Sample records for stone ablation threshold

  1. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.

    PubMed

    Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2011-07-01

    The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsion for the two different Ho:YAG and TFL operation modes. The TFL (λ = 1908 nm) was operated with pulse energies of 5 to 35 mJ, 500-μs pulse duration, and pulse rates of 10 to 400 Hz. The Ho:YAG laser (λ = 2120 nm) was operated with pulse energies of 30 to 550 mJ, 350-μs pulse duration, and a pulse rate of 10 Hz. Laser energy was delivered through 200- and 270-μm-core optical fibers in contact mode with human calcium oxalate monohydrate (COM) stones for ablation studies and plaster-of-Paris stone phantoms for retropulsion studies. The COM stone ablation threshold for Ho:YAG and TFL measured 82.6 and 20.8 J∕cm(2), respectively. Stone retropulsion with the Ho:YAG laser linearly increased with pulse energy. Retropulsion with TFL was minimal at pulse rates less than 150 Hz, then rapidly increased at higher pulse rates. For minimal stone retropulsion, Ho:YAG operation at pulse energies less than 175 mJ at 10 Hz and TFL operation at 35 mJ at 100 Hz is recommended, with both lasers producing comparable ablation rates. Further development of a TFL operating with both high pulse energies of 100 to 200 mJ and high pulse rates of 100 to 150 Hz may also provide an alternative to the Ho:YAG laser for higher ablation rates, when retropulsion is not a primary concern.

  2. Rapid vaporization of kidney stones, ex vivo, using a Thulium fiber laser at pulse rates up to 500 Hz with a stone basket

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Holmium:YAG laser (λ = 2120 nm) is currently the preferred laser for fragmenting kidney stones in the clinic. However, this laser has some limitations, including operation at low pulse rates and a multimode spatial beam profile which prohibits its use with smaller, more flexible optical fibers. Our laboratory is studying the Thulium fiber laser (λ = 1908 nm) as an alternative lithotripter. The TFL has several advantages, including lower stone ablation thresholds, use with smaller and more flexible fibers, and operation at arbitrary pulse lengths and pulse rates. Previous studies have reported increased stone ablation rates with TFL operation at higher pulse rates, however, stone retropulsion remains an obstacle to even more efficient stone ablation. This study explores TFL operation at high pulse rates in combination with a stone stabilization device (e.g. stone basket) for improved efficiency. A TFL beam with pulse energy of 35 mJ, pulse duration of 500-μs, and pulse rates of 10-500 Hz was coupled into 100-μm-core, low-OH, silica fibers, in contact mode with uric acid and calcium oxalate monohydrate stones, ex vivo. TFL operation at 500 Hz produced UA and COM stone ablation rates up to 5.0 mg/s and 1.3 mg/s, respectively. High TFL pulse rates produced increased stone ablation rates sufficient for use in the clinic.

  3. Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, Thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    Previous Thulium fiber laser lithotripsy (TFL) studies were limited to a peak power of 70 W (35 mJ / 500 μs), requiring operation in dusting mode with low pulse energy (35 mJ) and high pulse rate (300 Hz). In this study, a novel, compact, air-cooled, TFL capable of operating at up to 500 W peak power, 50 W average power, and 2000 Hz, was tested. The 1940-nm TFL was used with pulse duration (500 μs), average power (10 W), and fiber (270- μm-core) fixed, while pulse energy and pulse rate were changed. A total of 23 large uric acid (UA) stones and 16 large calcium oxalate monohydrate (COM) stones were each separated into 3 modes (Group 1-"Dusting"- 33mJ/300Hz; Group 2-"Fragmentation"-200mJ/50Hz; Group 3-"Dual mode"-Fragmentation then Dusting). The fiber was held manually in contact with stone on a 2-mm-mesh sieve submerged in a flowing saline bath. UA ablation rates were 2.3+/-0.8, 2.3+/-0.2, and 4.4+/-0.8 mg/s and COM ablation rates were 0.4+/-0.1, 1.0+/-0.1, and 0.9+/-0.4 mg/s, for Groups 1, 2, and 3. Dual mode provided 2x higher UA ablation rates than other modes. COM ablation threshold is 3x higher than UA, so dusting provided lower COM ablation rates than other modes. Future studies will explore higher average laser power than 10 W for rapid TFL ablation of large stones.

  4. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    We investigated proposed mechanisms of laser lithotripsy, specifically for the novel, experimental Thulium fiber laser (TFL). Previous lithotripsy studies with the conventional Holmium:YAG laser noted a primary photothermal mechanism (vaporization). Our hypothesis is that an additional mechanical effect (fragmentation) occurs due to vaporization of water in stone material from high absorption of energy, called micro-explosions. The TFL irradiated calcium oxalate monohydrate (COM) and uric acid (UA) stones, as well as artificial stones (Ultracal30 and BegoStone), in air and water environments. TFL energy was varied to determine the relative effect on the ablation mechanism. Scanning electron microscopy (SEM) was used to study qualitative and characteristic changes in surface topography with correlation to presumed ablation mechanisms. Laser irradiation of stones in air produced charring and melting of the stone surface consistent with a photothermal effect and minimal fragmentation, suggesting no mechanical effect from micro-explosions. For COM stones ablated in water, there was prominent fragmentation in addition to recognized photothermal effects, supporting dual mechanisms during TFL lithotripsy. For UA stones, there were minimal photothermal effects, and dominant effects were mechanical. By increasing TFL pulse energy, a greater mechanical effect was demonstrated for both stone types. For artificial stones, there was no significant evidence of mechanical effects. TFL laser lithotripsy relies on two prominent mechanisms for stone ablation, photothermal and mechanical. Water is necessary for the mechanical effect which can be augmented by increasing pulse energy. Artificial stones may not provide a predictive model for mechanical effects during laser lithotripsy.

  5. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations.

    PubMed

    Pal, Debasis; Ghosh, Aditi; Sen, Ranjan; Pal, Atasi

    2016-08-10

    A continuous-wave (CW) as well as quasi-continuous wave (QCW) thulium-doped all-fiber laser at 1.94 μm has been designed for targeting applications in urology. The thulium-doped active fiber with an octagonal-shaped inner cladding is pumped at 793 nm to achieve stable CW laser power of 10 W with 32% lasing efficiency (against launched pump power). The linear variation of laser power with pump offers a scope of further power scaling. A QCW operation with variation of duty cycle from 0.5% to 90%, repetition rate from 0.1 Hz to 1 kHz, and pulse width from 40 μs to 2 s has been presented. Laser power of 9.5 W in CW mode of operation and average power of 5.2 W with energy range of 10.4-104 mJ in QCW mode of operation has been employed to fragment calcium oxalate monohydrate kidney stones (size of 1.5-4 cm) having different colors and composition. Dependence of ablation threshold, ablation rate, and average fragmented particle size on the average power and energy has been studied. One minute of laser exposure results in fragmentation of a stone surface with ablation rate of 8  mg/min having minimum particle size of 6.54 μm with an average size of 20-100 μm ensuring the natural removal of fragmented parts through the urethra.

  6. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  7. Integrated and miniaturized endoscopic devices for use during high power infrared fiber laser surgery

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher Ryan

    The Thulium Fiber Laser (TFL) is currently being studied as a potential alternative to the conventional, solid-state Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is an ideal candidate to replace the Ho:YAG for laser lithotripsy due to a higher absorption coefficient in water of the emitted wavelength, an ability to operate at high pulse rates, and a near single mode, Gaussian spatial beam profile. The higher absorption of the TFL wavelength by water translates to a decrease in ablation threshold by a factor of four. High pulse rate operation allows higher ablation rates than the Ho:YAG, thus decreasing operation time necessary to ablate the urinary stone. The Gaussian spatial beam profile allows the TFL to couple higher laser power into smaller optical fibers than those currently being used for Ho:YAG lithotripsy. This decrease in fiber diameter translates into a potential decrease in the size of ureteroscope working channel, higher saline irrigation rates for improved visibility and safety, and may also extend to a decrease in overall ureteroscope diameter. Furthermore, the improved spatial beam profile reduces the risk of damage to the input end of the fiber. Therefore, the trunk fiber, minus the distal fiber tip, may be preserved and re-used, resulting in significant cost savings. This thesis details rapid TFL lithotripsy at high pulse rates up to 500 Hz, both with and without the aid of a stone retrieval basket, in order to demonstrate the TFL's superior ablation rates over the Ho:YAG. Collateral damage testing of the TFL effect on the ureter wall and Nitinol stone baskets were conducted to ensure patient safety for future clinical use. Proximal fiber end damage testing was conducted to demonstrate fiber preservation, critical for permanent fiber integration. Optical fibers were fitted with fabricated hollow steel tips and integrated with stone retrieval baskets for testing. Ball tipped optical fibers were tested to maintain ablation rates comparable to those of the 100-mum-core traditional fiber used in TFL lithotripsy while providing an additional safety feature for initial fiber insertion through the ureteroscope working channel. Working channel flow rates were explored in regards to diameter and geometry. Illumination sources and configurations were explored in regards to optimized wavelength selection as well as physical geometry of the ureteroscope tip. Ureteroscope designs were devised, modeled, fabricated, and tested, implementing a reduced working channel, and optimized illumination geometry, culminating in an integrated, miniaturized ureteroscope for use in TFL lithotripsy. This final device, coupled with the proven TFL and optimized laser parameters may establish the TFL as a viable replacement to the conventional Ho:YAG laser for treatment of kidney stones.

  8. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  9. Optimization of a novel Tm fiber laser lithotripter in terms of stone ablation efficiency and retropulsion reduction

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Ilya; Vinnichenko, Victoria; McNeill, Tyler; Novoseltseva, Anna; Perchuk, Igor; Vybornov, Alexander; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Recently, a Thulium (Tm) fiber laser operating at a wavelength of 1940 nm and peak power up to 500 W has been introduced as a promising energy source for laser lithotripsy. Direct comparative studies have demonstrated considerable advantages of Tm fiber laser over the current industry-standard 2100 nm Holmium:YAG (Ho:YAG) device in terms of ablation rate and retropulsion effects. In this work, we investigated avenues of further improving stone ablation efficiency and reducing retropulsion. Specifically, the roles of temporal pulse structure and fiber tip preparation were studied in detail. Experiments were conducted on Bego stone phantoms in an aqueous environment using a computerized 2D stage for controlled scanning of the fiber over the stone surface. High-resolution 3D-enabled optical microscopy was employed to assess both fiber tip damage and stone ablation rate. Retropulsion effects were quantified using a high-speed video camera. Fiber burn back was evaluated as well. Fiber performance could be preserved during prolonged (up to 15 min) procedures when the fiber tip was adequately prepared. Furthermore, the results were compared with available literature for similar experiments performed with the Ho:YAG laser. The data obtained provide an important foundation for optimizing clinical performance of Tm fiber systems for lithotripsy.

  10. The effect of force on laser fiber burnback during lithotripsy

    NASA Astrophysics Data System (ADS)

    Aryaei, Ashkan; Chia, Ray; Peng, Steven

    2018-02-01

    Optical fibers for lithotripsy are designed to deliver the maximum energy precisely to the treatment site without a decrease in performance and without increasing the risks to patients and users. One of the obstacles to constant energy delivery is burnback of the optical fiber tip. So far, researchers identified mechanical, thermal, and optical factors as mechanisms in burnback phenomena. Among mechanical factors, the force applied by urologists against a stone is expected to play a dominant role in burnback. In this study, we introduce a novel technique to measure accurately the stone depth and volume ablation under varying force. Our results show varying burnback lengths on the optical fibers and varying stone depth and volume ablation depending on the optical fiber core size. For instance, the slope of the burnback as a function of the applied force for 273 μm fibers was more than two times higher than for the 550 μm fibers. The slope of the total volume of stone ablated as function of force for 550 μm fibers was almost twice as much as for the 273 μm fibers. The data suggest urologists can maximize the stone ablation rate and minimize fiber tip burnback by controlling the applied force on the optical fiber during a lithotripsy procedure.

  11. Prevention of stone migration with the Accordion during endoscopic ureteral lithotripsy.

    PubMed

    Pagnani, Christopher J; El Akkad, Magdy; Bagley, Demetrius H

    2012-05-01

    Endoscopic lithotripsy is often prolonged secondary to the retrograde migration of calculous fragments. Various balloons, baskets, and other devices have been used to prevent this migration. Our purpose is to analyze the effect of the Accordion(®) on stone migration and overall efficiency during lithotripsy. We prospectively evaluated 21 patients with a total of 23 distal ureteral stones. Patients underwent lithotripsy using an endoscopic impact lithotriptor. The Accordion was randomly used in 11 of these 21 patients. Data were collected regarding stone migration, stone size, stone ablation, ureteral clearing, and lengths of time for various stages of each procedure. Patients who were treated with the Accordion device experienced significantly less retrograde migration during fragmentation (P=0.0064). When stone volume was taken into account (but not on a per stone basis), ablation and ureteral clearing were also expedited, and fewer lithotripter "hits" and basket "sweeps" were needed. The Accordion device is effective in preventing the migration of stone fragments during endoscopic ureteral lithotripsy. Our data suggest that this device may also increase efficiency of the fragmentation and clearance of ureteral calculi.

  12. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  13. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  14. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  15. Investigations to improve laser induced lithrotripsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eisel, Max; Ulaganathan, Keerthanan; Strittmatter, Frank; Pongratz, Thomas; Sroka, Ronald

    2017-02-01

    Laser lithotripsy is the preferred application for the destruction of ureteral and kidney stones. Clinically Ho:YAG lasers (λ=2.1μm) are used due to high absorption by water to induce thermomechanical ablation. This study focussed on the investigation of different laser parameters in relation to the stone dusting efficiency. The term dusting was defined when the ablated fragments were d<1mm in diameter while fragmentation is defined to pieces of d> 1mm. The discussion about fragment-size showed advantages like reduced surgery time. Experiments were performed using clinical available Ho:YAG laser energy transferred via a standard fibre (Ø: 365μm) onto phantom calculi (Bego-Stones of different hardness) in a water filled vessel. Dusting can be reached most efficient by using low energy/pulse (approx. 0.5J/pulse) and repetition rate of around 40 Hz. Higher energy/pulse showed strong repulsion and thereby increased mobility, while using lower repetition rates result in longer ablation times. With regard to the hardness of the phantoms it can be derived that on soft calculi or calculi with a very rugged surface dusting can be observed less because the stone breaks into large fragments after a short time of laser application. For hard calculi the ablation process takes a much longer time compared to soft stones. In the following will be shown that dusting and fragmentation process depends not only on the energy/pulse and repetition rate of a Ho:YAG-laser, but also there are differences between Ho:YAG-laser systems according to the dusting efficiency.

  16. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  17. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  18. Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-03-01

    We assessed whether stripping and cleaving the laser fiber tip with specialized tools, namely laser fiber strippers, or ceramic or metal scissors, would influence lithotripsy performance. Laser fiber tips were stripped with a specialized laser fiber stripper or remained coated. The tips were then cleaved with metal or ceramic scissors. Laser lithotripsy experiments were performed with the 4 fiber tip combinations using an automated laser fragmentation testing system with artificial stones made of plaster of Paris or BegoStone Plus (Bego, Lincoln, Rhode Island). High frequency-low pulse energy (20 Hz and 0.5 J) and low frequency-high pulse energy (5 Hz and 2.0 J) settings were used for 30 seconds. Fissure width, depth and volume, and laser fiber tip photos were analyzed. Coated laser fiber tips always achieved significantly higher ablation volumes (sometimes greater than 50%) than stripped laser fiber tips (p <0.00001) regardless of cleaving scissor type, stone material or lithotripter setting. Coated fiber tips cleaved with metal scissors ablated as well as those cleaved with ceramic scissors (p = 0.16). However, stripped fibers were much less ablative when they were cut with metal scissors compared to ceramic scissors (p <0.00001). Harder stone material decreased ablation volume (p <0.00001). Low frequency-high pulse energy settings were an average of 3 times more ablative than high frequency-low pulse energy settings (p <0.00001). Stripping the fibers, a harder stone material and low frequency-high pulse energy settings were associated with increased fiber tip degradation. Coated laser fibers provided better lithotripsy performance and metal scissors were as good as ceramic scissors to cleave coated fibers. This knowledge may improve and simplify the way that laser lithotripsy procedures are done worldwide. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  20. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  1. The ablation threshold of Er;Cr:YSGG laser radiation in bone tissue

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Zezell, Denise Maria

    2015-06-01

    In laser cut clinical applications, the use of energy densities lower than the ablation threshold causes increase of temperature of the irradiated tissue, which might result in an irreversible thermal damage. Hence, knowing the ablation threshold is crucial for insuring the safety of these procedures. The aim of this study was to determine the ablation threshold of the Er,Cr:YSGG laser in bone tissue. Bone pieces from jaws of New Zealand rabbits were cut as blocks of 5 mm × 8 mm and polished with sandpaper. The Er,Cr:YSGG laser used in this study had wavelength of 2780 nm, 20 Hz of frequency, and the irradiation condition was chosen so as to simulate the irradiation during a surgical procedure. The laser irradiation was performed with 12 different values of laser energy densities, between 3 J/cm2 and 42 J/cm2, during 3 seconds, resulting in the overlap of 60 pulses. This process was repeated in each sample, for all laser energy densities. After irradiation, the samples were analyzed by scanning electron microscope (SEM), and it was measured the crater diameter for each energy density. By fitting a curve that related the ablation threshold with the energy density and the corresponding diameter of ablation crater, it was possible to determine the ablation threshold. The results showed that the ablation threshold of the Er,Cr:YSGG in bone tissue was 1.95+/-0.42 J/cm2.

  2. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed, assembled, and tested for use in Thulium fiber laser lithotripsy. A 1.00-mm-outer-diameter detachable fiber tip interface was designed, constructed, and tested ex vivo on urinary stones in the laboratory. Similar stone ablation rates between the previously studied tapered distal fiber tip and the detachable fiber tip were measured. For urologists desiring faster TFL lithotripsy procedures, the incorporation of detachable distal fiber tips allows for rapid replacement of damaged fiber tips without concern about the laser to trunk fiber connection. This method for preserving the trunk fiber could be a motivation for integrating a dedicated laser fiber into the ureteroscope, with detachable distal tips, thus freeing the working channel for the use of other surgical instruments. During laser lithotripsy, distal fiber tip degradation increases as the fiber core diameter decreases. However, smaller fiber diameters (≤ 200 microm) are more desirable because of increased saline irrigation rates in the single working channel of the ureteroscope and less impact on ureteroscope deflection. A hollow fiber cap is proposed to reduced fiber tip degradation in small diameter fibers, without compromising stone ablation rates. The disadvantage of the hollow fiber tip observed in the study is the increase in stone retropulsion. However, integrating the hollow fiber tip with a clinically used stone basket may allow for a robust stone ablation instrument that also minimizes retropulsion. These surgical approaches involving novel specialty fiber optic tip designs are discussed in this thesis.

  3. Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study.

    PubMed

    Elhilali, Mostafa M; Badaan, Shadie; Ibrahim, Ahmed; Andonian, Sero

    2017-06-01

    To evaluate in vitro and in vivo effects of Moses technology in Holmium laser and to compare it with the Regular mode in terms of lithotripsy efficiency and laser-tissue interactions. The Lumenis ® Pulse™ P120H holmium laser system together with Moses D/F/L fibers were used to compare the Regular mode with the Moses modes in stone retropulsion by using a high-speed camera, and stone ablation efficiency. In addition, a porcine ureteroscopy model was used to assess stone fragmentation and dusting as well as laser-tissue interaction with the ureteral wall. After a laser pulse, in vitro stone displacement experiments showed a significant reduction in retropulsion when using the Moses mode. The stone movement was reduced by 50 times at 0.8 J and 10 Hz (p < 0.01). The pronounced reduction of retropulsion in the Moses mode was clearly observed during fragmentation setting (high energy) and dusting (low energy, high Hz). In addition, stone fragmentation tests showed that the Moses modes resulted in a significantly higher ablation volume when compared with the Regular mode (160% higher; p < 0.001). In vivo assessment also supported the reduction in retropulsion when treating stones in the porcine kidney. Histological analysis of the porcine ureter after direct lasing in the Moses mode suggested less damage than in the Regular mode. The Moses technology resulted in more efficient laser lithotripsy, in addition to significantly reduced stone retropulsion, and displayed a margin of safety that may result in a shorter procedural time and safer lithotripsy.

  4. Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Hutchens, Thomas C.; Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-01-01

    Our laboratory is currently studying the experimental thulium fiber laser (TFL) as a potential alternative laser lithotripter to the gold standard, clinical Holmium:YAG laser. We have previously demonstrated the efficient coupling of TFL energy into fibers as small as 100-μm-core-diameter without damage to the proximal end. Although smaller fibers have a greater tendency to degrade at the distal tip during lithotripsy, fiber diameters (≤200 μm) have been shown to increase the saline irrigation rates through the working channel of a flexible ureteroscope, to maximize the ureteroscope deflection, and to reduce the stone retropulsion during laser lithotripsy. In this study, a 50-μm-core-diameter, 85-μm-outer-diameter, low-OH silica fiber is characterized for TFL ablation of human calcium oxalate monohydrate urinary stones, ex vivo. The 50-μm-core fiber consumes approximately 30 times less cross-sectional area inside the single working channel of a ureteroscope than the standard 270-μm-core fiber currently used in the clinic. The ureteroscope working channel flow rate, including the 50-μm fiber, decreased by only 10% with no impairment of ureteroscope deflection. The fiber delivered up to 15.4±5.9 W under extreme bending (5-mm-radius) conditions. The stone ablation rate measured 70±22 μg/s for 35-mJ-pulse-energy, 500-μs-pulse-duration, and 50-Hz-pulse-rate. Stone retropulsion and fiber burnback averaged 201±336 and 3000±2600 μm, respectively, after 2 min. With further development, thulium fiber laser lithotripsy using ultra-small, 50-μm-core fibers may introduce new integration and miniaturization possibilities and potentially provide an alternative to conventional Holmium:YAG laser lithotripsy using larger fibers.

  5. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    DTIC Science & Technology

    2016-07-02

    beams Superresolution machining Threshold effect of ablation means that structure diameter is less than the beam diameter fs pulses at 800 nm yield 200...Approved for public release: distribution unlimited. Applications of Bessel beams Superresolution machining Threshold effect of ablation means that... Superresolution machining Threshold effect of ablation means that structure diameter is less than the beam diameter fs pulses at 800 nm yield 200 nm

  6. Efficacy of percutaneous treatment of biliary tract calculi using the holmium:YAG laser.

    PubMed

    Hazey, J W; McCreary, M; Guy, G; Melvin, W S

    2007-07-01

    Few Western studies have focused on percutaneous techniques using percutaneous transhepatic choledochoscopy (PTHC) and holmium:yttrium-aluminum-garnet (YAG) laser to ablate biliary calculi in patients unable or unwilling to undergo endoscopic or surgical removal of the calculi. The authors report the efficacy of the holmium:YAG laser in clearing complex biliary calculi using percutaneous access techniques. This study retrospectively reviewed 13 non-Asian patients with complex secondary biliary calculi treated percutaneously using holmium:YAG laser. Percutaneous access was accomplished via left, right, or bilateral hepatic ducts and upsized for passage of a 7-Fr video choledochoscope. Lithotripsy was performed under choledochoscopic vision using a holmium:YAG laser with 200- or 365-microm fibers generating 0.6 to 1.0 joules at 8 to 15 Hz. Patients underwent treatment until stone clearance was confirmed by PTHC. Downsizing and subsequent removal of percutaneous catheters completed the treatment course. Seven men and six women with an average age of 69 years underwent treatment. All the patients had their biliary tract stones cleared successfully. Of the 13 patients, 3 were treated solely as outpatients. The average length of percutaneous access was 108 days. At this writing, one patient still has a catheter in place. The average number of holmium:YAG laser treatments required for stone clearance was 1.6, with no patients requiring more than 3 treatments. Of the 13 patients, 8 underwent a single holmium:YAG laser treatment to clear their calculi. Prior unsuccessful attempts at endoscopic removal of the calculi had been experienced by 7 of the 13 patients. Five patients underwent percutaneous access and subsequent stone removal as their sole therapy for biliary stones. Five patients were cleared of their calculi after percutaneous laser ablation of large stones and percutaneous basket retrieval of the remaining stone fragments. There was one complication of pain requiring admission, and no deaths. The use of PTHC with holmium:YAG laser ablation is safe and efficacious, but requires prolonged biliary access and often multiple procedures to ensure clearance of all calculi.

