnica Aeroespacial) between the 11th and 13rd of June 2011. Images cover a corn pivot surrounded by bare soil, where a set of in situ data have been collected previously and simultaneously to overpasses. To validate remotely sensed estimations, a preliminary proximity sensing set up has been arranged, measuring spectra and surface temperatures on transects by means of ASD hand-held spectroradiometer and an Everest Interscience radiometric thermometer respectively. These data were collected on two transects: the first one on bare soil and the second from bare to sparsely vegetated soil; soil water content in both transects ranged approximately between field and saturation values. Furthermore thermal inertia was measured using a KD2Pro probe, and surface water content of soil was measured using FDR and TDR probes. This ground dataset was used: 1) to verify if the thermal inertia method can be applied to map water content also on soil covered by sparse vegetation, and 2) to quantify a correction factor of the downwelling shortwave radiation taking into account sky cloudiness effects on thermal inertia assessment. The experiment tests both Xue and Cracknell approximation to retrieve the thermal inertia from a dumped value of the phase difference and the three-temperature approach of Sobrino to estimate the phase difference spatial distribution. Both methods were then applied on the remotely sensed airborne images collected during the following days, in order to obtain the spatial distribution of the surface soil moisture on bare soils and
Integrated Disposal Facility FY 2016: ILAW Verification and Validation of the eSTOMP Simulator
Freedman, Vicky L.; Bacon, Diana H.; Fang, Yilin
2016-05-13
This document describes two sets of simulations carried out to further verify and validate the eSTOMP simulator. In this report, a distinction is made between verification and validation, and the focus is on verifying eSTOMP through a series of published benchmarks on cementitious wastes, and validating eSTOMP based on a lysimeter experiment for the glassified waste. These activities are carried out within the context of a scientific view of validation that asserts that models can only be invalidated, and that model validation (and verification) is a subjective assessment.
STOMP Subsurface Transport Over Multiple Phases, Version 4.0, User’s Guide
White, Mark D.; Oostrom, Martinus
2006-06-09
This guide describes the general use, input file formatting, compilation and execution of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing single and multiple phase subsurface flow and transport. A description of the simulator’s governing equations, constitutive functions and numerical solution algorithms are provided in a companion theory guide. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and relative permeability-saturation-capillary pressure constitutive relations. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. Source codes for the sequential versions of the simulator are available in pure FORTRAN 77 or mixed FORTRAN 77/90 forms. The pure FORTRAN 77 source code form requires a parameters file to define the memory requirements for the array elements. The mixed FORTRAN 77/90 form of the source code uses dynamic memory allocation to define memory requirements, based on a FORTRAN 90 preprocessor STEP, that reads the input files. The simulator utilizes a variable source code configuration, which allows the execution memory and speed to be tailored to the problem specifics, and essentially requires that the source code be assembled and compiled through a software maintenance utility. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Selected operational modes of the STOMP simulator are available for scalable execution on multiple processor (i.e., parallel) computers. These versions
STOMP: A Software Architecture for the Design and Simulation UAV-Based Sensor Networks
Jones, E D; Roberts, R S; Hsia, T C S
2002-10-28
This paper presents the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture and framework for simulating, controlling and communicating with unmanned air vehicles (UAVs) servicing large distributed sensor networks. STOMP provides hardware-in-the-loop capability enabling real UAVs and sensors to feedback state information, route data and receive command and control requests while interacting with other real or virtual objects thereby enhancing support for simulation of dynamic and complex events.
Microtopographic properties of sparse moss vegetation in the Antarctic polar desert
NASA Astrophysics Data System (ADS)
Okuda, Masaki; Imura, Satoshi; Tanemura, Masaharu
2011-12-01
The effect of topography on moss vegetation is examined to clarify the processes that affect the colonization of polar deserts on continental Antarctica. Data on the presence of the mosses Bryum pseudotriquetrum and Pottia heimii, and relative altitude were recorded. The altitude measurements were used to infer the underlying topographical attributes of the substrate in the study plots. Specifically, the local distribution of moss plants was clarified using the topographical attributes to construct generalized linear mixed models (GLMMs). The models suggested that steep slopes and convex microhabitats within areas of concave general relief (at the plot scale 4 × 4 m) promoted the establishment of moss. This correspondence to general relief was more apparent for B. pseudotriquetrum than for P. heimii. Among the study plots, general relief was found to be an important determinant of the precise spatial distribution of B. pseudotriquetrum. The standard surface estimated using the robust methods presented in this study is shown to be more accurate for describing moss distribution than the prevailing least-squares method.
Gallavotti, Andrea; Barazesh, Solmaz; Malcomber, Simon; Hall, Darren; Jackson, David; Schmidt, Robert J.; McSteen, Paula
2008-01-01
The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize. PMID:18799737
Gallavotti, Andrea; Barazesh, Solmaz; Malcomber, Simon; Hall, Darren; Jackson, David; Schmidt, Robert J; McSteen, Paula
2008-09-30
The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize.
NASA Astrophysics Data System (ADS)
Trautz, A.; Illangasekare, T. H.; Tilton, N.
2015-12-01
Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.
STOMP-ECKEChem: An Engineering Perspective on Reactive Transport in Geologic Media
White, Mark D.; Fang, Yilin
2012-04-04
ECKEChem (Equilibrium, Conservation, Kinetic Equation Chemistry) is a reactive transport module for the STOMP suite of multifluid subsurface flow and transport simulators that was developed from an engineering perspective. STOMP comprises a suite of operational modes that are distinguished by the solved coupled conservation equations with capabilities for a variety of subsurface applications (e.g., environmental remediation and stewardship, geologic sequestration of greenhouse gases, gas hydrate production, and oil shale production). The ECKEChem module was designed to provide integrated reactive transport capabilities across the suite of STOMP simulator operational modes. The initial application for the ECKEChem module was in the simulation of the mineralization reactions that occurred with the injection of supercritical carbon dioxide into deep Columbia River basalt formations, where it was implemented in the STOMP-CO2 simulator. The STOMP-ECKEChem solution approach to modeling reactive transport in multifluid geologic media is founded on an engineering perspective: (1) sequential non-iterative coupling between the flow and reactive transport is sufficient, (2) reactive transport can be modeled by operator splitting with local geochemistry and global transport, (3) geochemistry can be expressed as a system of coupled nonlinear equilibrium, conservation and kinetic equations, (4) a limited number of kinetic equation forms are used in geochemical practice. This chapter describes the conceptual approach to converting a geochemical reaction network into a series of equilibrium, conservation and kinetic equations, the implementation of ECKEChem in STOMP, the numerical solution approach, and a demonstration of the simulator on a complex application involving desorption of uranium from contaminated field-textured sediments.
STOMP Subsurface Transport Over Multiple Phases Version 3.0 User's Guide
White, M D.; Oostrom, Mart
2003-06-20
This guide describes the general use, input file formatting, compilation and execution of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing single and multiple phase subsurface flow and transport. A description of the simulator's governing equations, constitutive functions and numerical solution algorithms are provided in a companion theory guide. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and relative permeability-saturation-capillary pressure constitutive relations. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. The STOMP simulator requires an ANSI FORTRAN 77 compiler to generate an executable code. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance.
Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda
2017-08-29
This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.
Moustafa, Gihan G.; Shaaban, F. E.; Hadeed, A. H. Abo; Elhady, Walaa M.
2016-01-01
Aim: The current study was directed to investigate the immunotoxic and oxidative stress effects of Roundup and Stomp herbicides and their combination on Nile catfish (Clarias gariepinus). Materials and Methods: The experiment was carried out on 120 fish that randomly divided into four equal groups with three replicates: The first group kept as control, the second group exposed to 1/2 96 h lethal concentration 50 (LC50) of Roundup, the third group exposed to 1/2 96 h LC50 of Stomp, and the fourth one exposed to a combination of Roundup and Stomp at previously-mentioned doses. The experiment was terminated after 15 days; blood samples were obtained at 1st, 8th, and 15th days of treatment where the sera were separated for estimation of antioxidant enzymes. Meanwhile, at 15th day of exposure part of blood was collected from all groups with an anticoagulant for evaluation of phagocytic activity, then the fish were sacrificed, and specimens from the liver of all groups were obtained for histopathological examination. Results: Our results indicated that both herbicides either individually or in combination elucidated significant decrease in phagocytic activity that was highly marked in group exposed to both herbicides. Furthermore, our data elicited an obvious elevation in the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Meanwhile, the data depicted reduction in levels of reduced glutathione (GSH) and glutathione-S-transferase (GST). Histopathological investigation of liver proved the aforementioned results. Conclusion: It could be concluded that either Roundup or Stomp alone cause significant deleterious effects on aquatic vertebrates. However, the use of their combination enhanced their toxic effects. Toxicity can end up in humans through the food chain. PMID:27397989
Lu, Zhiming; Meyer, D.J.
2002-01-01
We used interferometric methods on a pair of repeat-pass ERS-1 synthetic aperture radar (SAR) images to study soil moisture changes over sparsely vegetated targets. The intensity of the SAR image acquired at one time was higher than that of an image acquired at an earlier time. We used a correlation image computed from the SAR image pair to study the cause of the observed changes in SAR intensity. Because a reduction of correlation over areas with intensity changes was not observed, we interpreted the intensity changes as not being caused by changes in roughness/structure, but by a change in soil moisture owing to rainfall. An increase in soil moisture ranging from 5% to 20% is the most likely explanation for the increase of intensity. These analyses imply that both intensity and phase information should be used in SAR change detection applications.
NASA Astrophysics Data System (ADS)
Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.
2015-12-01
Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs
Numerical Simulations of Urea Hydrolysis and Calcite Precipitation in Porous Media Using STOMP
Luanjing Guo; Hai Huang; Bill X. Hu
2010-11-01
Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising in situ immobilization approach of these contaminants is engineered mineral (co)precipitation of calcite driven by urea hydrolysis that is catalyzed by enzyme urease. The tight nonlinear coupling among flow, transport, reaction and reaction-induced property changes of media of this approach was studied by reactive transport simulations with systematically increasing level of complexities of reaction network and physical/chemical heterogeneities using a numerical simulator named STOMP. Sensitivity studies on the reaction rates of both urea hydrolysis and calcite precipitation are performed via controlling urease enzyme concentration and precipitation rate constant according to the rate models employed. We have found that the rate of ureolysis is a dominating factor in the amount of precipitated mineral; however, the spatial distribution of the precipitates depends on both rates of ureolysis and calcite precipitation. A maximum 5% reduction in the porosity was observed within the simulation time period of 6 pore volumes in our 1-dimensional (1D) column simulations. When a low permeability inclusion is considered in the 2D simulations, the altered flow fields redistribute mineral forming constituents, leading to a distorted precipitation reaction front. The simulations also indicate that mineral precipitation occurs along the boundary of the low permeability zone, which implies that contaminants in the low permeability zone could be encapsulated and isolated from the flow paths.
Ciro, CA; Poole, JL; Skipper, B; Hershey, LA
2017-01-01
Background Few studies have examined structured rehabilitation techniques for improving activities of daily living in people with mild-moderate dementia. We sought to examine the advantages to delivering the Skill-building through Task-Oriented Motor Practice (STOMP) intervention in the home environment (versus the clinic), hypothesizing that ADL improvement would be significantly better, time to meeting goals would be faster and fewer displays of behavior would be noted. Methods Compared results of two quasi-experimental studies of STOMP, one completed in the home, one completed previously in a clinic. Participants were English-speaking; community dwelling adults aged 50–90 diagnosed with mild-moderate dementia who could participate in an intensive rehabilitation program (5 days/week, 3 hours/day, for 2 weeks). Outcome measurements include examiner-observation of performance and proxy-report of performance and satisfaction with performance in patient-selected goals. Results No differences existed in the sociodemographic characteristics between the home and clinic groups where the groups were primarily white, married, had > high school education and had mild-moderate dementia. Results from the home group indicate that participants made significant improvement in ADL which was generally retained at the 90 day follow-up. These results were not significantly different than the clinic group. No significant advantages were noted for the home group in terms of time to meeting goals or exhibition of fewer behaviors. Discussion The STOMP intervention appeared to work equally as well in the home and in the clinic. Future studies should continue to examine the benefits of massed practice using high-dose regimens.
Ray, J.; Lee, J.; Yadav, V.; ...
2014-08-20
We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO2 (ffCO2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Banerjee, Abhirup; Maji, Pradipta
2015-12-01
The segmentation of brain MR images into different tissue classes is an important task for automatic image analysis technique, particularly due to the presence of intensity inhomogeneity artifact in MR images. In this regard, this paper presents a novel approach for simultaneous segmentation and bias field correction in brain MR images. It integrates judiciously the concept of rough sets and the merit of a novel probability distribution, called stomped normal (SN) distribution. The intensity distribution of a tissue class is represented by SN distribution, where each tissue class consists of a crisp lower approximation and a probabilistic boundary region. The intensity distribution of brain MR image is modeled as a mixture of finite number of SN distributions and one uniform distribution. The proposed method incorporates both the expectation-maximization and hidden Markov random field frameworks to provide an accurate and robust segmentation. The performance of the proposed approach, along with a comparison with related methods, is demonstrated on a set of synthetic and real brain MR images for different bias fields and noise levels.
sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields
2014-10-06
The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field being estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.
Vectorized Sparse Elimination.
1984-03-01
Grids," Proc. 6th Symposium on Reservoir Simulation , New Orleans, Feb. 1-2, 1982, pp. 489-506. [51 Arya, S., and D. A. Calahan, "Optimal Scheduling of...of Computer Architecture on Direct Sparse Matrix Routines in Petroleum Reservoir Simulation ," Sparse Matrix Symposium, Fairfield Glade, TE, October
Ray, J.; Lee, J.; Yadav, V.; ...
2015-04-29
Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting.more » Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO2 (ffCO2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO2 emissions and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also
Evolving sparse stellar populations
NASA Astrophysics Data System (ADS)
Bruzual, Gustavo; Gladis Magris, C.; Hernández-Pérez, Fabiola
2017-03-01
We examine the role that stochastic fluctuations in the IMF and in the number of interacting binaries have on the spectro-photometric properties of sparse stellar populations as a function of age and metallicity.
Multichannel sparse spike inversion
NASA Astrophysics Data System (ADS)
Pereg, Deborah; Cohen, Israel; Vassiliou, Anthony A.
2017-10-01
In this paper, we address the problem of sparse multichannel seismic deconvolution. We introduce multichannel sparse spike inversion as an iterative procedure, which deconvolves the seismic data and recovers the Earth two-dimensional reflectivity image, while taking into consideration the relations between spatially neighboring traces. We demonstrate the improved performance of the proposed algorithm and its robustness to noise, compared to competitive single-channel algorithm through simulations and real seismic data examples.
Grassmannian sparse representations
NASA Astrophysics Data System (ADS)
Azary, Sherif; Savakis, Andreas
2015-05-01
We present Grassmannian sparse representations (GSR), a sparse representation Grassmann learning framework for efficient classification. Sparse representation classification offers a powerful approach for recognition in a variety of contexts. However, a major drawback of sparse representation methods is their computational performance and memory utilization for high-dimensional data. A Grassmann manifold is a space that promotes smooth surfaces where points represent subspaces and the relationship between points is defined by the mapping of an orthogonal matrix. Grassmann manifolds are well suited for computer vision problems because they promote high between-class discrimination and within-class clustering, while offering computational advantages by mapping each subspace onto a single point. The GSR framework combines Grassmannian kernels and sparse representations, including regularized least squares and least angle regression, to improve high accuracy recognition while overcoming the drawbacks of performance and dependencies on high dimensional data distributions. The effectiveness of GSR is demonstrated on computationally intensive multiview action sequences, three-dimensional action sequences, and face recognition datasets.
Sparse distributed memory overview
NASA Technical Reports Server (NTRS)
Raugh, Mike
1990-01-01
The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.
White, Mark D.; McGrail, B. Peter
2005-12-01
flow and transport simulator, STOMP (Subsurface Transport Over Multiple Phases). Prior to these code development activities, the STOMP simulator included sequential and scalable implementations for numerically simulating the injection of supercritical CO2 into deep saline aquifers. Additionally, the sequential implementations included operational modes that considered nonisothermal conditions and kinetic dissolution of CO2 into the saline aqueous phase. This addendum documents the advancement of these numerical simulation capabilities to include reactive transport in the STOMP simulator through the inclusion of the recently PNNL developed batch geochemistry solution module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry). Potential geologic reservoirs for sequestering CO2 include deep saline aquifers, hydrate-bearing formations, depleted or partially depleted natural gas and petroleum reservoirs, and coal beds. The mechanisms for sequestering carbon dioxide in geologic reservoirs include physical trapping, dissolution in the reservoir fluids, hydraulic trapping (hysteretic entrapment of nonwetting fluids), and chemical reaction. This document and the associated code development and verification work are concerned with the chemistry of injecting CO2 into geologic reservoirs. As geologic sequestration of CO2 via chemical reaction, namely precipitation reactions, are most dominate in deep saline aquifers, the principal focus of this document is the numerical simulation of CO2 injection, migration, and geochemical reaction in deep saline aquifers. The ECKEChem batch chemistry module was developed in a fashion that would allow its implementation into all operational modes of the STOMP simulator, making it a more versatile chemistry component. Additionally, this approach allows for verification of the ECKEChem module against more classical reactive transport problems involving aqueous systems.
Efficient convolutional sparse coding
Wohlberg, Brendt
2017-06-20
Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and
Sparse inpainting and isotropy
Feeney, Stephen M.; McEwen, Jason D.; Peiris, Hiranya V.; Marinucci, Domenico; Cammarota, Valentina; Wandelt, Benjamin D. E-mail: marinucc@axp.mat.uniroma2.it E-mail: h.peiris@ucl.ac.uk E-mail: cammarot@axp.mat.uniroma2.it
2014-01-01
Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.
Sparse inpainting and isotropy
NASA Astrophysics Data System (ADS)
Feeney, Stephen M.; Marinucci, Domenico; McEwen, Jason D.; Peiris, Hiranya V.; Wandelt, Benjamin D.; Cammarota, Valentina
2014-01-01
Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.
Bayesian sparse channel estimation
NASA Astrophysics Data System (ADS)
Chen, Chulong; Zoltowski, Michael D.
2012-05-01
In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1988-01-01
Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system.
Sparse matrix test collections
Duff, I.
1996-12-31
This workshop will discuss plans for coordinating and developing sets of test matrices for the comparison and testing of sparse linear algebra software. We will talk of plans for the next release (Release 2) of the Harwell-Boeing Collection and recent work on improving the accessibility of this Collection and others through the World Wide Web. There will only be three talks of about 15 to 20 minutes followed by a discussion from the floor.
Kanerva, P.
1988-01-01
Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system. 63 refs.
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1988-01-01
Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system.
Yin, Junming; Chen, Xi; Xing, Eric P.
2016-01-01
We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the ℓ1/ℓ2 norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.
and Drayton Munster, Miroslav Stoyanov
2013-09-20
Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.
and Drayton Munster, Miroslav Stoyanov
2013-09-20
Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.
Gao, Yi; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen
2014-01-01
In image segmentation, we are often interested in using certain quantities to characterize the object, and perform the classification based on them: mean intensity, gradient magnitude, responses to certain predefined filters, etc. Unfortunately, in many cases such quantities are not adequate to model complex textured objects. Along a different line of research, the sparse characteristic of natural signals has been recognized and studied in recent years. Therefore, how such sparsity can be utilized, in a non-parametric way, to model the object texture and assist the textural image segmentation process is studied in this work, and a segmentation scheme based on the sparse representation of the texture information is proposed. More explicitly, the texture is encoded by the dictionaries constructed from the user initialization. Then, an active contour is evolved to optimize the fidelity of the representation provided by the dictionary of the target. In doing so, not only a non-parametric texture modeling technique is provided, but also the sparsity of the representation guarantees the computation efficiency. The experiments are carried out on the publicly available image data sets which contain a large variety of texture images, to analyze the user interaction, performance statistics, and to highlight the algorithm’s capability of robustly extracting textured regions from an image. PMID:23799695
Flexible sparse regularization
NASA Astrophysics Data System (ADS)
Lorenz, Dirk A.; Resmerita, Elena
2017-01-01
The seminal paper of Daubechies, Defrise, DeMol made clear that {{\\ell }}p spaces with p\\in [1,2) and p-powers of the corresponding norms are appropriate settings for dealing with reconstruction of sparse solutions of ill-posed problems by regularization. It seems that the case p = 1 provides the best results in most of the situations compared to the cases p\\in (1,2). An extensive literature gives great credit also to using {{\\ell }}p spaces with p\\in (0,1) together with the corresponding quasi-norms, although one has to tackle challenging numerical problems raised by the non-convexity of the quasi-norms. In any of these settings, either superlinear, linear or sublinear, the question of how to choose the exponent p has been not only a numerical issue, but also a philosophical one. In this work we introduce a more flexible way of sparse regularization by varying exponents. We introduce the corresponding functional analytic framework, that leaves the setting of normed spaces but works with so-called F-norms. One curious result is that there are F-norms which generate the ℓ 1 space, but they are strictly convex, while the ℓ 1-norm is just convex.
Percolation on Sparse Networks
NASA Astrophysics Data System (ADS)
Karrer, Brian; Newman, M. E. J.; Zdeborová, Lenka
2014-11-01
We study percolation on networks, which is used as a model of the resilience of networked systems such as the Internet to attack or failure and as a simple model of the spread of disease over human contact networks. We reformulate percolation as a message passing process and demonstrate how the resulting equations can be used to calculate, among other things, the size of the percolating cluster and the average cluster size. The calculations are exact for sparse networks when the number of short loops in the network is small, but even on networks with many short loops we find them to be highly accurate when compared with direct numerical simulations. By considering the fixed points of the message passing process, we also show that the percolation threshold on a network with few loops is given by the inverse of the leading eigenvalue of the so-called nonbacktracking matrix.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.
Language Recognition via Sparse Coding
2016-09-08
a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector
Sparse coding with memristor networks.
Sheridan, Patrick M; Cai, Fuxi; Du, Chao; Ma, Wen; Zhang, Zhengya; Lu, Wei D
2017-08-01
Sparse representation of information provides a powerful means to perform feature extraction on high-dimensional data and is of broad interest for applications in signal processing, computer vision, object recognition and neurobiology. Sparse coding is also believed to be a key mechanism by which biological neural systems can efficiently process a large amount of complex sensory data while consuming very little power. Here, we report the experimental implementation of sparse coding algorithms in a bio-inspired approach using a 32 × 32 crossbar array of analog memristors. This network enables efficient implementation of pattern matching and lateral neuron inhibition and allows input data to be sparsely encoded using neuron activities and stored dictionary elements. Different dictionary sets can be trained and stored in the same system, depending on the nature of the input signals. Using the sparse coding algorithm, we also perform natural image processing based on a learned dictionary.
Estimating sparse precision matrices
NASA Astrophysics Data System (ADS)
Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross
2016-08-01
We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.
Threaded Operations on Sparse Matrices
Sneed, Brett
2015-09-01
We investigate the use of sparse matrices and OpenMP multi-threading on linear algebra operations involving them. Several sparse matrix data structures are presented. Implementation of the multi- threading primarily occurs in the level one and two BLAS functions used within the four algorithms investigated{the Power Method, Conjugate Gradient, Biconjugate Gradient, and Jacobi's Method. The bene ts of launching threads once per high level algorithm are explored.
Sparse Methods for Biomedical Data.
Ye, Jieping; Liu, Jun
2012-06-01
Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the [Formula: see text] norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data.
Sparse Methods for Biomedical Data
Ye, Jieping; Liu, Jun
2013-01-01
Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the ℓ1 norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data. PMID:24076585
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Sparse and powerful cortical spikes.
Wolfe, Jason; Houweling, Arthur R; Brecht, Michael
2010-06-01
Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness and precise spike timing is debated, but our understanding of the developmental and synaptic mechanisms that shape neuronal discharge patterns has improved. Evidence for highly specialized, selective and abstract cortical response properties is accumulating. Singe-cell stimulation experiments demonstrate a high sensitivity of cortical networks to the action potentials of some, but not all, single neurons. It is unclear how this sensitivity of cortical networks to small perturbations comes about and whether it is a generic property of cortex. The unforeseen sensitivity to cortical spikes puts serious constraints on the nature of neural coding schemes.
Sparse PCA with Oracle Property.
Gu, Quanquan; Wang, Zhaoran; Liu, Han
In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank-k, and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.
Sparse PCA with Oracle Property
Gu, Quanquan; Wang, Zhaoran; Liu, Han
2014-01-01
In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank-k, and attains a s/n statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets. PMID:25684971
Sparse Regression by Projection and Sparse Discriminant Analysis.
Qi, Xin; Luo, Ruiyan; Carroll, Raymond J; Zhao, Hongyu
2015-04-01
Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared to the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplemental materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.
Sparse Regression by Projection and Sparse Discriminant Analysis
Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu
2014-01-01
Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared to the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplemental materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided. PMID:26345204
Flood Inundation Modelling in Data Sparse Deltas
NASA Astrophysics Data System (ADS)
Hawker, Laurence; Bates, Paul; Neal, Jeffrey
2017-04-01
An estimated 7% of global population currently live in deltas, and this number is increasing over time. This has resulted in numerous human induced impacts on deltas ranging from subsidence, upstream sediment trapping and coastal erosion amongst others. These threats have already impacted on flood dynamics in deltas and could intensify in line with human activities. However, the myriad of threats creates a large number of potential scenarios that need to be evaluated. Therefore, to assess the impacts of these scenarios, a pre-requisite is a flood inundation model that is both computationally efficient and flexible in its setup so it can be applied in data-sparse settings. An intermediate scale, which compromises between the computational speed of a global model and the detail of a case specific bespoke model, was chosen to achieve this. To this end, we have developed an intermediate scale flood inundation model at a resolution of 540m of the Mekong Delta, built with freely available data, using the LISFLOOD-FP hydrodynamic model. The purpose of this is to answer the following questions: 1) How much detail is required to accurately simulate flooding in the Mekong Delta? , 2) What characteristics of deltas are most important to include in flood inundation models? Models were run using a vegetation removed SRTM DEM and a hind-casting of tidal heights as a downstream boundary. Results indicate the importance of vegetation removal in the DEM for inundation extent and the sensitivity of water level to roughness coefficients. The propagation of the tidal signal was found to be sensitive to bathymetry, both within the river channel and offshore, yet data availability for this is poor, meaning the modeller has to be careful in his or her choice of bathymetry interpolation Supplementing global river channel data with more localised data demonstrated minor improvements in results suggesting detailed channel information is not always needed to produce good results. It is
1982-10-27
sparse matrices as well as other areas. Contents 1. operations on Sparse Matrices .. . . . . . . . . . . . . . . . . . . . . . . . I 1.1 Multi...22 2.1.1 Nonsymmetric systems ............................................. 22 2.1.1.1 General sparse matrices ...46 2.1.2.1 General sparse matrices ......................................... 46 2.1.2.2 Band or profile forms
Structured sparse models for classification
NASA Astrophysics Data System (ADS)
Castrodad, Alexey
The main focus of this thesis is the modeling and classification of high dimensional data using structured sparsity. Sparse models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and its use has led to state-of-the-art results in many signal and image processing tasks. The success of sparse modeling is highly due to its ability to efficiently use the redundancy of the data and find its underlying structure. On a classification setting, we capitalize on this advantage to properly model and separate the structure of the classes. We design and validate modeling solutions to challenging problems arising in computer vision and remote sensing. We propose both supervised and unsupervised schemes for the modeling of human actions from motion imagery under a wide variety of acquisition condi- tions. In the supervised case, the main goal is to classify the human actions in the video given a predefined set of actions to learn from. In the unsupervised case, the main goal is to an- alyze the spatio-temporal dynamics of the individuals in the scene without having any prior information on the actions themselves. We also propose a model for remotely sensed hysper- spectral imagery, where the main goal is to perform automatic spectral source separation and mapping at the subpixel level. Finally, we present a sparse model for sensor fusion to exploit the common structure and enforce collaboration of hyperspectral with LiDAR data for better mapping capabilities. In all these scenarios, we demonstrate that these data can be expressed as a combination of atoms from a class-structured dictionary. These data representation becomes essentially a "mixture of classes," and by directly exploiting the sparse codes, one can attain highly accurate classification performance with relatively unsophisticated classifiers.
Highly parallel sparse Cholesky factorization
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Schreiber, Robert
1990-01-01
Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.
Double shrinking sparse dimension reduction.
Zhou, Tianyi; Tao, Dacheng
2013-01-01
Learning tasks such as classification and clustering usually perform better and cost less (time and space) on compressed representations than on the original data. Previous works mainly compress data via dimension reduction. In this paper, we propose "double shrinking" to compress image data on both dimensionality and cardinality via building either sparse low-dimensional representations or a sparse projection matrix for dimension reduction. We formulate a double shrinking model (DSM) as an l(1) regularized variance maximization with constraint ||x||(2)=1, and develop a double shrinking algorithm (DSA) to optimize DSM. DSA is a path-following algorithm that can build the whole solution path of locally optimal solutions of different sparse levels. Each solution on the path is a "warm start" for searching the next sparser one. In each iteration of DSA, the direction, the step size, and the Lagrangian multiplier are deduced from the Karush-Kuhn-Tucker conditions. The magnitudes of trivial variables are shrunk and the importances of critical variables are simultaneously augmented along the selected direction with the determined step length. Double shrinking can be applied to manifold learning and feature selections for better interpretation of features, and can be combined with classification and clustering to boost their performance. The experimental results suggest that double shrinking produces efficient and effective data compression.
LiDAR point classification based on sparse representation
NASA Astrophysics Data System (ADS)
Li, Nan; Pfeifer, Norbert; Liu, Chun
2017-04-01
In order to combine the initial spatial structure and features of LiDAR data for accurate classification. The LiDAR data is represented as a 4-order tensor. Sparse representation for classification(SRC) method is used for LiDAR tensor classification. It turns out SRC need only a few of training samples from each class, meanwhile can achieve good classification result. Multiple features are extracted from raw LiDAR points to generate a high-dimensional vector at each point. Then the LiDAR tensor is built by the spatial distribution and feature vectors of the point neighborhood. The entries of LiDAR tensor are accessed via four indexes. Each index is called mode: three spatial modes in direction X ,Y ,Z and one feature mode. Sparse representation for classification(SRC) method is proposed in this paper. The sparsity algorithm is to find the best represent the test sample by sparse linear combination of training samples from a dictionary. To explore the sparsity of LiDAR tensor, the tucker decomposition is used. It decomposes a tensor into a core tensor multiplied by a matrix along each mode. Those matrices could be considered as the principal components in each mode. The entries of core tensor show the level of interaction between the different components. Therefore, the LiDAR tensor can be approximately represented by a sparse tensor multiplied by a matrix selected from a dictionary along each mode. The matrices decomposed from training samples are arranged as initial elements in the dictionary. By dictionary learning, a reconstructive and discriminative structure dictionary along each mode is built. The overall structure dictionary composes of class-specified sub-dictionaries. Then the sparse core tensor is calculated by tensor OMP(Orthogonal Matching Pursuit) method based on dictionaries along each mode. It is expected that original tensor should be well recovered by sub-dictionary associated with relevant class, while entries in the sparse tensor associated with
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Sparse recovery via convex optimization
NASA Astrophysics Data System (ADS)
Randall, Paige Alicia
This thesis considers the problem of estimating a sparse signal from a few (possibly noisy) linear measurements. In other words, we have y = Ax + z where A is a measurement matrix with more columns than rows, x is a sparse signal to be estimated, z is a noise vector, and y is a vector of measurements. This setup arises frequently in many problems ranging from MRI imaging to genomics to compressed sensing.We begin by relating our setup to an error correction problem over the reals, where a received encoded message is corrupted by a few arbitrary errors, as well as smaller dense errors. We show that under suitable conditions on the encoding matrix and on the number of arbitrary errors, one is able to accurately recover the message.We next show that we are able to achieve oracle optimality for x, up to a log factor and a factor of sqrt{s}, when we require the matrix A to obey an incoherence property. The incoherence property is novel in that it allows the coherence of A to be as large as O(1/ log n) and still allows sparsities as large as O(m/log n). This is in contrast to other existing results involving coherence where the coherence can only be as large as O(1/sqrt{m}) to allow sparsities as large as O(sqrt{m}). We also do not make the common assumption that the matrix A obeys a restricted eigenvalue condition.We then show that we can recover a (non-sparse) signal from a few linear measurements when the signal has an exactly sparse representation in an overcomplete dictionary. We again only require that the dictionary obey an incoherence property.Finally, we introduce the method of l_1 analysis and show that it is guaranteed to give good recovery of a signal from a few measurements, when the signal can be well represented in a dictionary. We require that the combined measurement/dictionary matrix satisfies a uniform uncertainty principle and we compare our results with the more standard l_1 synthesis approach.All our methods involve solving an l_1 minimization
Collective Dynamics in Sparse Networks
NASA Astrophysics Data System (ADS)
Luccioli, Stefano; Olmi, Simona; Politi, Antonio; Torcini, Alessandro
2012-09-01
The microscopic and macroscopic dynamics of random networks is investigated in the strong-dilution limit (i.e., for sparse networks). By simulating chaotic maps, Stuart-Landau oscillators, and leaky integrate-and-fire neurons, we show that a finite connectivity (of the order of a few tens) is able to sustain a nontrivial collective dynamics even in the thermodynamic limit. Although the network structure implies a nonadditive dynamics, the microscopic evolution is extensive (i.e., the number of active degrees of freedom is proportional to the number of network elements).
Sparse Coding for Alpha Matting.
Johnson, Jubin; Varnousfaderani, Ehsan Shahrian; Cholakkal, Hisham; Rajan, Deepu
2016-07-01
Existing color sampling-based alpha matting methods use the compositing equation to estimate alpha at a pixel from the pairs of foreground ( F ) and background ( B ) samples. The quality of the matte depends on the selected ( F,B ) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to ( F,B ) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms the current stateoftheart in image and video matting.
Sparse Coding for Alpha Matting.
Johnson, Jubin; Varnousfaderani, Ehsan; Cholakkal, Hisham; Rajan, Deepu
2016-04-21
Existing color sampling based alpha matting methods use the compositing equation to estimate alpha at a pixel from pairs of foreground (F) and background (B) samples. The quality of the matte depends on the selected (F,B) pairs. In this paper, the matting problem is reinterpreted as a sparse coding of pixel features, wherein the sum of the codes gives the estimate of the alpha matte from a set of unpaired F and B samples. A non-parametric probabilistic segmentation provides a certainty measure on the pixel belonging to foreground or background, based on which a dictionary is formed for use in sparse coding. By removing the restriction to conform to (F,B) pairs, this method allows for better alpha estimation from multiple F and B samples. The same framework is extended to videos, where the requirement of temporal coherence is handled effectively. Here, the dictionary is formed by samples from multiple frames. A multi-frame graph model, as opposed to a single image as for image matting, is proposed that can be solved efficiently in closed form. Quantitative and qualitative evaluations on a benchmark dataset are provided to show that the proposed method outperforms current state-of-the-art in image and video matting.