  7. A comparison of the DPSS UV laser ablation characteristic of 1024 and H10F WC-Co

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Chantzis, Dimitrios; Royer, Raphael; Metsios, Ioannis; Antar, Mohammad; Marimuthu, Sundar

    2017-07-01

    An investigation on ablation characteristics of 1024 and H10F cobalt cemented tungsten carbide (WC-Co) with a DPSS nanosecond UV laser (50 ns pulse width, 355 nm wavelength, 90 W average power and 10 kHz repetition rate) is presented. The ablation characteristic parameters such as ablation threshold, incubation effect and optical penetration depth were evaluated based on the spot ablation diameter and depth. It was observed that the ablation threshold is significantly influenced by the number of pulses (NOP) and it decreases with increase NOP which is attributed to the incubation effect. Only one ablation region is observed at low laser fluence and an additional molten ablation region is observed at high laser fluence accompanied with cracks. The cracks formation is due to the thermal induced stress and changes in WC microstructure during laser beam irradiation. The crack depth is proportional to the thickness of the molten WC region. The ablation threshold of 1024 WC-Co and H10F WC-Co were found to be Fth1 =4.32 J/cm2 and Fth1 =4.26 J/cm2 respectively. The difference in chemical composition has insignificant effect on the ablation threshold value of the material. The incubation factor and optical penetration depth values of 1024 WC-Co and H10F WC-Co were found to be ξ=0.73, α-1 =411 nm and ξ=0.75, α-1 =397 nm respectively.

  8. Tools to Improve the Accuracy of Kidney Stone Sizing with Ultrasound

    PubMed Central

    Dunmire, Barbrina; Hsi, Ryan S.; Cunitz, Bryan W.; Paun, Marla; Bailey, Michael R.; Sorensen, Mathew D.; Harper, Jonathan D.

    2015-01-01

    Abstract Purpose: Ultrasound (US) overestimates stone size when compared with CT. The purpose of this work was to evaluate the overestimation of stone size with US in an in vitro water bath model and investigate methods to reduce overestimation. Materials and Methods: Ten human stones (3–12 mm) were measured using B-mode (brightness mode) US by a sonographer blinded to the true stone size. Images were captured and compared using both a commercial US machine and software-based research US device. Image gain was adjusted between moderate and high stone intensities, and the transducer-to-stone depth was varied from 6 to 10 cm. A computerized stone-sizing program was developed to outline the stone width based on a grayscale intensity threshold. Results: Overestimation with the commercial device increased with both gain and depth. Average overestimation at moderate and high gain was 1.9±0.8 and 2.1±0.9 mm, respectively (p=0.6). Overestimation increased an average of 22% with an every 2-cm increase in depth (p=0.02). Overestimation using the research device was 1.5±0.9 mm and did not vary with depth (p=0.28). Overestimation could be reduced to 0.02±1.1 mm (p<0.001) with the computerized stone-sizing program. However, a standardized threshold consistent across depth, system, or system settings could not be resolved. Conclusion: Stone size is consistently overestimated with US. Overestimation increased with increasing depth and gain using the commercial machine. Overestimation was reduced and did not vary with depth, using the software-based US device. The computerized stone-sizing program shows the potential to reduce overestimation by implementing a grayscale intensity threshold for defining the stone size. More work is needed to standardize the approach, but if successful, such an approach could significantly improve stone-sizing accuracy and lead to automation of stone sizing. PMID:25105243

  9. Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam

    NASA Technical Reports Server (NTRS)

    Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John

    2018-01-01

    Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.

  10. Interaction thresholds in Er:YAG laser ablation of organic tissue

    NASA Astrophysics Data System (ADS)

    Lukac, Matjaz; Marincek, Marko; Poberaj, Gorazd; Grad, Ladislav; Mozina, Janez I.; Sustercic, Dusan; Funduk, Nenad; Skaleric, Uros

    1996-01-01

    Because of their unique properties with regard to the absorption in organic tissue, pulsed Er:YAG lasers are of interest for various applications in medicine, such as dentistry, dermatology, and cosmetic surgery. The relatively low thermal side effects, and surgical precision of erbium medical lasers have been attributed to the micro-explosive nature of their interaction with organic tissue. In this paper, we report on preliminary results of our study of the thresholds for tissue ablation, using an opto-acoustic technique. Two laser energy thresholds for the interaction are observed. The lower energy threshold is attributed to surface water vaporization, and the higher energy threshold to explosive ablation of thin tissue layers.

  11. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Gonzalez, David A; Irby, Pierce B; Fried, Nathaniel M

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A “fiber muzzle brake” was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 ?? ? s , and 300 Hz using a 100 - ? m -core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560 - ? m -outer-diameter, 360 - ? m -inner-diameter tube with a 275 - ? m -diameter through hole located 250 ?? ? m from the distal end. The fiber tip was recessed a distance of 500 ?? ? m . Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40 ± 4 ?? mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 ± 4 ?? s

  12. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    PubMed

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  13. First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae, E-mail: jeongtm@gist.ac.kr

    A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied tomore » investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.« less

  14. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  15. Investigations of the Cavitation and Damage Thresholds of Histotripsy and Applications in Targeted Tissue Ablation

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli

    Histotripsy is a noninvasive ultrasound therapy that controls acoustic cavitation to mechanically fractionate soft tissue. This dissertation investigates the physical thresholds to initiate cavitation and produce tissue damage in histotripsy and factors affecting these thresholds in order to develop novel strategies for targeted tissue ablation. In the first part of this dissertation, the effects of tissue properties on histotripsy cavitation thresholds and damage thresholds were investigated. Results demonstrated that the histotripsy shock scattering threshold using multi-cycle pulses increases in stiffer tissues, while the histotripsy intrinsic threshold using single-cycle pulses is independent of tissue stiffness. Further, the intrinsic threshold slightly decreases with lower frequencies and significantly decreases with increasing temperature. The effects of tissue properties on the susceptibility to histotripsy-induced tissue damage were also investigated, demonstrating that stiffer tissues are more resistant to histotripsy. Two strategies were investigated for increasing the effectiveness of histotripsy for the treatment of stiffer tissues, with results showing that thermal preconditioning may be used to alter tissue susceptibility to histotripsy and that lower frequency treatments may increase the efficiency of histotripsy tissue ablation due to enhanced bubble expansion. In the second part of this dissertation, the feasibility of using histotripsy for targeted liver ablation was investigated in an intact in vivo porcine model, with results demonstrating that histotripsy was capable of non-invasively creating precise lesions throughout the entire liver. Additionally, a tissue selective ablation approach was developed, where histotripsy completely fractionated the liver tissue surrounding the major hepatic vessels and gallbladder while being self-limited at the boundaries of these critical structures. Finally, the long-term effects of histotripsy liver ablation were investigated in an intact in vivo rodent model, showing that the liver homogenate resulting from histotripsy-induced tissue fractionation was completely resorbed over the course of 28 days. In the final part of this dissertation, a novel ablation method combining histotripsy with acoustically sensitive nanodroplets was developed for targeted cancer cell ablation, demonstrating the potential of using nanodroplet-mediated histotripsy (NMH) for targeted, multi-focal ablation. Studies demonstrated that lower frequency and higher boiling point perfluorocarbon droplets can improve NMH therapy. The role of positive and negative pressure on cavitation nucleation in NMH was also investigated, showing that NMH cavitation nucleation is caused directly from the peak negative pressure of the incident wave, similar to histotripsy bubbles generated above the intrinsic threshold. Overall, the results of this dissertation provide significant insight into the physical mechanisms underlying histotripsy tissue ablation and will help to guide the future development of histotripsy for clinical applications such as the treatment of liver cancer.

  16. Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2013-07-01

    The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.

  17. Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery

    NASA Astrophysics Data System (ADS)

    Girard, Guillaume; Zhou, Sheng; Bigaouette, Nicolas; Brunette, Isabelle; Chaker, Mohamed; Germain, Lucie; Lavertu, Pierre-Luc; Martin, François; Olivié, Gilles; Ozaki, Tsuneyuki; Parent, Mireille; Vidal, François; Kieffer, Jean-Claude

    2004-10-01

    The Femtosecond laser is a very promising tool for performing accurate dissection in various cornea layers. Clearly, the development of this application requires basic knowledge about laser-tissue interaction. One of the most significant parameter in laser applications is the ablation threshold, defined as the minimal laser energy per unit surface required for ablation. This paper investigates the ablation threshold as a function of the laser pulse duration for two corneal layers (endothelium and epithelium) as well as for hydrogel with different hydration degrees. The measured ablation thresholds prove to behave very differently as a function of the pulse duration for the various materials investigated, although the values obtained for the shortest laser pulses are quite similar. Our experimental results are fitted with a simple model for laser-matter interaction in order to determine some intrinsic physical parameters characterizing each target.

  18. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  19. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.

    PubMed

    Ogura, Makoto; Sato, Shunichi; Ishihara, Miya; Kawauchi, Satoko; Arai, Tunenori; Matsui, Takemi; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-01-01

    We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed. Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope. The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold. We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At laser intensities of > 2.4 GW/cm(2), a photodisruption process may also contribute to the tissue removal, in addition to a photothermal process. With regard to the ablation rates, the 1,064-nm laser was more suitable for TMLR than the 532-nm laser. We concluded that the 1,064-nm Q-switched Nd:YAG laser would be a potential candidate for a laser source for TMLR because of possible fiber-based beam delivery, its compact structure, cost effectiveness, and easy maintenance. Animal trials, however, have to be carried out to evaluate the influence of the tissue damage. Copyright 2002 Wiley-Liss, Inc.

  20. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil-Villalba, A.; Xie, C.; Salut, R.

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  1. Hard tissue ablation with a spray-assisted mid-IR laser

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  2. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  3. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

    PubMed

    Harrison, R K; Ben-Yakar, Adela

    2010-10-11

    We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

  4. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy

    PubMed Central

    Zhang, Ying; Nault, Isaac; Mitran, Sorin; Iversen, Edwin S.; Zhong, Pei

    2016-01-01

    The effects of stone size on the process and comminution efficiency in shock wave lithotripsy (SWL) are investigated by experiments, numerical simulations, and scale analysis. Cylindrical BegoStone phantoms with approximately equal height and diameter of either 4-, or 7- or 10-mm, in a total aggregated mass of about 1.5 g, were treated in an electromagnetic shock wave lithotripter field. The resultant stone comminution (SC) was found to correlate closely with the average peak pressure, P+(avg), incident on the stones. The P+(avg) threshold to initiate stone fragmentation in water increased from 7.9 to 8.8 to 12.7 MPa, respectively, when the stone size decreased from 10 to 7 to 4 mm. Similar changes in the P+(avg) threshold were observed for the 7- and 10-mm stones treated in 1,3-butanediol where cavitation is suppressed, suggesting that the observed size dependency is due to changes in stress distribution within different size stones. Moreover, the slope of the correlation curve between SC and ln(P‒+(avg)) in water increased with decreasing stone size, while the opposite trend was observed in 1,3-butanediol. The progression of stone comminution in SWL showed a size-dependency with the 7- and 10-mm stones fragmented into progressively smaller pieces while a significant portion (> 30%) of the 4-mm stones were stalemated within the size range of 2.8 ~ 4 mm even after 1,000 shocks. Analytical scaling considerations suggest size-dependent fragmentation behaviour, a hypothesis further supported by numerical model calculations that exhibit changing patterns of constructive and destructive wave interference, and thus variations in the maximum tensile stress or stress integral produced in cylindrical and spherical stone of different sizes. PMID:27515177

  5. The effect of climate variability on urinary stone attacks: increased incidence associated with temperature over 18 °C: a population-based study.

    PubMed

    Park, Hyoung Keun; Bae, Sang Rak; Kim, Satbyul E; Choi, Woo Suk; Paick, Sung Hyun; Ho, Kim; Kim, Hyeong Gon; Lho, Yong Soo

    2015-02-01

    The aim of this study was to evaluate the effect of seasonal variation and climate parameters on urinary tract stone attack and investigate whether stone attack is increased sharply at a specific point. Nationwide data of total urinary tract stone attack numbers per month between January 2006 and December 2010 were obtained from the Korean Health Insurance Review and Assessment Service. The effects of climatic factors on monthly urinary stone attack were assessed using auto-regressive integrated moving average (ARIMA) regression method. A total of 1,702,913 stone attack cases were identified. Mean monthly and monthly average daily urinary stone attack cases were 28,382 ± 2,760 and 933 ± 85, respectively. The stone attack showed seasonal trends of sharp incline in June, a peak plateau from July to September, and a sharp decline after September. The correlation analysis showed that ambient temperature (r = 0.557, p < 0.001) and relative humidity (r = 0.513, p < 0.001) were significantly associated with urinary stone attack cases. However, after adjustment for trends and seasonality, ambient temperature was the only climate factor associated with the stone attack cases in ARIMA regression test (p = 0.04). Threshold temperature was estimated as 18.4 °C. Risk of urinary stone attack significantly increases 1.71% (1.02-2.41 %, 95% confidence intervals) with a 1 °C increase of ambient temperature above the threshold point. In conclusion, monthly urinary stone attack cases were changed according to seasonal variation. Among the climates variables, only temperature had consistent association with stone attack and when the temperature is over 18.4 °C, urinary stone attack would be increased sharply.

  6. [Changes in pain sensitivity after the ablation of the somatosensory areas of the cerebral cortex in cats].

    PubMed

    Reshetniak, V K; Kukushkin, M L

    1986-12-01

    The effects of ablation of the first and second somatosensory cortex on pain sensitivity were studied in the behavioural experiments on adult cats. The ablation of the first somatosensory cortex (SI) was shown to cause an increase of the response thresholds at all the levels of a conventional scale, while the destruction of the second somatosensory cortex (S2) decreased the response thresholds. The role of SI and S2 in the evaluation of nociceptive information is discussed.

  7. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  8. On the mechanism of pulsed laser ablation of phthalocyanine nanoparticles in an aqueous medium

    NASA Astrophysics Data System (ADS)

    Kogan, Boris; Malimonenko, Nicholas; Butenin, Alexander; Novoseletsky, Nicholas; Chizhikov, Sergei

    2018-06-01

    Laser ablation of phthalocyanine nanoparticles has potential for cancer treatment. The ablation is accompanied by the formation of microbubbles and the sublimation of nanoparticles. This was investigated in a liquid medium simulating tissue using optical-acoustic and spectral-luminescent methods. The thresholds for the appearance of microbubbles have been determined as a function of nanoparticle size. For the minimal size particles (80 nm) this threshold is equal to about 20–25 mJ cm‑2 and for the maximal size particles (230 nm) this threshold is equal to about 7 mJ cm‑2. It was estimated that the particle temperature at which bubbles arise is near 145 °С.

  9. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  10. Laser antisepsis of Phorphyromonas gingivalis in vitro with dental lasers

    NASA Astrophysics Data System (ADS)

    Harris, David M.

    2004-05-01

    It has been shown that both pulsed Nd:YAG (1064nm) and continuous diode (810nm) dental lasers kill pathogenic bacteria (laser antisepsis), but a quantitative method for determining clinical dosimetry does not exist. The purpose of this study was to develop a method to quantify the efficacy of ablation of Porphyromonas gingivalis (Pg) in vitro for two different lasers. The ablation thresholds for the two lasers were compared in the following manner. The energy density was measured as a function of distance from the output of the fiber-optic delivery system. Pg cultures were grown on blood agar plates under standard anaerobic conditions. Blood agar provides an approximation of gingival tissue for the wavelengths tested in having hemoglobin as a primary absorber. Single pulses (Nd:YAG: 100- Œs diode: 100-msec) of laser energy were delivered to Pg colonies and the energy density was increased until the appearance of a small plume was observed coincident with a laser pulse. The energy density at this point defines the ablation threshold. Ablation thresholds to a single pulse were determined for both Pg and for blood agar alone. The large difference in ablation thresholds between the pigmented pathogen and the host matrix for pulsed-Nd:YAG represented a significant therapeutic ratio and Pg was ablated without visible effect on the blood agar. Near threshold the 810-nm diode laser destroyed both the pathogen and the gel. Clinically, the pulsed Nd:YAG may selectively destroy pigmented pathogens leaving the surrounding tissue intact. The 810-nm diode laser may not demonstrate this selectivity due to its longer pulse length and greater absorption by hemoglobin.

  11. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  12. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  13. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  14. Modifying Ventricular Fibrillation by Targeted Rotor Substrate Ablation: Proof-of-Concept from Experimental Studies to Clinical VF

    PubMed Central

    KRUMMEN, DAVID E.; HAYASE, JUSTIN; VAMPOLA, STEPHEN P.; HO, GORDON; SCHRICKER, AMIR A.; LALANI, GAUTAM G.; BAYKANER, TINA; COE, TAYLOR M.; CLOPTON, PAUL; RAPPEL, WOUTER-JAN; OMENS, JEFFREY H.; NARAYAN, SANJIV M.

    2016-01-01

    Introduction Recent work has suggested a role for organized sources in sustaining ventricular fibrillation (VF). We assessed whether ablation of rotor substrate could modulate VF inducibility in canines, and used this proof-of-concept as a foundation to suppress antiarrhythmic drug-refractory clinical VF in a patient with structural heart disease. Methods and Results In 9 dogs, we introduced 64-electrode basket catheters into one or both ventricles, used rapid pacing at a recorded induction threshold to initiate VF, and then defibrillated after 18±8 seconds. Endocardial rotor sites were identified from basket recordings using phase mapping, and ablation was performed at nonrotor (sham) locations (7 ± 2 minutes) and then at rotor sites (8 ± 2 minutes, P = 0.10 vs. sham); the induction threshold was remeasured after each. Sham ablation did not alter canine VF induction threshold (preablation 150 ± 16 milliseconds, postablation 144 ± 16 milliseconds, P = 0.54). However, rotor site ablation rendered VF noninducible in 6/9 animals (P = 0.041), and increased VF induction threshold in the remaining 3. Clinical proof-of-concept was performed in a patient with repetitive ICD shocks due to VF refractory to antiarrhythmic drugs. Following biventricular basket insertion, VF was induced and then defibrillated. Mapping identified 4 rotors localized at borderzone tissue, and rotor site ablation (6.3 ± 1.5 minutes/site) rendered VF noninducible. The VF burden fell from 7 ICD shocks in 8 months preablation to zero ICD therapies at 1 year, without antiarrhythmic medications. Conclusions Targeted rotor substrate ablation suppressed VF in an experimental model and a patient with refractory VF. Further studies are warranted on the efficacy of VF source modulation. PMID:26179310

  15. Refinement of determination of critical thresholds of stress-strain behaviour by using AE data: potential for evaluation of durability of natural stone

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Lokajíček, Tomáš

    2017-04-01

    According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.

  16. Nd:YAG 1.44 laser ablation of human cartilage

    NASA Astrophysics Data System (ADS)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  17. Ultrafast Passive Shields for Laser and Ballistic Protection

    DTIC Science & Technology

    1991-07-15

    chemically polymerized P(DPA)) as a binder, and these were tested for ablation (i.e. laser damage threshold ) limits. Table IV below summarizes these results...50, 100, 250 and 500 AJ/pulse o 1.G, 2.5, 5.0 mJ/pulse. The following energies were used for the preliminary laser damage threshold tests: o 2.5, 5.0...these were tested for ablation (i.e. laser damage threshold ) limits. Table VI summarizes these results which are all for tests in the absence of an iris

  18. Considerations for theoretical modeling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control

    PubMed Central

    Prakash, Punit; Diederich, Chris J.

    2012-01-01

    Purpose To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared impact several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. Methods A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity.. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. Results Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t43 ≥ 240min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54 °C for short (< 5 min) duration ablations and 50 °C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. Conclusions Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5—15 min ablations with this modality, thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate. PMID:22235787

  19. Laser heating and ablation at high repetition rate in thermal confinement regime

    NASA Astrophysics Data System (ADS)

    Brygo, François; Semerok, A.; Oltra, R.; Weulersse, J.-M.; Fomichev, S.

    2006-09-01

    Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and λ = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repetition rate and the number of applied pulses. With a high repetition rate, the threshold fluence decreased significantly when the number of applied pulses was increasing. The experimentally obtained thresholds were well described by the developed theoretical model. Some specific features of paint heating and ablation with high repetition rate lasers are discussed.

  20. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  1. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.

    PubMed

    Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne

    2009-12-07

    Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

  2. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Jorgensen, David J.; Titus, Michael S.; Pollock, Tresa M.

    2015-10-01

    The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm2 and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm2. Two sizes of nanoparticles consisting of Al, NiAl, Ni3Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1-30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm2 pulse, one hundred 1.7 J/cm2 pulses, or one thousand 250 mJ/cm2 pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  3. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  4. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  5. Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials.

    PubMed

    Schelle, Florian; Polz, Sebastian; Haloui, Hatim; Braun, Andreas; Dehn, Claudia; Frentzen, Matthias; Meister, Jörg

    2014-11-01

    Modern ultrashort pulse lasers with scanning systems provide a huge set of parameters affecting the suitability for dental applications. The present study investigates thresholds and ablation rates of oral hard tissues and restorative materials with a view towards a clinical application system. The functional system consists of a 10 W Nd:YVO4 laser emitting pulses with a duration of 8 ps at 1,064 nm. Measurements were performed on dentin, enamel, ceramic, composite, and mammoth ivory at a repetition rate of 500 kHz. By employing a scanning system, square-shaped cavities with an edge length of 1 mm were created. Ablation threshold and rate measurements were assessed by variation of the applied fluence. Examinations were carried out employing a scanning electron microscope and optical profilometer. Irradiation time was recorded by the scanner software in order to calculate the overall ablated volume per time. First high power ablation rate measurements were performed employing a laser source with up to 50 W. Threshold values in the range of 0.45 J/cm(2) (composite) to 1.54 J/cm(2) (enamel) were observed. Differences between any two materials are statistically significant (p < 0.05). Preparation speeds up to 37.53 mm(3)/min (composite) were achieved with the 10 W laser source and differed statistically significant for any two materials (p < 0.05) with the exception of dentin and mammoth ivory (p > 0.05). By employing the 50 W laser source, increased rates up to ∼50 mm(3)/min for dentin were obtained. The results indicate that modern USPL systems provide sufficient ablation rates to be seen as a promising technology for dental applications.

  6. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.

    2017-06-01

    Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.

  7. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.

    PubMed

    Wang, Kevin G

    2017-10-01

    A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max  = 35.0MPa, p min  =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.

    2017-07-05

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  9. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, R. D.; Krasheninnikov, S. I.

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  10. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  11. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  12. [The role of the somatosensory cortex in the development of reflex analgesia].

    PubMed

    Kukushkin, M L; Reshetniak, V K; Durinian, R A

    1986-06-01

    The effects of reflex stimulation on the changes of nociception thresholds in animals before and after ablation of the somatosensory cortex were studied in behavioural experiments on adult cats. Electroacupuncture stimulation (EAP) was shown to increase nociception thresholds at all levels of the conventional scale. The ablation of both the first (S1) and the second (S2) somatosensory cortex led to EAP inefficiency at the side opposite to the ablation. Partial lesion of the lateral and suprasylvian gyri, used as control, did not affect the efficiency of reflex analgesia. It is concluded that somatosensory areas of the cortex, especially 2, are involved in reflex analgesia.

  13. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    NASA Astrophysics Data System (ADS)

    Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  14. Diagnosis of rare inherited glyoxalate metabolic disorders through in-situ analysis of renal stones

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Grohe, B.; Hoppe, B.; Beck, B. B.; Tessadri, R.

    2012-04-01

    The primary hyperoxalurias type I - III constitute rare autosomal-recessive inherited disorders of the human glyoxylate metabolism. By mechanisms that are ill understood progressive nephrocalcinosis and recurrent urolithiasis (kidney stone formation) often starting in early childhood, along with their secondary complications results in loss of nephron mass which progresses to end-stage renal failure over time. In the most frequent form, end-stage renal failure (ESRF) is the rule and combined liver/kidney transplantation respectively pre-emptive liver transplantation are the only causative treatment today. Hence, this contributes significantly to healthcare costs and early diagnosis is extremely important for a positive outcome for the patient. We are developing a stone-based diagnostic method by in-detail multi-methods investigation of the crystalline moiety in concert with urine and stone proteomics. Stone analysis will allow faster analysis at low-impact for the patients in the early stages of the disease. First results from combined spectroscopic (Raman, FTIR)and geochemical micro-analyses (Electron Microprobe and Laser Ablation ICP-MS) are presented here that show significant differences between stones from hyperoxaluria patients and those formed by patients without this disorder (idiopathic stones). Major differences exist in chemistry as well as in morphology and phase composition of the stones. Ca/P ratios and Mg contents differentiate between oxalate-stones from hyperoxaluria patients and idiopathic stones. Results show that also within the different subtypes of primary hyperoxaluria significant differences can be found in stone composition. These imply differences in stone formation which could be exploited for new therapeutic pathways. Furthermore, the results provide important feedback for suspected but yet unconfirmed cases of primary hyperoxaluria when used in concert with the genetic methods routinely applied.

  15. Estimation of ultrashort laser irradiation effect over thin transparent biopolymer films morphology

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, C.; Bliznakova, I.; Slavov, D.; Husinsky, W.

    2015-01-01

    The collagen - elastin biopolymer thin films treated by CPA Ti:Sapphire laser (Femtopower - Compact Pro) at 800nm central wavelength with 30fs and 1kHz repetition rate are investigated. A process of surface modifications and microporous scaffold creation after ultrashort laser irradiation has been observed. The single-shot (N=1) and multi-shot (N<1) ablation threshold values were estimated by studying the linear relationship between the square of the crater diameter D2 and the logarithm of the laser fluence F for determination of the threshold fluences for N=1, 2, 5, 10, 15 and 30 number of laser pulses. The incubation analysis by calculation of the incubation coefficient ξ for multi - shot fluence threshold for selected materials by power - law relationship form Fth(N)=Fth(1)Nξ-1 was also obtained. In this paper, we have also shown another consideration of the multi - shot ablation threshold calculation by logarithmic dependence of the ablation rate d on the laser fluence. The morphological surface changes of the modified regions were characterized by scanning electron microscopy to estimate the generated variations after the laser treatment.

  16. Kidney stone ablation times and peak saline temperatures during Holmium:YAG and Thulium fiber laser lithotripsy, in vitro, in a ureteral model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-02-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental Thulium fiber laser (TFL) was studied and compared to clinical gold standard Holmium:YAG laser. The Holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. TFL (λ = 1908 nm) was operated with 35 mJ, 500 μs, 150-500 Hz, and 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate / 40% calcium phosphate), of uniform mass and diameter (4-5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 ml/min and 13.7 ml/min for the TFL and Holmium laser, respectively. The temperature 3 mm from tube's center and 1 mm above mesh sieve was measured by a thermocouple and recorded during experiments. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. Holmium laser time measured 167 +/- 41 s (n = 12). TFL times measured 111 +/- 49 s, 39 +/- 11 s, and 23 +/- 4 s, for pulse rates of 150, 300, and 500 Hz (n = 12 each). Mean peak saline irrigation temperatures reached 24 +/- 1 °C for Holmium, and 33 +/- 3 °C, 33 +/- 7 °C, and 39 +/- 6 °C, for TFL at pulse rates of 150, 300, and 500 Hz. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and reduced stone retropulsion, and may provide a clinical alternative to the conventional Holmium laser for lithotripsy.

  17. Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm

    NASA Astrophysics Data System (ADS)

    Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.

    1996-04-01

    Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.

  18. Ultrafast dynamics of hard tissue ablation using fs-lasers.

    PubMed

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Huber, Heinz P; Sroka, Ronald

    2018-05-29

    Several studies on hard tissue laser ablation demonstrated that ultrafast lasers enable precise material removal without thermal side effects. Although the principle ablation mechanisms have been thoroughly investigated, there are still open questions regarding the influence of material properties on transient dynamics. In this investigation, we applied pump-probe microscopy to record ablation dynamics of biomaterials with different tensile strengths (dentin, chicken bone, gallstone, kidney stones) at delay times between 1 ps and 10 μs. Transient reflectivity changes, pressure and shock wave velocities, and elastic constants were determined. The result revealed that absorption and excitation show the typical well-known transient behaviour of dielectric materials. We observed for all samples a photomechanical laser ablation process, where ultrafast expansion of the excited volume generates pressure waves leading to fragmentation around the excited region. Additionally, we identified tensile-strength-related differences in the size of ablated craters and ejected particles. The elastic constants derived were in agreement with literature values. In conclusion, pressure-wave-assisted material removal seems to be a general mechanism for hard tissue ablation with ultrafast lasers. This photomechanical process increases ablation efficiency and removes heated material, thus ultrafast laser ablation is of interest for clinical application where heating of the tissue must be avoided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Ablation of silicon with bursts of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  20. Isthmus sites identified by Ripple Mapping are usually anatomically stable: A novel method to guide atrial substrate ablation?

    PubMed

    Luther, Vishal; Qureshi, Norman; Lim, Phang Boon; Koa-Wing, Michael; Jamil-Copley, Shahnaz; Ng, Fu Siong; Whinnett, Zachary; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa; Linton, Nick

    2018-03-01

    Postablation reentrant ATs depend upon conducting isthmuses bordered by scar. Bipolar voltage maps highlight scar as sites of low voltage, but the voltage amplitude of an electrogram depends upon the myocardial activation sequence. Furthermore, a voltage threshold that defines atrial scar is unknown. We used Ripple Mapping (RM) to test whether these isthmuses were anatomically fixed between different activation vectors and atrial rates. We studied post-AF ablation ATs where >1 rhythm was mapped. Multipolar catheters were used with CARTO Confidense for high-density mapping. RM visualized the pattern of activation, and the voltage threshold below which no activation was seen. Isthmuses were characterized at this threshold between maps for each patient. Ten patients were studied (Map 1 was AT1; Map 2: sinus 1/10, LA paced 2/10, AT2 with reverse CS activation 3/10; AT2 CL difference 50 ± 30 ms). Point density was similar between maps (Map 1: 2,589 ± 1,330; Map 2: 2,214 ± 1,384; P  =  0.31). RM activation threshold was 0.16 ± 0.08 mV. Thirty-one isthmuses were identified in Map 1 (median 3 per map; width 27 ± 15 mm; 7 anterior; 6 roof; 8 mitral; 9 septal; 1 posterior). Importantly, 7 of 31 (23%) isthmuses were unexpectedly identified within regions without prior ablation. AT1 was treated following ablation of 11/31 (35%) isthmuses. Of the remaining 20 isthmuses, 14 of 16 isthmuses (88%) were consistent between the two maps (four were inadequately mapped). Wavefront collision caused variation in low voltage distribution in 2 of 16 (12%). The distribution of isthmuses and nonconducting tissue within the ablated left atrium, as defined by RM, appear concordant between rhythms. This could guide a substrate ablative approach. © 2018 Wiley Periodicals, Inc.

  1. Model of the final borehole geometry for helical laser drilling

    NASA Astrophysics Data System (ADS)

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  2. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown

    PubMed Central

    Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš

    2016-01-01

    In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses. PMID:27991543

  3. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown

    NASA Astrophysics Data System (ADS)

    Mirza, Inam; Bulgakova, Nadezhda M.; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš

    2016-12-01

    In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.

  4. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown.

    PubMed

    Mirza, Inam; Bulgakova, Nadezhda M; Tomáštík, Jan; Michálek, Václav; Haderka, Ondřej; Fekete, Ladislav; Mocek, Tomáš

    2016-12-19

    In this paper, we establish connections between the thresholds and mechanisms of the damage and white-light generation upon femtosecond laser irradiation of wide-bandgap transparent materials. On the example of Corning Willow glass, evolution of ablation craters, their quality, and white-light emission were studied experimentally for 130-fs, 800-nm laser pulses. The experimental results indicate co-existence of several ablation mechanisms which can be separated in time. Suppression of the phase explosion mechanism of ablation was revealed at the middle of the irradiation spots. At high laser fluences, air ionization was found to strongly influence ablation rate and quality and the main mechanisms of the influence are analysed. To gain insight into the processes triggered by laser radiation in glass, numerical simulations have been performed with accounting for the balance of laser energy absorption and its distribution/redistribution in the sample, including bremsstrahlung emission from excited free-electron plasma. The simulations have shown an insignificant role of avalanche ionization at such short durations of laser pulses while pointing to high average energy of electrons up to several dozens of eV. At multi-pulse ablation regimes, improvement of crater quality was found as compared to single/few pulses.

  5. Lithotripsy Performance of Specially Designed Laser Fiber Tips.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2016-05-01

    We evaluated and compared a standard laser lithotripsy fiber to laser fibers claimed to have lithotripsy performance enhancing features. A special AccuMax™ 200 polished tip fiber and an AccuTrac™ ball-shaped tip fiber, each with an approximately 240 μm core, were compared to a standard 272 μm core fiber (Rocamed™). The polished and ball-shaped tip fibers were used and reused without preparation. The standard fiber was stripped and cleaved according to manufacturer instructions after each experiment. An automated laser fragmentation testing system was used to perform multiple 30-second laser lithotripsy experiments. To mimic most typical lithotripsy conditions soft and hard stone materials were used with high frequency, low pulse energy (20 Hz and 0.5 J) or with low frequency, high pulse energy (5 Hz and 2.0 J) lithotripter settings. Ablation volumes and laser fiber tip photographs before and after lithotripsy were compared. The standard and ball-shaped tip fibers did not differ in ablation volume (p = 0.72) but they ablated 174% and 188% more stone, respectively, than the polished tip fiber (p <0.0001). The ball-shaped tip showed remarkable fiber tip degradation after short-term use at low frequency, high pulse energy settings. When high pulse energy settings were applied first even for short-term use, the ablation volume achieved by the polished and ball-shaped tip fibers at high frequency, low pulse energy settings decreased more than 20%. The standard laser fiber was as good as and sometimes better than the specially designed fibers. Rapid degradation of the specially designed laser fiber tips strongly limits their general usefulness but ball-shaped tip fibers may be useful in specific situations. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Simple Model for Identifying Critical Regions in Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.

    2015-01-01

    Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.

  7. Temperature monitoring by infrared radiation measurements during ArF excimer laser ablation with cornea

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Arai, Tsunenori; Sato, Shunichi; Nakano, Hironori; Obara, Minoru; Kikuchi, Makoto

    1999-06-01

    We measured infrared thermal radiation from porcine cornea during various fluences ArF excimer laser ablations with 1 microsecond(s) rise time. To obtain absolute temperature by means of Stefan-Boltzman law of radiation, we carried out a collection efficiency and detective sensitivity by a pre-experiment using panel heater. We measured the time course of the thermal radiation intensity with various laser fluences. We studied the relation between the peak cornea temperature during the ablation and irradiation fluences. We found the ablation situations, i.e., sub-ablation threshold, normal thermal ablation, and over-heated ablation, may be judged by both of the measured temperature transient waveforms and peak temperature. The boundary fluences corresponding to normal thermal ablation were 90 and 160 mJ/cm2. Our fast remote temperature monitoring during cornea ablation might be useful to control ablation quality/quantity of the cornea ArF laser ablation, that is PRK.

  8. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to efficient coupling of optical energy, pre-injection of photoactive dyes promoted the degree of tissue removal during laser irradiation. Further studies will investigate spatial distribution of dyes and optimal injecting pressure to govern the extent of dye-assisted ablation in a predictable manner. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser vaporization for BPH with low power application. © 2014 Wiley Periodicals, Inc.

  9. Monitoring of KrF excimer laser ablation for burn scars: a comparative study of transient reflection measurement and time-resolved photography of ablation plume

    NASA Astrophysics Data System (ADS)

    Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi

    1995-05-01

    A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.

  10. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy.

    PubMed

    Wilson, Christopher R; Hutchens, Thomas C; Hardy, Luke A; Irby, Pierce B; Fried, Nathaniel M

    2015-10-01

    The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.3F (0.433-mm OD) nitinol wire basket to form a 1.9F (0.633-mm OD) device. TFL energy of 30 mJ, 500 μs pulse duration, and 500 Hz pulse rate was delivered to human uric acid stones, ex vivo. Stone ablation rates measured 1.5 ± 0.2 mg/s, comparable to 1.7 ± 0.3 mg/s using bare fiber tips separately with stone basket. With further development, this device may minimize stone retropulsion, allowing more efficient TFL lithotripsy at higher pulse rates. It may also provide increased flexibility, higher saline irrigation rates through the ureteroscope working channel, reduce fiber degradation compared with separate fiber and basket manipulation, and reduce laser-induced nitinol wire damage.

  11. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  12. Dual energy CT kidney stone differentiation in photon counting computed tomography

    NASA Astrophysics Data System (ADS)

    Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2017-03-01

    This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.

  13. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    PubMed Central

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted. PMID:28106146

  14. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50-100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25-5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8-6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.

  15. [Effect of morphine on pain sensitivity after removal of the 1st and 2d somatosensory areas of the cerebral cortex in cats].

    PubMed

    Kukushkin, M L

    1986-01-01

    Behavioral experiments on adult cats were performed to study the development of morphine analgesia before and after ablation of the first (S1) and the second (S2) somatosensory cortex. It was shown that injection of morphine before ablation of the cortical areas leads to an equal increase of the nociceptive response thresholds on both sides of the body, predominantly at those levels of the conventional scale where the emotional affective component of pain is remarkable. It was also noted that after ablation of the S1 and S2 morphine exerts a different effect on changes in the nociceptive response thresholds. The role of the somatosensory cortical areas in an analysis of noxious signals is discussed.

  16. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2013-05-06

    We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

  17. Stone size limits the use of Hounsfield units for prediction of calcium oxalate stone composition.

    PubMed

    Stewart, Gregory; Johnson, Lewis; Ganesh, Halemane; Davenport, Daniel; Smelser, Woodson; Crispen, Paul; Venkatesh, Ramakrishna

    2015-02-01

    To evaluate the role of stone size in predicting urinary calculus composition using Hounsfield units on noncontrasted computed tomography (CT) scan. A retrospective review was performed for all patients who underwent ureteroscopy or percutaneous nephrolithotomy during a 1-year period, had a stone analysis performed, and had CT imaging available for review. All CT scans were reviewed by a board-certified radiologist. Variables evaluated included age, sex, body mass index, stone size, stone location, Hounsfield units (HUs), and stone composition. We identified a total of 91 patients (41 men and 50 women) with CT imaging and stone analysis available for review. Stone analysis showed 41 calcium oxalate monohydrate (CaOxMH), 13 calcium oxalate dihydrate, 29 calcium phosphate, 5 uric acid, 2 struvite, and 1 cystine stone. Average age was 46 years, and average body mass index was 32 kg/m2. Measured HUs varied significantly with size for CaOxMH and calcium oxalate dihydrate stones (P values <.05), but not for calcium phosphate stones (P = .126). Using a CaOxMH identification value of 700-1000 HUs, 28 of 41 stone compositions (68%) would not have been correctly identified, including all 10 (100%) small (<5 mm) stones, 13 of 22 (59%) medium (5-10 mm) stones, and 5 of 9 large (>10 mm) stones (55%). For calcium stones, the ability of CT HUs to predict stone composition was limited, likely due to the mixed stone composition. Within a cohort of CaOxMH stone formers, measured HUs varied linearly with stone size. All stones <5 mm were below thresholds for CaOxMH composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Stone Comminution Correlates with the Average Peak Pressure Incident on a Stone during Shock Wave Lithotripsy

    PubMed Central

    Smith, N.; Zhong, P.

    2012-01-01

    To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (Rh = 7 mm), close logarithmic correlations between the average peak pressure (P+(avg)) incident on the stone (D = 10 mm BegoStone) and comminution efficiency after 500 and 1,000 shocks have been identified. Moreover, the correlations have demonstrated distinctive thresholds in P+(avg) (5.3 MPa and 7.6 MPa for soft and hard stones, respectively), that are required to initiate stone fragmentation independent of surrounding fluid medium and LSW dose. These observations, should they be confirmed using other shock wave lithotripters, may provide an important field parameter (i.e., P+(avg)) to guide appropriate application of SWL in clinics, and facilitate device comparison and design improvements in future lithotripters. PMID:22935690

  19. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy.

    PubMed

    Smith, N; Zhong, P

    2012-10-11

    To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (R(h)=7 mm), close logarithmic correlations between the average peak pressure (P(+(avg))) incident on the stone (D=10 mm BegoStone) and comminution efficiency after 500 and 1000 shocks have been identified. Moreover, the correlations have demonstrated distinctive thresholds in P(+(avg)) (5.3 MPa and 7.6 MPa for soft and hard stones, respectively), that are required to initiate stone fragmentation independent of surrounding fluid medium and LSW dose. These observations, should they be confirmed using other shock wave lithotripters, may provide an important field parameter (i.e., P(+(avg))) to guide appropriate application of SWL in clinics, and facilitate device comparison and design improvements in future lithotripters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro.

    PubMed

    Yang, Yongji; Moser, Michael A J; Zhang, Edwin; Zhang, Wenjun; Zhang, Bing

    2018-01-01

    The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.

  1. SERS detection and targeted ablation of lymphoma cells using functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Qian; Cao, Fei; Feng, Chao; Zhao, Yan; Wang, Xiuhong

    2016-03-01

    Lymphoma is a heterogeneous group of malignancies of the lymphoid tissue, and is prevalent worldwide affecting both children and adults with a high mortality rate. There is in dire need of accurate and noninvasive approaches for early detection of the disease. Herein, we report a facile way to fabricate silver nanoparticle based nanoprobe by incorporating the corner-stone immunotherapeutic drug Rituxan for simultaneous detection and ablation of lymphoma cells in vitro. The fabricated nanoprobe can detect CD20 positive single lymphoma cell by surface enhanced Raman scattering technique with high specificity. The engineered nanoprobe retains the same antibody property as intact drug via Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) analysis. The nanoprobe efficiently eradicates lymphoma cells in vitro. By integrating the advantages of sensitive SERS detection with targeted ablation capabilities of immunotherapeutic drug through site specificity, this nanoprobe can be applied as outstanding tools in living imaging, cancer diagnosis and treatment.

  2. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  3. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  4. Efficacy of sub-threshold focused ultrasound irradiation against pancreatic cancer xenografts evaluated using magnetic resonance imaging

    PubMed Central

    Chen, Yini; Gao, Yihui; Wu, Lei

    2017-01-01

    We investigated the efficacy and optimal period for using magnetic resonance imaging (MRI) to detect effects of sub-threshold focused ultrasound (FUS) irradiation. Nude mice bearing pancreatic cancer xenografts were subjected to MRI and pathology examnation before, and 24 h, 48 h, 2 weeks after irradiation, which were used to evaluate therapeutic effects of FUS. Tumor volumes were lower post-treatment than control group (P < 0.05). The T1WI turbo spin echo (T1WI-TSE) sequence was similar signal before and after treatment. On T1 enhanced scanning sequence (T1WI-SPIR) imaging, ablation lesions appeared as patchy areas of low signal after 24 h and 48 h. After 2 weeks, the ablation lesions contained low signal areas with clear borders. Hematoxylin and eosin (HE) staining revealed small vessels at ablation lesions with no obvious boundary between cell injury areas and normal tumor cells areas in early-stage, while revealed obvious boundaries 2 weeks post-treatment. Terminal deoxynucleotidyl transferase-modified, dUTP nick-end labeling (TUNEL) staining showed cell apoptosis in early-stage, and revealed reduced apoptotic cells and increased necrotic cell areas 2 weeks later. These findings indicate sub-threshold FUS induces pancreatic cancer cell apoptosis and inhibits tumor growth. Contrast-enhanced MRI delineated the ablation lesions better 2 weeks post-treatment than early stage. PMID:29113316

  5. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefonov, O V; Ovchinnikov, A V; Il'ina, I V

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulsesmore » with intensities 10{sup 11} – 10{sup 13} W cm{sup -2}. (interaction of laser radiation with matter)« less

  6. The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface

    NASA Astrophysics Data System (ADS)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin

    2018-06-01

    Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.

  7. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J.; Reininghaus, M.

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation ofmore » ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.« less

  8. Through-the-thickness selective laser ablation of ceramic coatings on soda-lime glass

    NASA Astrophysics Data System (ADS)

    Romoli, L.; Khan, M. M. A.; Valentini, M.

    2017-05-01

    This paper investigates through-thickness laser ablation characteristics of ceramic coating deposited on the bottom surface of the soda-lime glass substrate. Experimental studies were focused on determining the effects of energy density, hatch distance and coating color on the ablation completion index. Effect of glass thickness was also tested to verify the robustness of the designed process. Up to a certain threshold limit, the ablation completion index is energy-limited and has an inverse U-shape relationship with the energy density input. Since greater hatch distance means faster ablation and lesser ablation completion index, there must be a tradeoff between ablation completion index and hatch distance. During through-thickness laser ablation of ceramic coating, energy density input should be in the range of 0.049 J/mm2 - 0.251 J/mm2 for black ceramic coating and 0.112 J/mm2 - 0.251 J/mm2 for other coatings. Finally, the designed process is capable of ablating the ceramic coating effectively through varied thickness.