Discriminative Sparse Representations in Hyperspectral Imagery
2010-03-01
classification , and unsupervised labeling (clustering) [2, 3, 4, 5, 6, 7, 8]. Recently, a non-parametric (Bayesian) approach to sparse modeling and com...DISCRIMINATIVE SPARSE REPRESENTATIONS IN HYPERSPECTRAL IMAGERY By Alexey Castrodad, Zhengming Xing John Greer, Edward Bosch Lawrence Carin and...00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Discriminative Sparse Representations in Hyperspectral Imagery 5a. CONTRACT NUMBER 5b. GRANT
Universal Priors for Sparse Modeling(PREPRINT)
2009-08-01
UNIVERSAL PRIORS FOR SPARSE MODELING By Ignacio Ramı́rez Federico Lecumberry and Guillermo Sapiro IMA Preprint Series # 2276 ( August 2009...8-98) Prescribed by ANSI Std Z39-18 Universal Priors for Sparse Modeling (Invited Paper) Ignacio Ramı́rez#1, Federico Lecumberry ∗2, Guillermo Sapiro...I. Ramirez, F. Lecumberry , and G. Sapiro. Sparse modeling with univer- sal priors and learned incoherent dictionaries. Submitted to NIPS, 2009. [22
Image fusion using sparse overcomplete feature dictionaries
Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt
2015-10-06
Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.
Sparse and stable Markowitz portfolios.
Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace
2009-07-28
We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio.
Sparse and stable Markowitz portfolios
Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace
2009-01-01
We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio. PMID:19617537
Sparse representation for the ISAR image reconstruction
NASA Astrophysics Data System (ADS)
Hu, Mengqi; Montalbo, John; Li, Shuxia; Sun, Ligang; Qiao, Zhijun G.
2016-05-01
In this paper, a sparse representation of the data for an inverse synthetic aperture radar (ISAR) system is provided in two dimensions. The proposed sparse representation motivates the use a of a Convex Optimization that recovers the image with far less samples, which is required by Nyquist-Shannon sampling theorem to increases the efficiency and decrease the cost of calculation in radar imaging.
Approximate Orthogonal Sparse Embedding for Dimensionality Reduction.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Yang, Jian; Zhang, David
2016-04-01
Locally linear embedding (LLE) is one of the most well-known manifold learning methods. As the representative linear extension of LLE, orthogonal neighborhood preserving projection (ONPP) has attracted widespread attention in the field of dimensionality reduction. In this paper, a unified sparse learning framework is proposed by introducing the sparsity or L1-norm learning, which further extends the LLE-based methods to sparse cases. Theoretical connections between the ONPP and the proposed sparse linear embedding are discovered. The optimal sparse embeddings derived from the proposed framework can be computed by iterating the modified elastic net and singular value decomposition. We also show that the proposed model can be viewed as a general model for sparse linear and nonlinear (kernel) subspace learning. Based on this general model, sparse kernel embedding is also proposed for nonlinear sparse feature extraction. Extensive experiments on five databases demonstrate that the proposed sparse learning framework performs better than the existing subspace learning algorithm, particularly in the cases of small sample sizes.
Approximate inverse preconditioners for general sparse matrices
Chow, E.; Saad, Y.
1994-12-31
Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.
Large-scale sparse singular value computations
NASA Technical Reports Server (NTRS)
Berry, Michael W.
1992-01-01
Four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture are presented. Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography are emphasized. The target architectures for implementations are the CRAY-2S/4-128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices.
Resistant multiple sparse canonical correlation.
Coleman, Jacob; Replogle, Joseph; Chandler, Gabriel; Hardin, Johanna
2016-04-01
Canonical correlation analysis (CCA) is a multivariate technique that takes two datasets and forms the most highly correlated possible pairs of linear combinations between them. Each subsequent pair of linear combinations is orthogonal to the preceding pair, meaning that new information is gleaned from each pair. By looking at the magnitude of coefficient values, we can find out which variables can be grouped together, thus better understanding multiple interactions that are otherwise difficult to compute or grasp intuitively. CCA appears to have quite powerful applications to high-throughput data, as we can use it to discover, for example, relationships between gene expression and gene copy number variation. One of the biggest problems of CCA is that the number of variables (often upwards of 10,000) makes biological interpretation of linear combinations nearly impossible. To limit variable output, we have employed a method known as sparse canonical correlation analysis (SCCA), while adding estimation which is resistant to extreme observations or other types of deviant data. In this paper, we have demonstrated the success of resistant estimation in variable selection using SCCA. Additionally, we have used SCCA to find multiple canonical pairs for extended knowledge about the datasets at hand. Again, using resistant estimators provided more accurate estimates than standard estimators in the multiple canonical correlation setting. R code is available and documented at https://github.com/hardin47/rmscca.
Sparse Bayesian infinite factor models
Bhattacharya, A.; Dunson, D. B.
2011-01-01
We focus on sparse modelling of high-dimensional covariance matrices using Bayesian latent factor models. We propose a multiplicative gamma process shrinkage prior on the factor loadings which allows introduction of infinitely many factors, with the loadings increasingly shrunk towards zero as the column index increases. We use our prior on a parameter-expanded loading matrix to avoid the order dependence typical in factor analysis models and develop an efficient Gibbs sampler that scales well as data dimensionality increases. The gain in efficiency is achieved by the joint conjugacy property of the proposed prior, which allows block updating of the loadings matrix. We propose an adaptive Gibbs sampler for automatically truncating the infinite loading matrix through selection of the number of important factors. Theoretical results are provided on the support of the prior and truncation approximation bounds. A fast algorithm is proposed to produce approximate Bayes estimates. Latent factor regression methods are developed for prediction and variable selection in applications with high-dimensional correlated predictors. Operating characteristics are assessed through simulation studies, and the approach is applied to predict survival times from gene expression data. PMID:23049129
Sparse-aperture adaptive optics
NASA Astrophysics Data System (ADS)
Tuthill, Peter; Lloyd, James; Ireland, Michael; Martinache, Frantz; Monnier, John; Woodruff, Henry; ten Brummelaar, Theo; Turner, Nils; Townes, Charles
2006-06-01
Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical systems are presented.
Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Ray, J.; Yadav, V.; Van Bloemen Waanders, B.; Michalak, A. M.
2012-12-01
We present a method to estimate spatially resolved fossil-fuel CO2 (ffCO2) emissions from sparse measurements of time-varying CO2 concentrations. It is based on the wavelet-modeling of the strongly non-stationary spatial distribution of ffCO2 emissions. The dimensionality of the wavelet model is first reduced using images of nightlights, which identify regions of human habitation. Since wavelets are a multiresolution basis set, most of the reduction is accomplished by removing fine-scale wavelets, in the regions with low nightlight radiances. The (reduced) wavelet model of emissions is propagated through an atmospheric transport model (WRF) to predict CO2 concentrations at a handful of measurement sites. The estimation of the wavelet model of emissions i.e., inferring the wavelet weights, is performed by fitting to observations at the measurement sites. This is done using Staggered Orthogonal Matching Pursuit (StOMP), which first identifies (and sets to zero) the wavelet coefficients that cannot be estimated from the observations, before estimating the remaining coefficients. This model sparsification and fitting is performed simultaneously, allowing us to explore multiple wavelet-models of differing complexity. This technique is borrowed from the field of compressive sensing, and is generally used in image and video processing. We test this approach using synthetic observations generated from emissions from the Vulcan database. 35 sensor sites are chosen over the USA. FfCO2 emissions, averaged over 8-day periods, are estimated, at a 1 degree spatial resolutions. We find that only about 40% of the wavelets in emission model can be estimated from the data; however the mix of coefficients that are estimated changes with time. Total US emission can be reconstructed with about ~5% errors. The inferred emissions, if aggregated monthly, have a correlation of 0.9 with Vulcan fluxes. We find that the estimated emissions in the Northeast US are the most accurate. Sandia
Sparse High Dimensional Models in Economics
Fan, Jianqing; Lv, Jinchi; Qi, Lei
2010-01-01
This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635
Structured sparse priors for image classification.
Srinivas, Umamahesh; Suo, Yuanming; Dao, Minh; Monga, Vishal; Tran, Trac D
2015-06-01
Model-based compressive sensing (CS) exploits the structure inherent in sparse signals for the design of better signal recovery algorithms. This information about structure is often captured in the form of a prior on the sparse coefficients, with the Laplacian being the most common such choice (leading to l1 -norm minimization). Recent work has exploited the discriminative capability of sparse representations for image classification by employing class-specific dictionaries in the CS framework. Our contribution is a logical extension of these ideas into structured sparsity for classification. We introduce the notion of discriminative class-specific priors in conjunction with class specific dictionaries, specifically the spike-and-slab prior widely applied in Bayesian sparse regression. Significantly, the proposed framework takes the burden off the demand for abundant training image samples necessary for the success of sparsity-based classification schemes. We demonstrate this practical benefit of our approach in important applications, such as face recognition and object categorization.
Robust feature point matching with sparse model.
Jiang, Bo; Tang, Jin; Luo, Bin; Lin, Liang
2014-12-01
Feature point matching that incorporates pairwise constraints can be cast as an integer quadratic programming (IQP) problem. Since it is NP-hard, approximate methods are required. The optimal solution for IQP matching problem is discrete, binary, and thus sparse in nature. This motivates us to use sparse model for feature point matching problem. The main advantage of the proposed sparse feature point matching (SPM) method is that it generates sparse solution and thus naturally imposes the discrete mapping constraints approximately in the optimization process. Therefore, it can optimize the IQP matching problem in an approximate discrete domain. In addition, an efficient algorithm can be derived to solve SPM problem. Promising experimental results on both synthetic points sets matching and real-world image feature sets matching tasks show the effectiveness of the proposed feature point matching method.
Deploying temporary networks for upscaling of sparse network stations
NASA Astrophysics Data System (ADS)
Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane
2016-10-01
Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.
Sparse CSEM inversion driven by seismic coherence
NASA Astrophysics Data System (ADS)
Guo, Zhenwei; Dong, Hefeng; Kristensen, Åge
2016-12-01
Marine controlled source electromagnetic (CSEM) data inversion for hydrocarbon exploration is often challenging due to high computational cost, physical memory requirement and low resolution of the obtained resistivity map. This paper aims to enhance both the speed and resolution of CSEM inversion by introducing structural geological information in the inversion algorithm. A coarse mesh is generated for Occam’s inversion, where the parameters are fewer than in the fine regular mesh. This sparse mesh is defined as a coherence-based irregular (IC) sparse mesh, which is based on vertices extracted from available geological information. Inversion results on synthetic data illustrate that the IC sparse mesh has a smaller inversion computational cost compared to the regular dense (RD) mesh. It also has a higher resolution than with a regular sparse (RS) mesh for the same number of estimated parameters. In order to study how the IC sparse mesh reduces the computational time, four different meshes are generated for Occam’s inversion. As a result, an IC sparse mesh can reduce the computational cost while it keeps the resolution as good as a fine regular mesh. The IC sparse mesh reduces the computational cost of the matrix operation for model updates. When the number of estimated parameters reduces to a limited value, the computational cost is independent of the number of parameters. For a testing model with two resistive layers, the inversion result using an IC sparse mesh has higher resolution in both horizontal and vertical directions. Overall, the model representing significant geological information in the IC mesh can improve the resolution of the resistivity models obtained from inversion of CSEM data.
Online Dictionary Learning for Sparse Coding
2009-04-01
cessing tasks such as denoising (Elad & Aharon, 2006) as well as higher-level tasks such as classification (Raina et al., 2007; Mairal et al., 2008a...Bruckstein, A. M. (2006). The K- SVD : An algorithm for designing of overcomplete dic- tionaries for sparse representations. IEEE Trans. SP...Tibshirani, R. (2004). Least angle regression. Ann. Statist. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations
Sparse extreme learning machine for classification.
Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon
2014-10-01
Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.
Visual tracking via robust multitask sparse prototypes
NASA Astrophysics Data System (ADS)
Zhang, Huanlong; Hu, Shiqiang; Yu, Junyang
2015-03-01
Sparse representation has been applied to an online subspace learning-based tracking problem. To handle partial occlusion effectively, some researchers introduce l1 regularization to principal component analysis (PCA) reconstruction. However, in these traditional tracking methods, the representation of each object observation is often viewed as an individual task so the inter-relationship between PCA basis vectors is ignored. We propose a new online visual tracking algorithm with multitask sparse prototypes, which combines multitask sparse learning with PCA-based subspace representation. We first extend a visual tracking algorithm with sparse prototypes in multitask learning framework to mine inter-relations between subtasks. Then, to avoid the problem that enforcing all subtasks to share the same structure may result in degraded tracking results, we impose group sparse constraints on the coefficients of PCA basis vectors and element-wise sparse constraints on the error coefficients, respectively. Finally, we show that the proposed optimization problem can be effectively solved using the accelerated proximal gradient method with the fast convergence. Experimental results compared with the state-of-the-art tracking methods demonstrate that the proposed algorithm achieves favorable performance when the object undergoes partial occlusion, motion blur, and illumination changes.
Sparse Extreme Learning Machine for Classification
Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M. Brandon
2016-01-01
Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM. PMID:25222727
Finding Nonoverlapping Substructures of a Sparse Matrix
Pinar, Ali; Vassilevska, Virginia
2005-08-11
Many applications of scientific computing rely on computations on sparse matrices. The design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse matrix, which is previously not studied in the sparse matrix community. We show that the maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix. This extended abstract focuses on our results for 2x2 dense blocks. However we show that our results can be generalized to arbitrary sized dense blocks, and many other oriented substructures, which can be exploited to improve the memory performance of sparse matrix operations.
Learning discriminative dictionary for group sparse representation.
Sun, Yubao; Liu, Qingshan; Tang, Jinhui; Tao, Dacheng
2014-09-01
In recent years, sparse representation has been widely used in object recognition applications. How to learn the dictionary is a key issue to sparse representation. A popular method is to use l1 norm as the sparsity measurement of representation coefficients for dictionary learning. However, the l1 norm treats each atom in the dictionary independently, so the learned dictionary cannot well capture the multisubspaces structural information of the data. In addition, the learned subdictionary for each class usually shares some common atoms, which weakens the discriminative ability of the reconstruction error of each subdictionary. This paper presents a new dictionary learning model to improve sparse representation for image classification, which targets at learning a class-specific subdictionary for each class and a common subdictionary shared by all classes. The model is composed of a discriminative fidelity, a weighted group sparse constraint, and a subdictionary incoherence term. The discriminative fidelity encourages each class-specific subdictionary to sparsely represent the samples in the corresponding class. The weighted group sparse constraint term aims at capturing the structural information of the data. The subdictionary incoherence term is to make all subdictionaries independent as much as possible. Because the common subdictionary represents features shared by all classes, we only use the reconstruction error of each class-specific subdictionary for classification. Extensive experiments are conducted on several public image databases, and the experimental results demonstrate the power of the proposed method, compared with the state-of-the-arts.
Efficient, sparse biological network determination
August, Elias; Papachristodoulou, Antonis
2009-01-01
Background Determining the interaction topology of biological systems is a topic that currently attracts significant research interest. Typical models for such systems take the form of differential equations that involve polynomial and rational functions. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data much harder. The use of linear dynamics and linearization techniques that have been proposed in the past can circumvent this, but the general problem of developing efficient algorithms for models that provide more accurate system descriptions remains open. Results We present a network determination algorithm that can treat model descriptions with polynomial and rational functions and which does not make use of linearization. For this purpose, we make use of the observation that biochemical networks are in general 'sparse' and minimize the 1-norm of the decision variables (sum of weighted network connections) while constraints keep the error between data and the network dynamics small. The emphasis of our methodology is on determining the interconnection topology rather than the specific reaction constants and it takes into account the necessary properties that a chemical reaction network should have – something that techniques based on linearization can not. The problem can be formulated as a Linear Program, a convex optimization problem, for which efficient algorithms are available that can treat large data sets efficiently and uncertainties in data or model parameters. Conclusion The presented methodology is able to predict with accuracy and efficiency the connectivity structure of a chemical reaction network with mass action kinetics and of a gene regulatory network from simulation data even if the dynamics of these systems are non-polynomial (rational) and uncertainties in the data are taken into account. It also produces a network structure that can explain the real experimental
NASA Astrophysics Data System (ADS)
Trisakti, Bambang
2017-01-01
Open green space in the urban area has aims to maintain the availability of land as a water catchment area, creating aspects of urban planning through a balance between the natural environment and the built environment that are useful for the public needs. Local governments have to make the green zone plan map and monitor the green space changes in their territory. Medium and high resolution satellite imageries have been widely utilized to map and monitor the changes of vegetation cover as an indicator of green space area. This paper describes the use of pleaides imagery to classify vegetation types and estimate vegetation cover percentage in the green zone. Vegetation cover was mapped using a combination of NDVI and blue band. Furthermore, vegetation types in the green space were classified using unsupervised and supervised (ISODATA and MLEN) methods. Vegetation types in the study area were divided into sparse vegetation, low-medium vegetation and medium-high vegetation. The classification accuracies were 97.9% and 98.9% for unsupervised and supervised method respectively. The vegetation cover percentage was determined by calculating the ratio between the vegetation type area and the green zone area. These information are useful to support green zone management activities.
Finding nonoverlapping substructures of a sparse matrix
Pinar, Ali; Vassilevska, Virginia
2004-08-09
Many applications of scientific computing rely on computations on sparse matrices, thus the design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency of these applications. Due to the high compute-to-memory ratio and irregular memory access patterns, the performance of sparse matrix kernels is often far away from the peak performance on a modern processor. Alternative data structures have been proposed, which split the original matrix A into A{sub d} and A{sub s}, so that A{sub d} contains all dense blocks of a specified size in the matrix, and A{sub s} contains the remaining entries. This enables the use of dense matrix kernels on the entries of A{sub d} producing better memory performance. In this work, we study the problem of finding a maximum number of non overlapping rectangular dense blocks in a sparse matrix, which has not been studied in the sparse matrix community. We show that the maximum non overlapping dense blocks problem is NP-complete by using a reduction from the maximum independent set problem on cubic planar graphs. We also propose a 2/3-approximation algorithm for 2 times 2 blocks that runs in linear time in the number of nonzeros in the matrix. We discuss alternatives to rectangular blocks such as diagonal blocks and cross blocks and present complexity analysis and approximation algorithms.
Fast wavelet based sparse approximate inverse preconditioner
Wan, W.L.
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
A unified approach to sparse signal processing
NASA Astrophysics Data System (ADS)
Marvasti, Farokh; Amini, Arash; Haddadi, Farzan; Soltanolkotabi, Mahdi; Khalaj, Babak Hossein; Aldroubi, Akram; Sanei, Saeid; Chambers, Janathon
2012-12-01
A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, component analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing, and rate of innovation. The redundancy introduced by channel coding in finite and real Galois fields is then related to over-sampling with similar reconstruction algorithms. The error locator polynomial (ELP) and iterative methods are shown to work quite effectively for both sampling and coding applications. The methods of Prony, Pisarenko, and MUltiple SIgnal Classification (MUSIC) are next shown to be targeted at analyzing signals with sparse frequency domain representations. Specifically, the relations of the approach of Prony to an annihilating filter in rate of innovation and ELP in coding are emphasized; the Pisarenko and MUSIC methods are further improvements of the Prony method under noisy environments. The iterative methods developed for sampling and coding applications are shown to be powerful tools in spectral estimation. Such narrowband spectral estimation is then related to multi-source location and direction of arrival estimation in array processing. Sparsity in unobservable source signals is also shown to facilitate source separation in sparse component analysis; the algorithms developed in this area such as linear programming and matching pursuit are also widely used in compressed sensing. Finally
Sparse regularization for force identification using dictionaries
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Analog system for computing sparse codes
Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell
2010-08-24
A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.
Tensor methods for large, sparse unconstrained optimization
Bouaricha, A.
1996-11-01
Tensor methods for unconstrained optimization were first introduced by Schnabel and Chow [SIAM J. Optimization, 1 (1991), pp. 293-315], who describe these methods for small to moderate size problems. This paper extends these methods to large, sparse unconstrained optimization problems. This requires an entirely new way of solving the tensor model that makes the methods suitable for solving large, sparse optimization problems efficiently. We present test results for sets of problems where the Hessian at the minimizer is nonsingular and where it is singular. These results show that tensor methods are significantly more efficient and more reliable than standard methods based on Newton`s method.
Fluctuations in percolation of sparse complex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
2017-07-01
We study the role of fluctuations in percolation of sparse complex networks. To this end we consider two random correlated realizations of the initial damage of the nodes and we evaluate the fraction of nodes that are expected to remain in the giant component of the network in both cases or just in one case. Our framework includes a message-passing algorithm able to predict the fluctuations in a single network, and an analytic prediction of the expected fluctuations in ensembles of sparse networks. This approach is applied to real ecological and infrastructure networks and it is shown to characterize the expected fluctuations in their response to external damage.
Protein family classification using sparse Markov transducers.
Eskin, E; Grundy, W N; Singer, Y
2000-01-01
In this paper we present a method for classifying proteins into families using sparse Markov transducers (SMTs). Sparse Markov transducers, similar to probabilistic suffix trees, estimate a probability distribution conditioned on an input sequence. SMTs generalize probabilistic suffix trees by allowing for wild-cards in the conditioning sequences. Because substitutions of amino acids are common in protein families, incorporating wildcards into the model significantly improves classification performance. We present two models for building protein family classifiers using SMTs. We also present efficient data structures to improve the memory usage of the models. We evaluate SMTs by building protein family classifiers using the Pfam database and compare our results to previously published results.
Second SIAM conference on sparse matrices: Abstracts. Final technical report
1996-12-31
This report contains abstracts on the following topics: invited and long presentations (IP1 & LP1); sparse matrix reordering & graph theory I; sparse matrix tools & environments I; eigenvalue computations I; iterative methods & acceleration techniques I; applications I; parallel algorithms I; sparse matrix reordering & graphy theory II; sparse matrix tool & environments II; least squares & optimization I; iterative methods & acceleration techniques II; applications II; eigenvalue computations II; least squares & optimization II; parallel algorithms II; sparse direct methods; iterative methods & acceleration techniques III; eigenvalue computations III; and sparse matrix reordering & graph theory III.
Sparse Exponential Family Principal Component Analysis.
Lu, Meng; Huang, Jianhua Z; Qian, Xiaoning
2016-12-01
We propose a Sparse exponential family Principal Component Analysis (SePCA) method suitable for any type of data following exponential family distributions, to achieve simultaneous dimension reduction and variable selection for better interpretation of the results. Because of the generality of exponential family distributions, the method can be applied to a wide range of applications, in particular when analyzing high dimensional next-generation sequencing data and genetic mutation data in genomics. The use of sparsity-inducing penalty helps produce sparse principal component loading vectors such that the principal components can focus on informative variables. By using an equivalent dual form of the formulated optimization problem for SePCA, we derive optimal solutions with efficient iterative closed-form updating rules. The results from both simulation experiments and real-world applications have demonstrated the superiority of our SePCA in reconstruction accuracy and computational efficiency over traditional exponential family PCA (ePCA), the existing Sparse PCA (SPCA) and Sparse Logistic PCA (SLPCA) algorithms.
Learning Stable Multilevel Dictionaries for Sparse Representations.
Thiagarajan, Jayaraman J; Ramamurthy, Karthikeyan Natesan; Spanias, Andreas
2015-09-01
Sparse representations using learned dictionaries are being increasingly used with success in several data processing and machine learning applications. The increasing need for learning sparse models in large-scale applications motivates the development of efficient, robust, and provably good dictionary learning algorithms. Algorithmic stability and generalizability are desirable characteristics for dictionary learning algorithms that aim to build global dictionaries, which can efficiently model any test data similar to the training samples. In this paper, we propose an algorithm to learn dictionaries for sparse representations from large scale data, and prove that the proposed learning algorithm is stable and generalizable asymptotically. The algorithm employs a 1-D subspace clustering procedure, the K-hyperline clustering, to learn a hierarchical dictionary with multiple levels. We also propose an information-theoretic scheme to estimate the number of atoms needed in each level of learning and develop an ensemble approach to learn robust dictionaries. Using the proposed dictionaries, the sparse code for novel test data can be computed using a low-complexity pursuit procedure. We demonstrate the stability and generalization characteristics of the proposed algorithm using simulations. We also evaluate the utility of the multilevel dictionaries in compressed recovery and subspace learning applications.
Global Astrometric Solutions with Sparse Matrix Techniques
2000-03-01
Global Astrometric Solutions with Sparse Matrix Techniques Richard L. Branham, Jr. Instituto Argentino de Nivologia y Glaciologia (IANIGLA), C.C...Physikalishen Teorien der hoheren Geodasie, 1 Teil, Leipzig: Teubner. Knuth, D., 1973, The Art of Computer Programming, Vol. 3, Sorting and Search- ing
New methods for sampling sparse populations
Anna Ringvall
2007-01-01
To improve surveys of sparse objects, methods that use auxiliary information have been suggested. Guided transect sampling uses prior information, e.g., from aerial photographs, for the layout of survey strips. Instead of being laid out straight, the strips will wind between potentially more interesting areas. 3P sampling (probability proportional to prediction) uses...
Spline curve matching with sparse knot sets
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2004-01-01
This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of thin-plate-spline mapping between sparse knot points and normalized local...
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
Structured Sparse Method for Hyperspectral Unmixing
NASA Astrophysics Data System (ADS)
Zhu, Feiyun; Wang, Ying; Xiang, Shiming; Fan, Bin; Pan, Chunhong
2014-02-01
Hyperspectral Unmixing (HU) has received increasing attention in the past decades due to its ability of unveiling information latent in hyperspectral data. Unfortunately, most existing methods fail to take advantage of the spatial information in data. To overcome this limitation, we propose a Structured Sparse regularized Nonnegative Matrix Factorization (SS-NMF) method based on the following two aspects. First, we incorporate a graph Laplacian to encode the manifold structures embedded in the hyperspectral data space. In this way, the highly similar neighboring pixels can be grouped together. Second, the lasso penalty is employed in SS-NMF for the fact that pixels in the same manifold structure are sparsely mixed by a common set of relevant bases. These two factors act as a new structured sparse constraint. With this constraint, our method can learn a compact space, where highly similar pixels are grouped to share correlated sparse representations. Experiments on real hyperspectral data sets with different noise levels demonstrate that our method outperforms the state-of-the-art methods significantly.
Sparse matrix orderings for factorized inverse preconditioners
Benzi, M.; Tuama, M.
1998-09-01
The effect of reorderings on the performance of factorized sparse approximate inverse preconditioners is considered. It is shown that certain reorderings can be very beneficial both in the preconditioner construction phase and in terms of the rate of convergence of the preconditioned iteration.
SAR Image Despeckling Via Structural Sparse Representation
NASA Astrophysics Data System (ADS)
Lu, Ting; Li, Shutao; Fang, Leyuan; Benediktsson, Jón Atli
2016-12-01
A novel synthetic aperture radar (SAR) image despeckling method based on structural sparse representation is introduced. The proposed method utilizes the fact that different regions in SAR images correspond to varying terrain reflectivity. Therefore, SAR images can be split into a heterogeneous class (with a varied terrain reflectivity) and a homogeneous class (with a constant terrain reflectivity). In the proposed method, different sparse representation based despeckling schemes are designed by combining the different region characteristics in SAR images. For heterogeneous regions with rich structure and texture information, structural dictionaries are learned to appropriately represent varied structural characteristics. Specifically, each patch in these regions is sparsely coded with the best fitted structural dictionary, thus good structure preservation can be obtained. For homogenous regions without rich structure and texture information, the highly redundant photometric self-similarity is exploited to suppress speckle noise without introducing artifacts. That is achieved by firstly learning the sub-dictionary, then simultaneously sparsely coding for each group of photometrically similar image patches. Visual and objective experimental results demonstrate the superiority of the proposed method over the-state-of-the-art methods.
Maxdenominator Reweighted Sparse Representation for Tumor Classification
Li, Weibiao; Liao, Bo; Zhu, Wen; Chen, Min; Peng, Li; Wei, Xiaohui; Gu, Changlong; Li, Keqin
2017-01-01
The classification of tumors is crucial for the proper treatment of cancer. Sparse representation-based classifier (SRC) exhibits good classification performance and has been successfully used to classify tumors using gene expression profile data. In this study, we propose a three-step maxdenominator reweighted sparse representation classification (MRSRC) method to classify tumors. First, we extract a set of metagenes from the training samples. These metagenes can capture the structures inherent to the data and are more effective for classification than the original gene expression data. Second, we use a reweighted regularization method to obtain the sparse representation coefficients. Reweighted regularization can enhance sparsity and obtain better sparse representation coefficients. Third, we classify the data by utilizing a maxdenominator residual error function. Maxdenominator strategy can reduce the residual error and improve the accuracy of the final classification. Extensive experiments using publicly available gene expression profile data sets show that the performance of MRSRC is comparable with or better than many existing representative methods. PMID:28393883
Automatic anatomy recognition of sparse objects
NASA Astrophysics Data System (ADS)
Zhao, Liming; Udupa, Jayaram K.; Odhner, Dewey; Wang, Huiqian; Tong, Yubing; Torigian, Drew A.
2015-03-01
A general body-wide automatic anatomy recognition (AAR) methodology was proposed in our previous work based on hierarchical fuzzy models of multitudes of objects which was not tied to any specific organ system, body region, or image modality. That work revealed the challenges encountered in modeling, recognizing, and delineating sparse objects throughout the body (compared to their non-sparse counterparts) if the models are based on the object's exact geometric representations. The challenges stem mainly from the variation in sparse objects in their shape, topology, geographic layout, and relationship to other objects. That led to the idea of modeling sparse objects not from the precise geometric representations of their samples but by using a properly designed optimal super form. This paper presents the underlying improved methodology which includes 5 steps: (a) Collecting image data from a specific population group G and body region Β and delineating in these images the objects in Β to be modeled; (b) Building a super form, S-form, for each object O in Β; (c) Refining the S-form of O to construct an optimal (minimal) super form, S*-form, which constitutes the (fuzzy) model of O; (d) Recognizing objects in Β using the S*-form; (e) Defining confounding and background objects in each S*-form for each object and performing optimal delineation. Our evaluations based on 50 3D computed tomography (CT) image sets in the thorax on four sparse objects indicate that substantially improved performance (FPVF~2%, FNVF~10%, and success where the previous approach failed) can be achieved using the new approach.
Steve Sutherland; Todd F. Hutchinson; Jennifer L. Windus
2003-01-01
This chapter documents patterns of species composition and diversity within the understory vegetation layer and provides a species list for the four study areas in southern Ohio. Within each of 108 plots, we recorded the frequency of all vascular plant species in sixteen 2-m² quadrats. We recorded 297 species, including 187 forbs (176 perennials, 9 annuals, 2...
USDA-ARS?s Scientific Manuscript database
The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...
Sammy L. King; Marianne K. Burke; Terry J. Antrobus; Sarah Billups
2000-01-01
A disturbance can be defined as "any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment" (Pickett and White 1985). Vegetation dynamics are a function of the temporal and spatial patterns of the disturbance regime. Natural disturbance regimes...
George A. Schier; John R. Jones; Robert P. Winokur
1985-01-01
Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...
Fingerprint Compression Based on Sparse Representation.
Shao, Guangqi; Wu, Yanping; A, Yong; Liu, Xiao; Guo, Tiande
2014-02-01
A new fingerprint compression algorithm based on sparse representation is introduced. Obtaining an overcomplete dictionary from a set of fingerprint patches allows us to represent them as a sparse linear combination of dictionary atoms. In the algorithm, we first construct a dictionary for predefined fingerprint image patches. For a new given fingerprint images, represent its patches according to the dictionary by computing l(0)-minimization and then quantize and encode the representation. In this paper, we consider the effect of various factors on compression results. Three groups of fingerprint images are tested. The experiments demonstrate that our algorithm is efficient compared with several competing compression techniques (JPEG, JPEG 2000, and WSQ), especially at high compression ratios. The experiments also illustrate that the proposed algorithm is robust to extract minutiae.
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
Sparse representation for color image restoration.
Mairal, Julien; Elad, Michael; Sapiro, Guillermo
2008-01-01
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The K-SVD has been recently proposed for this task and shown to perform very well for various grayscale image processing tasks. In this paper, we address the problem of learning dictionaries for color images and extend the K-SVD-based grayscale image denoising algorithm that appears in. This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to state-of-the-art results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
Compressed imaging by sparse random convolution.
Marcos, Diego; Lasser, Theo; López, Antonio; Bourquard, Aurélien
2016-01-25
The theory of compressed sensing (CS) shows that signals can be acquired at sub-Nyquist rates if they are sufficiently sparse or compressible. Since many images bear this property, several acquisition models have been proposed for optical CS. An interesting approach is random convolution (RC). In contrast with single-pixel CS approaches, RC allows for the parallel capture of visual information on a sensor array as in conventional imaging approaches. Unfortunately, the RC strategy is difficult to implement as is in practical settings due to important contrast-to-noise-ratio (CNR) limitations. In this paper, we introduce a modified RC model circumventing such difficulties by considering measurement matrices involving sparse non-negative entries. We then implement this model based on a slightly modified microscopy setup using incoherent light. Our experiments demonstrate the suitability of this approach for dealing with distinct CS scenarii, including 1-bit CS.
Feature selection using sparse Bayesian inference
NASA Astrophysics Data System (ADS)
Brandes, T. Scott; Baxter, James R.; Woodworth, Jonathan
2014-06-01
A process for selecting a sparse subset of features that maximize discrimination between target classes is described in a Bayesian framework. Demonstrated on high range resolution radar (HRR) signature data, this has the effect of selecting the most informative range bins for a classification task. The sparse Bayesian classifier (SBC) model is directly compared against Fisher's linear discriminant analysis (LDA), showing a clear performance gain with the Bayesian framework using HRRs from the publicly available MSTAR data set. The discriminative power of the selected features from the SBC is shown to be particularly dominant over LDA when only a few features are selected or when there is a shift in training and testing data sets, as demonstrated by training on a specific target type and testing on a slightly different target type.
Sparse brain network using penalized linear regression
NASA Astrophysics Data System (ADS)
Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.
2011-03-01
Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.