  9. Fiber-delivered mid-infrared (6-7) laser ablation of retinal tissue under perfluorodecalin

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Joos, Karen M.; Jansen, E. Duco

    2003-07-01

    The Er:YAG laser (l=2.94mm) is an effective tool in vitreo-retinal surgery. Pulsed mid-infrared (l=6.45 mm) radiation from the Free Electron Laser has been touted as a potentially superior cutting tool. To date, use of this laser has been limited to applications in an air environment. The goal of this study was: 1) determine feasibility of fiberoptic delivery of 6.45mm using silverhalide fibers (d=700mm); 2) use infrared transparent vitreous substitute (perfluorodecalin) to allow non-contact ablation of the retina at 6.45mm. Fiber damage threshold=7.8J/cm2 (0.54GW/cm2) while transmission loss=0.54dB/m, allowing supra-ablative radiant exposures to the target. FTIR measurements of perfluorodecalin at 6.45mm yielded ma=3mm-1. Pump-probe imaging of ablation of a tissue-phantom through perfluorodecalin showed feasibility of non-contact ablation at l=6.45mm. Ablation of the retinal membranes of enucleated pig eyes was carried out under perfluorodecalin (5 Hz, 1.3 J/cm2). Each eye was cut along its equator to expose the retina. Vitreous was replaced by perfluorodecalin and laser radiation was delivered to the retina via the silverhalide fiber. The eye was rotated (at 2 rpm) using a stepper motor (0.9o/step) to create an ablation circle around the central axis of the retina (50% spot-to-spot overlap). Histological analysis of ablation yield and collateral damage will be presented. We have shown that using l=6.45mm delivered via silver halide fibers through perfluorodecalin allowed non-contact laser ablation. Remote structures are shielded, as the radiant exposure falls below the ablation threshold owing non-negligible absorption of perfluorodecalin at 6.45mm. This may optimize efficacy and safety of laser-based vitreoretinal surgery.

  10. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  11. Calculus removal on a root cement surface by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kraft, Johan F.; Vestentoft, Kasper; Christensen, Bjarke H.; Løvschall, Henrik; Balling, Peter

    2008-01-01

    Ultrashort-pulse-laser ablation of dental calculus (tartar) and cement is performed on root surfaces. The investigation shows that the threshold fluence for ablation of calculus is a factor of two to three times smaller than that of a healthy root cement surface. This indicates that ultrashort laser pulses may provide an appropriate tool for selective removal of calculus with minimal damage to the underlying root cement. Future application of an in situ profiling technique allows convenient on-line monitoring of the ablation process.

  12. Numerical Response Surfaces of Volume of Ablation and Retropulsion Amplitude by Settings of Ho:YAG Laser Lithotripter

    PubMed Central

    Rutherford, Jonathan; Solomon, Metasebya; Cheng, Brian; Xuan, Jason R.; Gong, Jason; Yu, Honggang; Xia, Michael L. D.; Yang, Xirong; Hasenberg, Thomas; Curran, Sean

    2018-01-01

    Objectives Although laser lithotripsy is now the preferred treatment option for urolithiasis due to shorter operation time and a better stone-free rate, the optimal laser settings for URS (ureteroscopic lithotripsy) for less operation time remain unclear. The aim of this study was to look for quantitative responses of calculus ablation and retropulsion by performing operator-independent experiments to determine the best fit versus the pulse energy, pulse width, and the number of pulses. Methods A lab-built Ho:YAG laser was used as the laser pulse source, with a pulse energy from 0.2 J up to 3.0 J and a pulse width of 150 μs up to 1000 μs. The retropulsion was monitored using a high-speed camera, and the laser-induced craters were evaluated with a 3-D digital microscope. The best fit to the experimental data is done by a design of experiment software. Results The numerical formulas for the response surfaces of ablation speed and retropulsion amplitude are generated. Conclusions The longer the pulse, the less the ablation or retropulsion, while the longer pulse makes the ablation decrease faster than the retropulsion. The best quadratic fit of the response surface for the volume of ablation varied nonlinearly with pulse duration and pulse number. PMID:29707187

  13. Oculometric Assessment of Dynamic Visual Processing

    NASA Technical Reports Server (NTRS)

    Liston, Dorion Bryce; Stone, Lee

    2014-01-01

    Eye movements are the most frequent (3 per second), shortest-latency (150-250 ms), and biomechanically simplest (1 joint, no inertial complexities) voluntary motor behavior in primates, providing a model system to assess sensorimotor disturbances arising from trauma, fatigue, aging, or disease states (e.g., Diefendorf and Dodge, 1908). We developed a 15-minute behavioral tracking protocol consisting of randomized stepramp radial target motion to assess several aspects of the behavioral response to dynamic visual motion, including pursuit initiation, steadystate tracking, direction-tuning, and speed-tuning thresholds. This set of oculomotor metrics provide valid and reliable measures of dynamic visual performance (Stone and Krauzlis, 2003; Krukowski and Stone, 2005; Stone et al, 2009; Liston and Stone, 2014), and may prove to be a useful assessment tool for functional impairments of dynamic visual processing.

  14. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  15. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong

    2018-04-01

    The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

  16. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to the excimer. Such Infrared sources are, therefore, potentially attractive competitors to the excimer to perform PRK and LASIK.

  17. Radiofrequency ablation versus nephron-sparing surgery for small unilateral renal cell carcinoma: cost-effectiveness analysis.

    PubMed

    Pandharipande, Pari V; Gervais, Debra A; Mueller, Peter R; Hur, Chin; Gazelle, G Scott

    2008-07-01

    To evaluate the relative cost-effectiveness of percutaneous radiofrequency (RF) ablation versus nephron-sparing surgery (NSS) in patients with small (

  18. Stress assisted selective ablation of ITO thin film by picosecond laser

    NASA Astrophysics Data System (ADS)

    Farid, Nazar; Chan, Helios; Milne, David; Brunton, Adam; M. O'Connor, Gerard

    2018-01-01

    Fast selective pattering with high precession on 175 nm ITO thin film with IR ps lasers is investigated. Ablation parameters are optimized with detailed studies on the scribed depth, topography, and particle generation using AFM and SEM. A comparison of 10 and 150 ps laser revealed that the shorter pulse (10 ps) laser is more appropriate in selective and partial ablation; up to 20 nm resolution for controlled depth with multipulses having energy below the damage threshold is demonstrated. The experimental results are interpreted to involve stress assisted ablation mechanism for the 10 ps laser while thermal ablation along with intense melting occurs for 150 ps laser. The transition between these regimes is estimated to occur at approximately 30 ps.

  19. Selective rear side ablation of thin nickel-chromium-alloy films using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Pabst, Linda; Ullmann, Frank; Ebert, Robby; Exner, Horst

    2018-03-01

    In recent years, the selective laser structuring from the transparent substrate side plays an increased role in thin film processing. The rear side ablation is a highly effective ablation method for thin film structuring and revels a high structuring quality. Therefore, the rear side ablation of nickel-chromium-alloy thin films on glass substrate was investigated using femtosecond laser irradiation. Single and multiple pulses ablation thresholds as well as the incubation coefficient were determined. By irradiation from the transparent substrate side at low fluences a cracking or a partly delamination of the film could be observed. By increasing the fluence the most part of the film was ablated, however, a very thin film remained at the interface of the glass substrate. This thin remaining layer could be completely ablated by two pulses. A further increase of the pulse number had no influence on the ablation morphology. The ablated film was still intact and an entire disc or fragments could be collected near the ablation area. The fragments showed no morphology change and were still in solid state.

  20. Laser ablation of iron-rich black films from exposed granite surfaces

    NASA Astrophysics Data System (ADS)

    Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.

    2014-10-01

    Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.

  1. A heuristic model of stone comminution in shock wave lithotripsy

    PubMed Central

    Smith, Nathan B.; Zhong, Pei

    2013-01-01

    A heuristic model is presented to describe the overall progression of stone comminution in shock wave lithotripsy (SWL), accounting for the effects of shock wave dose and the average peak pressure, P+(avg), incident on the stone during the treatment. The model is developed through adaptation of the Weibull theory for brittle fracture, incorporating threshold values in dose and P+(avg) that are required to initiate fragmentation. The model is validated against experimental data of stone comminution from two stone types (hard and soft BegoStone) obtained at various positions in lithotripter fields produced by two shock wave sources of different beam width and pulse profile both in water and in 1,3-butanediol (which suppresses cavitation). Subsequently, the model is used to assess the performance of a newly developed acoustic lens for electromagnetic lithotripters in comparison with its original counterpart both under static and simulated respiratory motion. The results have demonstrated the predictive value of this heuristic model in elucidating the physical basis for improved performance of the new lens. The model also provides a rationale for the selection of SWL treatment protocols to achieve effective stone comminution without elevating the risk of tissue injury. PMID:23927195

  2. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy.

  3. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less

  4. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find themore » correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.« less

  5. Adaptable Design Improvements for Electromagnetic Shock Wave Lithotripters and Techniques for Controlling Cavitation

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Birchard

    In this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to modern electromagnetic (EM) shock wave lithotripters. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for in vitro stone comminution efficiency at a variety of field positions and doses using phantom kidney stones of variable physical properties, and in different fluid mediums to isolate the contribution of cavitation. Through parametric analysis of the acoustic field measurements alongside comminution results, a logarithmic correlation was determined between average peak pressure incident on the stone surface and comminution efficiency. It was also noted that for a given stone type, the correlations converged to an average peak pressure threshold for fragmentation, independent of fluid medium in use. The correlation of average peak pressure to efficacy supports the rationale for the acoustic lens modifications, which were pursued to simultaneously enhance beam width and optimize the pulse profile of the lithotripter shock wave (LSW) via in situ pulse superposition for improved stone fragmentation by stress waves and cavitation, respectively. In parallel, a numerical model for wave propagation was used to investigate the variations of critical parameters with changes in lens geometry. A consensus was reached on a new lens design based on high-speed imaging and stone comminution experiments against the original lens at a fixed acoustic energy setting. The results have demonstrated that the new lens has improved efficacy away from the focus, where stones may move due to respiration, fragmentation, acoustic radiation forces, or voluntary patient movements. Using the traditional theory of brittle fragmentation and newfound understanding of average peak pressure correlation to stone comminution, the entire set of stone comminution data for lens comparison was heuristically modeled using a Weibull-style distribution function. This model linked both the average peak pressure and shock wave dose to efficacy, including their respective threshold parameters, and demonstrated correlation of coefficients to cavitation activity. Subsequently, this model was used in prediction of stone comminution efficiency from mimicked respiratory motions in vitro, which compared favorably to actual simulated motion studies using both the new and original lenses. Under a variety of mimicked respiratory motions, the new lens produced statistically higher stone comminution efficiency than the original lens. These results were confirmed in vivo in a swine model, where the new lens produced statistically higher stone comminution after 1,000 and 2,000 shocks. Finally, a mechanistic investigation into the effects of cavitation with the original lens was conducted using an integrated, self-focusing annular ring transducer specially designed for tandem pulse lithotripsy. It was found that cavitation and stone comminution efficiency are progressively enhanced by tandem pulsing as source energies of both the primary LSW and trailing pressure pulse increase, which suggests that cavitation and stress waves act synergistically to enhance the efficacy in kidney stone fragmentation.

  6. Microdrilling of PCB substrate using DPSS 3rd harmonic laser

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Chang, Won Seok; Yoon, Kyung Ku; Jeong, Sungho; Shin, Bo Sung; Whang, Kyung Hyun

    2003-02-01

    Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of through and blind hope in Cu/PI/Cu substrate with the UV DPSSL and a scanning device is investigated by both experimental and numerical methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the multi path for through hole with high energy density and we use Archimedes spiral path for blind hole with different energy densities to ablate different material. Furthermore, Matlab simulations considering the energy threshold of material is performed to anticipate the ablation shape according to the duplication of pulse, and FEM thermal analysis is used to predict the ablation depth of copper. This study would be widely applicable to various laser micromachining applications including through and blind hole micro-drilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzles amongst others.

  7. Functionalised polyurethane for efficient laser micromachining

    NASA Astrophysics Data System (ADS)

    Brodie, G. W. J.; Kang, H.; MacMillan, F. J.; Jin, J.; Simpson, M. C.

    2017-02-01

    Pulsed laser ablation is a valuable tool that offers a much cleaner and more flexible etching process than conventional lithographic techniques. Although much research has been undertaken on commercially available polymers, many challenges still remain, including contamination by debris on the surface, a rough etched appearance and high ablation thresholds. Functionalizing polymers with a photosensitive group is a novel way and effective way to improve the efficiency of laser micromachining. In this study, several polyurethane films grafted with different concentrations of the chromophore anthracene have been synthesized which are specifically designed for 248 nm KrF excimer laser ablation. A series of lines etched with a changing number of pulses and fluences by the nanosecond laser were applied to each polyurethane film. The resultant ablation behaviours were studied through optical interference tomography and Scanning Electron Microscopy. The anthracene grafted polyurethanes showed a vast improvement in both edge quality and the presence of debris compared with the unmodified polyurethane. Under the same laser fluence and number of pulses the spots etched in the anthracene contained polyurethane show sharp depth profiles and smooth surfaces, whereas the spots etched in polyurethane without anthracene group grafted present rough cavities with debris according to the SEM images. The addition of a small amount of anthracene (1.47%) shows a reduction in ablation threshold from unmodified polyurethane showing that the desired effect can be achieved with very little modification to the polymer.

  8. Material removal effect of microchannel processing by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu

    2017-11-01

    Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.

  9. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  10. Determination of scattering properties and damage thresholds in tissue using ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Martin, Chris; Ben-Yakar, Adela

    2016-11-01

    Ultrafast laser surgery of tissue requires precise knowledge of the tissue's optical properties to control the extent of subsurface ablation. Here, we present a method to determine the scattering lengths, ℓs, and fluence thresholds, Fth, in multilayered and turbid tissue by finding the input energies required to initiate ablation at various depths in each tissue layer. We validated the method using tissue-mimicking phantoms and applied it to porcine vocal folds, which consist of an epithelial (ep) layer and a superficial lamina propia (SLP) layer. Across five vocal fold samples, we found ℓ=51.0±3.9 μm, F=1.78±0.08 J/cm2, ℓ=26.5±1.6 μm, and F=1.14±0.12 J/cm2. Our method can enable personalized determination of tissue optical properties in a clinical setting, leading to less patient-to-patient variability and more favorable outcomes in operations, such as femto-LASIK surgery.

  11. Morphology and mechanisms of picosecond ablation of metal films on fused silica substrates

    NASA Astrophysics Data System (ADS)

    Bass, Isaac L.; Negres, Raluca A.; Stanion, Ken; Guss, Gabe; Keller, Wesley J.; Matthews, Manyalibo J.; Rubenchik, Alexander M.; Yoo, Jae Hyuck; Bude, Jeffrey D.

    2016-12-01

    The ablation of magnetron sputtered metal films on fused silica substrates by a 1053 nm, picosecond class laser was studied as part of a demonstration of its use for in-situ characterization of the laser spot under conditions commonly used at the sample plane for laser machining and damage studies. Film thicknesses were 60 and 120 nm. Depth profiles and SEM images of the ablation sites revealed several striking and unexpected features distinct from those typically observed for ablation of bulk metals. Very sharp thresholds were observed for both partial and complete ablation of the films. Partial film ablation was largely independent of laser fluence with a surface smoothness comparable to that of the unablated surface. Clear evidence of material displacement was seen at the boundary for complete film ablation. These features were common to a number of different metal films including Inconel on commercial neutral density filters, stainless steel, and aluminum. We will present data showing the morphology of the ablation sites on these films as well as a model of the possible physical mechanisms producing the unique features observed.

  12. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, S. J.; Jones, R. D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. Those areas of laser medicine are examined in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. Examples are examined for the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  13. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  14. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  15. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  16. Supra-threshold epidermis injury from near-infrared laser radiation prior to ablation onset

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Peterson, Amanda M.; Lile, Lily A.; Noojin, Gary D.; Shingledecker, Aurora D.; Stolarski, David J.; Zohner, Justin J.; Kumru, Semih S.; Thomas, Robert J.

    2017-02-01

    With continued advancement of solid-state laser technology, high-energy lasers operating in the near-infrared (NIR) band are being applied in an increasing number of manufacturing techniques and medical treatments. Safety-related investigations of potentially harmful laser interaction with skin are commonplace, consisting of establishing the maximum permissible exposure (MPE) thresholds under various conditions, often utilizing the minimally-visible lesion (MVL) metric as an indication of damage. Likewise, characterization of ablation onset and velocity is of interest for therapeutic and surgical use, and concerns exceptionally high irradiance levels. However, skin injury response between these two exposure ranges is not well understood. This study utilized a 1070-nm Yb-doped, diode-pumped fiber laser to explore the response of excised porcine skin tissue to high-energy exposures within the supra-threshold injury region without inducing ablation. Concurrent high-speed videography was employed to assess the effect on the epidermis, with a dichotomous response determination given for three progressive damage event categories: observable permanent distortion on the surface, formation of an epidermal bubble due to bounded intra-cutaneous water vaporization, and rupture of said bubble during laser exposure. ED50 values were calculated for these categories under various pulse configurations and beam diameters, and logistic regression models predicted injury events with approximately 90% accuracy. The distinction of skin response into categories of increasing degrees of damage expands the current understanding of high-energy laser safety while also underlining the unique biophysical effects during induced water phase change in tissue. These observations could prove useful in augmenting biothermomechanical models of laser exposure in the supra-threshold region.

  17. Effect of absorbing coating on ablation of diamond by IR laser pulses

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  18. 193 nm ArF laser ablation and patterning of chitosan thin films

    NASA Astrophysics Data System (ADS)

    Aesa, A. A.; Walton, C. D.

    2018-06-01

    This paper reports laser ablation studies on spin-coated biopolymer chitosan films, β-l,4-1inked 2-amino-2-deoxy- d-glucopyranose. Chitosan has been irradiated using an ArF laser emitting at 193 nm. An ablation threshold of F T = 85±8 mJ cm-2 has been determined from etch rate measurements. Laser-ablated chitosan is characterised using white light interferometry, scanning electron microscopy, and thermo-gravimetric analysis. Laser ablation of chitosan is discussed in terms of thermal and photoacoustic mechanisms. Heat transfer is simulated to assist in the understanding of laser-irradiated chitosan using a finite-element method and the software package COMSOL Multi-Physics™. As a demonstrator, a micro-array of square structures in the form of a crossed grating has been fabricated by laser ablation using a mask projection scanning method. The initial investigations show no evidence of thermal damage occurring to the adjacent chitosan when operating at a moderately low laser fluence of 110 mJ cm-2.

  19. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    NASA Astrophysics Data System (ADS)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  20. PROMIS® Pain is Independent of Stone Burden and Predicts Surgical Intervention in Patients with Ureteral Stones.

    PubMed

    Portis, Jennifer L; Neises, Suzanne M; Portis, Andrew J

    2018-04-30

    Patients with obstructing ureteral stones typically experience sudden onset, severe pain. We examine the National Institutes of Health's Patient Reported Outcome Measurement Information System (PROMIS®) pain instruments in patients with acute ureteral stones. PROMIS® pain measures were obtained from a complete cohort of patients presenting to a subspecialty kidney stone clinic after discharge from emergency department (ED). Patients were followed longitudinally through course of care. Raw scores were translated into population-normed T-scores (T-score 50 = US pain population mean). Objective and patient-centered factors were evaluated with reference to T-score thresholds for pain intensity (60 = 1 standard deviation (SD) above mean) and pain interference (70 = 2 SD). Multivariable logistic regression in 650 patients demonstrated absence of association between PROMIS® pain scores and stone size or location. Pain scores were associated with age, gender and ED pain scores (p<0.05). Initial stone surgery was predicted by stone size <4mm (0.14, 0.07-0.3 [odds ratio, 95% confidence interval]), >6 mm (19.1, 0.22-39.58), proximal location (1.75, 1.34-2.3), and pain intensity >60 (7.03, 3.63-13.6) but not pain interference (p<0.001). Failure of attempted stone passage was less likely for stone size <4 mm (0.26, 0.14-0.48, p<0.001), and more likely for proximal stone location (1.61, 1.21-2.14, p<0.01) and pain intensity >60 (2.74, 1.23-6.07, p<0.05). PROMIS® pain scores are independent of stone size and location. Attention to ED discharge symptom control offers potential to improve patient care. PROMIS® pain intensity is an independent predictor of surgical intervention for patients with ureteral stones ≤1 cm. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Laser-produced plasmas in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitomer, S.J.; Jones, R.D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photodynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper the authors examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation), and in cardiology andmore » vascular surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented, along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.« less

  2. Laser-produced plasmas in medicine

    NASA Astrophysics Data System (ADS)

    Gitomer, Steven J.; Jones, Roger D.

    1990-06-01

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g. lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g. kidney and gall stone ablation and fragmentation) and in cardiology and vascular surgery (e.g. laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included.

  3. Bubble formation during pulsed laser ablation: mechanism and implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius

    1993-07-01

    Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.

  4. Irreversible Electroporation of the Pancreas Using Parallel Plate Electrodes in a Porcine Model: A Feasibility Study.

    PubMed

    Rombouts, Steffi J E; Nijkamp, Maarten W; van Dijck, Willemijn P M; Brosens, Lodewijk A A; Konings, Maurits; van Hillegersberg, R; Borel Rinkes, Inne H M; Hagendoorn, Jeroen; Wittkampf, Fred H; Molenaar, I Quintus

    2017-01-01

    Irreversible electroporation (IRE) with needle electrodes is being explored as treatment option in locally advanced pancreatic cancer. Several studies have shown promising results with IRE needles, positioned around the tumor to achieve tumor ablation. Disadvantages are the technical difficulties for needle placement, the time needed to achieve tumor ablation, the risk of needle track seeding and most important the possible occurrence of postoperative pancreatic fistula via the needle tracks. The aim of this experimental study was to evaluate the feasibility of a new IRE-technique using two parallel plate electrodes, in a porcine model. Twelve healthy pigs underwent laparotomy. The pancreas was mobilized to enable positioning of the paddles. A standard monophasic external cardiac defibrillator was used to perform an ablation in 3 separate parts of the pancreas; either a single application of 50 or 100J or a serial application of 4x50J. After 6 hours, pancreatectomy was performed for histology and pigs were terminated. Histology showed necrosis of pancreatic parenchyma with neutrophil influx in 5/12, 11/12 and 12/12 of the ablated areas at 50, 100, and 4x50J respectively. The electric current density threshold to achieve necrosis was 4.3, 5.1 and 3.4 A/cm2 respectively. The ablation threshold was significantly lower for the serial compared to the single applications (p = 0.003). The content of the ablated areas differed between the applications: areas treated with a single application of 50 J often contained vital areas without obvious necrosis, whereas half of the sections treated with 100 J showed small islands of normal looking cells surrounded by necrosis, while all sections receiving 4x 50 J showed a homogeneous necrotic lesion. Pancreatic tissue can be successfully ablated using two parallel paddles around the tissue. A serial application of 4x50J was most effective in creating a homogeneous necrotic lesion.

  5. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

    PubMed

    Arvanitis, Costas D; Vykhodtseva, Natalia; Jolesz, Ferenc; Livingstone, Margaret; McDannold, Nathan

    2016-05-01

    OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in those cases the sonication exceeded the inertial cavitation threshold in the beam path. CONCLUSIONS It is feasible to use a clinical TcMRgFUS system to ablate skull base targets in nonhuman primates at time-averaged acoustic power levels at least 2 orders of magnitude below what is needed for thermal ablation with this device. The results point to the risks associated with the method if the exposure levels are not carefully controlled to avoid inertial cavitation in the acoustic beam path. If methods can be developed to provide this control, this nonthermal approach could greatly expand the use of TcMRgFUS for precisely targeted ablation to locations across the entire brain.