Sparse model selection via integral terms
NASA Astrophysics Data System (ADS)
Schaeffer, Hayden; McCalla, Scott G.
2017-08-01
Model selection and parameter estimation are important for the effective integration of experimental data, scientific theory, and precise simulations. In this work, we develop a learning approach for the selection and identification of a dynamical system directly from noisy data. The learning is performed by extracting a small subset of important features from an overdetermined set of possible features using a nonconvex sparse regression model. The sparse regression model is constructed to fit the noisy data to the trajectory of the dynamical system while using the smallest number of active terms. Computational experiments detail the model's stability, robustness to noise, and recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems, and fast-slow systems.
Causal Network Inference Via Group Sparse Regularization
Bolstad, Andrew; Van Veen, Barry D.; Nowak, Robert
2011-01-01
This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a “false connection score” ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach. PMID:21918591
Vegetation Effects on Flow and Sediment Transport in Rivers
NASA Astrophysics Data System (ADS)
Schmeeckle, M. W.; Yuill, B. T.
2006-05-01
A key component of stream restoration efforts is a sound understanding of the interacting relationship between vegetation and stream morphology. Stream morphology and vegetation interact by modifying the flow and sediment transport fields. The flow and sediment transport fields are modified differently depending on the nature, size, and density of the vegetation. For flow through relatively sparse areas of emergent vegetation, there is a local acceleration around individual vegetation elements that locally increases the sediment transport rate. However, this is offset by deposition downstream of the vegetation element, and, once a scour profile is established, there is no net increase in the local sediment transport rate. The sparse elements collectively act to slow the flow and, thus, effectively increase the friction or bed roughness seen by the flow. The flow will be steered around sparse vegetation patches and may decelerate through the patch, causing sedimentation. For flow through relatively dense areas of emergent vegetation, the primary momentum balance in the flow is between the sloping water surface and drag around the vegetation. The result is that velocities and bed stresses will be greatly reduced and sediment transport will be minimal. When the density of vegetation is moderate, the interaction between the flow and sediment transport field is more complex. Local acceleration around individual elements increases the local transport rate. If vegetation spacing is close enough, sediment transported in the accelerated flow around one element will move downstream into the next element before being deposited. In this way the sediment flux can be greatly increased. Also, the moderately-spaced vegetation elements act to increase the near-bed turbulence intensity throughout the flow. The net result is that, even though the drag on the vegetation acts to slow the flow, the increased turbulence and acceleration around individual elements can increase the
Sparse image reconstruction for molecular imaging.
Ting, Michael; Raich, Raviv; Hero, Alfred O
2009-06-01
The application that motivates this paper is molecular imaging at the atomic level. When discretized at subatomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. This paper, therefore, does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing the joint p.d.f. of the observation and image conditioned on the hyperparameters. A thresholding rule that generalizes the hard and soft thresholding rule appears in the course of the derivation. This so-called hybrid thresholding rule, when used in the iterative thresholding framework, gives rise to the hybrid estimator, a generalization of the lasso. Estimates of the hyperparameters for the lasso and hybrid estimator are obtained via Stein's unbiased risk estimate (SURE). A numerical study with a Gaussian psf and two sparse images shows that the hybrid estimator outperforms the lasso.
Dictionary learning algorithms for sparse representation.
Kreutz-Delgado, Kenneth; Murray, Joseph F; Rao, Bhaskar D; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J
2003-02-01
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial "25 words or less"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).
Notes on implementation of sparsely distributed memory
NASA Technical Reports Server (NTRS)
Keeler, J. D.; Denning, P. J.
1986-01-01
The Sparsely Distributed Memory (SDM) developed by Kanerva is an unconventional memory design with very interesting and desirable properties. The memory works in a manner that is closely related to modern theories of human memory. The SDM model is discussed in terms of its implementation in hardware. Two appendices discuss the unconventional approaches of the SDM: Appendix A treats a resistive circuit for fast, parallel address decoding; and Appendix B treats a systolic array for high throughput read and write operations.
Dictionary Learning Algorithms for Sparse Representation
Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.
2010-01-01
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811
Spectra of sparse regular graphs with loops.
Metz, F L; Neri, I; Bollé, D
2011-11-01
We derive exact equations that determine the spectra of undirected and directed sparsely connected regular graphs containing loops of arbitrary lengths. The implications of our results for the structural and dynamical properties of network models are discussed by showing how loops influence the size of the spectral gap and the propensity for synchronization. Analytical formulas for the spectrum are obtained for specific lengths of the loops.
Inpainting with sparse linear combinations of exemplars
Wohlberg, Brendt
2008-01-01
We introduce a new exemplar-based inpainting algorithm based on representing the region to be inpainted as a sparse linear combination of blocks extracted from similar parts of the image being inpainted. This method is conceptually simple, being computed by functional minimization, and avoids the complexity of correctly ordering the filling in of missing regions of other exemplar-based methods. Initial performance comparisons on small inpainting regions indicate that this method provides similar or better performance than other recent methods.
Inpainting With Sparse Linear Combinations of Exemplars
2010-05-01
Alamos, NM 87545, USA ABSTRACT We introduce a new exemplar-based inpainting algorithm that represents the region to be inpainted as a sparse linear combi...exemplar-based methods. Initial performance comparisons on small inpaint - ing regions indicate that this method provides similar or better performance than...other recent methods. Index Terms— Image restoration, Inpainting , Exemplar 1. INTRODUCTION Exemplar based methods are becoming increasingly popular
Generative models for discovering sparse distributed representations.
Hinton, G E; Ghahramani, Z
1997-08-29
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations.
SAR Image despeckling via sparse representation
NASA Astrophysics Data System (ADS)
Wang, Zhongmei; Yang, Xiaomei; Zheng, Liang
2014-11-01
SAR image despeckling is an active research area in image processing due to its importance in improving the quality of image for object detection and classification.In this paper, a new approach is proposed for multiplicative noise in SAR image removal based on nonlocal sparse representation by dictionary learning and collaborative filtering. First, a image is divided into many patches, and then a cluster is formed by clustering log-similar image patches using Fuzzy C-means (FCM). For each cluster, an over-complete dictionary is computed using the K-SVD method that iteratively updates the dictionary and the sparse coefficients. The patches belonging to the same cluster are then reconstructed by a sparse combination of the corresponding dictionary atoms. The reconstructed patches are finally collaboratively aggregated to build the denoised image. The experimental results show that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both objective evaluation index (PSNR and ENL) and subjective visual perception.
Imaging black holes with sparse modeling
NASA Astrophysics Data System (ADS)
Honma, Mareki; Akiyama, Kazunori; Tazaki, Fumie; Kuramochi, Kazuki; Ikeda, Shiro; Hada, Kazuhiro; Uemura, Makoto
2016-03-01
We introduce a new imaging method for radio interferometry based on sparse- modeling. The direct observables in radio interferometry are visibilities, which are Fourier transformation of an astronomical image on the sky-plane, and incomplete sampling of visibilities in the spatial frequency domain results in an under-determined problem, which has been usually solved with 0 filling to un-sampled grids. In this paper we propose to directly solve this under-determined problem using sparse modeling without 0 filling, which realizes super resolution, i.e., resolution higher than the standard refraction limit. We show simulation results of sparse modeling for the Event Horizon Telescope (EHT) observations of super-massive black holes and demonstrate that our approach has significant merit in observations of black hole shadows expected to be realized in near future. We also present some results with the method applied to real data, and also discuss more advanced techniques for practical observations such as imaging with closure phase as well as treating the effect of interstellar scattering effect.
Sparseness- and continuity-constrained seismic imaging
NASA Astrophysics Data System (ADS)
Herrmann, Felix J.
2005-04-01
Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.
Sparse Sampling Methods In Multidimensional NMR
Mobli, Mehdi; Maciejewski, Mark W.; Schuyler, Adam D.; Stern, Alan S.; Hoch, Jeffrey C.
2014-01-01
Although the discrete Fourier transform played an enabling role in the development of modern NMR spectroscopy, it suffers from a well-known difficulty providing high-resolution spectra from short data records. In multidimensional NMR experiments, so-called indirect time dimensions are sampled parametrically, with each instance of evolution times along the indirect dimensions sampled via separate one-dimensional experiments. The time required to conduct multidimensional experiments is directly proportional to the number of indirect evolution times sampled. Despite remarkable advances in resolution with increasing magnetic field strength, multiple dimensions remain essential for resolving individual resonances in NMR spectra of biological macromolecues. Conventional Fourier-based methods of spectrum analysis limit the resolution that can be practically achieved in the indirect dimensions. Nonuniform or sparse data collection strategies, together with suitable non-Fourier methods of spectrum analysis, enable high-resolution multidimensional spectra to be obtained. Although some of these approaches were first employed in NMR more than two decades ago, it is only relatively recently that they have been widely adopted. Here we describe the current practice of sparse sampling methods and prospects for further development of the approach to improve resolution and sensitivity and shorten experiment time in multidimensional NMR. While sparse sampling is particularly promising for multidimensional NMR, the basic principles could apply to other forms of multidimensional spectroscopy. PMID:22481242
Modified sparse regularization for electrical impedance tomography
Fan, Wenru Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Sun, Benyuan; Wang, Qi
2016-03-15
Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L{sub 1} norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.
Digitized tissue microarray classification using sparse reconstruction
NASA Astrophysics Data System (ADS)
Xing, Fuyong; Liu, Baiyang; Qi, Xin; Foran, David J.; Yang, Lin
2012-02-01
In this paper, we propose a novel image classification method based on sparse reconstruction errors to discriminate cancerous breast tissue microarray (TMA) discs from benign ones. Sparse representation is employed to reconstruct the samples and separate the benign and cancer discs. The method consists of several steps including mask generation, dictionary learning, and data classification. Mask generation is performed using multiple scale texton histogram, integral histogram and AdaBoost. Two separate cancer and benign TMA dictionaries are learned using K-SVD. Sparse coefficients are calculated using orthogonal matching pursuit (OMP), and the reconstructive error of each testing sample is recorded. The testing image will be divided into many small patches. Each small patch will be assigned to the category which produced the smallest reconstruction error. The final classification of each testing sample is achieved by calculating the total reconstruction errors. Using standard RGB images, and tested on a dataset with 547 images, we achieved much better results than previous literature. The binary classification accuracy, sensitivity, and specificity are 88.0%, 90.6%, and 70.5%, respectively.
Automatic target recognition via sparse representations
NASA Astrophysics Data System (ADS)
Estabridis, Katia
2010-04-01
Automatic target recognition (ATR) based on the emerging technology of Compressed Sensing (CS) can considerably improve accuracy, speed and cost associated with these types of systems. An image based ATR algorithm has been built upon this new theory, which can perform target detection and recognition in a low dimensional space. Compressed dictionaries (A) are formed to include rotational information for a scale of interest. The algorithm seeks to identify y(test sample) as a linear combination of the dictionary elements : y=Ax, where A ∈ Rnxm(n<
Aerial Scene Recognition using Efficient Sparse Representation
Cheriyadat, Anil M
2012-01-01
Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.
Efficient visual tracking via low-complexity sparse representation
NASA Astrophysics Data System (ADS)
Lu, Weizhi; Zhang, Jinglin; Kpalma, Kidiyo; Ronsin, Joseph
2015-12-01
Thanks to its good performance on object recognition, sparse representation has recently been widely studied in the area of visual object tracking. Up to now, little attention has been paid to the complexity of sparse representation, while most works are focused on the performance improvement. By reducing the computation load related to sparse representation hundreds of times, this paper proposes by far the most computationally efficient tracking approach based on sparse representation. The proposal simply consists of two stages of sparse representation, one is for object detection and the other for object validation. Experimentally, it achieves better performance than some state-of-the-art methods in both accuracy and speed.
Multispectral vegetative canopy parameter retrieval
NASA Astrophysics Data System (ADS)
Borel, Christoph C.; Bunker, David J.
2011-11-01
Precision agriculture, forestry and environmental remote sensing are applications uniquely suited to the 8 bands that DigitalGlobe's WorldView-2 provides. At the fine spatial resolution of 0.5 m (panchromatic) and 2 m (multispectral) individual trees can be readily resolved. Recent research [1] has shown that it is possible for hyper-spectral data to invert plant reflectance spectra and estimate nitrogen content, leaf water content, leaf structure, canopy leaf area index and, for sparse canopies, also soil reflectance. The retrieval is based on inverting the SAIL (Scattering by Arbitrary Inclined Leaves) vegetation radiative transfer model for the canopy structure and the reflectance model PROSPECT4/5 for the leaf reflectance. Working on the paper [1] confirmed that a limited number of adjacent bands covering just the visible and near infrared can retrieve the parameters as well, opening up the possibility that this method can be used to analyze multi-spectral WV-2 data. Thus it seems possible to create WV-2 specific inversions using 8 bands and apply them to imagery of various vegetation covered surfaces of agricultural and environmental interest. The capability of retrieving leaf water content and nitrogen content has important applications in determining the health of vegetation, e.g. plant growth status, disease mapping, quantitative drought assessment, nitrogen deficiency, plant vigor, yield, etc.
Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin
2015-10-27
Network component analysis (NCA) is an important method for inferring transcriptional regulatory networks (TRNs) and recovering transcription factor activities (TFAs) using gene expression data, and the prior information about the connectivity matrix. The algorithms currently available crucially depend on the completeness of this prior information. However, inaccuracies in the measurement process may render incompleteness in the available knowledge about the connectivity matrix. Hence, computationally efficient algorithms are needed to overcome the possible incompleteness in the available data. We present a sparse network component analysis algorithm (sparseNCA), which incorporates the effect of incompleteness in the estimation of TRNs by imposing an additional sparsity constraint using the `1 norm, which results in a greater estimation accuracy. In order to improve the computational efficiency, an iterative re-weighted `2 method is proposed for the NCA problem which not only promotes sparsity but is hundreds of times faster than the `1 norm based solution. The performance of sparseNCA is rigorously compared to that of FastNCA and NINCA using synthetic data as well as real data. It is shown that sparseNCA outperforms the existing state-of-the-art algorithms both in terms of estimation accuracy and consistency with the added advantage of low computational complexity. The performance of sparseNCA compared to its predecessors is particularly pronounced in case of incomplete prior information about the sparsity of the network. Subnetwork analysis is performed on the E.coli data which reiterates the superior consistency of the proposed algorithm.
Sparse coding in striate and extrastriate visual cortex
Mazer, James A.; Gallant, Jack L.
2011-01-01
Theoretical studies of mammalian cortex argue that efficient neural codes should be sparse. However, theoretical and experimental studies have used different definitions of the term “sparse” leading to three assumptions about the nature of sparse codes. First, codes that have high lifetime sparseness require few action potentials. Second, lifetime-sparse codes are also population-sparse. Third, neural codes are optimized to maximize lifetime sparseness. Here, we examine these assumptions in detail and test their validity in primate visual cortex. We show that lifetime and population sparseness are not necessarily correlated and that a code may have high lifetime sparseness regardless of how many action potentials it uses. We measure lifetime sparseness during presentation of natural images in three areas of macaque visual cortex, V1, V2, and V4. We find that lifetime sparseness does not increase across the visual hierarchy. This suggests that the neural code is not simply optimized to maximize lifetime sparseness. We also find that firing rates during a challenging visual task are higher than theoretical values based on metabolic limits and that responses in V1, V2, and V4 are well-described by exponential distributions. These findings are consistent with the hypothesis that neurons are optimized to maximize information transmission subject to metabolic constraints on mean firing rate. PMID:21471391
Effects of sparsely and densely ionizing radiation on plants.
De Micco, Veronica; Arena, Carmen; Pignalosa, Diana; Durante, Marco
2011-03-01
One of the main purposes leading botanists to investigate the effects of ionizing radiations is to understand plant behaviour in space, where vegetal systems play an important role for nourishment, psychological support and functioning of life support systems. Ground-based experiments have been performed with particles of different charge and energy. Samples exposed to X- or γ-rays are often used as reference to derive the biological efficiency of different radiation qualities. Studies where biological samples are exposed directly to the space radiation environment have also been performed. The comparison of different studies has clarified how the effects observed after exposure are deeply influenced by several factors, some related to plant characteristics (e.g. species, cultivar, stage of development, tissue architecture and genome organization) and some related to radiation features (e.g. quality, dose, duration of exposure). In this review, we report main results from studies on the effect of ionizing radiations, including cosmic rays, on plants, focusing on genetic alterations, modifications of growth and reproduction and changes in biochemical pathways especially photosynthetic behaviour. Most of the data confirm what is known from animal studies: densely ionizing radiations are more efficient in inducing damages at several different levels, in comparison with sparsely ionizing radiation. ©
Yao, Jincao; Yu, Huimin; Hu, Roland
2017-01-01
This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.
Vegetation dynamics and responses to climate change and human activities in Central Asia.
Jiang, Liangliang; Guli Jiapaer; Bao, Anming; Guo, Hao; Ndayisaba, Felix
2017-12-01
Knowledge of the current changes and dynamics of different types of vegetation in relation to climatic changes and anthropogenic activities is critical for developing adaptation strategies to address the challenges posed by climate change and human activities for ecosystems. Based on a regression analysis and the Hurst exponent index method, this research investigated the spatial and temporal characteristics and relationships between vegetation greenness and climatic factors in Central Asia using the Normalized Difference Vegetation Index (NDVI) and gridded high-resolution station (land) data for the period 1984-2013. Further analysis distinguished between the effects of climatic change and those of human activities on vegetation dynamics by means of a residual analysis trend method. The results show that vegetation pixels significantly decreased for shrubs and sparse vegetation compared with those for the other vegetation types and that the degradation of sparse vegetation was more serious in the Karakum and Kyzylkum Deserts, the Ustyurt Plateau and the wetland delta of the Large Aral Sea than in other regions. The Hurst exponent results indicated that forests are more sustainable than grasslands, shrubs and sparse vegetation. Precipitation is the main factor affecting vegetation growth in the Kazakhskiy Melkosopochnik. Moreover, temperature is a controlling factor that influences the seasonal variation of vegetation greenness in the mountains and the Aral Sea basin. Drought is the main factor affecting vegetation degradation as a result of both increased temperature and decreased precipitation in the Kyzylkum Desert and the northern Ustyurt Plateau. The residual analysis highlighted that sparse vegetation and the degradation of some shrubs in the southern part of the Karakum Desert, the southern Ustyurt Plateau and the wetland delta of the Large Aral Sea were mainly triggered by human activities: the excessive exploitation of water resources in the upstream areas
Stochastic convex sparse principal component analysis.
Baytas, Inci M; Lin, Kaixiang; Wang, Fei; Jain, Anil K; Zhou, Jiayu
2016-12-01
Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is important. In applications, where the features have some physical meanings, we lose the ability to interpret the principal components extracted by conventional PCA because each principal component is a linear combination of all the original features. For this reason, sparse PCA has been proposed to improve the interpretability of traditional PCA by introducing sparsity to the loading vectors of principal components. The sparse PCA can be formulated as an ℓ1 regularized optimization problem, which can be solved by proximal gradient methods. However, these methods do not scale well because computation of the exact gradient is generally required at each iteration. Stochastic gradient framework addresses this challenge by computing an expected gradient at each iteration. Nevertheless, stochastic approaches typically have low convergence rates due to the high variance. In this paper, we propose a convex sparse principal component analysis (Cvx-SPCA), which leverages a proximal variance reduced stochastic scheme to achieve a geometric convergence rate. We further show that the convergence analysis can be significantly simplified by using a weak condition which allows a broader class of objectives to be applied. The efficiency and effectiveness of the proposed method are demonstrated on a large-scale electronic medical record cohort.
Adaptive feature extraction using sparse coding for machinery fault diagnosis
NASA Astrophysics Data System (ADS)
Liu, Haining; Liu, Chengliang; Huang, Yixiang
2011-02-01
In the signal processing domain, there has been growing interest in sparse coding with a learned dictionary instead of a predefined one, which is advocated as an effective mathematical description for the underlying principle of mammalian sensory systems in processing information. In this paper, sparse coding is introduced as a feature extraction technique for machinery fault diagnosis and an adaptive feature extraction scheme is proposed based on it. The two core problems of sparse coding, i.e., dictionary learning and coefficients solving, are discussed in detail. A natural extension of sparse coding, shift-invariant sparse coding, is also introduced. Then, the vibration signals of rolling element bearings are taken as the target signals to verify the proposed scheme, and shift-invariant sparse coding is used for vibration analysis. With the purpose of diagnosing the different fault conditions of bearings, features are extracted following the proposed scheme: basis functions are separately learned from each class of vibration signals trying to capture the defective impulses; a redundant dictionary is built by merging all the learned basis functions; based on the redundant dictionary, the diagnostic information is made explicit in the solved sparse representations of vibration signals; sparse features are formulated in terms of activations of atoms. The multiclass linear discriminant analysis (LDA) classifier is used to test the discriminability of the extracted sparse features and the adaptability of the learned atoms. The experiments show that sparse coding is an effective feature extraction technique for machinery fault diagnosis.
Sparse dynamics for partial differential equations
Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D.; Osher, Stanley
2013-01-01
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms. PMID:23533273
A view of Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.
Guided wavefield reconstruction from sparse measurements
NASA Astrophysics Data System (ADS)
Mesnil, Olivier; Ruzzene, Massimo
2016-02-01
Guided wave measurements are at the basis of several Non-Destructive Evaluation (NDE) techniques. Although sparse measurements of guided wave obtained using piezoelectric sensors can efficiently detect and locate defects, extensive informa-tion on the shape and subsurface location of defects can be extracted from full-field measurements acquired by Laser Doppler Vibrometers (LDV). Wavefield acquisition from LDVs is generally a slow operation due to the fact that the wave propagation to record must be repeated for each point measurement and the initial conditions must be reached between each measurement. In this research, a Sparse Wavefield Reconstruction (SWR) process using Compressed Sensing is developed. The goal of this technique is to reduce the number of point measurements needed to apply NDE techniques by at least one order of magnitude by extrapolating the knowledge of a few randomly chosen measured pixels over an over-sampled grid. To achieve this, the Lamb wave propagation equation is used to formulate a basis of shape functions in which the wavefield has a sparse representation, in order to comply with the Compressed Sensing requirements and use l1-minimization solvers. The main assumption of this reconstruction process is that every material point of the studied area is a potential source. The Compressed Sensing matrix is defined as being the contribution that would have been received at a measurement location from each possible source, using the dispersion relations of the specimen computed using a Semi-Analytical Finite Element technique. The measurements are then processed through an l1-minimizer to find a minimum corresponding to the set of active sources and their corresponding excitation functions. This minimum represents the best combination of the parameters of the model matching the sparse measurements. Wavefields are then reconstructed using the propagation equation. The set of active sources found by minimization contains all the wave
Distributed memory compiler design for sparse problems
NASA Technical Reports Server (NTRS)
Wu, Janet; Saltz, Joel; Berryman, Harry; Hiranandani, Seema
1991-01-01
A compiler and runtime support mechanism is described and demonstrated. The methods presented are capable of solving a wide range of sparse and unstructured problems in scientific computing. The compiler takes as input a FORTRAN 77 program enhanced with specifications for distributing data, and the compiler outputs a message passing program that runs on a distributed memory computer. The runtime support for this compiler is a library of primitives designed to efficiently support irregular patterns of distributed array accesses and irregular distributed array partitions. A variety of Intel iPSC/860 performance results obtained through the use of this compiler are presented.
Partitioning sparse rectangular matrices for parallel processing
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Effective dimension reduction for sparse functional data
YAO, F.; LEI, E.; WU, Y.
2015-01-01
Summary We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method. PMID:26566293
Parallel preconditioning techniques for sparse CG solvers
Basermann, A.; Reichel, B.; Schelthoff, C.
1996-12-31
Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method. In particular for very ill-conditioned matrices, sophisticated preconditioner are necessary to obtain both acceptable convergence and accuracy of CG. Here, we investigate variants of polynomial and incomplete Cholesky preconditioners that markedly reduce the iterations of the simply diagonally scaled CG and are shown to be well suited for massively parallel machines.
All scale-free networks are sparse.
Del Genio, Charo I; Gross, Thilo; Bassler, Kevin E
2011-10-21
We study the realizability of scale-free networks with a given degree sequence, showing that the fraction of realizable sequences undergoes two first-order transitions at the values 0 and 2 of the power-law exponent. We substantiate this finding by analytical reasoning and by a numerical method, proposed here, based on extreme value arguments, which can be applied to any given degree distribution. Our results reveal a fundamental reason why large scale-free networks without constraints on minimum and maximum degree must be sparse.
Effective dimension reduction for sparse functional data.
Yao, F; Lei, E; Wu, Y
2015-06-01
We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method.
Dynamics of self-organized vegetation patterns
NASA Astrophysics Data System (ADS)
Foti, R.; Ramirez, J. A.
2011-12-01
Vegetation patterns are a common and well-defined characteristic of many arid and semi-arid landscapes. In this study we explore some of the physical mechanisms responsible for the establishment of self-organized, non-random vegetation patterns that arise at the hillslope scale in many areas of the world, especially in arid and semi-arid regions. In doing so we use a water and energy balance model and provide a fundamental mechanistic understanding of the dynamics of vegetation pattern formation and development. Within the modeling, reciprocal effects of vegetation on the hillslope energy balance, runoff production and run-on infiltration, root density, surface albedo and soil moisture content are analyzed. In particular, we: 1) present a physically based mechanistic description of the processes leading to vegetation pattern formation; 2) Compare simulated vegetation coverage at the hillslope scale with observations; 3) quantify the relative impact of pattern-inducing dynamics on pattern formation; and 4) describe the relationships between vegetation patterns and the climatic, hydraulic and topographic characteristic of the system. The model is validated by comparing hillslope-scale simulations with available observations for the areas of Niger near Niamey and Somalia near Garoowe, where respectively tiger bushes and banded vegetation patterns are present. The model validation includes comparison of simulated and observed vegetation coverage as well as simulated and measured water fluxes, showing both qualitative and quantitative agreement between simulations and observations. The analysis of the system suggests that the main driver of pattern establishment is climate, in terms of average annual precipitation and incoming solar radiation. In particular, decreasing precipitation or, conversely, increasing incoming radiation are responsible for the system departure from fully vegetated with indistinguishable vegetation structures to sparsely vegetated with (self
Ward, Andy L.
2007-11-26
Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.
Learning sparse discriminative representations for land cover classification in the Arctic
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Gangodagamage, Chandana
2012-10-01
Neuroscience-inspired machine vision algorithms are of current interest in the areas of detection and monitoring of climate change impacts, and general Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 8-band visible/near infrared high spatial resolution imagery of the MacKenzie River basin. We use an on-line batch Hebbian learning rule to build spectral-textural dictionaries that are adapted to this multispectral data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. We explore unsupervised clustering in the sparse representation space to produce land-cover category labels. This approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems.
Piano Transcription with Convolutional Sparse Lateral Inhibition
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
2017-02-08
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Learning doubly sparse transforms for images.
Ravishankar, Saiprasad; Bresler, Yoram
2013-12-01
The sparsity of images in a transform domain or dictionary has been exploited in many applications in image processing. For example, analytical sparsifying transforms, such as wavelets and discrete cosine transform (DCT), have been extensively used in compression standards. Recently, synthesis sparsifying dictionaries that are directly adapted to the data have become popular especially in applications such as image denoising. Following up on our recent research, where we introduced the idea of learning square sparsifying transforms, we propose here novel problem formulations for learning doubly sparse transforms for signals or image patches. These transforms are a product of a fixed, fast analytic transform such as the DCT, and an adaptive matrix constrained to be sparse. Such transforms can be learnt, stored, and implemented efficiently. We show the superior promise of our learnt transforms as compared with analytical sparsifying transforms such as the DCT for image representation. We also show promising performance in image denoising that compares favorably with approaches involving learnt synthesis dictionaries such as the K-SVD algorithm. The proposed approach is also much faster than K-SVD denoising.
Sparse Identification of Nonlinear Dynamics (SINDy)
NASA Astrophysics Data System (ADS)
Brunton, Steven; Proctor, Joshua; Kutz, Nathan
2016-11-01
This work develops a general new framework to discover the governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity techniques and machine learning. The so-called sparse identification of nonlinear dynamics (SINDy) method results in models that are parsimonious, balancing model complexity with descriptive ability while avoiding over fitting. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including the chaotic Lorenz system, to the canonical fluid vortex shedding behind an circular cylinder at Re=100. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing. With abundant data and elusive laws, data-driven discovery of dynamics will continue to play an increasingly important role in the characterization and control of fluid dynamics.
Inferring sparse networks for noisy transient processes
NASA Astrophysics Data System (ADS)
Tran, Hoang M.; Bukkapatnam, Satish T. S.
2016-02-01
Inferring causal structures of real world complex networks from measured time series signals remains an open issue. The current approaches are inadequate to discern between direct versus indirect influences (i.e., the presence or absence of a directed arc connecting two nodes) in the presence of noise, sparse interactions, as well as nonlinear and transient dynamics of real world processes. We report a sparse regression (referred to as the -min) approach with theoretical bounds on the constraints on the allowable perturbation to recover the network structure that guarantees sparsity and robustness to noise. We also introduce averaging and perturbation procedures to further enhance prediction scores (i.e., reduce inference errors), and the numerical stability of -min approach. Extensive investigations have been conducted with multiple benchmark simulated genetic regulatory network and Michaelis-Menten dynamics, as well as real world data sets from DREAM5 challenge. These investigations suggest that our approach can significantly improve, oftentimes by 5 orders of magnitude over the methods reported previously for inferring the structure of dynamic networks, such as Bayesian network, network deconvolution, silencing and modular response analysis methods based on optimizing for sparsity, transients, noise and high dimensionality issues.
Sparse aperture mask wavefront sensor testbed results
NASA Astrophysics Data System (ADS)
Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Riggs, A. J. E.
2016-07-01
Coronagraphic exoplanet detection at very high contrast requires the estimation and control of low-order wave- front aberrations. At Princeton High Contrast Imaging Lab (PHCIL), we are working on a new technique that integrates a sparse-aperture mask (SAM) with a shaped pupil coronagraph (SPC) to make precise estimates of these low-order aberrations. We collect the starlight rejected from the coronagraphic image plane and interfere it using a sparse aperture mask (SAM) at the relay pupil to estimate the low-order aberrations. In our previous work we numerically demonstrated the efficacy of the technique, and proposed a method to sense and control these differential aberrations in broadband light. We also presented early testbed results in which the SAM was used to sense pointing errors. In this paper, we will briefly overview the SAM wavefront sensor technique, explain the design of the completed testbed, and report the experimental estimation results of the dominant low-order aberrations such as tip/tit, astigmatism and focus.
Image reconstruction from photon sparse data
Mertens, Lena; Sonnleitner, Matthias; Leach, Jonathan; Agnew, Megan; Padgett, Miles J.
2017-01-01
We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected. PMID:28169363
Neonatal atlas construction using sparse representation.
Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H; Lin, Weili; Shen, Dinggang
2014-09-01
Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases.
A density functional for sparse matter.
Langreth, D C; Lundqvist, B I; Chakarova-Käck, S D; Cooper, V R; Dion, M; Hyldgaard, P; Kelkkanen, A; Kleis, J; Kong, Lingzhu; Li, Shen; Moses, P G; Murray, E; Puzder, A; Rydberg, H; Schröder, E; Thonhauser, T
2009-02-25
Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed for the nonlocal correlations between electrons and applied to various relevant molecules and materials, including to those layered systems like graphite, boron nitride and molybdenum sulfide, to dimers of benzene, polycyclic aromatic hydrocarbons (PAHs), doped benzene, cytosine and DNA base pairs, to nonbonding forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators. Comparison with results from wavefunction calculations for the smaller systems and with experimental data for the extended ones show the vdW-DF path to be promising. This could have great ramifications.
Sparse spectrum model for a turbulent phase.
Charnotskii, Mikhail
2013-03-01
Monte Carlo (MC) simulation of phase front perturbations by atmospheric turbulence finds numerous applications for design and modeling of the adaptive optics systems, laser beam propagation simulations, and evaluating the performance of the various optical systems operating in the open air environment. Accurate generation of two-dimensional random fields of turbulent phase is complicated by the enormous diversity of scales that can reach five orders of magnitude in each coordinate. In addition there is a need for generation of the long "ribbons" of turbulent phase that are used to represent the time evolution of the wave front. This makes it unfeasible to use the standard discrete Fourier transform-based technique as a basis for the MC simulation algorithm. We propose a new model for turbulent phase: the sparse spectrum (SS) random field. The principal assumption of the SS model is that each realization of the random field has a discrete random spectral support. Statistics of the random amplitudes and wave vectors of the SS model are arranged to provide the required spectral and correlation properties of the random field. The SS-based MC model offers substantial reduction of computer costs for simulation of the wide-band random fields and processes, and is capable of generating long aperiodic phase "ribbons." We report the results of model trials that determine the number of sparse components, and the range of wavenumbers that is necessary to accurately reproduce the random field with a power-law spectrum.
Fast Sparse Level Sets on Graphics Hardware.
Jalba, Andrei C; van der Laan, Wladimir J; Roerdink, Jos B T M
2013-01-01
The level-set method is one of the most popular techniques for capturing and tracking deformable interfaces. Although level sets have demonstrated great potential in visualization and computer graphics applications, such as surface editing and physically based modeling, their use for interactive simulations has been limited due to the high computational demands involved. In this paper, we address this computational challenge by leveraging the increased computing power of graphics processors, to achieve fast simulations based on level sets. Our efficient, sparse GPU level-set method is substantially faster than other state-of-the-art, parallel approaches on both CPU and GPU hardware. We further investigate its performance through a method for surface reconstruction, based on GPU level sets. Our novel multiresolution method for surface reconstruction from unorganized point clouds compares favorably with recent, existing techniques and other parallel implementations. Finally, we point out that both level-set computations and rendering of level-set surfaces can be performed at interactive rates, even on large volumetric grids. Therefore, many applications based on level sets can benefit from our sparse level-set method.
Group sparse optimization by alternating direction method
NASA Astrophysics Data System (ADS)
Deng, Wei; Yin, Wotao; Zhang, Yin
2013-09-01
This paper proposes efficient algorithms for group sparse optimization with mixed l2,1-regularization, which arises from the reconstruction of group sparse signals in compressive sensing, and the group Lasso problem in statistics and machine learning. It is known that encoding the group information in addition to sparsity can often lead to better signal recovery/feature selection. The l2,1-regularization promotes group sparsity, but the resulting problem, due to the mixed-norm structure and possible grouping irregularity, is considered more difficult to solve than the conventional l1-regularized problem. Our approach is based on a variable splitting strategy and the classic alternating direction method (ADM). Two algorithms are presented, one derived from the primal and the other from the dual of the l2,1-regularized problem. The convergence of the proposed algorithms is guaranteed by the existing ADM theory. General group configurations such as overlapping groups and incomplete covers can be easily handled by our approach. Computational results show that on random problems the proposed ADM algorithms exhibit good efficiency, and strong stability and robustness.