  6. Laser Techniques in Conservation of Artworks:. Problems and Breakthroughs

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Siano, Salvatore

    2010-04-01

    After more than thirty years since the first experiment in Venice, only in the last decade laser techniques have been widely recognised as one of the most important innovation introduced in the conservation of artworks for diagnostics, restoration and monitoring aims. Especially the use of laser ablation for the delicate phase of cleaning has been debated for many years, because of the problems encountered in finding an appropriate setting of the laser parameters. Many experimentations carried out on stone, metals and pigments put in evidence unacceptable side effects such as discoloration and yellowing after the treatment, or scarce cleaning productivity in respect of other techniques. Many research projects organised at European level have contributed to find breakthroughs in laser techniques that could avoid such problems. The choices of specific laser parameters better suited for cleaning of stone, metals and pigments are described. A series of validation case studies is reported.

  7. Evaluation of the most suitable threshold value for modelling snow glacier melt through T- index approach: the case study of Forni Glacier (Italian Alps)

    NASA Astrophysics Data System (ADS)

    Senese, Antonella; Maugeri, Maurizio; Vuillermoz, Elisa; Smiraglia, Claudio; Diolaiuti, Guglielmina

    2014-05-01

    Glacier melt occurs whenever the surface temperature is null (273.15 K) and the net energy budget is positive. These conditions can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present at the glacier surface the assessment of actual melting conditions and the evaluation of melt amount is difficult and degree-day (also named T-index) models are applied. These approaches require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K, since it is determined by the energy budget which in turn is only indirectly affected by air temperature. This is the case of the late spring period when ablation processes start at the glacier surface thus progressively reducing snow thickness. In this study, to detect the most indicative air temperature threshold witnessing melt conditions in the April-June period, we analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS (at 2631 m a.s.l.) on the ablation tongue of the Forni Glacier (Italy), and by a weather station located nearby the studied glacier (at Bormio, 1225 m a.s.l.). Moreover we evaluated the glacier energy budget (which gives the actual melt, Senese et al., 2012) and the snow water equivalent values during this time-frame. Then the ablation amount was estimated both from the surface energy balance (MEB from supraglacial AWS data) and from degree-day method (MT-INDEX, in this latter case applying the mean tropospheric lapse rate to temperature data acquired at Bormio changing the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of daily glacier air temperature conditions and the major uncertainty in the computation of snow melt from degree-day models is driven by the choice of an appropriate air temperature threshold. Then, to assess the most suitable threshold, we firstly analyzed hourly MEB values to detect if ablation occurs and how long this phenomenon takes (number of hours per day). The largest part of the melting (97.7%) resulted occurring on days featuring at least 6 melting hours thus suggesting to consider their minimum average daily temperature value as a suitable threshold (268.1 K). Then we ran a simple T-index model applying different threshold values. The threshold which better reproduces snow melting results the value 268.1 K. Summarizing using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the best reconstruction of glacier melt and it results in agreement with findings by van den Broeke et al. (2010) in Greenland ice sheet. Then probably the choice of a 268 K value as threshold for computing degree days amount could be generalized and applied not only on Greenland glaciers but also on Mid latitude and Alpine ones. This work was carried out under the umbrella of the SHARE Stelvio Project funded by the Lombardy Region and managed by FLA and EvK2-CNR Committee.

  8. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan

    2018-05-01

    Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.

  9. Evidence Report: Risk of Renal Stone Formation

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean D.; Pietrzyk, Robert

    2017-01-01

    The formation of renal stones poses an in-flight health risk of high severity, not only because of the impact of renal colic on human performance but also because of complications that could potentially lead to crew evacuation, such as hematuria, infection, hydronephrosis, and sepsis. Evidence for risk factors comes from urine analyses of crewmembers, documenting changes to the urinary environment that are conducive to increased saturation of stone-forming salts, which are the driving force for nucleation and growth of a stone nidus. Further, renal stones have been documented in astronauts after return to Earth and in one cosmonaut during flight. Biochemical analysis of urine specimens has provided indication of hypercalciuria and hyperuricemia, reduced urine volumes, and increased urine saturation of calcium oxalate and calcium phosphate. A major contributor to the risk for renal stone formation is bone atrophy with increased turnover of the bone minerals. Dietary and fluid intakes also play major roles in the risk because of the influence on urine pH (more acidic) and on volume (decreased). Historically, specific assessments on urine samples from some Skylab crewmembers indicated that calcium excretion increased early in flight, notable by day 10 of flight, and almost exceeded the upper threshold for normal excretion (300mg/day in males). Other crewmember data documented reduced intake of fluid and reduced intake of potassium, phosphorus, magnesium, and citrate (an inhibitor of calcium stone formation) in the diet. Hence, data from both short-duration and long-duration missions indicate that space travel induces risk factors for renal stone formation that continue to persist after flight; this risk has been documented by reported kidney stones in crewmembers.

  10. In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2014-08-01

    To assess the fragmentation (ablation) efficiency of laser lithotripsy along a wide range of pulse energies, frequencies, power settings and different laser fibres, in particular to compare high- with low-frequency lithotripsy using a dynamic and innovative testing procedure free from any human interaction bias. An automated laser fragmentation testing system was developed. The unmoving laser fibres fired at the surface of an artificial stone while the stone was moved past at a constant velocity, thus creating a fissure. The lithotripter settings were 0.2-1.2 J pulse energies, 5-40 Hz frequencies, 4-20 W power levels, and 200 and 550 μm core laser fibres. Fissure width, depth, and volume were analysed and comparisons between laser settings, fibres and ablation rates were made. Low frequency-high pulse energy (LoFr-HiPE) settings were (up to six times) more ablative than high frequency-low pulse energy (HiFr-LoPE) at the same power levels (P < 0.001), as they produced deeper (P < 0.01) and wider (P < 0.001) fissures. There were linear correlations between pulse energy and fragmentation volume, fissure width, and fissure depth (all P < 0.001). Total power did not correlate with fragmentation measurements. Laser fibre diameter did not affect fragmentation volume (P = 0.81), except at very low pulse energies (0.2 J), where the large fibre was less efficient (P = 0.015). At the same total power level, LoFr-HiPE lithotripsy was most efficient. Pulse energy was the key variable that drove fragmentation efficiency. Attention must be paid to prevent the formation of time-consuming bulky debris and adapt the lithotripter settings to one's needs. As fibre diameter did not affect fragmentation efficiency, small fibres are preferable due to better scope irrigation and manoeuvrability. © 2013 The Authors. BJU International © 2013 BJU International.

  11. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Dou, Hong-qiang; Liao, Wei; Li, Xiao-yang; Ding, Ren-jie; Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong; Zu, Xiao-tao

    2017-06-01

    Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm2 and 2.1 J/cm2 were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  12. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    PubMed Central

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2015-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294

  13. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    PubMed

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH <5.3 with a plasma potassium threshold >3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical parameters. Copyright © 2017 by the American Society of Nephrology.

  14. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  15. Ablation-cooled material removal with ultrafast bursts of pulses.

    PubMed

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  16. Laser-produced plasmas in medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitomer, S.J.; Jones, R.D.

    The laser has found numerous applications in medicine, beginning with uses in ophthalmology in the 1960's. Today, lasers are used in tissue cutting, blood coagulation, photo-dynamic cancer therapy, arterial plaque removal, dental drilling, etc. In this paper, we examine those areas of laser medicine in which plasmas (ionized gases) are produced. In fact, the presence of a plasma is essential for the application at hand to succeed. We consider examples of the plasmas produced in ophthalmology (e.g., lens membrane destruction following cataract surgery), in urology and gastroenterology (e.g., kidney and gall stone ablation and fragmentation) and in cardiology and vascularmore » surgery (e.g., laser ablation and removal of fibro-fatty and calcified arterial plaque). Experimental data are presented along with some results from computer simulations of the phenomena. Comments on future directions in these areas are included. 63 refs.« less

  17. Aerodynamic Analysis of Tektites and Their Parent Bodies

    NASA Technical Reports Server (NTRS)

    Adams, E. W.; Huffaker, R. M.

    1962-01-01

    Experiment and analysis indicate that the button-type australites were derived from glassy spheres which entered or re-entered the atmosphere as cold solid bodies; in case of average-size specimens, the entry direction was nearly horizontal and the entry speed between 6.5 and 11.2 km/sec. Terrestrial origin of such spheres is impossible because of extremely high deceleration rates at low altitudes. The limited extension of the strewn fields rules out extraterrestrial origin of clusters of such spheres because of stability considerations for clusters in space. However, tektites may have been released as liquid droplets from glassy parent bodies ablating in the atmosphere of the earth. The australites then have skipped together with the parent body in order to re-enter as cold spheres. Terrestrial origin of a parent body would require an extremely violent natural event. Ablation analysis shows that fusion of opaque siliceous stone into glass by aerodynamic heating is impossible.

  18. Shielding effects in the laser-generated copper plasma under reduced pressures of He atmosphere

    NASA Astrophysics Data System (ADS)

    Burger, M.; Pantić, D.; Nikolić, Z.; Djeniže, S.

    2016-02-01

    Irradiation of samples was performed with 6 ns, 1064 nm Nd:YAG laser. For an applied irradiance range (108-1010 W/cm2), the ablation process exhibits non-linear dependance. Ablated mass of the sample was directly determined using 100 ng resolution mass comparator after ablation under various pressures of helium. The ablation rates were dictated by plasma formation mechanisms as well as ambient conditions. However, the surrounding atmosphere did not significantly affect the value of threshold irradiance of about 2 ×109 W /cm2 for the onset of ablation mechanism change. This value is additionally verified via spectroscopic information from Cu I lines in the range from 0.4 to 1 μs after the laser pulse. Behaviour of spectral lines was monitored with respect to the laser pulse energy. Plasma diagnostics of axial electron density and excitation temperature distributions was performed under He pressure of 200 Torr. An influence of the possible shielding mechanisms responsible for the plasma absorption is discussed.

  19. The effect of dopants on laser imprint mitigation

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Dahlburg, Jill

    1999-11-01

    An intact implosion of a pellet for direct-drive ICF requires that the perturbations imprinted by the laser be kept below some threshold. We report on simulations of targets that incorporate very small concentrations of a high-Z dopant in the ablator, to increase the electron density in the ablating plasma, causing the laser to be absorbed far enough from the solid ablator to achieve a substantial degree of thermal smoothing. These calculations were performed using NRL's FAST radiation hydrodynamics code(J.H. Gardner, A.J. Schmitt, et al., Phys. Plasmas) 5, 1935 (1998), incorporating the flux-corrected transport algorithm and opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method.

  20. [Evaluation and results of ablative therapies in prostate cancer].

    PubMed

    Renard-Penna, R; Sanchez-Salas, R; Barret, E; Cosset, J M; de Vergie, S; Sapetti, J; Ingels, A; Gangi, A; Lang, H; Cathelineau, X

    2017-11-01

    To perform a state of the art about methods of evaluation and present results in ablative therapies for localized prostate cancer. A review of the scientific literature was performed in Medline database (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) using different associations of keywords. Publications obtained were selected based on methodology, language and relevance. After selection, 102 articles were analysed. Analyse the results of ablative therapies is presently difficult considering the heterogeneity of indications, techniques and follow-up. However, results from the most recent and homogeneous studies are encouraging. Oncologically, postoperative biopsies (the most important criteria) are negative (without any tumor cells in the treated area) in 75 to 95%. Functionally, urinary and sexual pre-operative status is spared (or recovered early) in more than 90% of the patients treated. More and more studies underline also the correlation between the results and the technique used considering the volume of the gland and, moreover, the "index lesion" localization. The post-treatment pathological evaluation by biopsies (targeted with MRI or, perhaps in a near future, with innovative ultrasonography) is the corner stone of oncological evaluation of ablative therapies. Ongoing trials will allow to standardize the follow-up and determine the best indication and the best techniques in order to optimize oncological and functional results for each patient treated. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    PubMed

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  2. A plasma microlens for ultrashort high power lasers

    NASA Astrophysics Data System (ADS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  3. Development of a 3D patient-specific planning platform for interstitial and transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Diederich, Chris J.

    2010-03-01

    Interstitial and transurethral catheter-based ultrasound devices are under development for treatment of prostate cancer and BPH, uterine fibroids, liver tumors and other soft tissue disease. Accurate 3D thermal modeling is essential for designing site-specific applicators, exploring treatment delivery strategies, and integration of patient-specific treatment planning of thermal ablations. We are developing a comprehensive 3D modeling and treatment planning platform for ultrasound ablation of tissue using catheter-based applicators. We explored the applicability of assessing thermal effects in tissue using critical temperature, thermal dose and Arrhenius thermal damage thresholds and performed a comparative analysis of dynamic tissue properties critical to accurate modeling. We used the model to assess the feasibility of automatic feedback control with MR thermometry, and demonstrated the utility of the modeling platform for 3D patient-specific treatment planning. We have identified critical temperature, thermal dose and thermal damage thresholds for assessing treatment endpoint. Dynamic changes in tissue attenuation/absorption and perfusion must be included for accurate prediction of temperature profiles and extents of the ablation zone. Lastly, we demonstrated use of the modeling platform for patient-specific treatment planning.

  4. Lasers in clinical urology: state of the art and new horizons.

    PubMed

    Marks, Andrew J; Teichman, Joel M H

    2007-06-01

    We present an overview of current and emerging lasers for Urology. We begin with an overview of the Holmium:YAG laser. The Ho:YAG laser is the gold standard lithotripsy modality for endoscopic lithotripsy, and compares favorably to standard electrocautery transurethral resection of the prostate for benign prostatic hyperplasia (BPH). Available laser technologies currently being studied include the frequency doubled double-pulse Nd:Yag (FREDDY) and high-powered potassium-titanyl-phosphate (KTP) lasers. The FREDDY laser presents an affordable and safe option for intracorporeal lithotripsy, but it does not fragment all stone compositions, and does not have soft tissue applications. The high power KTP laser shows promise in the ablative treatment of BPH. Initial experiments with the Erbium:YAG laser show it has improved efficiency of lithotripsy and more precise ablative and incisional properties compared to Ho:YAG, but the lack of adequate optical fibers limits its use in Urology. Thulium:YAG fiber lasers have also demonstrated tissue ablative and incision properties comparable to Ho:YAG. Lastly, compact size, portability, and low maintenance schedules of fiber lasers may allow them to shape the way lasers are used by urologists in the future.

  5. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein

    PubMed Central

    Liu, Yan; Mo, Lan; Goldfarb, David S.; Evan, Andrew P.; Liang, Fengxia; Khan, Saeed R.; Lieske, John C.

    2010-01-01

    Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis. PMID:20591941

  6. Conspicuity of renal calculi at unenhanced CT: effects of calculus composition and size and CT technique.

    PubMed

    Tublin, Mitchell E; Murphy, Michael E; Delong, David M; Tessler, Franklin N; Kliewer, Mark A

    2002-10-01

    To determine the effects of calculus size, composition, and technique (kilovolt and milliampere settings) on the conspicuity of renal calculi at unenhanced helical computed tomography (CT). The authors performed unenhanced CT of a phantom containing 188 renal calculi of varying size and chemical composition (brushite, cystine, struvite, weddellite, whewellite, and uric acid) at 24 combinations of four kilovolt (80-140 kV) and six milliampere (200-300 mA) levels. Two radiologists, who were unaware of the location and number of calculi, reviewed the CT images and recorded where stones were detected. These observations were compared with the known positions of calculi to generate true-positive and false-positive rates. Logistic regression analysis was performed to investigate the effects of stone size, composition, and technique and to generate probability estimates of detection. Interobserver agreement was estimated with kappa statistics. Interobserver agreement was high: the mean kappa value for the two observers was 0.86. The conspicuity of stone fragments increased with increasing kilovolt and milliampere levels for all stone types. At the highest settings (140 kV and 300 mA), the detection threshold size (ie, the size of calculus that had a 50% probability of being detected) ranged from 0.81 mm + 0.03 (weddellite) to 1.3 mm + 0.1 (uric acid). Detection threshold size for each type of calculus increased up to 1.17-fold at lower kilovolt settings and up to 1.08-fold at lower milliampere settings. The conspicuity of small renal calculi at CT increases with higher kilovolt and milliampere settings, with higher kilovolts being particularly important. Small uric acid calculi may be imperceptible, even with maximal CT technique.

  7. Occult urolithiasis in asymptomatic primary hyperparathyroidism.

    PubMed

    Tay, Yu-Kwang Donovan; Liu, Minghao; Bandeira, Leonardo; Bucovsky, Mariana; Lee, James A; Silverberg, Shonni J; Walker, Marcella D

    2018-05-01

    Recent international guidelines suggest renal imaging to detect occult urolithiasis in all patients with asymptomatic primary hyperparathyroidism (PHPT), but data regarding their prevalence and associated risk factors are limited. We evaluated the prevalence and risk factors for occult urolithiasis. Cross-sectional analysis of 96 asymptomatic PHPT patients from a university hospital in the United States with and without occult nephrolithiasis. Occult urolithiasis was identified in 21% of patients. Stone formers had 47% higher 24-hour urinary calcium excretion (p = 0.002). Although available in only a subset of patients (n = 28), activated vitamin D [1,25(OH) 2 D] was 29% higher (p = 0.02) in stone formers. There was no difference in demographics, BMI, calcium or vitamin D intake, other biochemistries, renal function, BMD, or fractures. Receiver operating characteristic curves indicated that urinary calcium excretion and 1,25(OH) 2 D had an area under the curve of 0.724 (p = 0.003) and 0.750 (p = 0.04), respectively. A urinary calcium threshold of >211mg/day provided a sensitivity of 84.2% and a specificity of 55.3% while a 1,25(OH) 2 D threshold of >91pg/mL provided a sensitivity and specificity of 62.5% and 90.0% respectively for the presence of stones. Occult urolithiasis is present in about one-fifth of patients with asymptomatic PHPT and is associated with higher urinary calcium and 1,25(OH) 2 D. Given that most patients will not have occult urolithiasis, targeted imaging in those most likely to have occult stones rather than screening all asymptomatic PHPT patients may be useful. The higher sensitivity of urinary calcium versus 1,25(OH) 2 D suggests screening those with higher urinary calcium may be an appropriate approach.

  8. Dynamic Response of a High Arctic Glacier to Melt and Runoff Variations

    NASA Astrophysics Data System (ADS)

    van Pelt, Ward J. J.; Pohjola, Veijo A.; Pettersson, Rickard; Ehwald, Lena E.; Reijmer, Carleen H.; Boot, Wim; Jakobs, Constantijn L.

    2018-05-01

    The dynamic response of High Arctic glaciers to increased runoff in a warming climate remains poorly understood. We analyze a 10-year record of continuous velocity data collected at multiple sites on Nordenskiöldbreen, Svalbard, and study the connection between ice flow and runoff within and between seasons. During the melt season, the sensitivity of ice motion to runoff at sites in the ablation and lower accumulation zone drops by a factor of 3 when cumulative runoff exceeds a local threshold, which is likely associated with a transition from inefficient (distributed) to efficient (channelized) drainage. Average summer (June-August) velocities are found to increase with summer ablation, while subsequent fall (September-November) velocities decrease. Spring (March-May) velocities are largely insensitive to summer ablation, which suggests a short-lived impact of summer melt on ice flow during the cold season. The net impact of summer ablation on annual velocities is found to be insignificant.

  9. Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Ashitkov, S. I.; Komarov, P. S.; Zhakhovsky, V. V.; Petrov, Yu V.; Khokhlov, V. A.; Yurkevich, A. A.; Ilnitsky, D. K.; Inogamov, N. A.; Agranat, M. B.

    2016-11-01

    We report on the ablation phenomena in gold sample irradiated by femtosecond laser pulses of moderate intensity. Dynamics of optical constants and expansion of a heated surface layer was investigated in a range from picosecond up to subnanosecond using ultrafast interferometry. Also morphology of the ablation craters and value of an ablation threshold (for absorbed fluence) were measured. The experimental data are compared with simulations of mass flows obtained by two-temperature hydrodynamics and molecular dynamics methods. Simulation shows evolution of a thin surface layer pressurized by a laser pulse. Unloading of the pressurized layer proceeds together with electron-ion thermalization, melting, cavitation and spallation of a part of surface liquid layer. The experimental and simulation results on two-temperature physics and on a fracture, surface morphology and strength of liquid gold at a strain rate ∼ 109 s-1 are discussed.

  10. Optical feedback-induced light modulation for fiber-based laser ablation.

    PubMed

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  11. Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX

    NASA Astrophysics Data System (ADS)

    Auerhammer, J. M.; Walker, R.; van der Meer, A. F. G.; Jean, B.

    The properties of pulsed IR-laser ablation of biological soft tissue (porcine cornea) were studied in vitro systematically and quantitatively with a free-electron laser in the wavelength range 6<=λ<=20 μm at fluences ranging from 3.1 to 9.4 J/cm2. Dynamic parameters such as the extension of the ablation cloud, the initial velocity and momentum of the ablated particles as well as the ablation threshold, the ablated mass, and the particle size were investigated. The ablation plume was made visible with a stroboscopic technique. For a fluence of 3.1 J/cm2 the average initial velocity of the ejected particles was deduced from the extension of the plume to range from 120-400 m/s. Measurements of the recoil momentum using a sensitive pendulum led to values between 0.5 and 2.0 mmg/s. All measured properties were related to the spectroscopically determined absorption coefficient of cornea αcornea. Where absorption due to proteins is high (at λ=6.2 and 6.5 μm), ablated mass, velocity and recoil momentum behave according to αcornea. For the first time, variations of the ablation plume from pulse to pulse were observed. Those, as well as the particle size, not only depend on the absorption coefficient, but also on the predominant absorber.

  12. Single-pulse and burst-mode ablation of gold films measured by quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Andrusyak, Oleksiy G.; Bubelnik, Matthew; Mares, Jeremy; McGovern, Theresa; Siders, Craig W.

    2005-02-01

    Femtosecond ablation has several distinct advantages: the threshold energy fluence for the onset of damage and ablation is orders of magnitude less than for traditional nanosecond laser machining, and by virtue of the rapid material removal of approximately an optical penetration depth per pulse, femtosecond machined cuts can be cleaner and more precise than those made with traditional nanosecond or longer pulse lasers. However, in many materials of interest, especially metals, this limits ablation rates to 10-100 nm/pulse. We present the results of using multiple pulse bursts to significantly increase the per-burst ablation rate compared to a single pulse with the same integrated energy, while keeping the peak intensity of each individual pulse below the air ionization limit. Femtosecond ablation with pulses centered at 800-nm having integrated energy of up to 30 mJ per pulse incident upon thin gold films was measured via resonance frequency shifts in a gold-electrode-coated quartz-crystal oscillator. Measurements were performed using Michelson-interferometer-based burst generators, with up to 2 ns pulse separations, as well as pulse shaping by programmable acousto-optic dispersive filter (Dazzler from FastLite) with up to 2 ps pulse separations.

  13. Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation.

    PubMed

    Frich, Lars; Bjørnerud, Atle; Fossheim, Sigrid; Tillung, Terje; Gladhaug, Ivar

    2004-12-01

    The use of a liposomal paramagnetic agent with a T(1)-relaxivity that increases markedly at temperatures above the phase transition temperature (T(m)) of the liposomal membrane was evaluated during magnetic resonance imaging (MRI) guided hyperthermia ablation. A neodymium-yttrium aluminum garnet (Nd-YAG) laser unit and a radiofrequency ablation system were used for tissue ablation in eight rabbit livers in vivo. One ablation was made in each animal prior to administration of the liposomal agent. Liposomes with a T(m) of 57 degrees C containing gadodiamide (GdDTPA-BMA) were injected iv, and two additional ablations were performed. T(1)-weighted scans were performed in heated tissue, after tissue temperature had normalized, and 15-20 min after normalization of tissue temperature. Increase in signal intensity (DeltaSI) for ablations prior to injection of the agent was 13.0% (SD = 5.7) for the laser group and 9.1% (SD = 7.9) for the radiofrequency group. Signal intensity after administration of the agent unrelated to heating was not statistically significant (DeltaSI = 1.4%, P = 0.35). For ablations made after injection of the agent, a significant increase was found in the laser (DeltaSI = 34.5%, SD = 11.9) and radiofrequency group (DeltaSI = 21.6%, SD = 22.7). The persistent signal enhancement found in areas exposed to a temperature above the threshold temperature above T(m) allows thermal monitoring of MRI guided thermal ablation. (c) 2004 Wiley-Liss, Inc.