Image reconstruction from photon sparse data
NASA Astrophysics Data System (ADS)
Mertens, Lena; Sonnleitner, Matthias; Leach, Jonathan; Agnew, Megan; Padgett, Miles J.
2017-02-01
We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected.
Image reconstruction from photon sparse data.
Mertens, Lena; Sonnleitner, Matthias; Leach, Jonathan; Agnew, Megan; Padgett, Miles J
2017-02-07
We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected.
Protein family classification using sparse markov transducers.
Eskin, Eleazar; Noble, William Stafford; Singer, Yoram
2003-01-01
We present a method for classifying proteins into families based on short subsequences of amino acids using a new probabilistic model called sparse Markov transducers (SMT). We classify a protein by estimating probability distributions over subsequences of amino acids from the protein. Sparse Markov transducers, similar to probabilistic suffix trees, estimate a probability distribution conditioned on an input sequence. SMTs generalize probabilistic suffix trees by allowing for wild-cards in the conditioning sequences. Since substitutions of amino acids are common in protein families, incorporating wild-cards into the model significantly improves classification performance. We present two models for building protein family classifiers using SMTs. As protein databases become larger, data driven learning algorithms for probabilistic models such as SMTs will require vast amounts of memory. We therefore describe and use efficient data structures to improve the memory usage of SMTs. We evaluate SMTs by building protein family classifiers using the Pfam and SCOP databases and compare our results to previously published results and state-of-the-art protein homology detection methods. SMTs outperform previous probabilistic suffix tree methods and under certain conditions perform comparably to state-of-the-art protein homology methods.
OSKI: A Library of Automatically Tuned Sparse Matrix Kernels
Vuduc, R; Demmel, J W; Yelick, K A
2005-07-19
The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives that provide automatically tuned computational kernels on sparse matrices, for use by solver libraries and applications. These kernels include sparse matrix-vector multiply and sparse triangular solve, among others. The primary aim of this interface is to hide the complex decision-making process needed to tune the performance of a kernel implementation for a particular user's sparse matrix and machine, while also exposing the steps and potentially non-trivial costs of tuning at run-time. This paper provides an overview of OSKI, which is based on our research on automatically tuned sparse kernels for modern cache-based superscalar machines.
OSKI: A library of automatically tuned sparse matrix kernels
NASA Astrophysics Data System (ADS)
Vuduc, Richard; Demmel, James W.; Yelick, Katherine A.
2005-01-01
The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives that provide automatically tuned computational kernels on sparse matrices, for use by solver libraries and applications. These kernels include sparse matrix-vector multiply and sparse triangular solve, among others. The primary aim of this interface is to hide the complex decisionmaking process needed to tune the performance of a kernel implementation for a particular user's sparse matrix and machine, while also exposing the steps and potentially non-trivial costs of tuning at run-time. This paper provides an overview of OSKI, which is based on our research on automatically tuned sparse kernels for modern cache-based superscalar machines.
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
Feature Selection and Pedestrian Detection Based on Sparse Representation
Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei
2015-01-01
Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony. PMID:26295480
Feature Selection and Pedestrian Detection Based on Sparse Representation.
Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei
2015-01-01
Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.
Improving sparse representation algorithms for maritime video processing
NASA Astrophysics Data System (ADS)
Smith, L. N.; Nichols, J. M.; Waterman, J. R.; Olson, C. C.; Judd, K. P.
2012-06-01
We present several improvements to published algorithms for sparse image modeling with the goal of improving processing of imagery of small watercraft in littoral environments. The first improvement is to the K-SVD algorithm for training over-complete dictionaries, which are used in sparse representations. It is shown that the training converges significantly faster by incorporating multiple dictionary (i.e., codebook) update stages in each training iteration. The paper also provides several useful and practical lessons learned from our experience with sparse representations. Results of three applications of sparse representation are presented and compared to the state-of-the-art methods; image compression, image denoising, and super-resolution.
Multimodal visual dictionary learning via heterogeneous latent semantic sparse coding
NASA Astrophysics Data System (ADS)
Li, Chenxiao; Ding, Guiguang; Zhou, Jile; Guo, Yuchen; Liu, Qiang
2014-11-01
Visual dictionary learning as a crucial task of image representation has gained increasing attention. Specifically, sparse coding is widely used due to its intrinsic advantage. In this paper, we propose a novel heterogeneous latent semantic sparse coding model. The central idea is to bridge heterogeneous modalities by capturing their common sparse latent semantic structure so that the learned visual dictionary is able to describe both the visual and textual properties of training data. Experiments on both image categorization and retrieval tasks demonstrate that our model shows superior performance over several recent methods such as K-means and Sparse Coding.
Local structure preserving sparse coding for infrared target recognition.
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions.
Dose-shaping using targeted sparse optimization
Sayre, George A.; Ruan, Dan
2013-07-15
Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot
Dose-shaping using targeted sparse optimization.
Sayre, George A; Ruan, Dan
2013-07-01
Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method. In designing the energy minimization objective (E tot (sparse)), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot (sparse) improves tradeoff between
Blind source separation by sparse decomposition
NASA Astrophysics Data System (ADS)
Zibulevsky, Michael; Pearlmutter, Barak A.
2000-04-01
The blind source separation problem is to extract the underlying source signals from a set of their linear mixtures, where the mixing matrix is unknown. This situation is common, eg in acoustics, radio, and medical signal processing. We exploit the property of the sources to have a sparse representation in a corresponding signal dictionary. Such a dictionary may consist of wavelets, wavelet packets, etc., or be obtained by learning from a given family of signals. Starting from the maximum a posteriori framework, which is applicable to the case of more sources than mixtures, we derive a few other categories of objective functions, which provide faster and more robust computations, when there are an equal number of sources and mixtures. Our experiments with artificial signals and with musical sounds demonstrate significantly better separation than other known techniques.
A scalable sparse eigensolver for petascale applications
NASA Astrophysics Data System (ADS)
Keceli, Murat; Zhang, Hong; Zapol, Peter; Dixon, David; Wagner, Albert
2015-03-01
Exploiting locality of chemical interactions and therefore sparsity is necessary to push the limits of quantum simulations beyond petascale. However, sparse numerical algorithms are known to have poor strong scaling. Here, we show that shift-and-invert parallel spectral transformations (SIPs) method can scale up to two-hundred thousand cores for density functional based tight-binding (DFTB), or semi-empirical molecular orbital (SEMO) applications. We demonstrated the robustness and scalability of the SIPs method on various kinds of systems including metallic carbon nanotubes, diamond crystals and water clusters. We analyzed how sparsity patterns and eigenvalue spectrums of these different type of applications affect the computational performance of the SIPs. The SIPs method enables us to perform simulations with more than five hundred thousands of basis functions utilizing more than hundreds of thousands of cores. SIPs has a better scaling for memory and computational time in contrast to dense eigensolvers, and it does not require fast interconnects.
Predicting structure in nonsymmetric sparse matrix factorizations
Gilbert, J.R.; Ng, E.G.
1992-10-01
Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.
Sparse distributed memory and related models
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1992-01-01
Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
Predicting structure in nonsymmetric sparse matrix factorizations
Gilbert, J.R.; Ng, E.
1991-12-31
Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.
Predicting structure in nonsymmetric sparse matrix factorizations
Gilbert, J.R. ); Ng, E. )
1991-01-01
Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
2016-01-01
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986
Preserving sparseness in multivariate polynominal factorization
NASA Technical Reports Server (NTRS)
Wang, P. S.
1977-01-01
Attempts were made to factor these ten polynomials on MACSYMA. However it did not get very far with any of the larger polynomials. At that time, MACSYMA used an algorithm created by Wang and Rothschild. This factoring algorithm was also implemented for the symbolic manipulation system, SCRATCHPAD of IBM. A closer look at this old factoring algorithm revealed three problem areas, each of which contribute to losing sparseness and intermediate expression growth. This study led to effective ways of avoiding these problems and actually to a new factoring algorithm. The three problems are known as the extraneous factor problem, the leading coefficient problem, and the bad zero problem. These problems are examined separately. Their causes and effects are set forth in detail; the ways to avoid or lessen these problems are described.
Predicting structure in nonsymmetric sparse matrix factorizations
Gilbert, J.R. ); Ng, E.G. )
1992-10-01
Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.
Surface reconstruction from sparse fringe contours
Cong, G.; Parvin, B.
1998-08-10
A new approach for reconstruction of 3D surfaces from 2D cross-sectional contours is presented. By using the so-called ''Equal Importance Criterion,'' we reconstruct the surface based on the assumption that every point in the region contributes equally to the surface reconstruction process. In this context, the problem is formulated in terms of a partial differential equation (PDE), and we show that the solution for dense contours can be efficiently derived from distance transform. In the case of sparse contours, we add a regularization term to insure smoothness in surface recovery. The proposed technique allows for surface recovery at any desired resolution. The main advantage of the proposed method is that inherent problems due to correspondence, tiling, and branching are avoided. Furthermore, the computed high resolution surface is better represented for subsequent geometric analysis. We present results on both synthetic and real data.
Fast generation of sparse random kernel graphs
Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo
2015-09-10
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.
Fast generation of sparse random kernel graphs
Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo
2015-09-10
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less
Classification of sparse high-dimensional vectors.
Ingster, Yuri I; Pouet, Christophe; Tsybakov, Alexandre B
2009-11-13
We study the problem of classification of d-dimensional vectors into two classes (one of which is 'pure noise') based on a training sample of size m. The main specific feature is that the dimension d can be very large. We suppose that the difference between the distribution of the population and that of the noise is only in a shift, which is a sparse vector. For Gaussian noise, fixed sample size m, and dimension d that tends to infinity, we obtain the sharp classification boundary, i.e. the necessary and sufficient conditions for the possibility of successful classification. We propose classifiers attaining this boundary. We also give extensions of the result to the case where the sample size m depends on d and satisfies the condition (log m)/log d --> gamma, 0
Inverse lithography using sparse mask representations
NASA Astrophysics Data System (ADS)
Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan
2015-03-01
We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.
Eigensolver for a Sparse, Large Hermitian Matrix
NASA Technical Reports Server (NTRS)
Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris
2003-01-01
A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).
Integer sparse distributed memory: analysis and results.
Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun
2013-10-01
Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented.
Miniature Laboratory for Detecting Sparse Biomolecules
NASA Technical Reports Server (NTRS)
Lin, Ying; Yu, Nan
2005-01-01
A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.
Bayesian learning of sparse multiscale image representations.
Hughes, James Michael; Rockmore, Daniel N; Wang, Yang
2013-12-01
Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both orthogonal decompositions such as wavelets as well as nonorthogonal, overcomplete representations. Recently, techniques for finding adaptive, sparse representations have yielded state-of-the-art results when applied to traditional image processing problems. Attempts at developing multiscale versions of these so-called dictionary learning models have yielded modest but encouraging results. However, none of these techniques has sought to combine a rigorous statistical formulation of the multiscale dictionary learning problem and the ability to share atoms across scales. We present a model for multiscale dictionary learning that overcomes some of the drawbacks of previous approaches by first decomposing an input into a pyramid of distinct frequency bands using a recursive filtering scheme, after which we perform dictionary learning and sparse coding on the individual levels of the resulting pyramid. The associated image model allows us to use a single set of adapted dictionary atoms that is shared--and learned--across all scales in the model. The underlying statistical model of our proposed method is fully Bayesian and allows for efficient inference of parameters, including the level of additive noise for denoising applications. We apply the proposed model to several common image processing problems including non-Gaussian and nonstationary denoising of real-world color images.
Blind spectral unmixing based on sparse nonnegative matrix factorization.
Yang, Zuyuan; Zhou, Guoxu; Xie, Shengli; Ding, Shuxue; Yang, Jun-Mei; Zhang, Jun
2011-04-01
Nonnegative matrix factorization (NMF) is a widely used method for blind spectral unmixing (SU), which aims at obtaining the endmembers and corresponding fractional abundances, knowing only the collected mixing spectral data. It is noted that the abundance may be sparse (i.e., the endmembers may be with sparse distributions) and sparse NMF tends to lead to a unique result, so it is intuitive and meaningful to constrain NMF with sparseness for solving SU. However, due to the abundance sum-to-one constraint in SU, the traditional sparseness measured by L0/L1-norm is not an effective constraint any more. A novel measure (termed as S-measure) of sparseness using higher order norms of the signal vector is proposed in this paper. It features the physical significance. By using the S-measure constraint (SMC), a gradient-based sparse NMF algorithm (termed as NMF-SMC) is proposed for solving the SU problem, where the learning rate is adaptively selected, and the endmembers and abundances are simultaneously estimated. In the proposed NMF-SMC, there is no pure index assumption and no need to know the exact sparseness degree of the abundance in prior. Yet, it does not require the preprocessing of dimension reduction in which some useful information may be lost. Experiments based on synthetic mixtures and real-world images collected by AVIRIS and HYDICE sensors are performed to evaluate the validity of the proposed method.
ERIC Educational Resources Information Center
Sadler, Peter G.
The Institute for the Study of Sparsely Populated Areas is a multidisciplinary research unit which acts to coordinate, further, and initiate studies of the economic and social conditions of sparsely populated areas. Short summaries of the eight studies completed in the session of 1977-78 indicate work in such areas as the study of political life…
ERIC Educational Resources Information Center
Sadler, Peter G.
The Institute for the Study of Sparsely Populated Areas is a multidisciplinary research unit which acts to coordinate, further, and initiate studies of the economic and social conditions of sparsely populated areas. Short summaries of the eight studies completed in the session of 1977-78 indicate work in such areas as the study of political life…
Prostate segmentation by sparse representation based classification
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-01-01
Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by
The Alaska vegetation classification.
L.A. Viereck; C.T. Dyrness; A.R. Batten; K.J. Wenzlick
1992-01-01
The Alaska vegetation classification presented here is a comprehensive, statewide system that has been under development since 1976. The classification is based, as much as possible, on the characteristics of the vegetation itself and is designed to categorize existing vegetation, not potential vegetation. A hierarchical system with five levels of resolution is used...
Classification of vegetation types in military region
NASA Astrophysics Data System (ADS)
Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose
2015-10-01
In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.
Sparse distributed memory: Principles and operation
NASA Technical Reports Server (NTRS)
Flynn, M. J.; Kanerva, P.; Bhadkamkar, N.
1989-01-01
Sparse distributed memory is a generalized random access memory (RAM) for long (1000 bit) binary words. Such words can be written into and read from the memory, and they can also be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original write address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech recognition and scene analysis, in signal detection and verification, and in adaptive control of automated equipment, in general, in dealing with real world information in real time. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. Major design issues were resolved which were faced in building the memories. The design is described of a prototype memory with 256 bit addresses and from 8 to 128 K locations for 256 bit words. A key aspect of the design is extensive use of dynamic RAM and other standard components.
Partially sparse imaging of stationary indoor scenes
NASA Astrophysics Data System (ADS)
Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian
2014-12-01
In this paper, we exploit the notion of partial sparsity for scene reconstruction associated with through-the-wall radar imaging of stationary targets under reduced data volume. Partial sparsity implies that the scene being imaged consists of a sparse part and a dense part, with the support of the latter assumed to be known. For the problem at hand, sparsity is represented by a few stationary indoor targets, whereas the high scene density is defined by exterior and interior walls. Prior knowledge of wall positions and extent may be available either through building blueprints or from prior surveillance operations. The contributions of the exterior and interior walls are removed from the data through the use of projection matrices, which are determined from wall- and corner-specific dictionaries. The projected data, with enhanced sparsity, is then processed using l 1 norm reconstruction techniques. Numerical electromagnetic data is used to demonstrate the effectiveness of the proposed approach for imaging stationary indoor scenes using a reduced set of measurements.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Sparse Superpixel Unmixing for Hyperspectral Image Analysis
NASA Technical Reports Server (NTRS)
Castano, Rebecca; Thompson, David R.; Gilmore, Martha
2010-01-01
Software was developed that automatically detects minerals that are present in each pixel of a hyperspectral image. An algorithm based on sparse spectral unmixing with Bayesian Positive Source Separation is used to produce mineral abundance maps from hyperspectral images. A superpixel segmentation strategy enables efficient unmixing in an interactive session. The algorithm computes statistically likely combinations of constituents based on a set of possible constituent minerals whose abundances are uncertain. A library of source spectra from laboratory experiments or previous remote observations is used. A superpixel segmentation strategy improves analysis time by orders of magnitude, permitting incorporation into an interactive user session (see figure). Mineralogical search strategies can be categorized as supervised or unsupervised. Supervised methods use a detection function, developed on previous data by hand or statistical techniques, to identify one or more specific target signals. Purely unsupervised results are not always physically meaningful, and may ignore subtle or localized mineralogy since they aim to minimize reconstruction error over the entire image. This algorithm offers advantages of both methods, providing meaningful physical interpretations and sensitivity to subtle or unexpected minerals.
Learning sparse representations for human action recognition.
Guha, Tanaya; Ward, Rabab Kreidieh
2012-08-01
This paper explores the effectiveness of sparse representations obtained by learning a set of overcomplete basis (dictionary) in the context of action recognition in videos. Although this work concentrates on recognizing human movements-physical actions as well as facial expressions-the proposed approach is fairly general and can be used to address other classification problems. In order to model human actions, three overcomplete dictionary learning frameworks are investigated. An overcomplete dictionary is constructed using a set of spatio-temporal descriptors (extracted from the video sequences) in such a way that each descriptor is represented by some linear combination of a small number of dictionary elements. This leads to a more compact and richer representation of the video sequences compared to the existing methods that involve clustering and vector quantization. For each framework, a novel classification algorithm is proposed. Additionally, this work also presents the idea of a new local spatio-temporal feature that is distinctive, scale invariant, and fast to compute. The proposed approach repeatedly achieves state-of-the-art results on several public data sets containing various physical actions and facial expressions.
Transformer fault diagnosis using continuous sparse autoencoder.
Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou
2016-01-01
This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.
Joint Sparse Recovery With Semisupervised MUSIC
NASA Astrophysics Data System (ADS)
Wen, Zaidao; Hou, Biao; Jiao, Licheng
2017-05-01
Discrete multiple signal classification (MUSIC) with its low computational cost and mild condition requirement becomes a significant noniterative algorithm for joint sparse recovery (JSR). However, it fails in rank defective problem caused by coherent or limited amount of multiple measurement vectors (MMVs). In this letter, we provide a novel sight to address this problem by interpreting JSR as a binary classification problem with respect to atoms. Meanwhile, MUSIC essentially constructs a supervised classifier based on the labeled MMVs so that its performance will heavily depend on the quality and quantity of these training samples. From this viewpoint, we develop a semisupervised MUSIC (SS-MUSIC) in the spirit of machine learning, which declares that the insufficient supervised information in the training samples can be compensated from those unlabeled atoms. Instead of constructing a classifier in a fully supervised manner, we iteratively refine a semisupervised classifier by exploiting the labeled MMVs and some reliable unlabeled atoms simultaneously. Through this way, the required conditions and iterations can be greatly relaxed and reduced. Numerical experimental results demonstrate that SS-MUSIC can achieve much better recovery performances than other MUSIC extended algorithms as well as some typical greedy algorithms for JSR in terms of iterations and recovery probability.
Sparse distributed memory prototype: Principles of operation
NASA Technical Reports Server (NTRS)
Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip
1988-01-01
Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.
Index statistical properties of sparse random graphs
NASA Astrophysics Data System (ADS)
Metz, F. L.; Stariolo, Daniel A.
2015-10-01
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability PN(K ,λ ) that a large N ×N adjacency matrix of sparse random graphs has K eigenvalues below a threshold λ . The method allows to determine, in principle, all moments of PN(K ,λ ) , from which the typical sample-to-sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we show that the index variance scales linearly with N ≫1 for |λ |>0 , with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erdös-Rényi and regular random graphs, both exhibiting a prefactor with a nonmonotonic behavior as a function of λ . These results contrast with rotationally invariant random matrices, where the index variance scales only as lnN , with an universal prefactor that is independent of λ . Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
A sparse Ising model with covariates.
Cheng, Jie; Levina, Elizaveta; Wang, Pei; Zhu, Ji
2014-12-01
There has been a lot of work fitting Ising models to multivariate binary data in order to understand the conditional dependency relationships between the variables. However, additional covariates are frequently recorded together with the binary data, and may influence the dependence relationships. Motivated by such a dataset on genomic instability collected from tumor samples of several types, we propose a sparse covariate dependent Ising model to study both the conditional dependency within the binary data and its relationship with the additional covariates. This results in subject-specific Ising models, where the subject's covariates influence the strength of association between the genes. As in all exploratory data analysis, interpretability of results is important, and we use ℓ1 penalties to induce sparsity in the fitted graphs and in the number of selected covariates. Two algorithms to fit the model are proposed and compared on a set of simulated data, and asymptotic results are established. The results on the tumor dataset and their biological significance are discussed in detail.
Electrocardiograph signal denoising based on sparse decomposition.
Zhu, Junjiang; Li, Xiaolu
2017-08-01
Noise in ECG signals will affect the result of post-processing if left untreated. Since ECG is highly subjective, the linear denoising method with a specific threshold working well on one subject could fail on another. Therefore, in this Letter, sparse-based method, which represents every segment of signal using different linear combinations of atoms from a dictionary, is used to denoise ECG signals, with a view to myoelectric interference existing in ECG signals. Firstly, a denoising model for ECG signals is constructed. Then the model is solved by matching pursuit algorithm. In order to get better results, four kinds of dictionaries are investigated with the ECG signals from MIT-BIH arrhythmia database, compared with wavelet transform (WT)-based method. Signal-noise ratio (SNR) and mean square error (MSE) between estimated signal and original signal are used as indicators to evaluate the performance. The results show that by using the present method, the SNR is higher while the MSE between estimated signal and original signal is smaller.
Visual Exploration of Sparse Traffic Trajectory Data.
Wang, Zuchao; Ye, Tangzhi; Lu, Min; Yuan, Xiaoru; Qu, Huamin; Yuan, Jacky; Wu, Qianliang
2014-12-01
In this paper, we present a visual analysis system to explore sparse traffic trajectory data recorded by transportation cells. Such data contains the movements of nearly all moving vehicles on the major roads of a city. Therefore it is very suitable for macro-traffic analysis. However, the vehicle movements are recorded only when they pass through the cells. The exact tracks between two consecutive cells are unknown. To deal with such uncertainties, we first design a local animation, showing the vehicle movements only in the vicinity of cells. Besides, we ignore the micro-behaviors of individual vehicles, and focus on the macro-traffic patterns. We apply existing trajectory aggregation techniques to the dataset, studying cell status pattern and inter-cell flow pattern. Beyond that, we propose to study the correlation between these two patterns with dynamic graph visualization techniques. It allows us to check how traffic congestion on one cell is correlated with traffic flows on neighbouring links, and with route selection in its neighbourhood. Case studies show the effectiveness of our system.
Optimal parallel solution of sparse triangular systems
NASA Technical Reports Server (NTRS)
Alvarado, Fernando L.; Schreiber, Robert
1990-01-01
A method for the parallel solution of triangular sets of equations is described that is appropriate when there are many right-handed sides. By preprocessing, the method can reduce the number of parallel steps required to solve Lx = b compared to parallel forward or backsolve. Applications are to iterative solvers with triangular preconditioners, to structural analysis, or to power systems applications, where there may be many right-handed sides (not all available a priori). The inverse of L is represented as a product of sparse triangular factors. The problem is to find a factored representation of this inverse of L with the smallest number of factors (or partitions), subject to the requirement that no new nonzero elements be created in the formation of these inverse factors. A method from an earlier reference is shown to solve this problem. This method is improved upon by constructing a permutation of the rows and columns of L that preserves triangularity and allow for the best possible such partition. A number of practical examples and algorithmic details are presented. The parallelism attainable is illustrated by means of elimination trees and clique trees.
Partitioning sparse matrices with eigenvectors of graphs
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu
1990-01-01
The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.
Local Sparse Structure Denoising for Low-Light-Level Image.
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2015-12-01
Sparse and redundant representations perform well in image denoising. However, sparsity-based methods fail to denoise low-light-level (LLL) images because of heavy and complex noise. They consider sparsity on image patches independently and tend to lose the texture structures. To suppress noises and maintain textures simultaneously, it is necessary to embed noise invariant features into the sparse decomposition process. We, therefore, used a local structure preserving sparse coding (LSPSc) formulation to explore the local sparse structures (both the sparsity and local structure) in image. It was found that, with the introduction of spatial local structure constraint into the general sparse coding algorithm, LSPSc could improve the robustness of sparse representation for patches in serious noise. We further used a kernel LSPSc (K-LSPSc) formulation, which extends LSPSc into the kernel space to weaken the influence of linear structure constraint in nonlinear data. Based on the robust LSPSc and K-LSPSc algorithms, we constructed a local sparse structure denoising (LSSD) model for LLL images, which was demonstrated to give high performance in the natural LLL images denoising, indicating that both the LSPSc- and K-LSPSc-based LSSD models have the stable property of noise inhibition and texture details preservation.
Optimized design and analysis of sparse-sampling FMRI experiments.
Perrachione, Tyler K; Ghosh, Satrajit S
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase
SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction
NASA Astrophysics Data System (ADS)
Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo
2017-03-01
State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.
SPARSKIT: A basic tool kit for sparse matrix computations
NASA Technical Reports Server (NTRS)
Saad, Youcef
1990-01-01
Presented here are the main features of a tool package for manipulating and working with sparse matrices. One of the goals of the package is to provide basic tools to facilitate the exchange of software and data between researchers in sparse matrix computations. The starting point is the Harwell/Boeing collection of matrices for which the authors provide a number of tools. Among other things, the package provides programs for converting data structures, printing simple statistics on a matrix, plotting a matrix profile, and performing linear algebra operations with sparse matrices.
A spectral algorithm for envelope reduction of sparse matrices
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.
1993-01-01
A new algorithm for reducing the envelope of a sparse matrix is presented. This algorithm is based on the computation of eigenvectors of the Laplacian matrix associated with the graph of the sparse matrix. A reordering of the sparse matrix is determined based on the numerical values of the entries of an eigenvector of the Laplacian matrix. Numerical results show that the new reordering algorithm can in some cases reduce the envelope by more than a factor of two over the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK's reverse Cuthill-McKee (RCM).
Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays
NASA Technical Reports Server (NTRS)
Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.
2004-01-01
Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.
Real-time Algorithms for Sparse Neuronal System Identification.
Sheikhattar, Alireza; Babadi, Behtash
2016-08-01
We consider the problem of sparse adaptive neuronal system identification, where the goal is to estimate the sparse time-varying neuronal model parameters in an online fashion from neural spiking observations. We develop two adaptive filters based on greedy estimation techniques and regularized log-likelihood maximization. We apply the proposed algorithms to simulated spiking data as well as experimentally recorded data from the ferret's primary auditory cortex during performance of auditory tasks. Our results reveal significant performance gains achieved by the proposed algorithms in terms of sparse identification and trackability, compared to existing algorithms.
Method and apparatus for distinguishing actual sparse events from sparse event false alarms
Spalding, Richard E.; Grotbeck, Carter L.
2000-01-01
Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.
NASA Astrophysics Data System (ADS)
Y Yang, M.; Wang, J.; Zhang, Q.
2017-07-01
Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.
Arizona Vegetation Resource Inventory (AVRI) accuracy assessment
Szajgin, John; Pettinger, L.R.; Linden, D.S.; Ohlen, D.O.
1982-01-01
A quantitative accuracy assessment was performed for the vegetation classification map produced as part of the Arizona Vegetation Resource Inventory (AVRI) project. This project was a cooperative effort between the Bureau of Land Management (BLM) and the Earth Resources Observation Systems (EROS) Data Center. The objective of the accuracy assessment was to estimate (with a precision of ?10 percent at the 90 percent confidence level) the comission error in each of the eight level II hierarchical vegetation cover types. A stratified two-phase (double) cluster sample was used. Phase I consisted of 160 photointerpreted plots representing clusters of Landsat pixels, and phase II consisted of ground data collection at 80 of the phase I cluster sites. Ground data were used to refine the phase I error estimates by means of a linear regression model. The classified image was stratified by assigning each 15-pixel cluster to the stratum corresponding to the dominant cover type within each cluster. This method is known as stratified plurality sampling. Overall error was estimated to be 36 percent with a standard error of 2 percent. Estimated error for individual vegetation classes ranged from a low of 10 percent ?6 percent for evergreen woodland to 81 percent ?7 percent for cropland and pasture. Total cost of the accuracy assessment was $106,950 for the one-million-hectare study area. The combination of the stratified plurality sampling (SPS) method of sample allocation with double sampling provided the desired estimates within the required precision levels. The overall accuracy results confirmed that highly accurate digital classification of vegetation is difficult to perform in semiarid environments, due largely to the sparse vegetation cover. Nevertheless, these techniques show promise for providing more accurate information than is presently available for many BLM-administered lands.
Sparse source configurations for asteroid tomography
NASA Astrophysics Data System (ADS)
Pursiainen, S.; Kaasalainen, M.
2014-04-01
The objective of our recent research has been to develop non-invasive imaging techniques for future planetary research and mining activities involving a challenging in situ environment and tight payload limits [1]. This presentation will deal in particular with an approach in which the internal relative permittivity ∈r or the refractive index n = √ ∈r of an asteroid is to be recovered based on radio signal transmitted by a sparse set [2] of fixed or movable landers. To address important aspects of mission planning, we have analyzed different signal source configurations to find the minimal number of source positions needed for robust localization of anomalies, such as internal voids. Characteristic to this inverse problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), leading to strong refractions and reflections of the signal. Finding an appropriate problemspecific signaling arrangement is an important premission goal for successful in situ measurements. This presentation will include inversion results obtained with laboratory-recorded travel time data y of the form in which n δ denotes a perturbation of a refractive index n = n δ + nbg; gi estimates the total noise due to different error sources; (ybg)i = ∫Ci nbg ds is an entry of noiseless background data ybg; and Ci is a signal path. Also simulated time-evolution data will be covered with respect to potential u satisfying the wave equation ∈rδ2/δt2+ ōδu/δt-∆u = f, where ō is a (latent) conductivity distribution and f is a source term. Special interest will be paid to inversion robustness regarding changes of the prior model and source positioning. Among other things, our analysis suggests that strongly refractive anomalies can be detected with three or four sources independently of their positioning.
Finding One Community in a Sparse Graph
NASA Astrophysics Data System (ADS)
Montanari, Andrea
2015-10-01
We consider a random sparse graph with bounded average degree, in which a subset of vertices has higher connectivity than the background. In particular, the average degree inside this subset of vertices is larger than outside (but still bounded). Given a realization of such graph, we aim at identifying the hidden subset of vertices. This can be regarded as a model for the problem of finding a tightly knitted community in a social network, or a cluster in a relational dataset. In this paper we present two sets of contributions: ( i) We use the cavity method from spin glass theory to derive an exact phase diagram for the reconstruction problem. In particular, as the difference in edge probability increases, the problem undergoes two phase transitions, a static phase transition and a dynamic one. ( ii) We establish rigorous bounds on the dynamic phase transition and prove that, above a certain threshold, a local algorithm (belief propagation) correctly identify most of the hidden set. Below the same threshold no local algorithm can achieve this goal. However, in this regime the subset can be identified by exhaustive search. For small hidden sets and large average degree, the phase transition for local algorithms takes an intriguingly simple form. Local algorithms succeed with high probability for deg _in - deg _out > √{deg _out/e} and fail for deg _in - deg _out < √{deg _out/e} (with deg _in, deg _out the average degrees inside and outside the community). We argue that spectral algorithms are also ineffective in the latter regime. It is an open problem whether any polynomial time algorithms might succeed for deg _in - deg _out < √{deg _out/e}.
Properties of sparsely connected excitatory neural networks
NASA Astrophysics Data System (ADS)
Barkai, E.; Kanter, I.; Sompolinsky, H.
1990-01-01
The dynamic properties of large, sparsely connected neural networks are investigated. The input connections of each neuron are chosen at random with an average connections per neuron C that does not increase with the size of the network. The neurons are binary elements that evolve according to a stochastic single-spin-flip dynamics. Similar networks have been introduced and studied by Derrida, Gardner, and Zippelius [Europhys. Lett. 4, 167 (1987)] in the context of associative memory and automata. We investigate cases where some of the neurons receive inputs only from external sources and not from the network. These inputs may be random or uniform. The relationship between the geometric properties of the networks and their collective dynamic behavior is studied. Macroscopic clusters as well as internal feedback loops appear when C>1. However, the dynamic feedback is weak as the length of the typical loops is of the order of ln N. As a result, cooperative long-time behavior appears only at a value of C, C=C0, that is higher than unity. The cooperative behavior is manifested by the existence of two distinct equilibrium phases with opposite magnetizations. In addition, when the inputs are uniform they determine uniquely the state of the network, thus destroying its bistability. Only at a higher value of C, C=C1>C0, a large fraction of the neurons is completely screened from the dynamic influence of the inputs, leading to a bistable behavior even in the presence of the inputs. These results imply that the performance of these networks as input-output systems may depend critically on the degree of connectivity.
Periodic pattern detection in sparse boolean sequences
2010-01-01
Background The specific position of functionally related genes along the DNA has been shown to reflect the interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the distances separating such genes, several studies have highlighted various periodic trends. In many cases, however, groups built up from co-functional or co-regulated genes are small and contain wrong information (data contamination) so that the statistics is poorly exploitable. In addition, gene positions are not expected to satisfy a perfectly ordered pattern along the DNA. Within this scope, we present an algorithm that aims to highlight periodic patterns in sparse boolean sequences, i.e. sequences of the type 010011011010... where the ratio of the number of 1's (denoting here the transcription start of a gene) to 0's is small. Results The algorithm is particularly robust with respect to strong signal distortions such as the addition of 1's at arbitrary positions (contaminated data), the deletion of existing 1's in the sequence (missing data) and the presence of disorder in the position of the 1's (noise). This robustness property stems from an appropriate exploitation of the remarkable alignment properties of periodic points in solenoidal coordinates. Conclusions The efficiency of the algorithm is demonstrated in situations where standard Fourier-based spectral methods are poorly adapted. We also show how the proposed framework allows to identify the 1's that participate in the periodic trends, i.e. how the framework allows to allocate a positional score to genes, in the same spirit of the sequence score. The software is available for public use at http://www.issb.genopole.fr/MEGA/Softwares/iSSB_SolenoidalApplication.zip. PMID:20831781
Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).
Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen
2009-03-01
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.
Ensemble polarimetric SAR image classification based on contextual sparse representation
NASA Astrophysics Data System (ADS)
Zhang, Lamei; Wang, Xiao; Zou, Bin; Qiao, Zhijun
2016-05-01
Polarimetric SAR image interpretation has become one of the most interesting topics, in which the construction of the reasonable and effective technique of image classification is of key importance. Sparse representation represents the data using the most succinct sparse atoms of the over-complete dictionary and the advantages of sparse representation also have been confirmed in the field of PolSAR classification. However, it is not perfect, like the ordinary classifier, at different aspects. So ensemble learning is introduced to improve the issue, which makes a plurality of different learners training and obtained the integrated results by combining the individual learner to get more accurate and ideal learning results. Therefore, this paper presents a polarimetric SAR image classification method based on the ensemble learning of sparse representation to achieve the optimal classification.
Image denoising via group Sparse representation over learned dictionary
NASA Astrophysics Data System (ADS)
Cheng, Pan; Deng, Chengzhi; Wang, Shengqian; Zhang, Chunfeng
2013-10-01
Images are one of vital ways to get information for us. However, in the practical application, images are often subject to a variety of noise, so that solving the problem of image denoising becomes particularly important. The K-SVD algorithm can improve the denoising effect by sparse coding atoms instead of the traditional method of sparse coding dictionary. In order to further improve the effect of denoising, we propose to extended the K-SVD algorithm via group sparse representation. The key point of this method is dividing the sparse coefficients into groups, so that adjusts the correlation among the elements by controlling the size of the groups. This new approach can improve the local constraints between adjacent atoms, thereby it is very important to increase the correlation between the atoms. The experimental results show that our method has a better effect on image recovery, which is efficient to prevent the block effect and can get smoother images.
Optical double-image encryption and authentication by sparse representation.
Mohammed, Emad A; Saadon, H L
2016-12-10
An optical double-image encryption and authentication method by sparse representation is proposed. The information from double-image encryption can be integrated into a sparse representation. Unlike the traditional double-image encryption technique, only sparse (partial) data from the encrypted data is adopted for the authentication process. Simulation results demonstrate that the correct authentication results are achieved even with partial information from the encrypted data. The randomly selected sparse encrypted information will be used as an effective key for a security system. Therefore, the proposed method is feasible, effective, and can provide an additional security layer for optical security systems. In addition, the method also achieved the general requirements of storage and transmission due to a high reduction of the encrypted information.
Joint sparse representation based automatic target recognition in SAR images
NASA Astrophysics Data System (ADS)
Zhang, Haichao; Nasrabadi, Nasser M.; Huang, Thomas S.; Zhang, Yanning
2011-06-01
In this paper, we introduce a novel joint sparse representation based automatic target recognition (ATR) method using multiple views, which can not only handle multi-view ATR without knowing the pose but also has the advantage of exploiting the correlations among the multiple views for a single joint recognition decision. We cast the problem as a multi-variate regression model and recover the sparse representations for the multiple views simultaneously. The recognition is accomplished via classifying the target to the class which gives the minimum total reconstruction error accumulated across all the views. Extensive experiments have been carried out on Moving and Stationary Target Acquisition and Recognition (MSTAR) public database to evaluate the proposed method compared with several state-of-the-art methods such as linear Support Vector Machine (SVM), kernel SVM as well as a sparse representation based classifier. Experimental results demonstrate that the effectiveness as well as robustness of the proposed joint sparse representation ATR method.
SAR target recognition based on improved joint sparse representation
NASA Astrophysics Data System (ADS)
Cheng, Jian; Li, Lan; Li, Hongsheng; Wang, Feng
2014-12-01
In this paper, a SAR target recognition method is proposed based on the improved joint sparse representation (IJSR) model. The IJSR model can effectively combine multiple-view SAR images from the same physical target to improve the recognition performance. The classification process contains two stages. Convex relaxation is used to obtain support sample candidates with the ℓ 1-norm minimization in the first stage. The low-rank matrix recovery strategy is introduced to explore the final support samples and its corresponding sparse representation coefficient matrix in the second stage. Finally, with the minimal reconstruction residual strategy, we can make the SAR target classification. The experimental results on the MSTAR database show the recognition performance outperforms state-of-the-art methods, such as the joint sparse representation classification (JSRC) method and the sparse representation classification (SRC) method.
A flexible framework for sparse simultaneous component based data integration
2011-01-01
1 Background High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins) have to be taken into account. 2 Results We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. 3 Conclusion Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such, structures can be found that are
Out-of-Core Solutions of Complex Sparse Linear Equations
NASA Technical Reports Server (NTRS)
Yip, E. L.
1982-01-01
ETCLIB is library of subroutines for obtaining out-of-core solutions of complex sparse linear equations. Routines apply to dense and sparse matrices too large to be stored in core. Useful for solving any set of linear equations, but particularly useful in cases where coefficient matrix has no special properties that guarantee convergence with any of interative processes. The only assumption made is that coefficient matrix is not singular.
Robust Multi Sensor Classification via Jointly Sparse Representation
2016-03-14
model [3] when we developed the multi- sensor joint sparse representation fusion model in the presence of gross but sparse noise penalized by an `1...complementary features from multiple measurements, we incorporate different structures on the concatenated coefficient matrix A through the penalized function FS...sparsity structure that simultaneously penalize several sparsity levels in a combined cost function. In the most general form, our model searches for the
Testing of Error-Correcting Sparse Permutation Channel Codes
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill, V.; Orlov, Sergei S.
2008-01-01
A computer program performs Monte Carlo direct numerical simulations for testing sparse permutation channel codes, which offer strong error-correction capabilities at high code rates and are considered especially suitable for storage of digital data in holographic and volume memories. A word in a code of this type is characterized by, among other things, a sparseness parameter (M) and a fixed number (K) of 1 or "on" bits in a channel block length of N.
Effects of vegetation cover on landscape denudation rates
NASA Astrophysics Data System (ADS)
Torres Acosta, Veronica; Schildgen, Taylor; Clarke, Brian; Scherler, Dirk; Bookhagen, Bodo; Wittmann, Hella; von Blankenburg, Friedhelm; Strecker, Manfred
2014-05-01
Increasing slope or relief in a landscape has long been known to correlate with faster denudation rates. Despite a number of studies that have attempted to clarify the additional role of precipitation on denudation, deciphering the complex influence of climate on erosion rates in a landscape with variable slope and relief has remained difficult. The eastern and western branches of the East African Rift System (EARS) constitute first-order tectonic and topographic features in East Africa, which have a profound influence on the distribution and amount of rainfall. The Kenya Rift is an integral part of the eastern branch and is characterized by pronounced differences in morphology, rainfall, and vegetation cover. While paleoclimatic studies in this region reveal general stability of the precipitation and vegetation patterns, short-term changes on timescales of ca. 104 yrs have affected the area multiple times throughout the Pleistocene. We present 20 10Be-derived catchment-wide mean denudation rates from various morphotectonic sectors of the Kenya Rift. The sampling locations include steep rift escarpments, step-faulted composite escarpments, and gently inclined rift-shoulder areas. These different environments also span a rainfall gradient of 0.004 to 4 m/yr, and vegetation covers that range from very sparse to dense. For comparison, 10Be-derived denudation rates are also available from the Rwenzori Mountains in the western branch of the rift system. There, rainfall is high and the vegetation cover is denser than the studied sites in Kenya, but the range of relief and slopes is similar. A first-order comparison of our new denudation rates from Kenya with climatic and topographic characteristics of the catchments show no obvious correlations. However, denudation rates from sparsely vegetated environments in the Kenya Rift define a steep trend in the denudation rate-slope relationship, while denudation rates from the densely vegetated portion of the Kenya Rift and the
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens (2014) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically.
Saliency Detection Using Sparse and Nonlinear Feature Representation
Zhao, Qingjie; Manzoor, Muhammad Farhan; Ishaq Khan, Saqib
2014-01-01
An important aspect of visual saliency detection is how features that form an input image are represented. A popular theory supports sparse feature representation, an image being represented with a basis dictionary having sparse weighting coefficient. Another method uses a nonlinear combination of image features for representation. In our work, we combine the two methods and propose a scheme that takes advantage of both sparse and nonlinear feature representation. To this end, we use independent component analysis (ICA) and covariant matrices, respectively. To compute saliency, we use a biologically plausible center surround difference (CSD) mechanism. Our sparse features are adaptive in nature; the ICA basis function are learnt at every image representation, rather than being fixed. We show that Adaptive Sparse Features when used with a CSD mechanism yield better results compared to fixed sparse representations. We also show that covariant matrices consisting of nonlinear integration of color information alone are sufficient to efficiently estimate saliency from an image. The proposed dual representation scheme is then evaluated against human eye fixation prediction, response to psychological patterns, and salient object detection on well-known datasets. We conclude that having two forms of representation compliments one another and results in better saliency detection. PMID:24895644
Visual Tracking Based on Extreme Learning Machine and Sparse Representation
Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen
2015-01-01
The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359
Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle
Ji, Kefeng; Zou, Huanxin; Sun, Jixiang
2014-01-01
As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation. PMID:25161398
Sparse representation based SAR vehicle recognition along with aspect angle.
Xing, Xiangwei; Ji, Kefeng; Zou, Huanxin; Sun, Jixiang
2014-01-01
As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.
Visual tracking based on extreme learning machine and sparse representation.
Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen
2015-10-22
The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker.
Classwise Sparse and Collaborative Patch Representation for Face Recognition.
Lai, Jian; Jiang, Xudong
2016-07-01
Sparse representation has shown its merits in solving some classification problems and delivered some impressive results in face recognition. However, the unsupervised optimization of the sparse representation may result in undesired classification outcome if the variations of the data population are not well represented by the training samples. In this paper, a method of class-wise sparse representation (CSR) is proposed to tackle the problems of the conventional sample-wise sparse representation and applied to face recognition. It seeks an optimum representation of the query image by minimizing the class-wise sparsity of the training data. To tackle the problem of the uncontrolled training data, this paper further proposes a collaborative patch (CP) framework, together with the proposed CSR, named CSR-CP. Different from the conventional patch-based methods that optimize each patch representation separately, the CSR-CP approach optimizes all patches together to seek a CP groupwise sparse representation by putting all patches of an image into a group. It alleviates the problem of losing discriminative information in the training data caused by the partition of the image into patches. Extensive experiments on several benchmark face databases demonstrate that the proposed CSR-CP significantly outperforms the sparse representation-related holistic and patch-based approaches.
Representation-Independent Iteration of Sparse Data Arrays
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.
Sparseness Analysis in the Pretraining of Deep Neural Networks.
Li, Jun; Zhang, Tong; Luo, Wei; Yang, Jian; Yuan, Xiao-Tong; Zhang, Jian
2016-03-31
A major progress in deep multilayer neural networks (DNNs) is the invention of various unsupervised pretraining methods to initialize network parameters which lead to good prediction accuracy. This paper presents the sparseness analysis on the hidden unit in the pretraining process. In particular, we use the L₁-norm to measure sparseness and provide some sufficient conditions for that pretraining leads to sparseness with respect to the popular pretraining models--such as denoising autoencoders (DAEs) and restricted Boltzmann machines (RBMs). Our experimental results demonstrate that when the sufficient conditions are satisfied, the pretraining models lead to sparseness. Our experiments also reveal that when using the sigmoid activation functions, pretraining plays an important sparseness role in DNNs with sigmoid (Dsigm), and when using the rectifier linear unit (ReLU) activation functions, pretraining becomes less effective for DNNs with ReLU (Drelu). Luckily, Drelu can reach a higher recognition accuracy than DNNs with pretraining (DAEs and RBMs), as it can capture the main benefit (such as sparseness-encouraging) of pretraining in Dsigm. However, ReLU is not adapted to the different firing rates in biological neurons, because the firing rate actually changes along with the varying membrane resistances. To address this problem, we further propose a family of rectifier piecewise linear units (RePLUs) to fit the different firing rates. The experimental results show that the performance of RePLU is better than ReLU, and is comparable with those with some pretraining techniques, such as RBMs and DAEs.
Water Control on Vegetation Growth Pattern in Eurasia from GRACE
NASA Astrophysics Data System (ADS)
A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.
2014-12-01
High latitude ecosystem productivity is constrained by cold temperature and moisture limitations to plant growth, while these environmental restrictions may be changing with global warming. Satellite data driven assessments indicate that over the past three decades, rapid warming in the northern high latitudes has resulted in earlier and longer potential growing seasons and widespread greening, due to general relaxation of cold temperature constraints to vegetation productivity. However, warming may have also increased water stress limitations to growth. In this study, we use GRACE (Gravity Recovery and Climate Experiment) derived total water storage (TWS), 2-m air temperature (T) from ERA-interim reanalysis, normalized difference vegetation index (NDVI) data from MODIS (Collection 5) and satellite data driven vegetation gross primary productivity (GPP) estimates as surrogates for vegetation growth, for the period August 2002-December 2013 to evaluate terrestrial water supply controls to vegetation growth changes over the three major river basins of northern Eurasia. We find that during the analyzed period, the apparent growth response follows regional vegetation, moisture and temperature gradients and is spatially complex. In the drier southwest characterized by grassland, vegetation growth is mainly controlled by TWS availability. In the central region, dominated by cold temperature and water limited boreal forest, T is the main control on vegetation growth. In the Lena basin, where vegetation includes both boreal forest and water limited grassland, both T and TWS impact vegetation growth. We suggest that GRACE TWS estimates provide reliable observational constraints on water availability to vegetation that supplement sparse soil moisture observations and satellite precipitation estimates with unknown bias.
A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, ...
NASA Technical Reports Server (NTRS)
Schrumpf, B. J.
1973-01-01
Unique characteristics of ERTS imagery can be used to inventory natural vegetation. While satellite images can seldom be interpreted and identified directly in terms of vegetation types, such types can be inferred by interpretation of physical terrain features and through an understanding of the ecology of the vegetation.
Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices
Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia
2014-01-01
In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.
Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices
NASA Astrophysics Data System (ADS)
Ji, Lei; Zhang, Li; Rover, Jennifer; Wylie, Bruce K.; Chen, Xuexia
2014-10-01
In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.
Pryde, E.H.
1982-01-01
Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.
2017-04-01
An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple
Wang, Li-wen; Wei, Ya-xing; Niu, Zheng
2008-06-01
1 km MODIS NDVI time series data combining with decision tree classification, supervised classification and unsupervised classification was used to classify land cover type of Qinghai Province into 14 classes. In our classification system, sparse grassland and sparse shrub were emphasized, and their spatial distribution locations were labeled. From digital elevation model (DEM) of Qinghai Province, five elevation belts were achieved, and we utilized geographic information system (GIS) software to analyze vegetation cover variation on different elevation belts. Our research result shows that vegetation cover in Qinghai Province has been improved in recent five years. Vegetation cover area increases from 370047 km2 in 2001 to 374576 km2 in 2006, and vegetation cover rate increases by 0.63%. Among five grade elevation belts, vegetation cover ratio of high mountain belt is the highest (67.92%). The area of middle density grassland in high mountain belt is the largest, of which area is 94 003 km2. Increased area of dense grassland in high mountain belt is the greatest (1280 km2). During five years, the biggest variation is the conversion from sparse grassland to middle density grassland in high mountain belt, of which area is 15931 km2.
A temporal channel for information in sparse sensory coding
Gupta, Nitin; Stopfer, Mark
2014-01-01
Summary Background Sparse codes are found in nearly every sensory system, but the role of spike timing in sparse sensory coding is unclear. Here we used the olfactory system of awake locusts to test whether the timing of spikes in Kenyon cells, a population of neurons that responds sparsely to odors, carries sensory information to, and influences the responses of, follower neurons. Results We characterized two major classes of direct followers of Kenyon cells. With paired intracellular and field potential recordings made during odor presentations, we found these followers contain information about odor identity in the temporal patterns of their spikes, rather than in the spike rate, the spike phase or the identities of the responsive neurons. Subtly manipulating the relative timing of Kenyon cell spikes with temporally and spatially structured microstimulation reliably altered the response patterns of the followers. Conclusions Our results show that even remarkably sparse spiking responses can provide information through stimulus-specific variations in timing on the order of tens to hundreds of milliseconds, and that these variations can determine the responses of downstream neurons. These results establish the importance of spike timing in a sparse sensory code. PMID:25264257
Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking
Qu, Shiru
2016-01-01
Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710
X-ray computed tomography using curvelet sparse regularization
Wieczorek, Matthias Vogel, Jakob; Lasser, Tobias; Frikel, Jürgen; Demaret, Laurent; Eggl, Elena; Pfeiffer, Franz; Kopp, Felix; Noël, Peter B.
2015-04-15
Purpose: Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. Methods: In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Results: Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method’s strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. Conclusions: The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.
A sparse matrix based full-configuration interaction algorithm
Rolik, Zoltan; Szabados, Agnes; Surjan, Peter R.
2008-04-14
We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers.
Image fusion via nonlocal sparse K-SVD dictionary learning.
Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang
2016-03-01
Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.
Environment identification in flight using sparse approximation of wing strain
NASA Astrophysics Data System (ADS)
Manohar, Krithika; Brunton, Steven L.; Kutz, J. Nathan
2017-04-01
This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta hawkmoth wing undergoing different flow environments. Our data-driven method learns low-dimensional strain features originating from different aerodynamic environments using proper orthogonal decomposition (POD) modes in the frequency domain, and leverages sparse approximation to classify a set of strain frequency signatures using a dictionary of POD modes. This bio-inspired machine learning architecture for dictionary learning and sparse classification permits fewer costly physical strain sensors while being simultaneously robust to sensor noise. A measurement selection algorithm identifies frequencies that best discriminate the different aerodynamic environments in low-rank POD feature space. In this manner, sparse and noisy wing strain data can be exploited to robustly identify different aerodynamic environments encountered in flight, providing insight into the stereotyped placement of neurons that act as strain sensors on a Manduca sexta hawkmoth wing.
A sparse matrix based full-configuration interaction algorithm.
Rolik, Zoltán; Szabados, Agnes; Surján, Péter R
2008-04-14
We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers.
[Investigation of Multi-Angle Polarization Properties of Vegetation Based on RSP].
Jiao, Jian-nan; Zhao, Hai-meng; Yang, Bin; Yan, Lei
2016-02-01
Polarization detection provides us with novel information to reflect the target attribute. Compared with traditional remote sensing methods, multi-angle polarization has relatively stable correlation and regularity. RSP(research scanning polarimeter)is an airborne prototype for the APS(aerosol polarimetery sensor) developed by the USA, which can provide with us the polarization detection information of 9 channels. We can get optical properties and physical characteristics of vegetation by analyzing stable multi-angle and multi-band polarization detection information from preprocessing scanning polarization data of flight test. In this paper, after making registration based on flight attitude information, a comparative analysis is made between characteristics of reflectance and polarization reflectance with visible light and near infrared band of the view zenith angles between--30 degree and 65 degree, based on dense area and sparse area(close to bare field) of vegetation. The results show that both dense area and sparse area demonstrate regular characteristics of polarization degree. The area close to hot spot area has highest reflectance energy. In contrast,. it has relatively least energy of polarization degree, which can prevent strong reflectance energy from influencing the stability of detector. Because the degree of polarization in dense area of vegetation is higher than that in sparse area at visible light band while that in concentration area of vegetation is lower than sparse area at near infrared light band, it shows that the visible light band information of dense area of vegetation that the sensor received is dominated by single scattering while the near infrared light band information of dense area of vegetation is dominated by multiple scattering.
Sparse-view Reconstruction of Dynamic Processes by Neutron Tomography
NASA Astrophysics Data System (ADS)
Wang, Hu; Kaestner, Anders; Zou, Yubin; Lu, Yuanrong; Guo, Zhiyu
As for neutron tomography, hundreds of projections over the range of 0-180 degrees are required to reconstruct the attenuation matrix with the traditional filtered back projection (FBP) algorithm, and the total acquisition time can reach several hours. This poor temporal resolution constrains that neutron tomography is only feasible to investigate static or quasi-static process. Reducing the number of projections is a possible way to improve the temporal resolution, which however highly relies on sparse-view reconstruction algorithms. To assess the feasibility of sparse-view reconstruction for neutron tomography, both simulation and an experiment of water uptake from a piece of wood composite were studied, and the results indicated that temporal resolution of neutron tomography can be improved when combining the Golden Ratio scan strategy with a prior image-constrained sparse-view reconstruction algorithm-PICCS.
Data-driven initialization of SParSE
NASA Astrophysics Data System (ADS)
Roh, Min K.; Proctor, Joshua L.
2017-07-01
Despite the ever-increasing affordability and availability of high performance computing platforms, computational analysis of stochastic biochemical systems remains an open problem. A recently developed event-based parameter estimation method, the stochastic parameter search for events (SParSE), is able to efficiently sample reaction rate parameter values that confer a user-specified target event with a given probability and error tolerance. Despite the substantial computational savings, the efficiency of SParSE can be further improved by intelligently generating new initial parameter sets based on previously computed trajectories. In this article, we propose a principled method which combines the efficiencies of SParSE with these geometric machine-learning methods to generate new initial parameters based on the previously collected data.
Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging
Zhang, Yichun; Shi, Tielin; Su, Lei; Wang, Xiao; Hong, Yuan; Chen, Kepeng; Liao, Guanglan
2016-01-01
Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging. PMID:27783040
Sparse Partial Equilibrium Tables in Chemically Resolved Reactive Flow
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Laurence E.; Pudliner, Brian; McAbee, Tom
2004-07-01
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and hydrodynamics. Unfortunately, little is known concerning the detailed chemical kinetics of detonations in energetic materials. CHEETAH uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. CHEETAH supports a wide range of elements and condensed detonation products and can also be applied to gas detonations. A sparse hash table of equation of state values is used in CHEETAH to enhance the efficiency of kinetic reaction calculations. For large-scale parallel hydrodynamic calculations, CHEETAH uses parallel communication to updates to the cache. We present here details of the sparse caching model used in the CHEETAH coupled to an ALE hydrocode. To demonstrate the efficiency of modeling using a sparse cache model we consider detonations in energetic materials.
Sparse nonnegative matrix factorization with ℓ0-constraints
Peharz, Robert; Pernkopf, Franz
2012-01-01
Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the ℓ1-norm of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the ℓ0-pseudo-norm. In this paper, we propose a framework for approximate NMF which constrains the ℓ0-norm of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches. PMID:22505792
A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.
Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi
2015-12-01
Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.
A note on rank reduction in sparse multivariate regression.
Chen, Kun; Chan, Kung-Sik
A reduced-rank regression with sparse singular value decomposition (RSSVD) approach was proposed by Chen et al. for conducting variable selection in a reduced-rank model. To jointly model the multivariate response, the method efficiently constructs a prespecified number of latent variables as some sparse linear combinations of the predictors. Here, we generalize the method to also perform rank reduction, and enable its usage in reduced-rank vector autoregressive (VAR) modeling to perform automatic rank determination and order selection. We show that in the context of stationary time-series data, the generalized approach correctly identifies both the model rank and the sparse dependence structure between the multivariate response and the predictors, with probability one asymptotically. We demonstrate the efficacy of the proposed method by simulations and analyzing a macro-economical multivariate time series using a reduced-rank VAR model.
Joint sparse representation for robust multimodal biometrics recognition.
Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama
2014-01-01
Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.
BLIND COMPRESSED SENSING WITH SPARSE DICTIONARIES FOR ACCELERATED DYNAMIC MRI.
Lingala, Sajan Goud; Jacob, Mathews
2013-01-01
Several algorithms that model the voxel time series as a sparse linear combination of basis functions in a fixed dictionary were introduced to recover dynamic MRI data from under sampled Fourier measurements. We have recently demonstrated that the joint estimation of dictionary basis and the sparse coefficients from the k-space data results in improved reconstructions. In this paper, we investigate the use of additional priors on the learned basis functions. Specifically, we assume the basis functions to be sparse in pre-specified transform or operator domains. Our experiments show that this constraint enables the suppression of noisy basis functions, thus further improving the quality of the reconstructions. We demonstrate the usefulness of the proposed method through various reconstruction examples.
Combining sparseness and smoothness improves classification accuracy and interpretability.
de Brecht, Matthew; Yamagishi, Noriko
2012-04-02
Sparse logistic regression (SLR) has been shown to be a useful method for decoding high-dimensional fMRI and MEG data by automatically selecting relevant feature dimensions. However, when applied to signals with high spatio-temporal correlations, SLR often over-prunes the feature space, which can result in overfitting and weight vectors that are difficult to interpret. To overcome this problem, we investigate a modification of ℓ₁-normed sparse logistic regression, called smooth sparse logistic regression (SSLR), which has a spatio-temporal "smoothing" prior that encourages weights that are close in time and space to have similar values. This causes the classifier to select spatio-temporally continuous groups of features, whereas SLR classifiers often select a scattered collection of independent features. We applied the method to both simulation data and real MEG data. We found that SSLR consistently increases classification accuracy, and produces weight vectors that are more meaningful from a neuroscientific perspective.
Sparse-based multispectral image encryption via ptychography
NASA Astrophysics Data System (ADS)
Rawat, Nitin; Shi, Yishi; Kim, Byoungho; Lee, Byung-Geun
2015-12-01
Recently, we proposed a model of securing a ptychography-based monochromatic image encryption system via the classical Photon-counting imaging (PCI) technique. In this study, we examine a single-channel multispectral sparse-based photon-counting ptychography imaging (SMPI)-based cryptosystem. A ptychography-based cryptosystem creates a complex object wave field, which can be reconstructed by a series of diffraction intensity patterns through an aperture movement. The PCI sensor records only a few complex Bayer patterned samples that have been utilized in the decryption process. Sparse sensing and nonlinear properties of the classical PCI system, together with the scanning probes, enlarge the key space, and such a combination therefore enhances the system's security. We demonstrate that the sparse samples have adequate information for image decryption, as well as information authentication by means of optical correlation.
Sparse representation-based image restoration via nonlocal supervised coding
NASA Astrophysics Data System (ADS)
Li, Ao; Chen, Deyun; Sun, Guanglu; Lin, Kezheng
2016-10-01
Sparse representation (SR) and nonlocal technique (NLT) have shown great potential in low-level image processing. However, due to the degradation of the observed image, SR and NLT may not be accurate enough to obtain a faithful restoration results when they are used independently. To improve the performance, in this paper, a nonlocal supervised coding strategy-based NLT for image restoration is proposed. The novel method has three main contributions. First, to exploit the useful nonlocal patches, a nonnegative sparse representation is introduced, whose coefficients can be utilized as the supervised weights among patches. Second, a novel objective function is proposed, which integrated the supervised weights learning and the nonlocal sparse coding to guarantee a more promising solution. Finally, to make the minimization tractable and convergence, a numerical scheme based on iterative shrinkage thresholding is developed to solve the above underdetermined inverse problem. The extensive experiments validate the effectiveness of the proposed method.
P-SPARSLIB: A parallel sparse iterative solution package
Saad, Y.
1994-12-31
Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.
A General Sparse Tensor Framework for Electronic Structure Theory
Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I.; ...
2017-01-24
Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. But, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We then avoid cumbersome machine-generatedmore » code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.« less
Automatic landslide and mudflow detection method via multichannel sparse representation
NASA Astrophysics Data System (ADS)
Chao, Chen; Zhou, Jianjun; Hao, Zhuo; Sun, Bo; He, Jun; Ge, Fengxiang
2015-10-01
Landslide and mudflow detection is an important application of aerial images and high resolution remote sensing images, which is crucial for national security and disaster relief. Since the high resolution images are often large in size, it's necessary to develop an efficient algorithm for landslide and mudflow detection. Based on the theory of sparse representation and, we propose a novel automatic landslide and mudflow detection method in this paper, which combines multi-channel sparse representation and eight neighbor judgment methods. The whole process of the detection is totally automatic. We make the experiment on a high resolution image of ZhouQu district of Gansu province in China on August, 2010 and get a promising result which proved the effective of using sparse representation on landslide and mudflow detection.
SAR target recognition based on improved sparse LSSVM
NASA Astrophysics Data System (ADS)
Zhang, Xiangrong; Zhang, Yifan; Jiao, Licheng
2009-10-01
An Improved Fast Sparse Least Squares Support Vector Machine (IFSLSSVM) is proposed for Synthetic Aperture Radar (SAR) target recognition. Least Squares Support Vector Machine (LSSVM) is a least square version of Support Vector Machine (SVM), but it lacks the sparseness compared with SVM. IFSLSSVM, which combines the incremental learning and decremental learning, selects those important samples as the support vectors, and implements pruning by a certain condition, can solve the non-sparse problem of LSSVM effectively. Benchmarking UCI datasets are firstly used for testing the performance of our algorithm, followed by SAR target recognition. Experimental results on MSTAR SAR dataset show that IFSLSSVM is an effective SAR target recognition approach (SAR-ATR), which not only reduces the number of support vectors but also enhances the recognition rate.
Sparse representation based face recognition using weighted regions
NASA Astrophysics Data System (ADS)
Bilgazyev, Emil; Yeniaras, E.; Uyanik, I.; Unan, Mahmut; Leiss, E. L.
2013-12-01
Face recognition is a challenging research topic, especially when the training (gallery) and recognition (probe) images are acquired using different cameras under varying conditions. Even a small noise or occlusion in the images can compromise the accuracy of recognition. Lately, sparse encoding based classification algorithms gave promising results for such uncontrollable scenarios. In this paper, we introduce a novel methodology by modeling the sparse encoding with weighted patches to increase the robustness of face recognition even further. In the training phase, we define a mask (i.e., weight matrix) using a sparse representation selecting the facial regions, and in the recognition phase, we perform comparison on selected facial regions. The algorithm was evaluated both quantitatively and qualitatively using two comprehensive surveillance facial image databases, i.e., SCfaceandMFPV, with the results clearly superior to common state-of-the-art methodologies in different scenarios.
Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging.
Zhang, Yichun; Shi, Tielin; Su, Lei; Wang, Xiao; Hong, Yuan; Chen, Kepeng; Liao, Guanglan
2016-10-24
Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l₁-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.
A Robust Sparse Representation Model for Hyperspectral Image Classification.
Huang, Shaoguang; Zhang, Hongyan; Pižurica, Aleksandra
2017-09-12
Sparse representation has been extensively investigated for hyperspectral image (HSI) classification and led to substantial improvements in the performance over the traditional methods, such as support vector machine (SVM). However, the existing sparsity-based classification methods typically assume Gaussian noise, neglecting the fact that HSIs are often corrupted by different types of noise in practice. In this paper, we develop a robust classification model that admits realistic mixed noise, which includes Gaussian noise and sparse noise. We combine a model for mixed noise with a prior on the representation coefficients of input data within a unified framework, which produces three kinds of robust classification methods based on sparse representation classification (SRC), joint SRC and joint SRC on a super-pixels level. Experimental results on simulated and real data demonstrate the effectiveness of the proposed method and clear benefits from the introduced mixed-noise model.
Sparse Partial Equilibrium Tables in Chemically Resolved Reactive Flow
Vitello, P; Fried, L E; Pudliner, B; McAbee, T
2003-07-14
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and hydrodynamics. Unfortunately, little is known concerning the detailed chemical kinetics of detonations in energetic materials. CHEETAH uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. CHEETAH supports a wide range of elements and condensed detonation products and can also be applied to gas detonations. A sparse hash table of equation of state values, called the ''cache'' is used in CHEETAH to enhance the efficiency of kinetic reaction calculations. For large-scale parallel hydrodynamic calculations, CHEETAH uses MPI communication to updates to the cache. We present here details of the sparse caching model used in the CHEETAH. To demonstrate the efficiency of modeling using a sparse cache model we consider detonations in energetic materials.
Sparse Sensing of Aerodynamic Loads on Insect Wings
NASA Astrophysics Data System (ADS)
Manohar, Krithika; Brunton, Steven; Kutz, J. Nathan
2015-11-01
We investigate how insects use sparse sensors on their wings to detect aerodynamic loading and wing deformation using a coupled fluid-structure model given periodically flapping input motion. Recent observations suggest that insects collect sensor information about their wing deformation to inform control actions for maneuvering and rejecting gust disturbances. Given a small number of point measurements of the chordwise aerodynamic loads from the sparse sensors, we reconstruct the entire chordwise loading using sparsesensing - a signal processing technique that reconstructs a signal from a small number of measurements using l1 norm minimization of sparse modal coefficients in some basis. We compare reconstructions from sensors randomly sampled from probability distributions biased toward different regions along the wing chord. In this manner, we determine the preferred regions along the chord for sensor placement and for estimating chordwise loads to inform control decisions in flight.
Ordering sparse matrices for cache-based systems
Biswas, Rupak; Oliker, Leonid
2001-01-11
The Conjugate Gradient (CG) algorithm is the oldest and best-known Krylov subspace method used to solve sparse linear systems. Most of the coating-point operations within each CG iteration is spent performing sparse matrix-vector multiplication (SPMV). We examine how various ordering and partitioning strategies affect the performance of CG and SPMV when different programming paradigms are used on current commercial cache-based computers. However, a multithreaded implementation on the cacheless Cray MTA demonstrates high efficiency and scalability without any special ordering or partitioning.
Moving target detection for frequency agility radar by sparse reconstruction
NASA Astrophysics Data System (ADS)
Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi
2016-09-01
Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.
BIRD: A general interface for sparse distributed memory simulators
NASA Technical Reports Server (NTRS)
Rogers, David
1990-01-01
Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.
Learning control for robotic manipulators with sparse data
NASA Technical Reports Server (NTRS)
Morita, Atsushi; Dubowsky, Steven; Hootsmans, Norbert A. M.
1987-01-01
Learning control algorithms have been proposed for error compensation in repetitive robotic manipulator tasks. It is shown that the performance of such control algorithms can be seriously degraded when the feedback data they use is relatively sparse in time, such as might be provided by vision systems. It is also shown that learning control algorithms can be modified to compensate for the effects of sparse data and thereby yield performance which approaches that of systems without limitations on the sensory information available for control.
Accelerated nonlinear multichannel ultrasonic tomographic imaging using target sparseness.
Chengdong Dong; Yuanwei Jin; Enyue Lu
2014-03-01
This paper presents an accelerated iterative Landweber method for nonlinear ultrasonic tomographic imaging in a multiple-input multiple-output (MIMO) configuration under a sparsity constraint on the image. The proposed method introduces the emerging MIMO signal processing techniques and target sparseness constraints in the traditional computational imaging field, thus significantly improves the speed of image reconstruction compared with the conventional imaging method while producing high quality images. Using numerical examples, we demonstrate that incorporating prior knowledge about the imaging field such as target sparseness accelerates significantly the convergence of the iterative imaging method, which provides considerable benefits to real-time tomographic imaging applications.