  14. Numerical study of double-pulse laser ablation of Al

    NASA Astrophysics Data System (ADS)

    Förster, G. D.; Lewis, Laurent J.

    2018-06-01

    The effect of double laser pulses (DPs) on the ablation process in solids is studied using a hybrid two-temperature model combining a continuum description of the conduction band electrons with a classical molecular dynamics (MD) approach for the ions. The study is concerned with double pulses with delays in the range of 0-50 ps and absorbed laser fluences of 0.5, 1.0, and 1.5 J/m 2 [i.e., 1-3 times the ablation threshold for single-pulse ablation (SP)], taking Al as a generic example of simple metals. A detailed analysis, including the assessment of thermodynamic pathways and cavitation rates, leads to a comprehensive picture of the mechanisms active during the different stages of the ablation process initiated by DPs. This study provides an explanation for several phenomena observed in DP ablation experiments. In particular, with respect to SP ablation, crater depths are reduced, which can be explained by the compensation of the rarefaction wave from the first laser pulse with the compression wave from the second pulse, or, at higher fluences and larger delays, by the fact that the target surface is shielded with matter ablated by the first laser pulse. Also, we discuss how smoother surface structures obtained using DPs may be related to features found in the simulations—viz., reduced mechanical strain and peak lattice temperatures. Finally, vaporization appears to be enhanced in DP ablation, which may improve the resolution of emission spectra.

  15. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    NASA Astrophysics Data System (ADS)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  16. Contrast-enhanced ultrasound evaluation of pancreatic cancer xenografts in nude mice after irradiation with sub-threshold focused ultrasound for tumor ablation

    PubMed Central

    Wang, Rui; Guo, Qian; Chen, Yi Ni; Hu, Bing; Jiang, Li Xin

    2017-01-01

    We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS. PMID:28402267

  17. Effect of scanning speed on continuous wave laser scribing of metal thin films: theory and experiment

    NASA Astrophysics Data System (ADS)

    Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro

    2017-01-01

    In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.

  18. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses.

    PubMed

    Li, Xian-Feng; Zhang, Cheng-Yun; Li, Hui; Dai, Qiao-Feng; Lan, Sheng; Tie, Shao-Long

    2014-11-17

    Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 μm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.

  19. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  20. 37. May 1985. LOOKING SOUTH DOWN HALL FROM PANTRY TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. May 1985. LOOKING SOUTH DOWN HALL FROM PANTRY TO SITTING ROOM (Door in foreground was exterior door in 1821 before addition of pantry; note wear in stone threshold) - Borough House, West Side State Route 261, about .1 mile south side of junction with old Garners Ferry Road, Stateburg, Sumter County, SC

  1. Kinetics of calcium oxalate crystal formation in urine.

    PubMed

    Laube, Norbert; Klein, Florian; Bernsmann, Falk

    2017-04-01

    It is routinely observed that persons with increased urinary stone risk factors do not necessarily form uroliths. Furthermore, stone formers can present with urinalyses that do not reflect the clinical picture. We explain this discrepancy by differences in crystallization kinetics. In 1162 urines, crystallization of Ca-oxalate was induced according to the BONN-Risk-Index (BRI) method. The urine's relative light transmissivity (RLT) was recorded from 100 % at start of titration to 95 % due to nuclei formation and crystal growth. From the RLT changes, a measure of the thermodynamic inhibition threshold of crystal formation (BRI) and of crystal growth kinetics is derived ("turbidity slope" after crystallization onset). On average, subjects presenting with a low inhibition threshold, i.e., high BRI, also present significantly higher crystal growth rates compared with subjects in lower BRI classes. Only subjects in the highest BRI class show a lower growth rate than expected, probably due to a depletion of supersaturation by massive initial nucleation. With increasing thermodynamic risk of crystal formation (i.e., increasing BRI) due to an imbalance between inhibitors and promoters of crystal formation, an increase in the imbalance between inhibitors and promoters of crystal growth (i.e., increasing growth rate) is observed. Both lead to an increased urolith formation risk. Healthy subjects with increased BRI are an exception to this trend: their urine is thermodynamically prone to form stones, but they show a kinetic inhibition preventing nuclei from significant growth.

  2. Aging and the Haptic Perception of Material Properties.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-12-01

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  3. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

    PubMed

    de Menezes, Rebeca Ferraz; Harvey, Catherine Malinda; de Martínez Gerbi, Marleny Elizabeth Márquez; Smith, Zachary J; Smith, Dan; Ivaldi, Juan C; Phillips, Alton; Chan, James W; Wachsmann-Hogiu, Sebastian

    2017-10-01

    The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm 2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 'Critical view of safety' as an alternative to routine intraoperative cholangiography during laparoscopic cholecystectomy for acute biliary pathology.

    PubMed

    Sanjay, Pandanaboyana; Fulke, Jennifer L; Exon, David J

    2010-08-01

    The study aims to evaluate the use of "critical view of safety" (CVS) for the prevention of bile duct injuries during laparoscopic cholecystectomy for acute biliary pathology as an alternative to routine intraoperative cholangiography (IOC). A policy of routine CVS to identify biliary anatomy and selective IOC for patients suspected to have common bile duct (CBD) stone was adopted. Receiver operator curves (ROCs) were used to identify cutoff values predicting CBD stones. Four hundred forty-seven consecutive, same admission laparoscopic cholecystectomies performed between August 2004 and July 2007 were reviewed. CVS was achieved in 388 (87%) patients. Where CVS was not possible, the operation was completed open. CBD stones were identified in 22/57 patients who underwent selective IOC. Preoperative liver function and CBD diameter were significantly higher in those with CBD stones (P < .001). ROC curve analysis identified preoperative cutoff values of bilirubin (35 mumol/L), alkaline phosphatase (250 IU/L), alanine aminotransferase (240 IU/L), and a CBD diameter of 10 mm, as predictive of CBD stones. No bile duct injuries occurred in this series. In acute biliary pathology, the use of CVS helps clarify the anatomy of Calot's triangle and is a suitable alternative to routine IOC. Selective cholangiography should be employed when preoperative liver function and CBD diameter are above defined thresholds.

  5. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold either by using water spray or by decreasing the repetition rate. We demonstrate that CO2 laser pulses with pulse lengths in the regime of 10 μs can provide precise enamel tissue removal without introducing any unwanted thermal damage.

  6. Subclavian vein pacing and venous pressure waveform measurement for phrenic nerve monitoring during cryoballoon ablation of atrial fibrillation.

    PubMed

    Ghosh, Justin; Singarayar, Suresh; Kabunga, Peter; McGuire, Mark A

    2015-06-01

    The phrenic nerves may be damaged during catheter ablation of atrial fibrillation. Phrenic nerve function is routinely monitored during ablation by stimulating the right phrenic nerve from a site in the superior vena cava (SVC) and manually assessing the strength of diaphragmatic contraction. However the optimal stimulation site, method of assessing diaphragmatic contraction, and techniques for monitoring the left phrenic nerve have not been established. We assessed novel techniques to monitor phrenic nerve function during cryoablation procedures. Pacing threshold and stability of phrenic nerve capture were assessed when pacing from the SVC, left and right subclavian veins. Femoral venous pressure waveforms were used to monitor the strength of diaphragmatic contraction. Stable capture of the left phrenic nerve by stimulation in the left subclavian vein was achieved in 96 of 100 patients, with a median capture threshold of 2.5 mA [inter-quartile range (IQR) 1.4-5.0 mA]. Stimulation of the right phrenic nerve from the subclavian vein was superior to stimulation from the SVC with lower pacing thresholds (1.8 mA IQR 1.4-3.3 vs. 6.0 mA IQR 3.4-8.0, P < 0.001). Venous pressure waveforms were obtained in all patients and attenuation of the waveform was always observed prior to onset of phrenic nerve palsy. The left phrenic nerve can be stimulated from the left subclavian vein. The subclavian veins are the optimal sites for phrenic nerve stimulation. Monitoring the femoral venous pressure waveform is a novel technique for detecting impending phrenic nerve damage. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  7. Determining Distributed Ablation over Dirty Ice Areas of Debris-covered Glaciers Using a UAV-SfM Approach

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.

    2017-12-01

    Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice ablation.

  8. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    PubMed

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues, which was remarkably wavelength-dependent on dentin at the spectral range of 2.76-3.00 μm. These results demonstrate the potential feasibility of the use of pulsed Cr:CdSe laser as a novel laser system for dental treatment. Lasers Surg. Med. 48:965-977, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Gap detection threshold in the rat before and after auditory cortex ablation.

    PubMed

    Syka, J; Rybalko, N; Mazelová, J; Druga, R

    2002-10-01

    Gap detection threshold (GDT) was measured in adult female pigmented rats (strain Long-Evans) by an operant conditioning technique with food reinforcement, before and after bilateral ablation of the auditory cortex. GDT was dependent on the frequency spectrum and intensity of the continuously present noise in which the gaps were embedded. The mean values of GDT for gaps embedded in white noise or low-frequency noise (upper cutoff frequency 3 kHz) at 70 dB sound pressure level (SPL) were 1.57+/-0.07 ms and 2.9+/-0.34 ms, respectively. Decreasing noise intensity from 80 dB SPL to 20 dB SPL produced a significant increase in GDT. The increase in GDT was relatively small in the range of 80-50 dB SPL for white noise and in the range of 80-60 dB for low-frequency noise. The minimal intensity level of the noise that enabled GDT measurement was 20 dB SPL for white noise and 30 dB SPL for low-frequency noise. Mean GDT values at these intensities were 10.6+/-3.9 ms and 31.3+/-4.2 ms, respectively. Bilateral ablation of the primary auditory cortex (complete destruction of the Te1 and partial destruction of the Te2 and Te3 areas) resulted in an increase in GDT values. The fifth day after surgery, the rats were able to detect gaps in the noise. The values of GDT observed at this time were 4.2+/-1.1 ms for white noise and 7.4+/-3.1 ms for low-frequency noise at 70 dB SPL. During the first month after cortical ablation, recovery of GDT was observed. However, 1 month after cortical ablation GDT still remained slightly higher than in controls (1.8+/-0.18 for white noise, 3.22+/-0.15 for low-frequency noise, P<0.05). A decrease in GDT values during the subsequent months was not observed.

  10. Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation

    NASA Astrophysics Data System (ADS)

    Yahiaoui, K.; Abdelli-Messaci, S.; Messaoud Aberkane, S.; Kellou, A.

    2016-11-01

    Pulsed laser deposition (PLD) has demonstrated its capacity in thin films growing under the moderate laser intensity. But when the laser intensity increases, the presence of droplets on the thin film limits the PLD efficiency such that the process needs an optimization study. In this way, an experimental study has been conducted in order to correlate between the appearance of those droplets and the laser fluence. The comprehension of the physical mechanism during ablation and the control of the deposition parameters allowed to get a safe process. Our experiment consists in measuring the amount of ejected matter from polycrystalline alumina target as a function of the laser fluence when irradiated by a KrF laser. According to laser fluence, several kinds of ablation regimes have been identified. Below a threshold value found as 12 J/cm2, the mechanism of ablation was assigned to normal evaporation, desorption and nonthermal processes. While above this threshold value, the mechanism of ablation was assigned to phase explosion phenomenon which is responsible of droplets formation when the surface temperature approaches the critical temperature T tc. A negative charge collector was used to collect the positive ions in the plume. Their times of flight (TOF) signal were used to estimate the appropriate T tc for alumina target. Ions yield, current as well as kinetic energy were deduced from the TOF signal. Their evolutions show the occurrence of an optical breakdown in the vapor plume which is well correlated with the onset of the phase explosion phenomenon. At 10 J/cm2, the ions velocities collected by the probe have been compared to those obtained from optical emission spectroscopy diagnostic and were discussed. To prove the occurrence of phase explosion by the appearance of droplets, several thin films were elaborated on Si (100) substrate at different laser fluence into vacuum. They have been characterized by scanning electron microscope. The results were well correlated with those obtained with mass measurements as function of laser fluence.

  11. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure.

    PubMed

    Qiao, Yangzi; Zong, Yujin; Yin, Hui; Chang, Nan; Li, Zhaopeng; Wan, Mingxi

    2014-09-01

    Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Diagnostic utility of attenuation measurement (Hounsfield units) in computed tomography stonogram in predicting the radio-opacity of urinary calculi in plain abdominal radiographs.

    PubMed

    Chua, Michael E; Gatchalian, Glenn T; Corsino, Michael Vincent; Reyes, Buenaventura B

    2012-10-01

    (1) To determine the best cut-off level of Hounsfield units (HU) in the CT stonogram that would predict the appearance of a urinary calculi in plain KUB X-ray; (2) to estimate the sensitivity and specificity of the best cut-off HU; and (3) to determine whether stone size and location affect the in vivo predictability. A prospective cross-sectional study of patients aged 18-85 diagnosed with urolithiases on CT stonogram with concurrent plain KUB radiograph was conducted. Appearance of stones was recorded, and significant difference between radiolucent and radio-opaque CT attenuation level was determined using ANOVA. Receiver operating characteristics (ROC) curve determined the best HU cut-off value. Stone size and location were used for factor variability analysis. A total of 184 cases were included in this study, and the average urolithiasis size on CT stonogram was 0.84 cm (0.3-4.9 cm). On KUB X-ray, 34.2 % of the urolithiases were radiolucent and 65.8 % were radio-opaque. Mean value of CT Hounsfield unit for radiolucent stones was 358.25 (±156), and that for radio-opaque stones was 816.51 (±274). ROC curve determined the best cut-off value of HU at 498.5, with the sensitivity of 89.3 % and specificity of 87.3 %. For >4 mm stones, the sensitivity was 91.3 % and the specificity was 81.8 %. On the other hand, for =<4 mm stones, the sensitivity was 60 % and the specificity was 89.5 %. Based on the constructed ROC curve, a threshold value of 498.5 HU in CT stonogram was established as cut-off in determining whether a calculus is radio-opaque or radiolucent. The determined overall sensitivity and specificity of the set cut-off HU value are optimal. Stone size but not location affects the sensitivity and specificity.

  13. Laser Ablation of Poly(methylmethacrylate) Doped with Aromatic Compounds: Laser Intensity Dependence of Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1999-02-01

    We developed a novel method of obtaining an absorption coefficient which depends on the laser intensity, since a single-photon absorption coefficient of a polymer could not be applied to laser ablation. The relationship between the nonlinear absorption coefficient and the laser intensity was derived from experimental data of transmission and incident laser intensities. Using the nonlinear absorption coefficient of poly(methylmethacrylate) doped with benzil and pyrene, we succeeded in fitting the relationship of etch depth and laser intensity, obtained experimentally, and discussed the energy absorbed by the polymer at the threshold fluence.

  14. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  15. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less

  16. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes

    PubMed Central

    Mondia, Jessica P.; Adams, Dany S.; Orendorff, Ryan D.; Levin, Michael; Omenetto, Fiorenzo G.

    2011-01-01

    Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed. PMID:21833375

  17. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes.

    PubMed

    Mondia, Jessica P; Adams, Dany S; Orendorff, Ryan D; Levin, Michael; Omenetto, Fiorenzo G

    2011-08-01

    Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.

  18. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  19. Treatment alternatives for urinary system stone disease in preschool aged children: results of 616 cases.

    PubMed

    Sen, Haluk; Seckiner, Ilker; Bayrak, Omer; Erturhan, Sakip; Demirbağ, Asaf

    2015-02-01

    The treatment of stone disease is mostly similar in those adult and children. The standard treatment procedures are as follows: extracorporeal shock wave lithotripsy (ESWL), ureterorenoscopy (URS), percutaneous nephrolithotomy (PCNL), and laparoscopic surgery in selected cases. Open surgery (OS) is another option particularly in such cases with anatomic abnormalities of urinary tract. The present study aims to provide comparative results of stone removal procedures in preschool aged patients who were diagnosed with urinary system stone disease. The retrospective data of 616 pediatric preschool patients consulted with urinary system stone disease between January 2009 and July 2013 were evaluated. All patients were evaluated with Kidney-Ureter-Bladder (KUB) Xray and abdomino-pelvic ultrasound. Intravenous pyelography, unenhanced computed tomography (CT), and renal scintigraphy were performed when needed. Patients were categorized according to the procedures as: Group ESWL, Group URS, Group PNL, Group micro-PNL and Group OS. Following the procedures, opaque residual stones were evaluated with KUB Xray, and non-opaque residual stones were evaluated with unenhanced CT. In groups (ESWL, URS, PNL, micro-PNL, OS), the stone-free rate was 68%, 66%, 85%, 100% and 94 %, respectively. The stone analysis were observed as, calcium oxalate in 377 patients (61.2%), uric acid in 106 patients (17.2%), infection stone in 73 patients (11.8 %), and cysteine in 60 patients (9.7%). There was no significant difference in stone analysis between the groups (p > 0.05) (Table). Minimally invasive procedures are frequently preferred in the pediatric age urinary system stone disease. These procedures are ESWL, PCNL, and ureteroscopy [10,11]. Open surgery is reserved only for rare cases [12]. Similarly the current literature, 18 (2.9%) patients had anatomical anomaly and had high complex stone burden were treated with open surgery in our study. ESWL is a preferred treatment method for pediatric urolithiasis patients with a stone size <20 mm, and the rate of stone-free after ESWL ranges between 57 and 92% [13]. In a study showed the effect of stone size on the success rate in ESWL, the success rate was 91% for stones <10 mm, and 75% for stones >10 mm [15]. In the present study, stone-free rate was noted as 68% on 15 mm or lower stone size. PNL is commonly used to treat stone disease in preschool children [18-20]. In the beginning, urologists hesitated to use instruments suited for adults in case of pediatric kidneys. While some authors accept a cut-off value of 24 F for tract dilatation in the pediatric age, Desai et al. recommended a threshold value <22 F [19,21]. In our study, we used adult PNL instruments in the early period, whereas mini-PERC was performed in the later years. The success rate in PNL group was found as 85%. In recent years, the micro-PNL procedure has been developed to reduce/prevent the complications of standard PNL. In our study, the success rate was calculated as 100% with micro-PNL. This study has certain limitations. The major limitation of our study is its retrospective nature. In addition, sample size of micro-PNL group is fewer than other groups. The goal of kidney stone treatment is to achieve minimal kidney damage and a high success rate. Thus, the procedures are important in the pediatric age group where life expectancy is high, and particularly in the preschool age group. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  20. Ablation as targeted perturbation to rewire communication network of persistent atrial fibrillation

    PubMed Central

    Tao, Susumu; Way, Samuel F.; Garland, Joshua; Chrispin, Jonathan; Ciuffo, Luisa A.; Balouch, Muhammad A.; Nazarian, Saman; Spragg, David D.; Marine, Joseph E.; Berger, Ronald D.; Calkins, Hugh

    2017-01-01

    Persistent atrial fibrillation (AF) can be viewed as disintegrated patterns of information transmission by action potential across the communication network consisting of nodes linked by functional connectivity. To test the hypothesis that ablation of persistent AF is associated with improvement in both local and global connectivity within the communication networks, we analyzed multi-electrode basket catheter electrograms of 22 consecutive patients (63.5 ± 9.7 years, 78% male) during persistent AF before and after the focal impulse and rotor modulation-guided ablation. Eight patients (36%) developed recurrence within 6 months after ablation. We defined communication networks of AF by nodes (cardiac tissue adjacent to each electrode) and edges (mutual information between pairs of nodes). To evaluate patient-specific parameters of communication, thresholds of mutual information were applied to preserve 10% to 30% of the strongest edges. There was no significant difference in network parameters between both atria at baseline. Ablation effectively rewired the communication network of persistent AF to improve the overall connectivity. In addition, successful ablation improved local connectivity by increasing the average clustering coefficient, and also improved global connectivity by decreasing the characteristic path length. As a result, successful ablation improved the efficiency and robustness of the communication network by increasing the small-world index. These changes were not observed in patients with AF recurrence. Furthermore, a significant increase in the small-world index after ablation was associated with synchronization of the rhythm by acute AF termination. In conclusion, successful ablation rewires communication networks during persistent AF, making it more robust, efficient, and easier to synchronize. Quantitative analysis of communication networks provides not only a mechanistic insight that AF may be sustained by spatially localized sources and global connectivity, but also patient-specific metrics that could serve as a valid endpoint for therapeutic interventions. PMID:28678805

  1. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    PubMed

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (< 20 micros) CO(2) laser pulses at 9.6 microm and for Q-switched erbium laser pulses at 2.79 and 2.94 microm. Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  2. Thermal ablation of pancreatic cyst with a prototype endoscopic ultrasound capable radiofrequency needle device: A pilot feasibility study

    PubMed Central

    Moris, Maria; Atar, Mustafa; Kadayifci, Abdurrahman; Krishna, Murli; Librero, Ariston; Richie, Eugene; Brugge, William; Wallace, Michael B.

    2017-01-01

    Background and Objectives: Pancreatic cysts are evaluated by endoscopic ultrasound and fine needle aspiration (EUS). The only accepted treatment is pancreatectomy, which is associated with morbidity and mortality. This study evaluated the optimal thermal dosimetry of a novel radiofrequency ablation device using a standard electrosurgical unit in ex vivo cyst models. Methods: A modified EUS 22-gauge monopolar needle prototype with a tip electrode connected to a standard electrosurgical unit (Erbe USA, Marietta, GA, USA) was used to induce a subboiling point temperature. A cyst model was created using 2-cm sections of porcine small intestine ligated and filled with saline. After ablation, the cyst models were prepared for pathological evaluation. The epithelial layers were measured in at least two different sites with a micrometer and compared with the corresponding control sample. Results: Thirty-two cyst models were ablated with maximum temperatures of 50°C, 60°C, 90°C, and 97°C in 8, 11, 11, and 2 cysts, respectively. Longer ablation times were required to induce higher temperatures. A trend in the reduction in thickness of the measured layers was observed after exposure to higher temperatures. A temperature over 50°C was required for the ablation of the muscularis, submucosa, and villi, and over 60°C was required to ablate the mucosal crypts. Conclusions: In a preclinical model, a novel radiofrequency EUS-capable needle connected to a standard electrosurgical unit using standard low-voltage coagulation provided ablation in a temperature-dependent fashion with a threshold of at least 60°C and a safe cyst margin below 97°C. This potentially will allow low-cost, convenient cyst ablation. PMID:28440238

  3. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

    NASA Astrophysics Data System (ADS)

    Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2016-12-01

    Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

  4. The Origin of Tektites

    NASA Technical Reports Server (NTRS)

    OKeefe, J. A.

    1960-01-01

    Tektites are probably extraterrestrial, rather than the result of heating some terrestrial materials, because they are a chemically homogeneous group with definite peculiarities (high silica, excess of alkaline earths over alkalis, excess of potash over soda, absence of water), and because some of them (the australites) appear to have undergone ablation in flight through the atmosphere. Since comparatively slow heating is required to explain the liquefaction of the tektite material, it is suggested that the tektites arrived along orbits which were nearly parallel to the surface of the earth, and which resulted from the decay of the orbit of a natural satellite. The great meteor procession of February 9, 1913, is an example of such an object. Comparison with the reentry phenomena of the artificial satellite 1957 Beta suggests that the 1913 shower consisted of a single large stone weighing about 400 kilograms, and a few dozen smaller bodies weighing about 40 grams each, formed by ablation from the larger body. It is shown that under the observed conditions considerable liquid flow would be expected in the stone, which would be heated to about 2100 K. Objects falling from such a shower near the perigee point of the orbit would have a considerable distribution along the orbit as a result of slight variations in height or drag coefficient. The distribution in longitude would be made wider by the turning of the earth under the orbit during the time of fall. The ultimate source of the body which produces a tektite shower is probably the moon, which appears, by virtue of its polarization and the phase distribution of the returned light, to contain high-silica materials. It is suggested that the Igast object alleged to have fallen in 1855 is in fact genuine and represents an unmelted portion of the lunar crust.

  5. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  6. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  7. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  8. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shownmore » the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.« less

  9. ICF Gamma-Ray measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y.; Hoffman, N. M.; Batha, S. H.; Stoeffl, W.; Church, J. A.; Sayre, D. B.; Liebman, J. A.; Cerjan, C. J.; Carpenter, A. C.; Grafil, E. M.; Khater, H. Y.; Horsfield, C. J.; Rubery, M.

    2013-10-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostic is to provide bang time and burn width information in order to constrain implosion simulation parameters such as shell velocity and confinement time. This is accomplished by measuring DT fusion gamma-rays with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. Burn-weighted CH ablator areal density is also inferred based on measurement of the 12C(n,n') gammas emitted at 4.44 MeV from DT neutrons inelastically scattering off carbon nuclei as they pass through the plastic ablator. This requires that the four independent GRH gas cells be set to differing Cherenkov thresholds (e.g., 2.9, 4.5, 8 & 10 MeV) in order to be able to unfold the primary spectral components predicted to be in the gamma ray energy spectrum (i.e., DT γ 27Al & 28Si (n,n') γ from the thermo-mechanical package (TMP); and 12C(n,n' γ from the ablator). The GRH response to 12C(n,n') γ is calibrated in-situ by placing a known areal density of carbon in the form of a puck placed ~6 cm from a DT exploding pusher implosion. Comparisons between inferred gamma fluences and simulations based on the nuclear cross sections databases will be presented. Supported by US DOE NNSA.

  10. Effects of shielded or unshielded laser and electrohydraulic lithotripsy on rabbit bladder.

    PubMed

    Bhatta, K M; Rosen, D I; Flotte, T J; Dretler, S P; Nishioka, N S

    1990-04-01

    The pulsed dye laser and electrohydraulic lithotriptor (EHL) are both effective devices for fragmenting urinary and biliary calculi. Both fragment stones by producing a plasma-mediated shockwave. Recently, a plasma shield consisting of a hollow spring and a metal end cap has been described for use with the laser and EHL devices in an attempt to minimize tissue damage without adversely affecting stone fragmentation rates. The tissue effects produced by a pulsed dye laser and an EHL device with and without plasma shields were examined and compared using rabbit urinary bladders. If blood was present, the unshielded laser perforated the bladder wall in two pulses. However, in the absence of blood, over 100 pulses were needed for the laser to perforate the bladder. A mean of six pulses were required to perforate the bladder wall with a shielded laser. The unshielded EHL perforated the bladder wall in two pulses, whereas, the shielded EHL required a mean of 35 pulses. Microscopically, areas of exposure revealed hemorrhage and tissue ablation. We conclude that all devices examined can produce significant tissue damage when discharged directly onto bladder epithelium.

  11. Optimal Settings for the Noncontact Holmium:YAG Stone Fragmentation Popcorn Technique.

    PubMed

    Emiliani, Esteban; Talso, Michele; Cho, Sung-Yong; Baghdadi, Mohammed; Mahmoud, Sadam; Pinheiro, Hugo; Traxer, Olivier

    2017-09-01

    The purpose of this study was to evaluate the popcorn technique using a wide range of holmium laser settings and fiber sizes in a systematic in vitro assessment. Evaluations were done with 4 artificial stones in a collection tube. A fixed ureteroscope was inserted through a ureteral access sheath to provide constant irrigation flow and the laser was placed 1 mm from the bottom. Combinations of 0.5 to 1.5 J, 10 to 20 and 40 Hz, and long and short pulses were tested for 2 and 4 minutes. We used 273 and 365 μm laser fibers. All tests were repeated 3 times. The stones were weighed before and after the experiments to evaluate the setting efficiency. Significant predictors of a highly efficient technique were assessed. A total of 144 tests were performed. Mean starting weight of the stones was 0.23 gm, which was consistent among the groups. After the experiment the median weight difference was 0.07 gm (range 0.01 to 0.24). When designating a 50% reduction in stone volume as the threshold indicating high efficiency, the significant predictors of an efficient popcorn technique were a long pulse (OR 2.7, 95% CI 1.05-7.15), a longer duration (OR 11.4, 95% CI 3.88-33.29), a small (273 μm) laser fiber (OR 0.23, 95% CI 0.08-0.70) and higher power (W) (OR 1.14, 95% CI 1.09-1.20). Higher energy, a longer pulse, frequencies higher than 10 Hz, a longer duration and a smaller laser fiber predict a popcorn technique that is more efficient at reducing stone volume. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones.

    PubMed

    Langdon, Aaron; Grohe, Bernd

    2016-10-01

    The protein osteopontin (OPN) plays an important role in preventing the formation of calcium oxalate monohydrate (COM) kidney stones. To gain insight into these mechanisms, crystallization was induced by addition of human kidney OPN to artificial urine (ionic strength comparable to urine; without citrate), and the OPN-COM interaction studied using a combination of scanning electron (SEM) and confocal microscopy. By SEM, we found that increasing OPN concentrations formed large monoclinic penetration twins (no protein added) and, at higher concentrations (1-, 2μg/ml OPN), super and hyper twins with crystal habits not found in previous studies. For instance, the hyper twins indicate well-facetted gearwheel-like habits with "teeth" developed in all crystallographic directions. At OPN concentrations ≥2μg/ml, a switching to small dumbbell-shaped COM habits with fine-textured surfaces occurred. Confocal microscopy of these dumbbells indicates protein incorporation in almost the entire crystal structure (in contrast to facetted COM), proposing a threshold concentration of ∼2μg/ml OPN for the facetted to the non-facetted habit transformation. Both the gearwheel-like and the dumbbell-shaped habit are again found side-by-side (presumably triggered by OPN concentration gradients within the sample) in in-vitro formed conglomerates, which resemble cross-sections of papillary kidney stones. The abrupt transformation from facetted to non-facetted habits and the unique compliance of the two in-vitro formed habits with the two main morphologies found in papillary kidney stones propose that OPN is a main effector in direct stone-forming processes. Moreover, stone structures which exhibit these two morphologies side-by-side might serve as a novel indicator for OPN concentrations surrounding those structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Scalable Wavelet-Based Active Network Stepping Stone Detection

    DTIC Science & Technology

    2012-03-22

    47 4.2.2 Synchronization Frame . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Frame Size...the vector. Pilot experiments result in the final algorithm shown in Figure 3.4 and the detector in Figure 3.5. Note that the synchronization frame and... synchronization frames divided by the number of total frames. Comparing this statistic to the detection threshold γ determines whether a watermark is

  14. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  15. Thermal effects on pulp due to laser and handpiece usage.

    PubMed

    Penn, Christina; Beninati, Christopher; Mariano, Alissa; Dooley, Daniel; Harsono, Masly; Perry, Ronald; Kugel, Gerard

    2014-01-01

    The study was designed to compare changes in pulpal temperature during ablation of dental hard tissue while using two established erbium dental laser systems, a new CO2 laser system, and a conventional high-speed handpiece. Eighty non-carious human extracted molars were separated into four sample groups of 20 teeth each. Three laser systems were used, respectively, to ablate the occlusal surface of the teeth in three of the groups for 60 seconds each. The high-speed handpiece was used to drill the occlusal surface of the fourth group for 60 seconds. Pulpal temperatures were measured using thermocouples inserted into each tooth's pulpal chamber prior to ablation. None of the average temperature increases approached the threshold of 5.5°C at which pulpal damage begins. On average, the pulpal temperature of teeth ablated with the Waterlase MD system increased the most (3.56°C). The traditional handpiece caused the lowest average temperature increase (1.57°C), followed by the LightWalker DT system (3.20°C) and the Solea CO2 system (3.30°C).

  16. Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2018-03-01

    The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump-probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.

  17. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    NASA Astrophysics Data System (ADS)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  18. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation) on gross histologic examination. The laparoscopic IR camera is able to monitor the surface renal temperatures during RF treatment. Thermocouple measurements during RF ablation confirmed the thermographic findings and demonstrated that lethal temperatures at the margin of the intended treatment zone are routinely obtained and that a rapid decline in temperature occurs beyond the predicted ablation margin.

  19. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    NASA Astrophysics Data System (ADS)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  20. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  1. In vivo evaluation of virtual electrode mapping and ablation utilizing a direct endocardial visualization ablation catheter.

    PubMed

    Chik, William W B; Barry, M A; Malchano, Zach; Wylie, Bryan; Pouliopoulos, Jim; Huang, Kaimin; Lu, Juntang; Thavapalachandran, Sujitha; Robinson, David; Saadat, Vahid; Thomas, Stuart P; Ross, David L; Kovoor, Pramesh; Thiagalingam, Aravinda

    2012-01-01

    Radiofrequency (RF) ablation utilizing direct endocardial visualization (DEV) requires a "virtual electrode" to deliver RF energy while preserving visualization. This study aimed to: (1) examine the virtual electrode RF ablation efficacy; (2) determine the optimal power and duration settings; and (3) evaluate the utility of virtual electrode unipolar electrograms. The DEV catheter lesions were compared to lesions formed using a 3.5 mm open irrigated tip catheter within the right atria of 12 sheep. Generator power settings for DEV were titrated from 12W, 14W and 16W for 20, 30 and 40 seconds duration with 25 mL/min saline irrigation. Standard irrigated tip catheter settings of 30W, 50°C for 30 seconds and 30 mL/min were used. The DEV lesions were significantly greater in surface area and both major and minor axes compared to irrigated tip lesions (surface area 19.43 ± 9.09 vs 10.88 ± 4.72 mm, P<0.01) with no difference in transmurality (93/94 vs 46/47) or depth (1.86 ± 0.75 vs 1.85 ± 0.57 mm). Absolute electrogram amplitude reduction was greater for DEV lesions (1.89 ± 1.31 vs 1.49 ± 0.78 mV, P = 0.04), but no difference in percentage reduction. Pre-ablation pacing thresholds were not different between DEV (0.79 ± 0.36 mA) and irrigated tip (0.73 ± 0.25 mA) lesions. There were no complications noted during ablation with either catheter. Virtual electrode ablation consistently created wider lesions at lower power compared to irrigated tip ablation. Virtual electrode electrograms showed a comparable pacing and sensing efficacy in detecting local myocardial electrophysiological changes. © 2011 Wiley Periodicals, Inc.

  2. Air temperature thresholds to evaluate snow melting at the surface of Alpine glaciers by T-index models: the case study of Forni Glacier (Italy)

    NASA Astrophysics Data System (ADS)

    Senese, A.; Maugeri, M.; Vuillermoz, E.; Smiraglia, C.; Diolaiuti, G.

    2014-03-01

    The glacier melt conditions (i.e.: null surface temperature and positive energy budget) can be assessed by analyzing meteorological and energy data acquired by a supraglacial Automatic Weather Station (AWS). In the case this latter is not present the assessment of actual melting conditions and the evaluation of the melt amount is difficult and simple methods based on T-index (or degree days) models are generally applied. These models require the choice of a correct temperature threshold. In fact, melt does not necessarily occur at daily air temperatures higher than 273.15 K. In this paper, to detect the most indicative threshold witnessing melt conditions in the April-June period, we have analyzed air temperature data recorded from 2006 to 2012 by a supraglacial AWS set up at 2631 m a.s.l. on the ablation tongue of the Forni Glacier (Italian Alps), and by a weather station located outside the studied glacier (at Bormio, a village at 1225 m a.s.l.). Moreover we have evaluated the glacier energy budget and the Snow Water Equivalent (SWE) values during this time-frame. Then the snow ablation amount was estimated both from the surface energy balance (from supraglacial AWS data) and from T-index method (from Bormio data, applying the mean tropospheric lapse rate and varying the air temperature threshold) and the results were compared. We found that the mean tropospheric lapse rate permits a good and reliable reconstruction of glacier air temperatures and the major uncertainty in the computation of snow melt is driven by the choice of an appropriate temperature threshold. From our study using a 5.0 K lower threshold value (with respect to the largely applied 273.15 K) permits the most reliable reconstruction of glacier melt.

  3. The role of positive and negative pressure on cavitation nucleation in nanodroplet-mediated histotripsy.

    PubMed

    Vlaisavljevich, Eli; Aydin, Omer; Lin, Kuang-Wei; Durmaz, Yasemin Yuksel; Fowlkes, Brian; ElSayed, Mohamed; Xu, Zhen

    2016-01-21

    Nanodroplet-mediated histotripsy (NMH) is an ultrasound ablation technique combining histotripsy with acoustically sensitive perfluorocarbon (PFC) nanodroplets that can be selectively delivered to tumor cells for targeted tumor ablation. NMH takes advantage of the significantly reduced cavitation threshold of the nanodroplets, allowing for cavitation to be selectively generated only in regions containing nanodroplets. Understanding the physical mechanisms underlying the nanodroplet cavitation process is essential to the development of NMH. In this study, we hypothesize that cavitation nucleation is caused by the negative pressure (p-) exposed to the PFC, and the NMH cavitation threshold is therefore determined by the incident p-  of the single-cycle pulses commonly used in NMH. This paper reports the first study that separately investigates the effects of negative and positive pressure on the NMH cavitation threshold using near half-cycle ultrasound pulses with dominant negative (negative-polarity pulses) or positive (positive-polarity pulses) pressure phases. Tissue phantoms containing perfluorohexane (PFH) nanodroplets were exposed to negative-polarity and positive-polarity pulses generated by a frequency compounding transducer recently developed in our lab, and the probability of generating cavitation was measured as a function of peak negative (p-) and peak positive (p+) pressure. The results showed close agreement in the p- cavitation threshold for PFH phantoms exposed to negative-polarity (11.4 ± 0.1 MPa) and positive-polarity (11.7 ± 0.2 MPa) pulses. The p+ at the cavitation threshold, in contrast, was measured to be sign ficantly different for the negative-polarity (4.0 ± 0.1 MPa) and positive-polarity (42.6 ± 0.2 MPa) pulses. In the final part of this study, the experimental results were compared to the cavitation threshold predicted by classical nucleation theory (CNT), with results showing close agreement between simulations and experiments. Overall, the results support our hypothesis and provide significant insight into the physical mechanisms underlying NMH.

  4. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    NASA Astrophysics Data System (ADS)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  5. Ablation of atrial-ventricular junction tissues via the coronary sinus using cryo balloon technology.

    PubMed

    Avitall, Boaz; Lafontaine, Daniel; Rozmus, Grzegorz; Adoni, Naveed; Dehnee, Abed; Urbonas, Arvydas; Le, Khoi M; Aleksonis, Dinas

    2005-04-01

    The coronary sinus (CS) can provide access to targets across and within the atrioventricular (AV) junction. In 12 dogs (32 +/- 3 Kg), cryo balloons (10-19 mm) were applied to regions of the AV junction for 3 minutes at a temperature of -75.9( composite function) +/- 9(composite function)C (ranging -57 to -83). Electrical activity and pacing within the CS were assessed pre and post ablation and at least 3 months later in 9 dogs. In the 3 other dogs, hearts were examined immediately after cryo ablation. CS and circumflex angiography was performed pre and post ablation. The hearts, CS, and Cx were then examined for structural injury. The AV junction was sectioned and the hearts were immersed in Tetrazolium, and the lesions were inspected for transmurality across the AV groove. In 3/12 dogs the distal CS cryo lesions resulted in inferior ST segment depression that resolved within 5 minutes. There was no arrhythmia or hemodynamic changes. No CS electrical activity was noted post ablation. The pacing threshold increased from 2 +/- 2.3 mA to 7.4 +/- 3.6 mA (p < 0.001). Pathological examination of 3 acute hearts revealed hematomas. There was no pericardial effusion. No evidence of stenosis or thrombosis was seen within the CS and the circumflex artery. After 3 months of recovery, transmural lesions across the AV groove were present in all of the targeted AV regions. Intra-CS cryo balloon ablation is safe and can potentially replace endocardial RF ablation targeting the AV junction and the CS muscular sleeve.

  6. Optic nerve sheath fenestration using a Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Hutson, M. Shane

    2016-01-01

    Background and Objective Optic nerve sheath fenestration is an established procedure for relief of potentially damaging overpressure on the optic nerve resulting from idiopathic intracranial hypertension. Prior work showed that a mid-IR free-electron laser could be delivered endoscopically and used to produce an effective fenestration. This study evaluates the efficacy of fenestration using a table-top mid-IR source based on a Raman-shifted alexandrite (RSA) laser. Study Design/Materials and Methods Porcine optic nerves were ablated using light from an RSA laser at wavelengths of 6.09, 6.27 and 6.43 μm and pulse energies up to 3 mJ using both free-space and endoscopic beam delivery through 250-μm I.D. hollow-glass waveguides. Waveguide transmission was characterized, ablation thresholds and etch rates were measured, and the efficacy of endoscopic fenestration was evaluated for ex vivo exposures using both optical coherence tomography and histological analysis. Results Using endoscopic delivery, the RSA laser can effectively fenestrate porcine optic nerves. Performance was optimized at a wavelength of 6.09 μm and delivered pulse energies of 0.5-0.8 mJ (requiring 1.5-2.5 mJ to be incident on the waveguide). Under these conditions, the ablation threshold fluence was 0.8 ± 0.2 J/cm2, the ablation rate was 1-4 μm/pulse, and the margins of ablation craters showed little evidence of thermal or mechanical damage. Nonetheless, nominally identical exposures yielded highly variable ablation rates. This led to fenestrations that ranged from too deep to too shallow – either damaging the underlying optic nerve or requiring additional exposure to cut fully through the sheath. Of 48 excised nerves subjected to fenestration at 6.09 μm, 16 ex vivo fenestrations were judged as good, 23 as too deep, and 9 as too shallow. Conclusions Mid-IR pulses from the RSA laser, propagated through a flexible hollow waveguide, are capable of cutting through porcine optic nerve sheaths in surgically relevant times with reasonable accuracy and low collateral damage. This can be accomplished at wavelengths of 6.09 or 6.27 μm, with 6.09 μm slightly preferred. The depth of ex vivo fenestrations was difficult to control, but excised nerves lack a sufficient layer of cerebrospinal fluid that would provide an additional margin of safety in actual patients. PMID:27020001

  7. The Effect of Selected Cleaning Techniques on Berkshire Lee Marble: A Scientific Study at Philadelphia City Hall

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Fries, Terry L.; Coombs, Mary Jane; Naude, Virginia N.; Soderberg, Lisa; Wheeler, George S.

    2002-01-01

    This report describes a scientific investigation of the effects of eight different cleaning techniques on the Berkshire Lee marble component of the facade of the East Center Pavilion at Philadelphia City Hall; the study was commissioned by the city of Philadelphia. The eight cleaning techniques evaluated in this study were power wash (proprietary gel detergent followed by water rinse under pressure), misting (treatment with potable, nebulized water for 24-36 hours), gommage (proprietary Thomann-Hanry low-pressure, air-driven, small-particle, dry abrasion), combination (gommage followed by misting), Armax (sodium bicarbonate delivered under pressure in a water wash), JOS (dolomite powder delivered in a low-pressure, rotary-vortex water wash), laser (thermal ablation), and dry ice (powdered-dry-ice abrasion delivered under pressure). In our study approximately 160 cores were removed from the building for laboratory analysis. We developed a computer program to analyze scanning-electron-micrograph images for the microscale surface roughness and other morphologic parameters of the stone surface, including the near-surface fracture density of the stone. An analysis of more than 1,100 samples cut from the cores provided a statistical basis for crafting the essential elements of a reduced-form, mixed-kinetics conceptual model that represents the deterioration of calcareous stone in terms of self-organized soiling and erosion patterns. This model, in turn, provided a basis for identifying the variables that are affected by the cleaning techniques and for evaluating the extent to which such variables influence the stability of the stone. The model recognizes three classes of variables that may influence the soiling load on the stone, including such exogenous environmental variables as airborne moisture, pollutant concentrations, and local aerodynamics, and such endogenous stone variables as surface chemistry and microstructure (fracturing, roughness, and so on). This study showed that morphologic variables on the mesoscale to macroscale are not generally affected by the choice of a cleaning technique. The long-term soiling pattern on the building is independent of the cleaning technique applied. This study also showed that soluble salts do not play a significant role in the deterioration of Berkshire Lee marble. Although salts were evident in cracks and fissures of the heavily soiled stone, such salts did not penetrate the surface to a depth of more than a few hundred micrometers. The criteria used to differentiate the cleaning techniques were ultimately based on the ability of each technique to remove soiling without altering the texture of the stone surface. This study identified both the gommage and JOS techniques as appropriate for cleaning ashlar surfaces and the combination technique as appropriate for cleaning highly carved surfaces at the entablatures, cornices, and column capitals.

  8. Selective ablation of sub- and supragingival calculus with a frequency-doubled Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1995-05-01

    In a preceding trial the absorption characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to contain chromophores absorbing in the ultraviolet spectral region up to 420 nm. The aim of the actual study was the ablation of sub- and supragingival calculus using a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz). Extracted human teeth presenting sub- and supragingival calculus were irradiated perpendicular to their axis with a laser fluence of 1 Jcm-2. Using a standard application protocol calculus was irradiated at the enamel surface, at the junction between enamel and root, and at the root surface (located on dentin or on cementum). During the irradiation procedure an effective water cooling-system was engaged. For light microscopical investigations undecalcified histological sections were prepared after treatment. The histological sections revealed that a selective and total removal of calculus is possible at all locations without ablation of healthy enamel, dentin or cementum. Even low fluences provide us with a high effectiveness for the ablation of calculus. Thus, based on different absorption characteristics and ablation thresholds, engaging a frequency doubled Alexandrite-laser a fast and, even more, a selective ablation of sub- and supragingival calculus is possible without adverse side effects to the surrounding tissues. Even more, microbial dental plaque can be perfectly removed.

  9. Cost-utility analysis of great saphenous vein ablation with radiofrequency, foam and surgery in the emerging health-care setting of Thailand.