An evaluation of GPU acceleration for sparse reconstruction
NASA Astrophysics Data System (ADS)
Braun, Thomas R.
2010-04-01
Image processing applications typically parallelize well. This gives a developer interested in data throughput several different implementation options, including multiprocessor machines, general purpose computation on the graphics processor, and custom gate-array designs. Herein, we will investigate these first two options for dictionary learning and sparse reconstruction, specifically focusing on the K-SVD algorithm for dictionary learning and the Batch Orthogonal Matching Pursuit for sparse reconstruction. These methods have been shown to provide state of the art results for image denoising, classification, and object recognition. We'll explore the GPU implementation and show that GPUs are not significantly better or worse than CPUs for this application.
Multiscale Sparse Image Representation with Learned Dictionaries (PREPRINT)
2007-01-01
age processing, e.g., image denoising [5]. In [1] the K- SVD is proposed for learning a single-scale dic- tionary for sparse representation of image...performance we obtain. 2. THE SINGLE-SCALE K- SVD DENOISING ALGORITHM In this section, we briefly review the main ideas of the K- SVD frame- work for sparse...weighted average: x̂ = “ λI + X ij R T ijRij ”−1“ λy + X ij R T ijD̂α̂ij ” . (4) Fig. 1. The single-scale K- SVD -based image denoising algorithm. Fig
Sparse coding based feature representation method for remote sensing images
NASA Astrophysics Data System (ADS)
Oguslu, Ender
In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further
Sparse Matrix for ECG Identification with Two-Lead Features
Tseng, Kuo-Kun; Luo, Jiao; Wang, Wenmin; Haiting, Dong
2015-01-01
Electrocardiograph (ECG) human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods. PMID:25961074
Airborne LIDAR Points Classification Based on Tensor Sparse Representation
NASA Astrophysics Data System (ADS)
Li, N.; Pfeifer, N.; Liu, C.
2017-09-01
The common statistical methods for supervised classification usually require a large amount of training data to achieve reasonable results, which is time consuming and inefficient. This paper proposes a tensor sparse representation classification (SRC) method for airborne LiDAR points. The LiDAR points are represented as tensors to keep attributes in its spatial space. Then only a few of training data is used for dictionary learning, and the sparse tensor is calculated based on tensor OMP algorithm. The point label is determined by the minimal reconstruction residuals. Experiments are carried out on real LiDAR points whose result shows that objects can be distinguished by this algorithm successfully.
Sparse representation for classification of dolphin whistles by type.
Esfahanian, M; Zhuang, H; Erdol, N
2014-07-01
A compressive-sensing approach called Sparse Representation Classifier (SRC) is applied to the classification of bottlenose dolphin whistles by type. The SRC algorithm constructs a dictionary of whistles from the collection of training whistles. In the classification phase, an unknown whistle is represented sparsely by a linear combination of the training whistles and then the call class can be determined with an l1-norm optimization procedure. Experimental studies conducted in this research reveal the advantages and limitations of the proposed method against some existing techniques such as K-Nearest Neighbors and Support Vector Machines in distinguishing different vocalizations.
Communication requirements of sparse Cholesky factorization with nested dissection ordering
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.
Reconstruction Techniques for Sparse Multistatic Linear Array Microwave Imaging
Sheen, David M.; Hall, Thomas E.
2014-06-09
Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. In this paper, a sparse multi-static array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated and measured imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.
Towards an Accurate Performance Modeling of Parallel SparseFactorization
Grigori, Laura; Li, Xiaoye S.
2006-05-26
We present a performance model to analyze a parallel sparseLU factorization algorithm on modern cached-based, high-end parallelarchitectures. Our model characterizes the algorithmic behavior bytakingaccount the underlying processor speed, memory system performance, aswell as the interconnect speed. The model is validated using theSuperLU_DIST linear system solver, the sparse matrices from realapplications, and an IBM POWER3 parallel machine. Our modelingmethodology can be easily adapted to study performance of other types ofsparse factorizations, such as Cholesky or QR.
Moving target detection for frequency agility radar by sparse reconstruction.
Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi
2016-09-01
Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.
Communication requirements of sparse Cholesky factorization with nested dissection ordering
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.
Sparse grid techniques for particle-in-cell schemes
NASA Astrophysics Data System (ADS)
Ricketson, L. F.; Cerfon, A. J.
2017-02-01
We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.
High Angular Resolution Microwave Sensing with Large, Sparse, Random Arrays.
1982-12-01
b.cnuainas saldaatv an quired at microwaves to achieve the rec0n(pwro cam’ forming or seti -colternng or phas. synchronzing. After the moo optical...AD A126 866 HIGH ANGULAR RESOLUTICN MICROWAVE SENSING WITH LARGE 1/ SPARSE RANDOM ARRAYS..U) MOORE SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIAPA...RESOLUTION TEST CHART N4ATIONAL BUREAU Of SrANDARDS 1963 A iOSR-TR- 83-0225 HIGH ANGULAR RESOLUTION MICROWAVE SENSING WITH LARGE, SPARSE, RANDOM ARRAYS Annual
A LONE code for the sparse control of quantum systems
NASA Astrophysics Data System (ADS)
Ciaramella, G.; Borzì, A.
2016-03-01
In many applications with quantum spin systems, control functions with a sparse and pulse-shaped structure are often required. These controls can be obtained by solving quantum optimal control problems with L1-penalized cost functionals. In this paper, the MATLAB package LONE is presented aimed to solving L1-penalized optimal control problems governed by unitary-operator quantum spin models. This package implements a new strategy that includes a globalized semi-smooth Krylov-Newton scheme and a continuation procedure. Results of numerical experiments demonstrate the ability of the LONE code in computing accurate sparse optimal control solutions.
DEHYDRATED FRUIT AND VEGETABLES,
FRUITS , *VEGETABLES, QUALITY CONTROL, DEHYDRATED FOODS, PROCESSING, PACKAGING, STORAGE, TASTE, ODORS, COLORS, ACCEPTABILITY, IMPURITIES, MOISTURE, CONTAMINATION, PEST CONTROL, PHYSICAL PROPERTIES, USSR.
Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; Burkardt, John
2016-08-04
This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.
HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION
Mukherjee, Rajarshi; Pillai, Natesh S.; Lin, Xihong
2015-01-01
In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which does not occur in the case of Gaussian linear regression. We derive the detection boundary as a function of two components: a design matrix sparsity index and signal strength, each of which is a function of the sparsity of the alternative. For any alternative, if the design matrix sparsity index is too high, any test is asymptotically powerless irrespective of the magnitude of signal strength. For binary design matrices with the sparsity index that is not too high, our results are parallel to those in the Gaussian case. In this context, we derive detection boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the theoretical results using simulation studies. PMID:26246645
Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...
2016-08-04
This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less
Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; Burkardt, John
2016-08-04
This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2015-01-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475
Sparse Recovery via l1 and L1 Optimization
2014-11-01
compactly supported approximations to eigenfunctions of the Schrodinger equation [18, 19]. These have long been sought [20] and are called Wannier...and are intimately con- nected to the Schrodinger equation. 4 Computing Paths of Sparse Solutions When the vector b is corrupted due to noise at an
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2014-12-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.
Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules
Sacramento, João; Wichert, Andreas; van Rossum, Mark C. W.
2015-01-01
It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L 1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum. PMID:26046817
Sparsely sampling the sky: a Bayesian experimental design approach
NASA Astrophysics Data System (ADS)
Paykari, P.; Jaffe, A. H.
2013-08-01
The next generation of galaxy surveys will observe millions of galaxies over large volumes of the Universe. These surveys are expensive both in time and cost, raising questions regarding the optimal investment of this time and money. In this work, we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian experimental design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.45 per cent. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky, we can in fact constrain the parameters with errors reduced by 28 per cent.
Immunogenicity is preferentially induced in sparse dendritic cell cultures
Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence
2017-01-01
We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533
Superpixel sparse representation for target detection in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Dong, Chunhua; Naghedolfeizi, Masoud; Aberra, Dawit; Qiu, Hao; Zeng, Xiangyan
2017-05-01
Sparse Representation (SR) is an effective classification method. Given a set of data vectors, SR aims at finding the sparsest representation of each data vector among the linear combinations of the bases in a given dictionary. In order to further improve the classification performance, the joint SR that incorporates interpixel correlation information of neighborhoods has been proposed for image pixel classification. However, SR and joint SR demand significant amount of computational time and memory, especially when classifying a large number of pixels. To address this issue, we propose a superpixel sparse representation (SSR) algorithm for target detection in hyperspectral imagery. We firstly cluster hyperspectral pixels into nearly uniform hyperspectral superpixels using our proposed patch-based SLIC approach based on their spectral and spatial information. The sparse representations of these superpixels are then obtained by simultaneously decomposing superpixels over a given dictionary consisting of both target and background pixels. The class of a hyperspectral pixel is determined by a competition between its projections on target and background subdictionaries. One key advantage of the proposed superpixel representation algorithm with respect to pixelwise and joint sparse representation algorithms is that it reduces computational cost while still maintaining competitive classification performance. We demonstrate the effectiveness of the proposed SSR algorithm through experiments on target detection in the in-door and out-door scene data under daylight illumination as well as the remote sensing data. Experimental results show that SSR generally outperforms state of the art algorithms both quantitatively and qualitatively.
Efficient Coordinated Recovery of Sparse Channels in Massive MIMO
NASA Astrophysics Data System (ADS)
Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.
2015-01-01
This paper addresses the problem of estimating sparse channels in massive MIMO-OFDM systems. Most wireless channels are sparse in nature with large delay spread. In addition, these channels as observed by multiple antennas in a neighborhood have approximately common support. The sparsity and common support properties are attractive when it comes to the efficient estimation of large number of channels in massive MIMO systems. Moreover, to avoid pilot contamination and to achieve better spectral efficiency, it is important to use a small number of pilots. We present a novel channel estimation approach which utilizes the sparsity and common support properties to estimate sparse channels and require a small number of pilots. Two algorithms based on this approach have been developed which perform Bayesian estimates of sparse channels even when the prior is non-Gaussian or unknown. Neighboring antennas share among each other their beliefs about the locations of active channel taps to perform estimation. The coordinated approach improves channel estimates and also reduces the required number of pilots. Further improvement is achieved by the data-aided version of the algorithm. Extensive simulation results are provided to demonstrate the performance of the proposed algorithms.
Sparse Representation for Computer Vision and Pattern Recognition
2009-05-01
Duarte, M. Elad, F. Lecumberry , J. Mairel, J. Ponce, I. Ramirez, F. Rodriguez, and A. Szlam. J. Duarte, F. Lecumberry , J. Mairal, and I. Ramirez...F. Lecumberry , and G. Sapiro. Sparse modeling with mixture priors and learned incoherent dictionaries. pre-print, 2009. [56] S. Rao, R. Tron, R. Vidal
Dictionary Learning and Sparse Coding for Unsupervised Clustering
2009-09-01
the fully unsupervised setting of data clustering. Work supported by ONR, NGA, ARO, DARPA, and NSF. We thank I. Ramirez, F. Lecumberry , and J. Mairal...Ramirez, F. Lecumberry , and G. Sapiro, “Uni- versal priors for sparse modeling,” in IMA Preprint, http://www.ima.umn.edu/preprints/aug2009/2276.pdf, August 2009.
On the sparseness of 1-norm support vector machines.
Zhang, Li; Zhou, Weida
2010-04-01
There is some empirical evidence available showing that 1-norm Support Vector Machines (1-norm SVMs) have good sparseness; however, both how good sparseness 1-norm SVMs can reach and whether they have a sparser representation than that of standard SVMs are not clear. In this paper we take into account the sparseness of 1-norm SVMs. Two upper bounds on the number of nonzero coefficients in the decision function of 1-norm SVMs are presented. First, the number of nonzero coefficients in 1-norm SVMs is at most equal to the number of only the exact support vectors lying on the +1 and -1 discriminating surfaces, while that in standard SVMs is equal to the number of support vectors, which implies that 1-norm SVMs have better sparseness than that of standard SVMs. Second, the number of nonzero coefficients is at most equal to the rank of the sample matrix. A brief review of the geometry of linear programming and the primal steepest edge pricing simplex method are given, which allows us to provide the proof of the two upper bounds and evaluate their tightness by experiments. Experimental results on toy data sets and the UCI data sets illustrate our analysis. Copyright 2009 Elsevier Ltd. All rights reserved.
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation.
Grossi, Giuliano; Lanzarotti, Raffaella; Lin, Jianyi
2017-01-01
In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD's robustness and wide applicability.
Discriminative object tracking via sparse representation and online dictionary learning.
Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua
2014-04-01
We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.
Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.
Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi
2016-01-01
The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.
Robust Methods for Sensing and Reconstructing Sparse Signals
ERIC Educational Resources Information Center
Carrillo, Rafael E.
2012-01-01
Compressed sensing (CS) is an emerging signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are…
Sparse feature fidelity for perceptual image quality assessment.
Chang, Hua-Wen; Yang, Hua; Gan, Yong; Wang, Ming-Hui
2013-10-01
The prediction of an image quality metric (IQM) should be consistent with subjective human evaluation. As the human visual system (HVS) is critical to visual perception, modeling of the HVS is regarded as the most suitable way to achieve perceptual quality predictions. Sparse coding that is equivalent to independent component analysis (ICA) can provide a very good description of the receptive fields of simple cells in the primary visual cortex, which is the most important part of the HVS. With this inspiration, a quality metric called sparse feature fidelity (SFF) is proposed for full-reference image quality assessment (IQA) on the basis of transformation of images into sparse representations in the primary visual cortex. The proposed method is based on the sparse features that are acquired by a feature detector, which is trained on samples of natural images by an ICA algorithm. In addition, two strategies are designed to simulate the properties of the visual perception: 1) visual attention and 2) visual threshold. The computation of SFF has two stages: training and fidelity computation, in addition, the fidelity computation consists of two components: feature similarity and luminance correlation. The feature similarity measures the structure differences between the two images, whereas the luminance correlation evaluates brightness distortions. SFF also reflects the chromatic properties of the HVS, and it is very effective for color IQA. The experimental results on five image databases show that SFF has a better performance in matching subjective ratings compared with the leading IQMs.
Medical Image Fusion Based on Feature Extraction and Sparse Representation
Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246
Optimized Color Filter Arrays for Sparse Representation Based Demosaicking.
Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian
2017-03-08
Demosaicking is the problem of reconstructing a color image from the raw image captured by a digital color camera that covers its only imaging sensor with a color filter array (CFA). Sparse representation based demosaicking has been shown to produce superior reconstruction quality. However, almost all existing algorithms in this category use the CFAs which are not specifically optimized for the algorithms. In this paper, we consider optimally designing CFAs for sparse representation based demosaicking, where the dictionary is well-chosen. The fact that CFAs correspond to the projection matrices used in compressed sensing inspires us to optimize CFAs via minimizing the mutual coherence. This is more challenging than that for traditional projection matrices because CFAs have physical realizability constraints. However, most of the existing methods for minimizing the mutual coherence require that the projection matrices should be unconstrained, making them inapplicable for designing CFAs. We consider directly minimizing the mutual coherence with the CFA's physical realizability constraints as a generalized fractional programming problem, which needs to find sufficiently accurate solutions to a sequence of nonconvex nonsmooth minimization problems. We adapt the redistributed proximal bundle method to address this issue. Experiments on benchmark images testify to the superiority of the proposed method. In particular, we show that a simple sparse representation based demosaicking algorithm with our specifically optimized CFA can outperform LSSC [1]. To the best of our knowledge, it is the first sparse representation based demosaicking algorithm that beats LSSC in terms of CPSNR.
Sparse Recovery Algorithms for Pilot Assisted MIMO OFDM Channel Estimation
NASA Astrophysics Data System (ADS)
Qi, Chenhao; Wu, Lenan
In this letter, the sparse recovery algorithm orthogonal matching pursuit (OMP) and subspace pursuit (SP) are applied for MIMO OFDM channel estimation. A new algorithm named SOMP is proposed, which combines the advantage of OMP and SP. Simulation results based on 3GPP spatial channel model (SCM) demonstrate that SOMP performs better than OMP and SP in terms of normalized mean square error (NMSE).
Two demonstrators and a simulator for a sparse, distributed memory
NASA Technical Reports Server (NTRS)
Brown, Robert L.
1987-01-01
Described are two programs demonstrating different aspects of Kanerva's Sparse, Distributed Memory (SDM). These programs run on Sun 3 workstations, one using color, and have straightforward graphically oriented user interfaces and graphical output. Presented are descriptions of the programs, how to use them, and what they show. Additionally, this paper describes the software simulator behind each program.
Sparse Representations for Three-Dimensional Range Data Restoration
2009-09-01
to images, in scanning 3D data occlusion or missing information can occur. We now investigate methods for fill- ing/ inpainting the holes in 3D shape...assuming the location of the holes is known.2 In [2], the problem of image inpainting is investigated using the sparse representations. Based on this
Sparse Representations for Three-Dimensional Range Data Restoration (Preprint)
2011-02-01
Similar to images, in scanning 3D data occlusion or missing infor- mation can occur. We now investigate methods for filling/ inpainting the holes in the 3D...range data, assuming the location of the holes is known.3 In [2], image inpainting was investigated using sparse models. Based on this work, we address
Spatiotemporal System Identification With Continuous Spatial Maps and Sparse Estimation.
Aram, Parham; Kadirkamanathan, Visakan; Anderson, Sean R
2015-11-01
We present a framework for the identification of spatiotemporal linear dynamical systems. We use a state-space model representation that has the following attributes: 1) the number of spatial observation locations are decoupled from the model order; 2) the model allows for spatial heterogeneity; 3) the model representation is continuous over space; and 4) the model parameters can be identified in a simple and sparse estimation procedure. The model identification procedure we propose has four steps: 1) decomposition of the continuous spatial field using a finite set of basis functions where spatial frequency analysis is used to determine basis function width and spacing, such that the main spatial frequency contents of the underlying field can be captured; 2) initialization of states in closed form; 3) initialization of state-transition and input matrix model parameters using sparse regression-the least absolute shrinkage and selection operator method; and 4) joint state and parameter estimation using an iterative Kalman-filter/sparse-regression algorithm. To investigate the performance of the proposed algorithm we use data generated by the Kuramoto model of spatiotemporal cortical dynamics. The identification algorithm performs successfully, predicting the spatiotemporal field with high accuracy, whilst the sparse regression leads to a compact model.
Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering
Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi
2016-01-01
The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children. PMID:27199650
Sparse representation of group-wise FMRI signals.
Lv, Jinglei; Li, Xiang; Zhu, Dajiang; Jiang, Xi; Zhang, Xin; Hu, Xintao; Zhang, Tuo; Guo, Lei; Liu, Tianming
2013-01-01
The human brain function involves complex processes with population codes of neuronal activities. Neuroscience research has demonstrated that when representing neuronal activities, sparsity is an important characterizing property. Inspired by this finding, significant amount of efforts from the scientific communities have been recently devoted to sparse representations of signals and patterns, and promising achievements have been made. However, sparse representation of fMRI signals, particularly at the population level of a group of different brains, has been rarely explored yet. In this paper, we present a novel group-wise sparse representation of task-based fMRI signals from multiple subjects via dictionary learning methods. Specifically, we extract and pool task-based fMRI signals for a set of cortical landmarks, each of which possesses intrinsic anatomical correspondence, from a group of subjects. Then an effective online dictionary learning algorithm is employed to learn an over-complete dictionary from the pooled population of fMRI signals based on optimally determined dictionary size. Our experiments have identified meaningful Atoms of Interests (AOI) in the learned dictionary, which correspond to consistent and meaningful functional responses of the brain to external stimulus. Our work demonstrated that sparse representation of group-wise fMRI signals is naturally suitable and effective in recovering population codes of neuronal signals conveyed in fMRI data.
Sparse-flowering orchardgrass is stable across temperate North America
USDA-ARS?s Scientific Manuscript database
Three sparse-flowering orchardgrass populations were developed by selective breeding as a mechanism to reduce stem production during the early spring season in management-intensive grazing systems. These populations and three check cultivars were evaluated under frequent- and infrequent-harvest syst...
Robust Methods for Sensing and Reconstructing Sparse Signals
ERIC Educational Resources Information Center
Carrillo, Rafael E.
2012-01-01
Compressed sensing (CS) is an emerging signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are…
Medical Image Fusion Based on Feature Extraction and Sparse Representation.
Fei, Yin; Wei, Gao; Zongxi, Song
2017-01-01
As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods.
Sparse matrix methods based on orthogonality and conjugacy
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1973-01-01
A matrix having a high percentage of zero elements is called spares. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices, significant saving of computer cost can be achieved by taking advantage of the sparsity. The conjugate gradient algorithm and a set of related algorithms are described.
Remote sensing image fusion via wavelet transform and sparse representation
NASA Astrophysics Data System (ADS)
Cheng, Jian; Liu, Haijun; Liu, Ting; Wang, Feng; Li, Hongsheng
2015-06-01
In this paper, we propose a remote sensing image fusion method which combines the wavelet transform and sparse representation to obtain fusion images with high spectral resolution and high spatial resolution. Firstly, intensity-hue-saturation (IHS) transform is applied to Multi-Spectral (MS) images. Then, wavelet transform is used to the intensity component of MS images and the Panchromatic (Pan) image to construct the multi-scale representation respectively. With the multi-scale representation, different fusion strategies are taken on the low-frequency and the high-frequency sub-images. Sparse representation with training dictionary is introduced into the low-frequency sub-image fusion. The fusion rule for the sparse representation coefficients of the low-frequency sub-images is defined by the spatial frequency maximum. For high-frequency sub-images with prolific detail information, the fusion rule is established by the images information fusion measurement indicator. Finally, the fused results are obtained through inverse wavelet transform and inverse IHS transform. The wavelet transform has the ability to extract the spectral information and the global spatial details from the original pairwise images, while sparse representation can extract the local structures of images effectively. Therefore, our proposed fusion method can well preserve the spectral information and the spatial detail information of the original images. The experimental results on the remote sensing images have demonstrated that our proposed method could well maintain the spectral characteristics of fusion images with a high spatial resolution.
Block sparse Cholesky algorithms on advanced uniprocessor computers
Ng, E.G.; Peyton, B.W.
1991-12-01
As with many other linear algebra algorithms, devising a portable implementation of sparse Cholesky factorization that performs well on the broad range of computer architectures currently available is a formidable challenge. Even after limiting our attention to machines with only one processor, as we have done in this report, there are still several interesting issues to consider. For dense matrices, it is well known that block factorization algorithms are the best means of achieving this goal. We take this approach for sparse factorization as well. This paper has two primary goals. First, we examine two sparse Cholesky factorization algorithms, the multifrontal method and a blocked left-looking sparse Cholesky method, in a systematic and consistent fashion, both to illustrate the strengths of the blocking techniques in general and to obtain a fair evaluation of the two approaches. Second, we assess the impact of various implementation techniques on time and storage efficiency, paying particularly close attention to the work-storage requirement of the two methods and their variants.
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
Grossi, Giuliano; Lin, Jianyi
2017-01-01
In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD’s robustness and wide applicability. PMID:28103283
Beam hardening correction for sparse-view CT reconstruction
NASA Astrophysics Data System (ADS)
Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing
2015-03-01
Beam hardening, which is caused by spectrum polychromatism of the X-ray beam, may result in various artifacts in the reconstructed image and degrade image quality. The artifacts would be further aggravated for the sparse-view reconstruction due to insufficient sampling data. Considering the advantages of the total-variation (TV) minimization in CT reconstruction with sparse-view data, in this paper, we propose a beam hardening correction method for sparse-view CT reconstruction based on Brabant's modeling. In this correction model for beam hardening, the attenuation coefficient of each voxel at the effective energy is modeled and estimated linearly, and can be applied in an iterative framework, such as simultaneous algebraic reconstruction technique (SART). By integrating the correction model into the forward projector of the algebraic reconstruction technique (ART), the TV minimization can recover images when only a limited number of projections are available. The proposed method does not need prior information about the beam spectrum. Preliminary validation using Monte Carlo simulations indicates that the proposed method can provide better reconstructed images from sparse-view projection data, with effective suppression of artifacts caused by beam hardening. With appropriate modeling of other degrading effects such as photon scattering, the proposed framework may provide a new way for low-dose CT imaging.
Profiles of California vegetation
William B. Critchfield
1971-01-01
This publication brings together 57 elevational profiles illustrating the dominant vegetation of much of the Sierra Nevada, southern Coast Ranges, and montane southern California as it existed in the 1930's. The profiles were drawn by Michael N. Dobrotin for the U.S. Forest Service's Vegetation Type Map survey, which mapped nearly half of the State's...
Soil and vegetation surveillance
Antonio, E.J.
1995-06-01
Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.
C. I. Millar
1996-01-01
The Tertiary period, from 2.5 to 65 million years ago, was the time oforigin of the modern Sierra Nevada landscape. Climates, geology,and vegetation changed drastically in the Sierra Nevada during thistime, and analyses of this period provide both context for and insightinto vegetation dynamics of the current and future Sierra. During theearly Tertiary, warm-humid,...
Marianne K. Burke; Sammy L. King; Mark H. Eisenbies; David Gartner
2000-01-01
Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in...
Modelling vegetated dune landscapes
NASA Astrophysics Data System (ADS)
Baas, A. C. W.; Nield, J. M.
2007-03-01
This letter presents a self-organising cellular automaton model capable of simulating the evolution of vegetated dunes with multiple types of plant response in the environment. It can successfully replicate hairpin, or long-walled, parabolic dunes with trailing ridges as well as nebkha dunes with distinctive deposition tails. Quantification of simulated landscapes with eco-geomorphic state variables and subsequent cluster analysis and PCA yields a phase diagram of different types of coastal dunes developing from blow-outs as a function of vegetation vitality. This diagram indicates the potential sensitivity of dormant dune fields to reactivation under declining vegetation vitality, e.g. due to climatic changes. Nebkha simulations with different grid resolutions demonstrate that the interaction between the (abiotic) geomorphic processes and the biological vegetation component (life) introduces a characteristic length scale on the resultant landforms that breaks the typical self-similar scaling of (un-vegetated) bare-sand dunes.
Deformable segmentation via sparse representation and dictionary learning.
Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N
2012-10-01
"Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy.
Neogene biomarker record of vegetation change in eastern Africa.
Uno, Kevin T; Polissar, Pratigya J; Jackson, Kevin E; deMenocal, Peter B
2016-06-07
The evolution of C4 grassland ecosystems in eastern Africa has been intensely studied because of the potential influence of vegetation on mammalian evolution, including that of our own lineage, hominins. Although a handful of sparse vegetation records exists from middle and early Miocene terrestrial fossil sites, there is no comprehensive record of vegetation through the Neogene. Here we present a vegetation record spanning the Neogene and Quaternary Periods that documents the appearance and subsequent expansion of C4 grasslands in eastern Africa. Carbon isotope ratios from terrestrial plant wax biomarkers deposited in marine sediments indicate constant C3 vegetation from ∼24 Ma to 10 Ma, when C4 grasses first appeared. From this time forward, C4 vegetation increases monotonically to present, with a coherent signal between marine core sites located in the Somali Basin and the Red Sea. The response of mammalian herbivores to the appearance of C4 grasses at 10 Ma is immediate, as evidenced from existing records of mammalian diets from isotopic analyses of tooth enamel. The expansion of C4 vegetation in eastern Africa is broadly mirrored by increasing proportions of C4-based foods in hominin diets, beginning at 3.8 Ma in Australopithecus and, slightly later, Kenyanthropus This continues into the late Pleistocene in Paranthropus, whereas Homo maintains a flexible diet. The biomarker vegetation record suggests the increase in open, C4 grassland ecosystems over the last 10 Ma may have operated as a selection pressure for traits and behaviors in Homo such as bipedalism, flexible diets, and complex social structure.
Neogene biomarker record of vegetation change in eastern Africa
Polissar, Pratigya J.; Jackson, Kevin E.; deMenocal, Peter B.
2016-01-01
The evolution of C4 grassland ecosystems in eastern Africa has been intensely studied because of the potential influence of vegetation on mammalian evolution, including that of our own lineage, hominins. Although a handful of sparse vegetation records exists from middle and early Miocene terrestrial fossil sites, there is no comprehensive record of vegetation through the Neogene. Here we present a vegetation record spanning the Neogene and Quaternary Periods that documents the appearance and subsequent expansion of C4 grasslands in eastern Africa. Carbon isotope ratios from terrestrial plant wax biomarkers deposited in marine sediments indicate constant C3 vegetation from ∼24 Ma to 10 Ma, when C4 grasses first appeared. From this time forward, C4 vegetation increases monotonically to present, with a coherent signal between marine core sites located in the Somali Basin and the Red Sea. The response of mammalian herbivores to the appearance of C4 grasses at 10 Ma is immediate, as evidenced from existing records of mammalian diets from isotopic analyses of tooth enamel. The expansion of C4 vegetation in eastern Africa is broadly mirrored by increasing proportions of C4-based foods in hominin diets, beginning at 3.8 Ma in Australopithecus and, slightly later, Kenyanthropus. This continues into the late Pleistocene in Paranthropus, whereas Homo maintains a flexible diet. The biomarker vegetation record suggests the increase in open, C4 grassland ecosystems over the last 10 Ma may have operated as a selection pressure for traits and behaviors in Homo such as bipedalism, flexible diets, and complex social structure. PMID:27274042
EFFECTS OF VEGETATION ON TURBULENCE, SEDIMENT TRANSPORT AND STREAM MORPHOLOGY
Neary, Vincent S
2012-01-01
Vegetation, from an individual stem to multiple stems in various configurations, profoundly alters turbulent flows. These alterations influence sediment transport and stream morphology, but depend on complex interactions and relationships between flow, plants and sediment properties. This is illustrated for three case studies that represent a variety of macrophyte patterns and scales in the environment: flows through simulated uniformly distributed plant stems, emergent and submerged; flows with alternating simulated stem patches; and flow around an isolated stem in a flood plain. The emergent case demonstrates that when density is sparse the mean velocity and turbulence intensities vary horizontally around the stems, which would promote a heterogeneous bedform morphology. However, it is still unclear how density, submergence ratio, and flow Reynolds number, in combination, influence interference effects, vortex shedding and dissipation, and velocity, pressure and lift fluctuations that affect sediment entrainment. The submerged case demonstrates significant reduction of the mean velocity, turbulence intensities, and turbulent shear near the bed compared to an unobstructed flow and supports numerous observations that vegetation promotes deposition or stabilizes bed sediments. The case of alternating emergent vegetation patches illustrates how vegetation adjusts the bed promoting scour in open water and deposition within the patches. The isolated stem case illustrates the variety of coherent structures generated, their complex interaction, and their role in specific sediment transport phenomena observed. Additional research is required, however, to quantify thresholds and relationships for flow-vegetation-sediment interactions so that aquatic macrophyte plantings can be used more effectively in water resource management.
Vegetation against dune mobility.
Durán, Orencio; Herrmann, Hans J
2006-11-03
Vegetation is the most common and most reliable stabilizer of loose soil or sand. This ancient technique is for the first time cast into a set of equations of motion describing the competition between aeolian sand transport and vegetation growth. Our set of equations is then applied to study quantitatively the transition between barchans and parabolic dunes driven by the dimensionless fixation index theta which is the ratio between the dune characteristic erosion rate and vegetation growth velocity. We find a fixation index theta(c) below which the dunes are stabilized, characterized by scaling laws.
Vegetable Production System (Veggie)
NASA Technical Reports Server (NTRS)
Levine, Howard G.; Smith, Trent M.
2016-01-01
The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.
Implementations and applications of the sparse Radon transform
NASA Astrophysics Data System (ADS)
Trad, Daniel Osvaldo
The Radon transform (RT) has many desirable properties which make it particularly useful for multiple removal and interpolation of seismic reflections. However many practical difficulties arise as a consequence of poor sampling and limited aperture in the offset dimension. Furthermore the ever increasing volumes of seismic data make computing time a key issue in any practical implementation. The standard implementations of the Radon transform used in seismic processing fulfill very well the requirement of a fast transform but do not allow proper handling of problems associated with sampling and aperture. Many of these difficulties can be partially solved by using inverse theory to compute the transform subject to a sparseness constraint. The main thrust and contribution of this thesis lies in the exploration of the sparseness constraint and the design and implementation of the RT. Although this technique reduces sampling and aperture problems, it also considerably increases the computation time. Some of the possible solutions to decrease computation time discussed in this thesis are conjugate gradient methods, irregularly sampled model space and efficient operations with sparse matrices. Real data often have very complicated structure that makes sparseness criteria difficult to implement. Noise, non hyperbolic events and amplitude variation with offset conspire against sparseness. Therefore, the success of this method depends on the applied algorithms and on a delicate balance between sparseness and fit of data. Several real data examples of multiple removal and interpolation show the success of the proposed algorithms to achieve this balance. Another aspect of this thesis is the design of new applications for the Radon transform in seismic processing. Many new applications can be developed by designing new types of Radon operators. Some new applications implemented in this thesis are elliptical and hybrid linear-hyperbolic Radon transforms that should prove to be
Disentangling giant component and finite cluster contributions in sparse random matrix spectra.
Kühn, Reimer
2016-04-01
We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.
ERIC Educational Resources Information Center
Piippo, Teuvo; Lihr, Silja
Since half of Finland is sparsely populated, the Finland National Board of Education has initiated a preschool project for sparsely populated areas. Project goals are defined as the acquisition through research, experiment, and planning of information relative to sparsely populated areas and special problems of distance, small population base,…
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.; Larson, Amy E.
2014-10-01
Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.
NASA Technical Reports Server (NTRS)
vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.
1994-01-01
A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.
Global Enhanced Vegetation Index
NASA Technical Reports Server (NTRS)
2002-01-01
By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona
... farro Wild rice Buckwheat Buckwheat flour Triticale Millet Quinoa Sorghum Do you have celiac disease? Check out ... and Starchy Vegetables Protein Foods What Can I Drink? Dairy Fruits donate en -- Make Your Donation Count - ...
... Vegetative State Legal Issues Sleeping Problems Anxiety & Stress Concussion / Mild TBI Living with Traumatic Brain Injury Speech & ... Conscious States After Severe Brain Injury Brain Trauma, Concussion, and Coma What Is the Glasgow Coma Scale? ...
Pudel, Frank; Wiesen, Sebastian
2017-03-07
Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.
Vegetative pyoderma gangrenosum.
Kim, Randie H; Lewin, Jesse; Hale, Christopher S; Meehan, Shane A; Stein, Jennifer; Ramachandran, Sarika
2014-12-16
Vegetative pyoderma gangrenosum is a rare, superficial variant of pyoderma gangrenosum that is more commonly found on the trunk as single or multiple, non-painful lesions. There is typically no associated underlying systemic disease. Compared to classic pyoderma gangrenosum, vegetative lesions are more likely to heal without the use of systemic glucocorticoids, although up to 39% of patients required a short course of prednisone in a review of 46 cases. Treatments for vegetative pyoderma gangrenosum include topical and intralesional glucocorticoids, minocycline or doxycycline, dapsone, colchicine, and, rarely, alternative steroid-sparing immunosuppressants. We present a case of multiple vegetative pyoderma gangrenosum lesions arising in prior surgical sites in a patient found to have IgA monoclonal gammopathy and abnormal urinary protein electrophoresis.
Global Enhanced Vegetation Index
NASA Technical Reports Server (NTRS)
2002-01-01
By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.
1981-01-01
An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.
Not Available
1982-01-01
Fifty contributions (presentations) involving more than one hundred people worldwide were given at the International Conference on Plant and Vegetable Oils as Fuels. The proceedings were in Fargo, North Dakota, from August 2-4, 1982. The conference helped to promote renewable fuels, bio-oils, from plant and vegetable oils. Separate abstracts were prepared for 44 items for inclusion in the Energy Data Base.
Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.
2000-01-01
Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).
Semi-blind sparse image reconstruction with application to MRFM.
Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O
2012-09-01
We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.
Sparse cortical source localization using spatio-temporal atoms.
Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie
2015-01-01
This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources.
Sparse representation-based spectral clustering for SAR image segmentation
NASA Astrophysics Data System (ADS)
Zhang, Xiangrong; Wei, Zhengli; Feng, Jie; Jiao, Licheng
2011-12-01
A new method, sparse representation based spectral clustering (SC) with Nyström method, is proposed for synthetic aperture radar (SAR) image segmentation. Different from the conventional SC, this proposed technique is developed by using the sparse coefficients which obtained by solving l1 minimization problem to construct the affinity matrix and the Nyström method is applied to alleviate the segmentation process. The advantage of our proposed method is that we do not need to select the scaling parameter in the Gaussian kernel function artificially. We apply the proposed method, k-means and the classic spectral clustering algorithm with Nyström method to SAR image segmentation. The results show that compared with the other two methods, the proposed method can obtain much better segmentation results.
Mineral identification in hyperspectral imaging using Sparse-PCA
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sojasi, Saeed; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin; Lalonde, Erik
2016-05-01
Hyperspectral imaging has been considerably developed during the recent decades. The application of hyperspectral imagery and infrared thermography, particularly for the automatic identification of minerals from satellite images, has been the subject of several interesting researches. In this study, a method is presented for the automated identification of the mineral grains typically used from satellite imagery and adapted for analyzing collected sample grains in a laboratory environment. For this, an approach involving Sparse Principle Components Analysis (SPCA) based on spectral abundance mapping techniques (i.e. SAM, SID, NormXCorr) is proposed for extraction of the representative spectral features. It develops an approximation of endmember as a reference spectrum process through the highest sparse principle component of the pure mineral grains. Subsequently, the features categorized by kernel Extreme Learning Machine (Kernel- ELM) classify and identify the mineral grains in a supervised manner. Classification is conducted in the binary scenario and the results indicate the dependency to the training spectra.
Multiple sclerosis lesion segmentation using dictionary learning and sparse coding.
Weiss, Nick; Rueckert, Daniel; Rao, Anil
2013-01-01
The segmentation of lesions in the brain during the development of Multiple Sclerosis is part of the diagnostic assessment for this disease and gives information on its current severity. This laborious process is still carried out in a manual or semiautomatic fashion by clinicians because published automatic approaches have not been universal enough to be widely employed in clinical practice. Thus Multiple Sclerosis lesion segmentation remains an open problem. In this paper we present a new unsupervised approach addressing this problem with dictionary learning and sparse coding methods. We show its general applicability to the problem of lesion segmentation by evaluating our approach on synthetic and clinical image data and comparing it to state-of-the-art methods. Furthermore the potential of using dictionary learning and sparse coding for such segmentation tasks is investigated and various possibilities for further experiments are discussed.
Estimation of Sparse Directed Acyclic Graphs for Multivariate Counts Data
Han, Sung Won; Zhong, Hua
2016-01-01
Summary The next-generation sequencing data, called high throughput sequencing data, are recorded as count data, which is generally far from normal distribution. Under the assumption that the count data follow the Poisson log-normal distribution, this paper provides an L1-penalized likelihood framework and an efficient search algorithm to estimate the structure of sparse directed acyclic graphs (DAGs) for multivariate counts data. In searching for the solution, we use iterative optimization procedures to estimate the adjacency matrix and the variance matrix of the latent variables. The simulation result shows that our proposed method outperforms the approach which assumes multivariate normal distributions, and the log-transformation approach. It also shows that the proposed method outperforms the rank-based PC method under sparse network or hub network structures. As a real data example, we demonstrate the efficiency of the proposed method in estimating the gene regulatory networks of the ovarian cancer study. PMID:26849781
Metasample-based sparse representation for tumor classification.
Zheng, Chun-Hou; Zhang, Lei; Ng, To-Yee; Shiu, Simon C K; Huang, De-Shuang
2011-01-01
A reliable and accurate identification of the type of tumors is crucial to the proper treatment of cancers. In recent years, it has been shown that sparse representation (SR) by l1-norm minimization is robust to noise, outliers and even incomplete measurements, and SR has been successfully used for classification. This paper presents a new SR-based method for tumor classification using gene expression data. A set of metasamples are extracted from the training samples, and then an input testing sample is represented as the linear combination of these metasamples by l1-regularized least square method. Classification is achieved by using a discriminating function defined on the representation coefficients. Since l1-norm minimization leads to a sparse solution, the proposed method is called metasample-based SR classification (MSRC). Extensive experiments on publicly available gene expression data sets show that MSRC is efficient for tumor classification, achieving higher accuracy than many existing representative schemes.
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies.
Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis
Andrzejewski, D M
2011-09-12
The Indian Buffet Process (IBP) gives a probabilistic model of sparse binary matrices with an unbounded number of columns. This construct can be used, for example, to model a fixed numer of observed data points (rows) associated with an unknown number of latent features (columns). Markov Chain Monte Carlo (MCMC) methods are often used for IBP inference, and in this technical note, we provide a detailed review of the derivations of collapsed and accelerated Gibbs samplers for the linear-Gaussian infinite latent feature model. We also discuss and explain update equations for hyperparameter resampling in a 'full Bayesian' treatment and present a novel slice sampler capable of extending the accelerated Gibbs sampler to the case of infinite sparse factor analysis by allowing the use of real-valued latent features.
Nucleotide sequence alignment using sparse coding and belief propagation.
Roozgard, Aminmohammad; Barzigar, Nafise; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Cheng, Samuel
2013-01-01
Advances in DNA information extraction techniques have led to huge sequenced genomes from organisms spanning the tree of life. This increasing amount of genomic information requires tools for comparison of the nucleotide sequences. In this paper, we propose a novel nucleotide sequence alignment method based on sparse coding and belief propagation to compare the similarity of the nucleotide sequences. We used the neighbors of each nucleotide as features, and then we employed sparse coding to find a set of candidate nucleotides. To select optimum matches, belief propagation was subsequently applied to these candidate nucleotides. Experimental results show that the proposed approach is able to robustly align nucleotide sequences and is competitive to SOAPaligner [1] and BWA [2].
Sparse matrix methods research using the CSM testbed software system
NASA Technical Reports Server (NTRS)
Chu, Eleanor; George, J. Alan
1989-01-01
Research is described on sparse matrix techniques for the Computational Structural Mechanics (CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A suite of subroutines to extract from the data base the relevant structural and numerical information about the matrix equations was written, and all the demonstration problems distributed with the testbed were successfully solved. These codes were documented, and performance studies comparing the SPARSPAK technology to the methods currently in the testbed were completed. In addition, some preliminary studies were done comparing some recently developed out-of-core techniques with the performance of the testbed processor INV.
Partial Correlation Estimation by Joint Sparse Regression Models
Peng, Jie; Wang, Pei; Zhou, Nengfeng; Zhu, Ji
2009-01-01
In this paper, we propose a computationally efficient approach —space(Sparse PArtial Correlation Estimation)— for selecting non-zero partial correlations under the high-dimension-low-sample-size setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simulation studies. It is shown that space performs well in both non-zero partial correlation selection and the identification of hub variables, and also outperforms two existing methods. We then apply space to a microarray breast cancer data set and identify a set of hub genes which may provide important insights on genetic regulatory networks. Finally, we prove that, under a set of suitable assumptions, the proposed procedure is asymptotically consistent in terms of model selection and parameter estimation. PMID:19881892
Universal regularizers for robust sparse coding and modeling.
Ramírez, Ignacio; Sapiro, Guillermo
2012-09-01
Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. Based on a codelength minimization interpretation of sparse coding, and using tools from universal coding theory, we propose a framework for designing sparsity regularization terms which have theoretical and practical advantages when compared with the more standard l(0) or l(1) ones. The presentation of the framework and theoretical foundations is complemented with examples that show its practical advantages in image denoising, zooming and classification.
Color Sparse Representations for Image Processing: Review, Models, and Prospects.
Barthélemy, Quentin; Larue, Anthony; Mars, Jérôme I
2015-11-01
Sparse representations have been extended to deal with color images composed of three channels. A review of dictionary-learning-based sparse representations for color images is made here, detailing the differences between the models, and comparing their results on the real and simulated data. These models are considered in a unifying framework that is based on the degrees of freedom of the linear filtering/transformation of the color channels. Moreover, this allows it to be shown that the scalar quaternionic linear model is equivalent to constrained matrix-based color filtering, which highlights the filtering implicitly applied through this model. Based on this reformulation, the new color filtering model is introduced, using unconstrained filters. In this model, spatial morphologies of color images are encoded by atoms, and colors are encoded by color filters. Color variability is no longer captured in increasing the dictionary size, but with color filters, this gives an efficient color representation.
Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids
Stoyanov, Miroslav K
2013-09-01
We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse grids points and functions that are induced from a one dimensional hierarchical rule via tensor products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides a more complex structure that allows for various anisotropic and hierarchy selective refinement techniques. We consider the more advanced refinement techniques and apply them to a number of simple test functions chosen to demonstrate the various advantages and disadvantages of each method. While there is no refinement scheme that is optimal for all functions, the fully adaptive family-direction-selective technique is usually more stable and requires fewer samples.
Sparse model selection in the highly under-sampled regime
NASA Astrophysics Data System (ADS)
Bulso, Nicola; Marsili, Matteo; Roudi, Yasser
2016-09-01
We propose a method for recovering the structure of a sparse undirected graphical model when very few samples are available. The method decides about the presence or absence of bonds between pairs of variable by considering one pair at a time and using a closed form formula, analytically derived by calculating the posterior probability for every possible model explaining a two body system using Jeffreys prior. The approach does not rely on the optimization of any cost functions and consequently is much faster than existing algorithms. Despite this time and computational advantage, numerical results show that for several sparse topologies the algorithm is comparable to the best existing algorithms, and is more accurate in the presence of hidden variables. We apply this approach to the analysis of US stock market data and to neural data, in order to show its efficiency in recovering robust statistical dependencies in real data with non-stationary correlations in time and/or space.
Bessler, T.R.
1986-05-13
A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.
Aranceta, Javier
2004-06-01
Fruits and vegetables are particularly interesting for health for their content in minerals, antioxidant vitamins, phytochemicals and dietary fiber. All these substances are related to lower risk for the development of health probems, such as certain types of cancer, cardiovascular diseases, type 2 diabetes, obesity, constipation or diverticolsys. The sound basis of scientific evidence led European and American scientific organizations and societies to recommend an intake up to 150-200 g of vegetables every day; ie. 2 or more portions daily and 3 or more portions of fruit; five portions of fruit and vegetables all together. According to the consumer panel from the Spanish Ministry of Agriculture, Fisheries and Food, between the late 80s and the end of the 90s. consumption of fruit and vegetables decreased. However, in late years this trend has slow down and even reversed. Results from food consumption studies based on individual level assessment in Spain estimate an average consumption of fruit and vegetables of 154 g/per person/day in adults aged 25-60 yr. Prevalence of inadequate intake of fruit and vegetables is high among children and young people. In this age group above 70% of the population consume less than 3 portions of fruit every day on average. Reorientation of prevailing food patterns nowadays require investment in measures aimed at increasing the consumption of plant foods and estimulate healthy food habits in families.
Eddy-current NDE inverse problem with sparse grid algorithm
NASA Astrophysics Data System (ADS)
Zhou, Liming; Sabbagh, Harold A.; Sabbagh, Elias H.; Murphy, R. Kim; Bernacchi, William; Aldrin, John C.; Forsyth, David; Lindgren, Eric
2016-02-01
In model-based inverse problems, the unknown parameters (such as length, width, depth) need to be estimated. When the unknown parameters are few, the conventional mathematical methods are suitable. But the increasing number of unknown parameters will make the computation become heavy. To reduce the burden of computation, the sparse grid algorithm was used in our work. As a result, we obtain a powerful interpolation method that requires significantly fewer support nodes than conventional interpolation on a full grid.
Color normalization of histology slides using graph regularized sparse NMF
NASA Astrophysics Data System (ADS)
Sha, Lingdao; Schonfeld, Dan; Sethi, Amit
2017-03-01
Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The
A multi-level method for sparse linear systems
Shapira, Y.
1997-09-01
A multi-level method for the solution of sparse linear systems is introduced. The definition of the method is based on data from the coefficient matrix alone. An upper bound for the condition number is available for certain symmetric positive definite (SPD) problems. Numerical experiments confirm the analysis and illustrate the efficiency of the method for diffusion problems with discontinuous coefficients with discontinuities which are not aligned with the coarse meshes.
Sparse Distributed Representation and Hierarchy: Keys to Scalable Machine Intelligence
2016-04-01
AFRL-RY-WP-TR-2016-0030 SPARSE DISTRIBUTED REPRESENTATION & HIERARCHY: KEYS TO SCALABLE MACHINE INTELLIGENCE Gerard (Rod) Rinkus, Greg...REPRESENTATION & HIERARCHY: KEYS TO SCALABLE MACHINE INTELLIGENCE 5a. CONTRACT NUMBER FA8650-13-C-7342 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...classification accuracy on the Weizmann data set, accomplished with 3.5 minutes training time, with no machine parallelism and almost no software
Learning Multiscale Sparse Representations for Image and Video Restoration (PREPRINT)
2007-07-01
video denoising [35]. In this paper, we extend the basic K- SVD work, providing a framework for learning multiscale and sparse image representation. In... denoising algorithm [1], the extensions to color image denoising , non-homogeneous noise, and inpainting [25], and the K- SVD for denoising videos [35]. Section...improvements to the original single-scale K- SVD . Section 6 presents some applications of the multiscale K- SVD , covering grayscale and color image denoising
Sparse Coding and Dictionary Learning Based on the MDL Principle
2010-10-01
dependencies, in a natural way. We demonstrate the performance of the proposed framework with results for image denoising and classification tasks...The idea of using MDL for sparse signal coding was explored in the context of wavelet-based image denoising [6, 7]. These pioneer- ing works were...restricted to denoising using fixed orthonormal basis (wavelets). In addition, the underlying probabilistic models used to describe the transform
Joint Sparse Representation for Robust Multimodal Biometrics Recognition
2014-01-01
Effect of quality on recognition performance across (a) noise (b) random blocks. [13] S. Kim , A. Magnani, and S. Boyd, “Optimal kernel selection in kernel...A. Ganesh, S. S. Sastry , and Y. Ma, “Robust face recognition via sparse representation,” IEEE Transactions on Pattern Analysis and Machine...variable lighting and pose,” IEEE Transac- tions on Information Forensics and Security, vol. 7, pp. 954–965, June 2012 . [20] Q. Zhang and B. Li
Example-Based Image Colorization Using Locality Consistent Sparse Representation.
Li, Bo; Zhao, Fuchen; Su, Zhuo; Liang, Xiangguo; Lai, Yu-Kun; Rosin, Paul L
2017-11-01
Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
Spatially Sparse, Temporally Smooth MEG Via Vector ℓ0 .
Cassidy, Ben; Solo, Victor
2015-06-01
In this paper, we describe a new method for solving the magnetoencephalography inverse problem: temporal vector ℓ0-penalized least squares (TV-L0LS). The method calculates maximally sparse current dipole magnitudes and directions via spatial ℓ0 regularization on a cortically-distributed source grid, while constraining the solution to be smooth with respect to time. We demonstrate the utility of this method on real and simulated data by comparison to existing methods.
A Study of Filled and Sparse Line Array Beamformers.
1980-09-01
RESOLUTION TESI CHART NAIII NAt RItRI Al SI 1TANT ART 1161 A - LEVEL($ 0met 0o 1 A STUDY OF FILLED AND SPARSE LINE ARRAY BEAMFORMERS y! C- I L1 0___...8217 deviennent importantes . L’auteur d~montre que le PSB posse~de des avantages par rapport au CB pour produire le diagraune de directiviteA. Toutefois
Informative Feature Selection for Object Recognition via Sparse PCA
2011-04-07
the BMW database [17] are used for training. For each image pair in SfM, SURF features are deemed informative if the consensus of the corresponding...observe that the first two sparse PVs are sufficient for selecting in- formative features that lie on the foreground objects in the BMW database (as... BMW ) database [17]. The database consists of multiple-view images of 20 landmark buildings on the Berkeley campus. For each building, wide-baseline
Reconstruction techniques for sparse multistatic linear array microwave imaging
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.
2014-06-01
Sequentially-switched linear arrays are an enabling technology for a number of near-field microwave imaging applications. Electronically sequencing along the array axis followed by mechanical scanning along an orthogonal axis allows dense sampling of a two-dimensional aperture in near real-time. The Pacific Northwest National Laboratory (PNNL) has developed this technology for several applications including concealed weapon detection, groundpenetrating radar, and non-destructive inspection and evaluation. These techniques form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images. Recently, a sparse multi-static array technology has been developed that reduces the number of antennas required to densely sample the linear array axis of the spatial aperture. This allows a significant reduction in cost and complexity of the linear-array-based imaging system. The sparse array has been specifically designed to be compatible with Fourier-Transform-based image reconstruction techniques; however, there are limitations to the use of these techniques, especially for extreme near-field operation. In the extreme near-field of the array, back-projection techniques have been developed that account for the exact location of each transmitter and receiver in the linear array and the 3-D image location. In this paper, the sparse array technique will be described along with associated Fourier-Transform-based and back-projection-based image reconstruction algorithms. Simulated imaging results are presented that show the effectiveness of the sparse array technique along with the merits and weaknesses of each image reconstruction approach.
Mathematical strategies for filtering complex systems: Regularly spaced sparse observations
Harlim, J. Majda, A.J.
2008-05-01
Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here.
Sparse repulsive coupling enhances synchronization in complex networks.
Leyva, I; Sendiña-Nadal, I; Almendral, J A; Sanjuán, M A F
2006-11-01
Through the last years, different strategies to enhance synchronization in complex networks have been proposed. In this work, we show that synchronization of nonidentical dynamical units that are attractively coupled in a small-world network is strongly improved by just making phase-repulsive a tiny fraction of the couplings. By a purely topological analysis that does not depend on the dynamical model, we link the emerging dynamical behavior with the structural properties of the sparsely coupled repulsive network.
A Computing Platform for Parallel Sparse Matrix Computations
2016-01-05
infiniband. Each node contains 24 cores. This parallel computing platform has been used by my research group in the early stages of developing large...sparse linear system and symmetric eigenvalue problem solvers (ARO grant W911NF-07-R-0003-04) that are suitable for parallel architectures containing...hundreds of multicore nodes (thousands of cores). Once our parallel solvers obtain the correct solutions, and perform properly on this 8-node platform
Efficient MATLAB computations with sparse and factored tensors.
Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)
2006-12-01
In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.
Sparse principal component analysis by choice of norm.
Qi, Xin; Luo, Ruiyan; Zhao, Hongyu
2013-02-01
Recent years have seen the developments of several methods for sparse principal component analysis due to its importance in the analysis of high dimensional data. Despite the demonstration of their usefulness in practical applications, they are limited in terms of lack of orthogonality in the loadings (coefficients) of different principal components, the existence of correlation in the principal components, the expensive computation needed, and the lack of theoretical results such as consistency in high-dimensional situations. In this paper, we propose a new sparse principal component analysis method by introducing a new norm to replace the usual norm in traditional eigenvalue problems, and propose an efficient iterative algorithm to solve the optimization problems. With this method, we can efficiently obtain uncorrelated principal components or orthogonal loadings, and achieve the goal of explaining a high percentage of variations with sparse linear combinations. Due to the strict convexity of the new norm, we can prove the convergence of the iterative method and provide the detailed characterization of the limits. We also prove that the obtained principal component is consistent for a single component model in high dimensional situations. As illustration, we apply this method to real gene expression data with competitive results.
Craniofacial similarity analysis through sparse principal component analysis
Zhao, Junli; Wu, Zhongke; Li, Jinhua; Deng, Qingqiong; Li, Xiaona; Zhou, Mingquan
2017-01-01
The computer-aided craniofacial reconstruction (CFR) technique has been widely used in the fields of criminal investigation, archaeology, anthropology and cosmetic surgery. The evaluation of craniofacial reconstruction results is important for improving the effect of craniofacial reconstruction. Here, we used the sparse principal component analysis (SPCA) method to evaluate the similarity between two sets of craniofacial data. Compared with principal component analysis (PCA), SPCA can effectively reduce the dimensionality and simultaneously produce sparse principal components with sparse loadings, thus making it easy to explain the results. The experimental results indicated that the evaluation results of PCA and SPCA are consistent to a large extent. To compare the inconsistent results, we performed a subjective test, which indicated that the result of SPCA is superior to that of PCA. Most importantly, SPCA can not only compare the similarity of two craniofacial datasets but also locate regions of high similarity, which is important for improving the craniofacial reconstruction effect. In addition, the areas or features that are important for craniofacial similarity measurements can be determined from a large amount of data. We conclude that the craniofacial contour is the most important factor in craniofacial similarity evaluation. This conclusion is consistent with the conclusions of psychological experiments on face recognition and our subjective test. The results may provide important guidance for three- or two-dimensional face similarity evaluation, analysis and face recognition. PMID:28640836
Craniofacial similarity analysis through sparse principal component analysis.
Zhao, Junli; Duan, Fuqing; Pan, Zhenkuan; Wu, Zhongke; Li, Jinhua; Deng, Qingqiong; Li, Xiaona; Zhou, Mingquan
2017-01-01
The computer-aided craniofacial reconstruction (CFR) technique has been widely used in the fields of criminal investigation, archaeology, anthropology and cosmetic surgery. The evaluation of craniofacial reconstruction results is important for improving the effect of craniofacial reconstruction. Here, we used the sparse principal component analysis (SPCA) method to evaluate the similarity between two sets of craniofacial data. Compared with principal component analysis (PCA), SPCA can effectively reduce the dimensionality and simultaneously produce sparse principal components with sparse loadings, thus making it easy to explain the results. The experimental results indicated that the evaluation results of PCA and SPCA are consistent to a large extent. To compare the inconsistent results, we performed a subjective test, which indicated that the result of SPCA is superior to that of PCA. Most importantly, SPCA can not only compare the similarity of two craniofacial datasets but also locate regions of high similarity, which is important for improving the craniofacial reconstruction effect. In addition, the areas or features that are important for craniofacial similarity measurements can be determined from a large amount of data. We conclude that the craniofacial contour is the most important factor in craniofacial similarity evaluation. This conclusion is consistent with the conclusions of psychological experiments on face recognition and our subjective test. The results may provide important guidance for three- or two-dimensional face similarity evaluation, analysis and face recognition.
Scalable Library for the Parallel Solution of Sparse Linear Systems
Jones, Mark; Plassmann, Paul E.
1993-07-14
BlockSolve is a scalable parallel software library for the solution of large sparse, symmetric systems of linear equations. It runs on a variety of parallel architectures and can easily be ported to others. BlockSovle is primarily intended for the solution of sparse linear systems that arise from physical problems having multiple degrees of freedom at each node point. For example, when the finite element method is used to solve practical problems in structural engineering, each node will typically have anywhere from 3-6 degrees of freedom associated with it. BlockSolve is written to take advantage of problems of this nature; however, it is still reasonably efficient for problems that have only one degree of freedom associated with each node, such as the three-dimensional Poisson problem. It does not require that the matrices have any particular structure other than being sparse and symmetric. BlockSolve is intended to be used within real application codes. It is designed to work best in the context of our experience which indicated that most application codes solve the same linear systems with several different right-hand sides and/or linear systems with the same structure, but different matrix values multiple times.
Epileptic EEG classification based on kernel sparse representation.
Yuan, Qi; Zhou, Weidong; Yuan, Shasha; Li, Xueli; Wang, Jiwen; Jia, Guijuan
2014-06-01
The automatic identification of epileptic EEG signals is significant in both relieving heavy workload of visual inspection of EEG recordings and treatment of epilepsy. This paper presents a novel method based on the theory of sparse representation to identify epileptic EEGs. At first, the raw EEG epochs are preprocessed via Gaussian low pass filtering and differential operation. Then, in the scheme of sparse representation based classification (SRC), a test EEG sample is sparsely represented on the training set by solving l1-minimization problem, and the represented residuals associated with ictal and interictal training samples are computed. The test EEG sample is categorized as the class that yields the minimum represented residual. So unlike the conventional EEG classification methods, the choice and calculation of EEG features are avoided in the proposed framework. Moreover, the kernel trick is employed to generate a kernel version of the SRC method for improving the separability between ictal and interictal classes. The satisfactory recognition accuracy of 98.63% for ictal and interictal EEG classification and for ictal and normal EEG classification has been achieved by the kernel SRC. In addition, the fast speed makes the kernel SRC suit for the real-time seizure monitoring application in the near future.
Medical image registration using sparse coding of image patches.
Afzali, Maryam; Ghaffari, Aboozar; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid
2016-06-01
Image registration is a basic task in medical image processing applications like group analysis and atlas construction. Similarity measure is a critical ingredient of image registration. Intensity distortion of medical images is not considered in most previous similarity measures. Therefore, in the presence of bias field distortions, they do not generate an acceptable registration. In this paper, we propose a sparse based similarity measure for mono-modal images that considers non-stationary intensity and spatially-varying distortions. The main idea behind this measure is that the aligned image is constructed by an analysis dictionary trained using the image patches. For this purpose, we use "Analysis K-SVD" to train the dictionary and find the sparse coefficients. We utilize image patches to construct the analysis dictionary and then we employ the proposed sparse similarity measure to find a non-rigid transformation using free form deformation (FFD). Experimental results show that the proposed approach is able to robustly register 2D and 3D images in both simulated and real cases. The proposed method outperforms other state-of-the-art similarity measures and decreases the transformation error compared to the previous methods. Even in the presence of bias field distortion, the proposed method aligns images without any preprocessing.
Robust Reconstruction of Complex Networks from Sparse Data
NASA Astrophysics Data System (ADS)
Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Di, Zengru
2015-01-01
Reconstructing complex networks from measurable data is a fundamental problem for understanding and controlling collective dynamics of complex networked systems. However, a significant challenge arises when we attempt to decode structural information hidden in limited amounts of data accompanied by noise and in the presence of inaccessible nodes. Here, we develop a general framework for robust reconstruction of complex networks from sparse and noisy data. Specifically, we decompose the task of reconstructing the whole network into recovering local structures centered at each node. Thus, the natural sparsity of complex networks ensures a conversion from the local structure reconstruction into a sparse signal reconstruction problem that can be addressed by using the lasso, a convex optimization method. We apply our method to evolutionary games, transportation, and communication processes taking place in a variety of model and real complex networks, finding that universal high reconstruction accuracy can be achieved from sparse data in spite of noise in time series and missing data of partial nodes. Our approach opens new routes to the network reconstruction problem and has potential applications in a wide range of fields.
Sparse matrix-vector multiplication on a reconfigurable supercomputer
Dubois, David H; Dubois, Andrew J; Boorman, Thomas M; Connor, Carolyn M; Poole, Steve
2008-01-01
Double precision floating point Sparse Matrix-Vector Multiplication (SMVM) is a critical computational kernel used in iterative solvers for systems of sparse linear equations. The poor data locality exhibited by sparse matrices along with the high memory bandwidth requirements of SMVM result in poor performance on general purpose processors. Field Programmable Gate Arrays (FPGAs) offer a possible alternative with their customizable and application-targeted memory sub-system and processing elements. In this work we investigate two separate implementations of the SMVM on an SRC-6 MAPStation workstation. The first implementation investigates the peak performance capability, while the second implementation balances the amount of instantiated logic with the available sustained bandwidth of the FPGA subsystem. Both implementations yield the same sustained performance with the second producing a much more efficient solution. The metrics of processor and application balance are introduced to help provide some insight into the efficiencies of the FPGA and CPU based solutions explicitly showing the tight coupling of the available bandwidth to peak floating point performance. Due to the FPGA's ability to balance the amount of implemented logic to the available memory bandwidth it can provide a much more efficient solution. Finally, making use of the lessons learned implementing the SMVM, we present an fully implemented nonpreconditioned Conjugate Gradient Algorithm utilizing the second SMVM design.
Clutter Mitigation in Echocardiography Using Sparse Signal Separation
Turek, Javier S.; Elad, Michael; Yavneh, Irad
2015-01-01
In ultrasound imaging, clutter artifacts degrade images and may cause inaccurate diagnosis. In this paper, we apply a method called Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The MCA approach assumes that the two signals in the additive mix have each a sparse representation under some dictionary of atoms (a matrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-) based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower impact on tissue sections while removing the clutter artifacts. In experimental heart data, MCA obtains in our experiments clutter mitigation with an average CNR improvement of 1.33 dB. PMID:26199622
Compressed Sensing Doppler Ultrasound Reconstruction Using Block Sparse Bayesian Learning.
Lorintiu, Oana; Liebgott, Herve; Friboulet, Denis
2016-04-01
In this paper we propose a framework for using duplex Doppler ultrasound systems. These type of systems need to interleave the acquisition and display of a B-mode image and of the pulsed Doppler spectrogram. In a recent study (Richy , 2013), we have shown that compressed sensing-based reconstruction of Doppler signal allowed reducing the number of Doppler emissions and yielded better results than traditional interpolation and at least equivalent or even better depending on the configuration than the study estimating the signal from sparse data sets given in Jensen, 2006. We propose here to improve over this study by using a novel framework for randomly interleaving Doppler and US emissions. The proposed method reconstructs the Doppler signal segment by segment using a block sparse Bayesian learning (BSBL) algorithm based CS reconstruction. The interest of using such framework in the context of duplex Doppler is linked to the unique ability of BSBL to exploit block-correlated signals and to recover non-sparse signals. The performance of the technique is evaluated from simulated data as well as experimental in vivo data and compared to the recent results in Richy , 2013.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ (d) , and the dictionary is learned from the training data using the vector space structure of ℝ (d) and its Euclidean L(2)-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.
Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification.
Spilka, Jiri; Frecon, Jordan; Leonarduzzi, Roberto; Pustelnik, Nelly; Abry, Patrice; Doret, Muriel
2016-03-24
Fetal Heart Rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes Sparse Support Vector Machine (SVM) classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level 0, and variability H) receive simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-theart performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Detail-preserving controllable deformation from sparse examples.
Huang, Haoda; Yin, KangKang; Zhao, Ling; Qi, Yue; Yu, Yizhou; Tong, Xin
2012-08-01
Recent advances in laser scanning technology have made it possible to faithfully scan a real object with tiny geometric details, such as pores and wrinkles. However, a faithful digital model should not only capture static details of the real counterpart but also be able to reproduce the deformed versions of such details. In this paper, we develop a data-driven model that has two components; the first accommodates smooth large-scale deformations and the second captures high-resolution details. Large-scale deformations are based on a nonlinear mapping between sparse control points and bone transformations. A global mapping, however, would fail to synthesize realistic geometries from sparse examples, for highly deformable models with a large range of motion. The key is to train a collection of mappings defined over regions locally in both the geometry and the pose space. Deformable fine-scale details are generated from a second nonlinear mapping between the control points and per-vertex displacements. We apply our modeling scheme to scanned human hand models, scanned face models, face models reconstructed from multiview video sequences, and manually constructed dinosaur models. Experiments show that our deformation models, learned from extremely sparse training data, are effective and robust in synthesizing highly deformable models with rich fine features, for keyframe animation as well as performance-driven animation. We also compare our results with those obtained by alternative techniques.
Sparse codes of harmonic natural sounds and their modulatory interactions.
Terashima, Hiroki; Hosoya, Haruo
2009-01-01
Sparse coding and its related theories have been successful to explain various response properties of early stages of sensory information processing such as primary visual cortex and peripheral auditory system, which suggests that the emergence of such properties results from adaptation of the nerve system to natural stimuli. The present study continues this line of research in a higher stage of auditory processing, focusing on harmonic structures that are often found in behaviourally important natural sound like animal vocalization. It has been physiologically shown that monkey primary auditory cortices (A1) have neurons with response properties capturing such harmonic structures: their response and modulation peaks are often found at frequencies that are harmonically related to each other. We hypothesize that such relations emerge from sparse coding of harmonic natural sounds. Our simulation shows that similar harmonic relations emerge from frequency-domain sparse codes of harmonic sounds, namely, piano performance and human speech. Moreover, the modulatory behaviours can be explained by competitive interactions of model neurons that capture partially common harmonic structures.
Inversion of magnetotelluric data in a sparse model domain
NASA Astrophysics Data System (ADS)
Nittinger, Christian G.; Becken, Michael
2016-08-01
The inversion of magnetotelluric data into subsurface electrical conductivity poses an ill-posed problem. Smoothing constraints are widely employed to estimate a regularized solution. Here, we present an alternative inversion scheme that estimates a sparse representation of the model in a wavelet basis. The objective of the inversion is to determine the few non-zero wavelet coefficients which are required to fit the data. This approach falls into the class of sparsity constrained inversion schemes and minimizes the combination of the data misfit in a least-squares ℓ2 sense and of a model coefficient norm in an ℓ1 sense (ℓ2-ℓ1 minimization). The ℓ1 coefficient norm renders the solution sparse in a suitable representation such as the multiresolution wavelet basis, but does not impose explicit structural penalties on the model as it is the case for ℓ2 regularization. The presented numerical algorithm solves the mixed ℓ2-ℓ1 norm minimization problem for the nonlinear magnetotelluric inverse problem. We demonstrate the feasibility of our algorithm on synthetic 2-D MT data as well as on a real data example. We found that sparse models can be estimated by inversion and that the spatial distribution of non-vanishing coefficients indicates regions in the model which are resolved.
Robust visual tracking via multiscale deep sparse networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo
2017-04-01
In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.
Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways
Farkhooi, Farzad; Froese, Anja; Muller, Eilif; Menzel, Randolf; Nawrot, Martin P.
2013-01-01
Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture. PMID:24098101
Extracting pure endmembers using symmetric sparse representation for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Liu, Chun; Sun, Yanwei; Li, Weiyue; Li, Jialin
2016-10-01
This article proposes a symmetric sparse representation (SSR) method to extract pure endmembers from hyperspectral imagery (HSI). The SSR combines the features of the linear unmixing model and the sparse subspace clustering model of endmembers, and it assumes that the desired endmembers and all the HSI pixel points can be sparsely represented by each other. It formulates the endmember extraction problem into a famous program of archetypal analysis, and accordingly, extracting pure endmembers can be transformed as finding the archetypes in the minimal convex hull containing all the HSI pixel points. The vector quantization scheme is adopted to help in carefully choosing the initial pure endmembers, and the archetypal analysis program is solved using the simple projected gradient algorithm. Seven state-of-the-art methods are implemented to make comparisons with the SSR on both synthetic and real hyperspectral images. Experimental results show that the SSR outperforms all the seven methods in spectral angle distance and root-mean-square error, and it can be a good alternative choice for extracting pure endmembers from HSI data.
Vigilance detection based on sparse representation of EEG.
Yu, Hongbin; Lu, Hongtao; Ouyang, Tian; Liu, Hongjun; Lu, Bao-Liang
2010-01-01
Electroencephalogram (EEG) based vigilance detection of those people who engage in long time attention demanding tasks such as monotonous monitoring or driving is a key field in the research of brain-computer interface (BCI). However, robust detection of human vigilance from EEG is very difficult due to the low SNR nature of EEG signals. Recently, compressive sensing and sparse representation become successful tools in the fields of signal reconstruction and machine learning. In this paper, we propose to use the sparse representation of EEG to the vigilance detection problem. We first use continuous wavelet transform to extract the rhythm features of EEG data, and then employ the sparse representation method to the wavelet transform coefficients. We collect five subjects' EEG recordings in a simulation driving environment and apply the proposed method to detect the vigilance of the subjects. The experimental results show that the algorithm framework proposed in this paper can successfully estimate driver's vigilance with the average accuracy about 94.22 %. We also compare our algorithm framework with other vigilance estimation methods using different feature extraction and classifier selection approaches, the result shows that the proposed method has obvious advantages in the classification accuracy.
Compressive Sensing Based Design of Sparse Tripole Arrays
Hawes, Matthew; Liu, Wei; Mihaylova, Lyudmila
2015-01-01
This paper considers the problem of designing sparse linear tripole arrays. In such arrays at each antenna location there are three orthogonal dipoles, allowing full measurement of both the horizontal and vertical components of the received waveform. We formulate this problem from the viewpoint of Compressive Sensing (CS). However, unlike for isotropic array elements (single antenna), we now have three complex valued weight coefficients associated with each potential location (due to the three dipoles), which have to be simultaneously minimised. If this is not done, we may only set the weight coefficients of individual dipoles to be zero valued, rather than complete tripoles, meaning some dipoles may remain at each location. Therefore, the contributions of this paper are to formulate the design of sparse tripole arrays as an optimisation problem, and then we obtain a solution based on the minimisation of a modified l1 norm or a series of iteratively solved reweighted minimisations, which ensure a truly sparse solution. Design examples are provided to verify the effectiveness of the proposed methods and show that a good approximation of a reference pattern can be achieved using fewer tripoles than a Uniform Linear Array (ULA) of equivalent length. PMID:26690436
A comparison of methods for representing sparsely sampled random quantities.
Romero, Vicente Jose; Swiler, Laura Painton; Urbina, Angel; Mullins, Joshua
2013-09-01
This report discusses the treatment of uncertainties stemming from relatively few samples of random quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse data samples it is not practical to have a goal of accurately estimating the underlying probability density function (PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a specified percentile range of the actual PDF, say the range between 0.025 and .975 percentiles, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the desired percentile range of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem interesting and difficult. In this report, five uncertainty representation techniques are characterized for their performance on twenty-one test problems (over thousands of trials for each problem) according to these two opposing objectives and other performance measures. Two of the methods, statistical Tolerance Intervals and a kernel density approach specifically developed for handling sparse data, exhibit significantly better overall performance than the others.
Finger vein verification system based on sparse representation.
Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong
2012-09-01
Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.
Predicting cognitive data from medical images using sparse linear regression.
Kandel, Benjamin M; Wolk, David A; Gee, James C; Avants, Brian
2013-01-01
We present a new framework for predicting cognitive or other continuous-variable data from medical images. Current methods of probing the connection between medical images and other clinical data typically use voxel-based mass univariate approaches. These approaches do not take into account the multivariate, network-based interactions between the various areas of the brain and do not give readily interpretable metrics that describe how strongly cognitive function is related to neuroanatomical structure. On the other hand, high-dimensional machine learning techniques do not typically provide a direct method for discovering which parts of the brain are used for making predictions. We present a framework, based on recent work in sparse linear regression, that addresses both drawbacks of mass univariate approaches, while preserving the direct spatial interpretability that they provide. In addition, we present a novel optimization algorithm that adapts the conjugate gradient method for sparse regression on medical imaging data. This algorithm produces coefficients that are more interpretable than existing sparse regression techniques.
Crack growth sparse pursuit for wind turbine blade
NASA Astrophysics Data System (ADS)
Li, Xiang; Yang, Zhibo; Zhang, Han; Du, Zhaohui; Chen, Xuefeng
2015-01-01
One critical challenge to achieving reliable wind turbine blade structural health monitoring (SHM) is mainly caused by composite laminates with an anisotropy nature and a hard-to-access property. The typical pitch-catch PZTs approach generally detects structural damage with both measured and baseline signals. However, the accuracy of imaging or tomography by delay-and-sum approaches based on these signals requires improvement in practice. Via the model of Lamb wave propagation and the establishment of a dictionary that corresponds to scatters, a robust sparse reconstruction approach for structural health monitoring comes into view for its promising performance. This paper proposes a neighbor dictionary that identifies the first crack location through sparse reconstruction and then presents a growth sparse pursuit algorithm that can precisely pursue the extension of the crack. An experiment with the goal of diagnosing a composite wind turbine blade with an artificial crack is performed, and it validates the proposed approach. The results give competitively accurate crack detection with the correct locations and extension length.
Blind deconvolution using an improved L0 sparse representation
NASA Astrophysics Data System (ADS)
Ye, Pengzhao; Feng, Huajun; Li, Qi; Xu, Zhihai; Chen, Yueting
2014-09-01
In this paper, we present a method for single image blind deconvolution. Many common forms of blind deconvolution methods need to previously generate a salient image, while the paper presents a novel L0 sparse expression to directly solve the ill-positioned problem. It has no need to filter the blurred image as a restoration step and can use the gradient information as a fidelity term during optimization. The key to blind deconvolution problem is to estimate an accurate kernel. First, based on L2 sparse expression using gradient operator as a prior, the kernel can be estimated roughly and efficiently in the frequency domain. We adopt the multi-scale scheme which can estimate blur kernel from coarser level to finer level. After the estimation of this level's kernel, L0 sparse representation is employed as the fidelity term during restoration. After derivation, L0 norm can be approximately converted to a sum term and L1 norm term which can be addressed by the Split-Bregman method. By using the estimated blur kernel and the TV deconvolution model, the final restoration image is obtained. Experimental results show that the proposed method is fast and can accurately reconstruct the kernel, especially when the blur is motion blur, defocus blur or the superposition of the two. The restored image is of higher quality than that of some of the art algorithms.
Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.
Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert
2016-12-01
We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.
Treatment of non-sparse cratering in planetary surface dating
NASA Astrophysics Data System (ADS)
Kneissl, T.; Michael, G. G.; Schmedemann, N.
2016-10-01
We here propose a new technique to derive crater size-frequency distributions (CSFDs) from non-sparsely cratered surfaces, by accounting for the loss of craters due to subsequent crater/ejecta coverage. This approach, which we refer to as the buffered non-sparseness correction (BNSC), relates each crater to a measurement area found by excluding regions in the study area that have been resurfaced by larger craters and their ejecta blankets. The approach includes the well-known buffered crater counting (BCC) technique in order to consider the potential identification of craters whose centers are located outside the counting area. We demonstrate the new approach at two test sites on the Moon, one on the ancient lunar highlands outside the South Pole Aitken basin and the other on the much younger surface of lunar Mare Serenitatis. As expected, the correction has a much stronger effect on ancient, densely cratered surfaces than on younger, sparsely cratered surfaces. Furthermore, these first results indicate that the shapes of CSFDs on ancient terrains are actually very similar to the shapes of CSFDs on younger terrains.
NASA Astrophysics Data System (ADS)
Gran, K. B.; Dunn, E.; Tal, M.
2009-12-01
In noncohesive braided channels, riparian vegetation can act as the primary source of cohesion, constraining lateral mobility rates. We are studying the Pasig-Potrero and Sacobia Rivers at Mount Pinatubo, Philippines, as vegetation becomes reestablished in the braidplain following geomorphic recovery from massive fine sediment loading during the 1991 eruption. Vegetation was absent in the valley bottom for the first decade following the eruption due to extremely high sediment transport rates and rapid reworking of the braidplain. As of 2009, vegetation has returned to reaches near the alluvial fanhead on both rivers. Most vegetation is sparse grasses, with distinct patches of older, dense mixtures of grasses, trees, vines, and forbs. We mapped vegetation patches from aerial photographs; field checked patch maps; characterized vegetation type, size, and density; and measured shear strength and root density. To measure the timescale for reworking of the bed, we took a series of daily photographs during August 2009. On the Sacobia River, most of the braidplain was occupied by water over the course of the month, but vegetated patches remained intact. On the Pasig-Potrero River, most of the unvegetated braidplain was reworked but discharges remained lower on the vegetated side of the valley. On-going aggradation in the active braidplain has led to a 1% lateral grade with the unvegetated side now as much as 5 meters higher than the vegetated side. This imbalance will likely cause a shift in flows back to the vegetated side of the valley in the near future, testing the stability of the vegetated patches. Our research is designed to track channel morphology and process into the future as vegetation recovery progresses, coupling changes in channel process and morphology to physical changes in bank strength and patch roughness.
Fast Solution in Sparse LDA for Binary Classification
NASA Technical Reports Server (NTRS)
Moghaddam, Baback
2010-01-01
An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic
An Efficient Scheme for Updating Sparse Cholesky Factors
NASA Technical Reports Server (NTRS)
Raghavan, Padma
2002-01-01
Raghavan had earlier developed the software package DCSPACK which can be used for solving sparse linear systems where the coefficient matrix is symmetric and positive definite (this project was not funded by NASA but by agencies such as NSF). DSCPACK-S is the serial code and DSCPACK-P is a parallel implementation suitable for multiprocessors or networks-of-workstations with message passing using MCI. The main algorithm used is the Cholesky factorization of a sparse symmetric positive positive definite matrix A = LL(T). The code can also compute the factorization A = LDL(T). The complexity of the software arises from several factors relating to the sparsity of the matrix A. A sparse N x N matrix A has typically less that cN nonzeroes where c is a small constant. If the matrix were dense, it would have O(N2) nonzeroes. The most complicated part of such sparse Cholesky factorization relates to fill-in, i.e., zeroes in the original matrix that become nonzeroes in the factor L. An efficient implementation depends to a large extent on complex data structures and on techniques from graph theory to reduce, identify, and manage fill. DSCPACK is based on an efficient multifrontal implementation with fill-managing algorithms and implementation arising from earlier research by Raghavan and others. Sparse Cholesky factorization is typically a four step process: (1) ordering to compute a fill-reducing numbering, (2) symbolic factorization to determine the nonzero structure of L, (3) numeric factorization to compute L, and, (4) triangular solution to solve L(T)x = y and Ly = b. The first two steps are symbolic and are performed using the graph of the matrix. The numeric factorization step is of dominant cost and there are several schemes for improving performance by exploiting the nested and dense structure of groups of columns in the factor. The latter are aimed at better utilization of the cache-memory hierarchy on modem processors to prevent cache-misses and provide execution
Lee, Young-Beom; Lee, Jeonghyeon; Tak, Sungho; Lee, Kangjoo; Na, Duk L; Seo, Sang Won; Jeong, Yong; Ye, Jong Chul
2016-01-15
Recent studies of functional connectivity MR imaging have revealed that the default-mode network activity is disrupted in diseases such as Alzheimer's disease (AD). However, there is not yet a consensus on the preferred method for resting-state analysis. Because the brain is reported to have complex interconnected networks according to graph theoretical analysis, the independency assumption, as in the popular independent component analysis (ICA) approach, often does not hold. Here, rather than using the independency assumption, we present a new statistical parameter mapping (SPM)-type analysis method based on a sparse graph model where temporal dynamics at each voxel position are described as a sparse combination of global brain dynamics. In particular, a new concept of a spatially adaptive design matrix has been proposed to represent local connectivity that shares the same temporal dynamics. If we further assume that local network structures within a group are similar, the estimation problem of global and local dynamics can be solved using sparse dictionary learning for the concatenated temporal data across subjects. Moreover, under the homoscedasticity variance assumption across subjects and groups that is often used in SPM analysis, the aforementioned individual and group analyses using sparse dictionary learning can be accurately modeled by a mixed-effect model, which also facilitates a standard SPM-type group-level inference using summary statistics. Using an extensive resting fMRI data set obtained from normal, mild cognitive impairment (MCI), and Alzheimer's disease patient groups, we demonstrated that the changes in the default mode network extracted by the proposed method are more closely correlated with the progression of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of freeze dried vegetables
NASA Technical Reports Server (NTRS)
Larson, R. W.
1970-01-01
The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.
NASA Technical Reports Server (NTRS)
Kimes, D. S.
1981-01-01
A mathematical method is presented which allows the determination of vertical temperature profiles of vegetation canopies from multiple sensor view angles and some knowledge of the vegetation geometric structure. The technique was evaluated with data from several wheat canopies at different stages of development, and shown to be most useful in the separation of vegetation and substrate temperatures with greater accuracy in the case of intermediate and dense vegetation canopies than in sparse ones. The converse is true for substrate temperatures. Root-mean-square prediction accuracies of temperatures for intermediate-density wheat canopies were 1.8 C and 1.4 C for an exact and an overdeterminate system, respectively. The findings have implication for remote sensing research in agriculture, geology or other earth resources disciplines.
Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Tucker, C. J.
1987-01-01
The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.
A LANDSAT study of ephemeral and perennial rangeland vegetation and soils
NASA Technical Reports Server (NTRS)
Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.
1976-01-01
The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.
Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Tucker, C. J.
1987-01-01
The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.
NASA Technical Reports Server (NTRS)
Kimes, D. S.
1981-01-01
A mathematical method is presented which allows the determination of vertical temperature profiles of vegetation canopies from multiple sensor view angles and some knowledge of the vegetation geometric structure. The technique was evaluated with data from several wheat canopies at different stages of development, and shown to be most useful in the separation of vegetation and substrate temperatures with greater accuracy in the case of intermediate and dense vegetation canopies than in sparse ones. The converse is true for substrate temperatures. Root-mean-square prediction accuracies of temperatures for intermediate-density wheat canopies were 1.8 C and 1.4 C for an exact and an overdeterminate system, respectively. The findings have implication for remote sensing research in agriculture, geology or other earth resources disciplines.
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...
2014-12-09
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.
2014-12-09
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.
2014-05-01
Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a modified Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using CoSA: unsupervised Clustering of Sparse Approximations. We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska (USA). Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties (e.g., soil moisture and inundation), and topographic/geomorphic characteristics. In this paper, we explore learning from both raw multispectral imagery, as well as normalized band difference indexes. We explore a quantitative metric to evaluate the spectral properties of the clusters, in order to potentially aid in assigning land cover categories to the cluster labels.
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.
2014-01-01
We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. Our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.
NASA Astrophysics Data System (ADS)
Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.
2015-06-01
Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.
Bagby, M.O.
1995-12-01
Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.
Ringrose, S; Chipanshi, A C; Matheson, W; Chanda, R; Motoma, L; Magole, I; Jellema, A
2002-07-01
For purposes of suggesting adaptive and policy options regarding the sustained use of forestry resources in Botswana, an analysis of the whole countrywide satellite data (showing the mean present distribution of vegetation in terms of species abundance and over all density) and the projection of vegetation cover changes using a simulation approach under different climatic scenarios were undertaken. The analysis revealed that changes in vegetation cover types due to human and natural causes have taken place since the first vegetation map was produced in 1971. In the southwest, the changes appear to be more towards an increasing prevalence of thorn trees; in the eastern part of the country where widespread bush encroachment is taking place, the higher population density suggests more human induced (agrarian-degradation) effects, while in the sparsely settled central Kalahari region, changes from tree savanna to shrubs may be indicative of the possible influence of climate with the associated effects of fires and local adaptations. Projection of future vegetation changes to about 2050 indicates degeneration of the major vegetation types due to the expected drying. Based on the projected changes in vegetation, current adaptive and policy arrangements are not adequate and as such a shift from the traditional adaptive approaches to community-based types is suggested. Defining forestry management units and adopting different management plans for the main vegetation stands that are found in Botswana are the major policy options.
Feng, Huihui
2016-01-01
Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and −14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed −40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate. PMID:27600157
Drought influence on vegetation behavior in Mediterranean basin
NASA Astrophysics Data System (ADS)
Gouveia, C. M.; Trigo, R. M.; Begueria, S. M.; Vicente-Serrano, S.
2012-04-01
The strong dependence of Mediterranean vegetation on water availability has been for long known. Drought events are relatively frequent in Mediterranean countries and prolonged intense drought episodes are responsible for the most negative impacts on vegetation, such as losses in crop yields, increases of fire risk, declines of forest growth and land degradation and desertification. The aim of the present work is to analyze in detail the impact of drought episodes on vegetation behavior in the Mediterranean region during the last three decades. For this purpose we use the Normalized Difference Vegetation Index (NDVI) from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset, as obtained from NOAA-AVHRR sensor and the recently developed multi-scale drought index Standardised Precipitation-Evapotranspiration Index (SPEI, Vicente-Serrano et al, 2010). The study aims to analyze the drought impacts on vegetation dynamics since the early 1980s over the entire Mediterranean region, with the purpose of determining the most sensitive areas and land cover types. Additionally we need to evaluate this impact on a seasonal basis and identify which drought-time scales are more prone to cause negative effects on vegetation. Thus, correlation maps between fields of monthly NDVI and SPEI for time scales ranging between 1 and 24 months were computed in order to identify the regions and seasons most affected by climatic droughts. The role played by vegetation density and aridity on drought impacts on vegetation were also analyzed for different regions of the Mediterranean basin. Vegetation affected by drought presents high spatial and seasonal variability, with a maximum in summer and a minimum in winter. During February half of these affected pixels correspond to time scale of 6 months, while in November the most frequent time scale corresponds to just 3 months, representing more than 40% of the pixels affected by drought. While in February sparse vegetation is the most
Analysing Local Sparseness in the Macaque Brain Network
Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.
2015-01-01
Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077
Analysing Local Sparseness in the Macaque Brain Network.
Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A
2015-01-01
Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain's function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as "relays" for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways.
Social biases determine spatiotemporal sparseness of ciliate mating heuristics
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The
A sparse Gaussian process framework for photometric redshift estimation
NASA Astrophysics Data System (ADS)
Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.
2016-01-01
Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.
Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis
Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang
2014-01-01
Research on an early detection of Mild Cognitive Impairment (MCI), a prodromal stage of Alzheimer’s Disease (AD), with resting-state functional Magnetic Resonance Imaging (rs-fMRI) has been of great interest for the last decade. Witnessed by recent studies, functional connectivity is a useful concept in extracting brain network features and finding biomarkers for brain disease diagnosis. However, it still remains challenging for the estimation of functional connectivity from rs-fMRI due to the inevitable high dimensional problem. In order to tackle this problem, we utilize a group sparse representation along with a structural equation model. Unlike the conventional group sparse representation method that does not explicitly consider class-label information, which can help enhance the diagnostic performance, in this paper, we propose a novel supervised discriminative group sparse representation method by penalizing a large within-class variance and a small between-class variance of connectivity coefficients. Thanks to the newly devised penalization terms, we can learn connectivity coefficients that are similar within the same class and distinct between classes, thus helping enhance the diagnostic accuracy. The proposed method also allows the learned common network structure to preserve the network specific and label-related characteristics. In our experiments on the rs-fMRI data of 37 subjects (12 MCI; 25 healthy normal control) with a cross-validation technique, we demonstrated the validity and effectiveness of the proposed method, showing the diagnostic accuracy of 89.19% and the sensitivity of 0.9167. PMID:25501275
Sparse and Compositionally Robust Inference of Microbial Ecological Networks
Kurtz, Zachary D.; Müller, Christian L.; Miraldi, Emily R.; Littman, Dan R.; Blaser, Martin J.; Bonneau, Richard A.
2015-01-01
16S ribosomal RNA (rRNA) gene and other environmental sequencing techniques provide snapshots of microbial communities, revealing phylogeny and the abundances of microbial populations across diverse ecosystems. While changes in microbial community structure are demonstrably associated with certain environmental conditions (from metabolic and immunological health in mammals to ecological stability in soils and oceans), identification of underlying mechanisms requires new statistical tools, as these datasets present several technical challenges. First, the abundances of microbial operational taxonomic units (OTUs) from amplicon-based datasets are compositional. Counts are normalized to the total number of counts in the sample. Thus, microbial abundances are not independent, and traditional statistical metrics (e.g., correlation) for the detection of OTU-OTU relationships can lead to spurious results. Secondly, microbial sequencing-based studies typically measure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU association networks is severely under-powered, and additional information (or assumptions) are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. To reconstruct the network, SPIEC-EASI relies on algorithms for sparse neighborhood and inverse covariance selection. To provide a synthetic benchmark in the absence of an experimentally validated gold-standard network, SPIEC-EASI is accompanied by a set of computational tools to generate OTU count data from a set of diverse underlying network topologies. SPIEC
Deep Learning on Sparse Manifolds for Faster Object Segmentation.
Nascimento, Jacinto C; Carneiro, Gustavo
2017-07-11
We propose a new combination of deep belief networks and sparse manifold learning strategies for the 2D segmentation of non-rigid visual objects. With this novel combination, we aim to reduce the training and inference complexities while maintaining the accuracy of machine learning based non-rigid segmentation methodologies. Typical non-rigid object segmentation methodologies divide the problem into a rigid detection followed by a non-rigid segmentation, where the low dimensionality of the rigid detection allows for a robust training (i.e., a training that does not require a vast amount of annotated images to estimate robust appearance and shape models) and a fast search process during inference. Therefore, it is desirable that the dimensionality of this rigid transformation space is as small as possible in order to enhance the advantages brought by the aforementioned division of the problem. In this paper, we propose the use of sparse manifolds to reduce the dimensionality of the rigid detection space. Furthermore, we propose the use of deep belief networks to allow for a training process that can produce robust appearance models without the need of large annotated training sets. We test our approach in the segmentation of the left ventricle of the heart from ultrasound images and lips from frontal face images. Our experiments show that the use of sparse manifolds and deep belief networks for the rigid detection stage leads to segmentation results that are as accurate as the current state of the art, but with lower search complexity and training processes that require a small amount of annotated training data.
A Comparison of Methods for Ocean Reconstruction from Sparse Observations
NASA Astrophysics Data System (ADS)
Streletz, G. J.; Kronenberger, M.; Weber, C.; Gebbie, G.; Hagen, H.; Garth, C.; Hamann, B.; Kreylos, O.; Kellogg, L. H.; Spero, H. J.
2014-12-01
We present a comparison of two methods for developing reconstructions of oceanic scalar property fields from sparse scattered observations. Observed data from deep sea core samples provide valuable information regarding the properties of oceans in the past. However, because the locations of sample sites are distributed on the ocean floor in a sparse and irregular manner, developing a global ocean reconstruction is a difficult task. Our methods include a flow-based and a moving least squares -based approximation method. The flow-based method augments the process of interpolating or approximating scattered scalar data by incorporating known flow information. The scheme exploits this additional knowledge to define a non-Euclidean distance measure between points in the spatial domain. This distance measure is used to create a reconstruction of the desired scalar field on the spatial domain. The resulting reconstruction thus incorporates information from both the scattered samples and the known flow field. The second method does not assume a known flow field, but rather works solely with the observed scattered samples. It is based on a modification of the moving least squares approach, a weighted least squares approximation method that blends local approximations into a global result. The modifications target the selection of data used for these local approximations and the construction of the weighting function. The definition of distance used in the weighting function is crucial for this method, so we use a machine learning approach to determine a set of near-optimal parameters for the weighting. We have implemented both of the reconstruction methods and have tested them using several sparse oceanographic datasets. Based upon these studies, we discuss the advantages and disadvantages of each method and suggest possible ways to combine aspects of both methods in order to achieve an overall high-quality reconstruction.
Sparse and compositionally robust inference of microbial ecological networks.
Kurtz, Zachary D; Müller, Christian L; Miraldi, Emily R; Littman, Dan R; Blaser, Martin J; Bonneau, Richard A
2015-05-01
16S ribosomal RNA (rRNA) gene and other environmental sequencing techniques provide snapshots of microbial communities, revealing phylogeny and the abundances of microbial populations across diverse ecosystems. While changes in microbial community structure are demonstrably associated with certain environmental conditions (from metabolic and immunological health in mammals to ecological stability in soils and oceans), identification of underlying mechanisms requires new statistical tools, as these datasets present several technical challenges. First, the abundances of microbial operational taxonomic units (OTUs) from amplicon-based datasets are compositional. Counts are normalized to the total number of counts in the sample. Thus, microbial abundances are not independent, and traditional statistical metrics (e.g., correlation) for the detection of OTU-OTU relationships can lead to spurious results. Secondly, microbial sequencing-based studies typically measure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU association networks is severely under-powered, and additional information (or assumptions) are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. To reconstruct the network, SPIEC-EASI relies on algorithms for sparse neighborhood and inverse covariance selection. To provide a synthetic benchmark in the absence of an experimentally validated gold-standard network, SPIEC-EASI is accompanied by a set of computational tools to generate OTU count data from a set of diverse underlying network topologies. SPIEC
Face sketch synthesis via sparse representation-based greedy search.
Shengchuan Zhang; Xinbo Gao; Nannan Wang; Jie Li; Mingjin Zhang
2015-08-01
Face sketch synthesis has wide applications in digital entertainment and law enforcement. Although there is much research on face sketch synthesis, most existing algorithms cannot handle some nonfacial factors, such as hair style, hairpins, and glasses if these factors are excluded in the training set. In addition, previous methods only work on well controlled conditions and fail on images with different backgrounds and sizes as the training set. To this end, this paper presents a novel method that combines both the similarity between different image patches and prior knowledge to synthesize face sketches. Given training photo-sketch pairs, the proposed method learns a photo patch feature dictionary from the training photo patches and replaces the photo patches with their sparse coefficients during the searching process. For a test photo patch, we first obtain its sparse coefficient via the learnt dictionary and then search its nearest neighbors (candidate patches) in the whole training photo patches with sparse coefficients. After purifying the nearest neighbors with prior knowledge, the final sketch corresponding to the test photo can be obtained by Bayesian inference. The contributions of this paper are as follows: 1) we relax the nearest neighbor search area from local region to the whole image without too much time consuming and 2) our method can produce nonfacial factors that are not contained in the training set and is robust against image backgrounds and can even ignore the alignment and image size aspects of test photos. Our experimental results show that the proposed method outperforms several state-of-the-arts in terms of perceptual and objective metrics.
Multi-frame blind deconvolution using sparse priors
NASA Astrophysics Data System (ADS)
Dong, Wende; Feng, Huajun; Xu, Zhihai; Li, Qi
2012-05-01
In this paper, we propose a method for multi-frame blind deconvolution. Two sparse priors, i.e., the natural image gradient prior and an l1-norm based prior are used to regularize the latent image and point spread functions (PSFs) respectively. An alternating minimization approach is adopted to solve the resulted optimization problem. We use both gray scale blurred frames from a data set and some colored ones which are captured by a digital camera to verify the robustness of our approach. Experimental results show that the proposed method can accurately reconstruct PSFs with complex structures and the restored images are of high quality.
Robust compressive sensing of sparse signals: a review
NASA Astrophysics Data System (ADS)
Carrillo, Rafael E.; Ramirez, Ana B.; Arce, Gonzalo R.; Barner, Kenneth E.; Sadler, Brian M.
2016-12-01
Compressive sensing generally relies on the ℓ 2 norm for data fidelity, whereas in many applications, robust estimators are needed. Among the scenarios in which robust performance is required, applications where the sampling process is performed in the presence of impulsive noise, i.e., measurements are corrupted by outliers, are of particular importance. This article overviews robust nonlinear reconstruction strategies for sparse signals based on replacing the commonly used ℓ 2 norm by M-estimators as data fidelity functions. The derived methods outperform existing compressed sensing techniques in impulsive environments, while achieving good performance in light-tailed environments, thus offering a robust framework for CS.
Self-organizing control for space-based sparse antennas
NASA Technical Reports Server (NTRS)
Hadaegh, Fred Y.; Jamnejad, Vaharaz; Scharf, Daniel P.; Ploen, Scott R.
2003-01-01
An integrated control and electromagnetic/antenna formulation is presented for evaluating the performance of a distributed antenna system as a function of formation geometry. A distributed and self-organizing control law for the control law for the control of multiple antennas in Low Earth Orbit (LEO) is presented. The control system provides collaborative commanding and performance optimization to configure and operate the distributed formation system. A large aperture antenna is thereby realized by a collection of miniature sparse antennas in formation. A case study consisting of a simulation of four antennas in Low Earth orbit (LEO)is presented to demonstrate the concept.
Probabilistic ODF Estimation from Reduced HARDI Data with Sparse Regularization
Tristán-Vega, Antonio; Westin, Carl-Fredrik
2016-01-01
High Angular Resolution Diffusion Imaging (HARDI) demands a higher amount of data measurements compared to Diffusion Tensor Imaging (DTI), restricting its use in practice. We propose to represent the probabilistic Orientation Distribution Function (ODF) in the frame of Spherical Wavelets (SW), where it is highly sparse. From a reduced subset of measurements (nearly four times less than the standard for HARDI), we pose the estimation as an inverse problem with sparsity regularization. This allows the fast computation of a positive, unit-mass, probabilistic ODF from 14–16 samples, as we show with both synthetic diffusion signals and real HARDI data with typical parameters. PMID:21995028
Sparse Representation Based Classification with Structure Preserving Dimension Reduction
2014-03-13
Haibo He Received: 14 September 2012 / Accepted: 18 February 2014 Springer Science+Business Media New York 2014 Abstract Sparse-representation-based...cognitive radio. In: IEEE international confer- ence on communications. 2012 . p. 5608–12. 31. Hu S, Yao Y, Yang Z, Zheng D. Cog-prma protocol for cr...benefit of group sparsity. Ann Stat. 2010;38:1978–2004. 33. Kim S, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior- point method for large-scale l1
Sparse Superpixel Unmixing for Exploratory Analysis of CRISM Hyperspectral Images
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Gilmore, Martha S.
2009-01-01
Fast automated analysis of hyperspectral imagery can inform observation planning and tactical decisions during planetary exploration. Products such as mineralogical maps can focus analysts' attention on areas of interest and assist data mining in large hyperspectral catalogs. In this work, sparse spectral unmixing drafts mineral abundance maps with Compact Reconnaissance Imaging Spectrometer (CRISM) images from the Mars Reconnaissance Orbiter. We demonstrate a novel "superpixel" segmentation strategy enabling efficient unmixing in an interactive session. Tests correlate automatic unmixing results based on redundant spectral libraries against hand-tuned summary products currently in use by CRISM researchers.
Parallel solution of sparse one-dimensional dynamic programming problems
NASA Technical Reports Server (NTRS)
Nicol, David M.
1989-01-01
Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.
Routing Protocol of Sparse Urban Vehicular Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Huxiong
Vehicular ad hoc network (VANET) is an application of mobile ad hoc technology in transportation systems, it has become an important part of ITS. Since multi-hop link is hard to set up in sparse VANET, a traffic-aware routing (TAR) protocol is proposed which estimates vehicle average neighbors (VAN) of roads by exchanging beacon messages between encounter vehicles. Road with high VAN is preferred to be selected as part of forwarding path at intersection. Packets are forwarded to the next intersection in road in a greedy manner. Simulations show that TAR outperforms the compared protocols in terms of both packet delivery ratio and average end-to-end delay.
Universal Collaboration Strategies for Signal Detection: A Sparse Learning Approach
NASA Astrophysics Data System (ADS)
Khanduri, Prashant; Kailkhura, Bhavya; Thiagarajan, Jayaraman J.; Varshney, Pramod K.
2016-10-01
This paper considers the problem of high dimensional signal detection in a large distributed network whose nodes can collaborate with their one-hop neighboring nodes (spatial collaboration). We assume that only a small subset of nodes communicate with the Fusion Center (FC). We design optimal collaboration strategies which are universal for a class of deterministic signals. By establishing the equivalence between the collaboration strategy design problem and sparse PCA, we solve the problem efficiently and evaluate the impact of collaboration on detection performance.
Electromagnetic source imaging for sparse cortical activation patterns.
von Ellenrieder, Nicolás; Hurtado, Martín; Muravchik, Carlos H
2010-01-01
We propose modifications to the Automatic Relevance Determination (ARD) algorithm for solving the EEG/MEG inverse problem when the activation map of the cortex is known to be sparse. We propose to include a term to account for the background noise activity, i.e. electric activity of sources not in the cortex. Also, we prune the results of the ARD algorithm using a Model Selection criterion to get sparser results. Simulations with a realistic head model show a very important reduction of the number of sources incorrectly detected as active.
A Sparse Bayesian Learning Algorithm for Longitudinal Image Data.
Sabuncu, Mert R
2015-10-01
Longitudinal imaging studies, where serial (multiple) scans are collected on each individual, are becoming increasingly widespread. The field of machine learning has in general neglected the longitudinal design, since many algorithms are built on the assumption that each datapoint is an independent sample. Thus, the application of general purpose machine learning tools to longitudinal image data can be sub-optimal. Here, we present a novel machine learning algorithm designed to handle longitudinal image datasets. Our approach builds on a sparse Bayesian image-based prediction algorithm. Our empirical results demonstrate that the proposed method can offer a significant boost in prediction performance with longitudinal clinical data.