    PubMed

    Siribumrungwong, Boonying; Noorit, Pinit; Wilasrusmee, Chumpon; Leelahavarong, Pattara; Thakkinstian, Ammarin; Teerawattananon, Yot

    2016-09-01

    To conduct economic evaluations of radiofrequency ablation, ultrasound-guided foam sclerotherapy and surgery for great saphenous vein ablation. A cost-utility and cohort analysis from societal perspective was performed to estimate incremental cost-effectiveness ratio. Transitional probabilities were from meta-analysis. Direct medical, direct non-medical, indirect costs, and utility were from standard Thai costings and cohort. Probabilistic sensitivity analysis was performed to assess parameter uncertainties. Seventy-seven patients (31 radiofrequency ablation, 19 ultrasound-guided foam sclerotherapy, and 27 surgeries) were enrolled from October 2011 to February 2013. Compared with surgery, radiofrequency ablation costed 12,935 and 20,872 Baht higher, whereas ultrasound-guided foam sclerotherapy costed 6159 lower and 1558 Bath higher for outpatient and inpatient, respectively. At one year, radiofrequency ablation had slightly lower quality-adjusted life-year, whereas ultrasound-guided foam sclerotherapy yielded additional 0.025 quality-adjusted life-year gained. Because of costing lower and greater quality-adjusted life-year than other compared alternatives, outpatient ultrasound-guided foam sclerotherapy was an option being dominant. Probabilistic sensitivity analysis resulted that at the Thai ceiling threshold of 160,000 Baht/quality-adjusted life-year gained, ultrasound-guided foam sclerotherapy had chances of 0.71 to be cost-effective. Ultrasound-guided foam sclerotherapy seems to be cost-effective for treating great saphenous vein reflux compared to surgery in Thailand at one-year results. © The Author(s) 2015.

  10. Trace element analysis of synthetic mono- and poly-crystalline CaF 2 by ultraviolet laser ablation inductively coupled plasma mass spectrometry at 266 and 193 nm

    NASA Astrophysics Data System (ADS)

    Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.

    2002-06-01

    The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.

  11. The CE marking in the dimension stone sector: difficulties, contradictions, possible solutions

    NASA Astrophysics Data System (ADS)

    Primavori, Piero

    2017-04-01

    In accordance with the requirements of the CPR 305/11, no stone products (covered by harmonized standards) can be introduced in the EU market, irrespective of their country of origin, unless they are supported with a Declaration of Performance (DoP) and CE certificate (= CE Marking). The CE marking became compulsory for all stone and marble products as early as 2003, under the legal framework of the CPD 89/106/CE, the EU Directive which, on July 1st, 2013, has been officially replaced by the CPR 305/11. The CE Marking of construction products has been described as one of the most significant change being faced by the construction industry for a decade. Nevertheless, after thirteen years from the introduction of the first products standard, serious difficulties for the CE Marking application still exist. The aim of this contribution is to draw the attention on the effective meaningfulness, applicability and reliability of the CE Marking, on the related aspects for the economic operators (manufacturers, authorized representatives, importers, distributors etc.) and, most of all, for the customers. The following topics and issues are dealt with: - Criteria of the mandatory tests; - Criteria for testing procedures (meaningfulness/reliability/frequency of the TT); - Non-applicability of the testing methods in particular circumstances; - Economic aspects for the companies; - Interpretation of the FPC philosophy; - Formulation of the finished products standards; - Traceability criteria of the stone material; - Threshold-values for the acceptance of a stone material; - Guarantees for the manufacturers and for the customers; - Effective precision and reliability of the DoP and related consequences for manufacturers and customers.

  12. Direct micromachining of quartz glass plates using pulsed laser plasma soft x-rays

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Miyamoto, Hisao; Kenmotsu, Youichi; Murakami, Kouichi; Niino, Hiroyuki

    2005-03-01

    We have investigated direct micromachining of quartz glass, using pulsed laser plasma soft x-rays (LPSXs) having a potential capability of nanomachining because the diffraction limit is ˜10nm. The LPSX's were generated by irradiation of a Ta target with 532nm laser light from a conventional Q switched Nd :YAG laser at 700mJ/pulse. In order to achieve a sufficient power density of LPSX's beyond the ablation threshold, we developed an ellipsoidal mirror to obtain efficient focusing of LPSXs at around 10nm. It was found that quartz glass plates are smoothly ablated at 45nm/shot using the focused and pulsed LPSX's.

  13. Plasma ignition thresholds in UV laser ablation plumes

    NASA Astrophysics Data System (ADS)

    Clarke, P.; Dyer, P. E.; Key, P. H.; Snelling, H. V.

    Ultraviolet (UV) laser thresholds for plasma ignition on solid targets predicted from electron-neutral collisional heating are generally much higher than those observed experimentally. This inconsistency was reconciled by Rosen, et al. [2], who showed that excited-state photoionization played a key role in long-pulse UV laser breakdown. Here we develop a related model but with emphasis on pulses of 10 ns duration. Experimental results are also reported for titanium, copper, silicon, and ferulic acid targets in vacuum, irradiated with combinations of the XeF, KrF, and ArF lasers for comparison with predictions.

  14. Caries selective ablation: the handpiece

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Rechmann, Peter; Holtermann, Andreas

    1995-05-01

    Caries selective ablation is fixed to a window of fluences predicted by the ablation thresholds of carious and healthy dentin, respectively. The aim of the study was to develop a dental handpiece which guarantees homogeneous fluence at the irradiated tooth surface. Furthermore the point of treatment should be cooled down without energy losses due to the cooling system. We suggest the direct coupling of the laser radiation into a laminar stream of liquid, which acts in turn as a lengthened beam guide. The impacts of the laser radiation and of the cooling medium fall exactly into the same point. Hot ablation debris is removed out of the crater by the flush of the water jet. Fluences are constant if the handpiece is used in contact mode or at a distance. Normally the surface of a bare fiber working in contact mode is destroyed after a few shots. Coupling the laser radiation into a stream of liquid prevents this destruction. Putting together the benefits of this special handpiece short overall treatment times seem to be possible. High average power can be applied to the tooth without the threat of thermal damage. Furthermore no time consuming cutting of the fiber prolongs the treatment time.

  15. Improved performance of selective ablation using a specially designed handpiece

    NASA Astrophysics Data System (ADS)

    Hennig, Thomas; Rechmann, Peter

    1996-01-01

    Selective ablation is fixed to a range of fluences predicted by the ablation thresholds of infected and healthy tooth structures respectively. The aim of the study was to develop a dental handpiece, which guarantees homogeneous fluence at the irradiated tooth surface. Furthermore the point of treatment should be cooled down without energy losses due to the cooling system. We suggest the direct coupling of the laser radiation into a laminar stream of liquid, which may act in turn as a lengthened beam guide. The impacts of the laser radiation and of the cooling medium hit exactly the same point. Hot ablation debris is removed out of the crater by the flush of the water jet. While the surface of a bare fiber working on contact mode is destroyed after a few shots, it was shown that coupling the laser radiation into a stream of liquid prevents this destruction. Putting together the benefits of this special handpiece short overall treatment times seem to be possible. High average power can be applied to the tooth without the threat of thermal damage. Furthermore no time consuming cutting of the fiber prolongs the treatment time.

  16. Picosecond laser ablation of polyamide electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Götze, Marco; Krimig, Olaf; Kürbitz, Tobias; Henning, Sven; Heilmann, Andreas; Hillrichs, Georg

    2017-02-01

    Electrospun nanofibers mats have a great potential in tissue engineering and regenerative medicine. Their high porosity and enormous volume to surface ratio stimulate the growth and adhesion of mammalian cells and serve as a stable support structure. These suitable properties can be further optimized by structuring of the nanofibers. Ultrashort pulsed lasers can be used for modifying of the electrospun nanofibers without significant heat exposure. It seems also possible to generate very fine cuts from the fiber mats. In this study, polyamide electrospun nanofibers samples were processed with picosecond UV-laser irradiation (λ = 355 nm, τ = 15 ps). The samples were processed in dry, wet and immersed condition. To optimize cutting and structuring of nanofiber tissue flakes, the influence of different laser parameters on line widths, edge quality, heat-affected zone (HAZ) and the contamination of the fibers by ablated particles (debris) were examined. One additional aim was the minimization of the flake size. It was possible to generate nanofiber flakes in the sub-millimeter range. The quality of the nanofiber flakes could be improved by ablation near the ablation threshold of the material. For cutting under wet conditions shrinking of the flakes has to be taken into account.

  17. Influence of pre-annealing of printed silver electrodes on ultrafast laser ablation of short thin-film transistor channels on flexible substrates

    NASA Astrophysics Data System (ADS)

    Wiig, M. S.; You, C. C.; Brox-Nilsen, C.; Foss, S. E.

    2018-02-01

    The cutoff frequency and current from an organic thin-film transistor (OTFT) are strongly dependent on the length and to some extent on the uniformity of the transistor channel. Reducing the channel length can improve the OTFT performance with the increase in the current and frequency. Picosecond laser ablation of the printed Ag electrodes, compatible with roll-to-roll fabrication, has been investigated. The ablation threshold was found to be similar for the laser wavelengths tested: 515 nm and 1030 nm. Short transistor channels could be opened both after light annealing at 70 °C and after annealing at 140 °C. The channels in the lightly cured films had a significantly less scale formation, which is critical for avoiding shunts in the device. By moving from bottom electrodes fully defined by printing to the bottom electrodes where the transistor channel is opened by the laser, the channel length could be reduced from 40 μm to less than 5 μm.

  18. Characteristics of Fe Ablation Trials Observed During the 1998 Leonid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Chu, Xin-Zhao; Pan, Wei-Lin; Papen, George; Swenson, Gary; Gardner, Chester S.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Eighteen Fe ablation trails were observed during the 17/18 Nov 1998 Leonid meteor shower with an airborne Fe lidar aboard the National Simulation Facility/National Center for Atmospheric Research (NSF/NCAR) Electra aircraft over Okinawa. The average altitude of the 18 trails from the high velocity (72 km/s) Leonid meteors, 95.67 +/- 0.93 km, is approximately 6.7 km higher than previously observed for slower (approx. 30 km/s) sporadic meteors. This height difference is consistent with the assumption that meteors ablate when the kinetic energy imparted to the atmosphere reaches a critical threshold. The average age of the Fe trails, determined by a diffusion model, is 10.1 min. The youngest ages were observed below 92 km and above 98 km where chemistry and diffusion dominate, respectively. The average abundance of the trails is ten percent of the abundance of the background Fe layer. Observations suggest that the 1998 Leonid shower did not have a significant impact on the abundance of the background Fe layer.

  19. Er:YAG laser for dentistry: basics, actual questions, and perspectives

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1994-12-01

    In recent years the dental use of the Er:YAG has found increasing interest. Most of the papers published so far concentrate on in vitro studies on cavity preparation, including the determination of ablation rates, measurements of temperature increase, microscopical analysis, and studies on the effect of water spray. The results are qualitatively in agreement and reveal a combination of high ablation efficiency and small side effects superior to other laser systems. Quantitative results, however, e.g., on ablation threshold or crater depths, sometimes differ. Some of these differences now can be explained and related to laser parameters or experimental conditions. Besides increasing the understanding on laser tissue interaction, the actual research enlarges the potential applications of the Er:YAG laser, such as for condition of enamel or dentin surfaces to enhance the bonding of composites. With the use of fibers, additional perspectives are given in periodontics and endodontics, e.g., for concrement removal or root canal preparation or sterilization.

  20. Slowing of Femtosecond Laser-Generated Nanoparticles in a Background Gas

    DOE PAGES

    Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.

    2014-11-25

    The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouleau, Christopher M.; Puretzky, Alexander A.; Geohegan, David B.

    The slowing of Pt nanoparticles in argon background gas was characterized by Rayleigh scattering imaging using a plume of nanoparticles generated by femtosecond laser through thin film ablation (fs-TTFA) of 20 nanometers-thick Pt films. The ablation was performed at threshold laser energy fluences for complete film removal to provide a well-defined plume consisting almost entirely of nanoparticles traveling with a narrow velocity distribution, providing a unique system to unambiguously characterize the slowing of nanoparticles during interaction with background gases. Nanoparticles of ~200 nm diameter were found to decelerate in background Ar gas with pressures less than 50 Torr in goodmore » agreement with a linear drag model in the Epstein regime. Based on this model, the stopping distance of small nanoparticles in the plume was predicted and tested by particle collection in an off-axis geometry, and size distribution analysis by transmission electron microscopy. These results permit a basis to interpret nanoparticle propagation through background gases in laser ablation plumes that contain mixed components.« less

  2. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    NASA Astrophysics Data System (ADS)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  3. Thulium fiber laser lithotripsy in an in vitro ureter model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ=2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  4. Geomorphology's role in the study of weathering of cultural stone

    NASA Astrophysics Data System (ADS)

    Pope, Gregory A.; Meierding, Thomas C.; Paradise, Thomas R.

    2002-10-01

    Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact. Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a "baseline" or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in "natural" settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does cultural stone data have any real relevance to the natural environment? These are questions for future research and debate. In any event, cultural stone weathering studies have been productive for both geomorphologists and conservators. Continued collaboration and communication between the geomorphic, historic preservation, archaeological, and engineering research communities are encouraged.

  5. Material decomposition images generated from spectral CT: detectability of urinary calculi and influencing factors.

    PubMed

    Lv, Peijie; Zhang, Yonggao; Liu, Jie; Ji, Lijuan; Chen, Yan; Gao, Jianbo

    2014-01-01

    To evaluate the detectability of urinary calculi on material decomposition (MD) images generated from spectral computed tomography (CT) and identify the influencing factors. Forty-six patients were examined with true nonenhanced (TNE) CT and spectral CT urography in the excretory phase. The contrast medium was removed from excretory phase images using water-based (WB) and calcium-based (CaB) MD analysis. The sensitivity for detection on WB and CaB images was evaluated using TNE results as the reference standard. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) on MD images were evaluated. Using logistic regression, the influences of image noise, attenuation, stone size, and patient's body mass index (BMI) were assessed. Threshold values with maximal sensitivity and specificity were calculated by means of receiver operating characteristic analyses. One hundred thirty-six calculi were detected on TNE images; 98 calculi were identified on WB images (sensitivity, 72.06%) and 101 calculi on CaB images (sensitivity, 74.26%). Sensitivities were 76.92% for the 3-5-mm stones and 84.51% for the 5-mm or larger stones on both WB and CaB images but reduced to 46.15% on WB images and 53.85% on CaB images for small calculi (<3 mm). Compared to WB images, CaB images showed lower image noise, higher SNR but similar CNR. Larger stone sizes (both >2.71 mm on WB and CaB) and greater CT attenuation (>280 Hounsfield units [HU] on WB, >215 HU on CaB) of the urinary stones were significantly associated with higher stone visibility rates on WB and CaB images (P ≤ .003). Image noise and BMI showed no impact on the stone detection. MD images generated from spectral CT showed good reliability for the detection of large (>2.71 mm) and hyperattenuating (>280 HU on WB, >215 HU on CaB) urinary calculi. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  6. Colour changes by laser irradiation of reddish building limestones

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Benavente, D.

    2016-10-01

    We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm-2. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm-2, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm-2) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.

  7. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).

    PubMed

    Mayr, Stefan; Gruber, Andreas; Bauer, Helmut

    2003-07-01

    Freezing and thawing lead to xylem embolism when gas bubbles caused by ice formation expand during the thaw process. However, previous experimental studies indicated that conifers are resistant to freezing-induced embolism, unless xylem pressure becomes very negative during the freezing. In this study, we show that conifers experienced freezing-induced embolism when exposed to repeated freeze-thaw cycles and simultaneously to drought. Simulating conditions at the alpine timberline (128 days with freeze-thaw events and thawing rates of up to 9.5 K h(-1) in the xylem of exposed twigs during winter), young trees of Norway spruce [Picea abies (L.) Karst.] and stone pine (Pinus cembra L.) were exposed to 50 and 100 freeze-thaw cycles. This treatment caused a significant increase in embolism rates in drought-stressed samples. Upon 100 freeze-thaw cycles, vulnerability thresholds (50% loss of conductivity) were shifted 1.8 MPa (Norway spruce) and 0.8 MPa (stone pine) towards less negative water potentials. The results demonstrate that freeze-thaw cycles are a possible reason for winter-embolism in conifers observed in several field studies. Freezing-induced embolism may contribute to the altitudinal limits of conifers.

  8. Third harmonic generation in air ambient and laser ablated carbon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ravi Pratap, E-mail: ravips@iitk.ac.in; Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablatedmore » plume play a vital role in the observed third harmonic signals.« less

  9. Formation of organic layer on femtosecond laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Yasumaru, Naoki; Sentoku, Eisuke; Kiuchi, Junsuke

    2017-05-01

    Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  10. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound.

    PubMed

    Suo, Dingjie; Govind, Bala; Zhang, Shengqi; Jing, Yun

    2018-03-01

    Through the introduction of multi-frequency sonication in High Intensity Focused Ultrasound (HIFU), enhancement of efficiency has been noted in several applications including thrombolysis, tissue ablation, sonochemistry, and sonoluminescence. One key experimental observation is that multi-frequency ultrasound can help lower the inertial cavitation threshold, thereby improving the power efficiency. However, this has not been well corroborated by the theory. In this paper, a numerical investigation on the inertial cavitation threshold of microbubbles (MBs) under multi-frequency ultrasound irradiation is conducted. The relationships between the cavitation threshold and MB size at various frequencies and in different media are investigated. The results of single-, dual and triple frequency sonication show reduced inertial cavitation thresholds by introducing additional frequencies which is consistent with previous experimental work. In addition, no significant difference is observed between dual frequency sonication with various frequency differences. This study, not only reaffirms the benefit of using multi-frequency ultrasound for various applications, but also provides a possible route for optimizing ultrasound excitations for initiating inertial cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CO2 laser ablation of external genital lesions with a SwiftLase flashscanner: treatment of extramammary Paget's disease of the vulva, penile condylomata, and other lesions

    NASA Astrophysics Data System (ADS)

    Sacknoff, Eric J.; Schweitzer, Jay; Slatkine, Michael; Mead, Douglass S.

    1995-05-01

    The ability to vaporize extremely thin layers of epithelial tissue without any char and with minimal thermal necrosis is extremely advantageous in the treatment of superficial lesions of the external genitalia. We present a novel CO2 laser `SwiftLase' flashscan technology capable of providing char free ablation of 3 mm diameter lesions with only 150 micron residual thermal necrosis depth at power level as low as 10 watts. These power levels are achievable with a small transportable CO2 laser. The SwiftLaser is a miniature opto- mechanical scanner which homogeneously covers a 3 mm diameter surface with a 0.1 mm spot size focused beam within 0.1 seconds. The instantaneous beam's dwelling time is 1 millisecond. The instantaneous power density level at the focal point is higher than the threshold for char free ablation, thus providing a large char free ablation crater. Since depth of each ablated layer is 0.1 mm, the depth of treatment can be precisely controlled. The SwiftLaser technology has extensively and successfully been used in the last two years for the treatment of HPV in female lower tracts (Vulvectomy). The same technique may be performed with extramammary Paget's disease of the vulva, penile condylomata, and other epithelial disorders of the external genitalia without damage to surrounding healthy tissue. Technique and clinical results will be discussed.

  12. Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL).

    PubMed

    Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco

    2012-11-01

    Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.

  13. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nicolodelli, Gustavo; de Fátima Zanirato Lizarelli, Rosane; Salvador Bagnato, Vanderlei

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788+/-0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEachen, James C., E-mail: james.mceachen2@gmail.com; Leng, Shuai; Atwell, Thomas D.

    IntroductionOnce reserved solely for non-surgical cases, percutaneous ablation is becoming an increasingly popular treatment option for a wider array of patients with small renal masses and the radiation risk needs to be better defined as this transition continues.Materials and MethodsRetrospective review of our renal tumor ablation database revealed 425 patients who underwent percutaneous ablation for treatment of 455 renal tumors over a 5-year time period. Imparted radiation dose information was reviewed for each procedure and converted to effective patient dose and skin dose using established techniques. Statistical analysis was performed with each ablative technique.ResultsFor the 331 cryoablation procedures, the meanmore » DLP was 6987 mGycm (SD = 2861) resulting in a mean effective dose of 104.7 mSv (SD = 43.5) and the mean CTDI{sub vol} was 558 mGy (SD = 439) resulting in a mean skin dose of 563.2 mGy (SD = 344.1). For the 124 RFA procedures, the mean DLP was 3485 mGycm (SD = 1630) resulting in a mean effective dose of 50.3 mSv (SD = 24.0) and the mean CTDI{sub vol} was 232 mGy (SD = 149) resulting in a mean skin dose of 233.2 mGy (SD = 117.4). The difference in patient radiation exposure between the two renal ablation techniques was statistically significant (p < 0.001).ConclusionBoth cryoablation and RFA imparted an average skin dose that was well below the 2 Gy deterministic threshold for appreciable sequela. Renal tumor cryoablation resulted in a mean skin and effective radiation dose more than twice that for RFA. The radiation exposure for both renal tumor ablation techniques was at the high end of the medical imaging radiation dose spectrum.« less

  15. Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems.

    PubMed

    Bueeler, Michael; Mrochen, Michael

    2005-01-01

    The aim of this theoretical work was to investigate the robustness of scanning spot laser treatments with different laser spot diameters and peak ablation depths in case of incomplete compensation of eye movements due to eye-tracker latency. Scanning spot corrections of 3rd to 5th Zernike order wavefront errors were numerically simulated. Measured eye-movement data were used to calculate the positioning error of each laser shot assuming eye-tracker latencies of 0, 5, 30, and 100 ms, and for the case of no eye tracking. The single spot ablation depth ranged from 0.25 to 1.0 microm and the spot diameter from 250 to 1000 microm. The quality of the ablation was rated by the postoperative surface variance and the Strehl intensity ratio, which was calculated after a low-pass filter was applied to simulate epithelial surface smoothing. Treatments performed with nearly ideal eye tracking (latency approximately 0) provide the best results with a small laser spot (0.25 mm) and a small ablation depth (250 microm). However, combinations of a large spot diameter (1000 microm) and a small ablation depth per pulse (0.25 microm) yield the better results for latencies above a certain threshold to be determined specifically. Treatments performed with tracker latencies in the order of 100 ms yield similar results as treatments done completely without eye-movement compensation. CONCWSIONS: Reduction of spot diameter was shown to make the correction more susceptible to eye movement induced error. A smaller spot size is only beneficial when eye movement is neutralized with a tracking system with a latency <5 ms.

  16. Droplet distributions from melt displacement and ejection mechanism during Al ns-laser ablation and deposition experiments: Influence of laser spot position

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Lorusso, A.; Maiolo, B.; Cangueiro, L.; Vilar, R.; Perrone, A.

    2014-03-01

    Experimental observations of the angular distribution of droplets during laser ablation and deposition of Al thin films are presented and discussed. The experimental results, obtained by simply moving the laser spot position with respect to the rotation axis of the target, allow clarification of the unexpected symmetric double peaked angular droplet distribution on the films. These results provide direct evidence that a laser fluence threshold exists, beyond which droplets are generated from a melt displacement and ejection mechanism rather than from a phase explosion. The main directions of particulate ejection are related to the particular geometry of the laser generated tracks, whose profiles depend on the relative position of the incident beam with respect to the rotation axis of the target.

  17. Surface nanotexturing of tantalum by laser ablation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A

    2009-01-31

    Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less

  18. Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation

    NASA Astrophysics Data System (ADS)

    Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.

    2006-03-01

    Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.

  19. Process for laser machining and surface treatment

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2004-10-26

    An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.

  20. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  1. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    NASA Astrophysics Data System (ADS)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.

    2013-10-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  2. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources.

    PubMed

    Ruffolo, Silvestro A; Comite, Valeria; La Russa, Mauro F; Belfiore, Cristina M; Barca, Donatella; Bonazza, Alessandra; Crisci, Gino M; Pezzino, Antonino; Sabbioni, Cristina

    2015-01-01

    The Cathedral of Seville is one of the most important buildings in the whole of southern Spain. It suffers, like most of the historical buildings located in urban environments, from several degradation phenomena related to the high pollution level. Undoubtedly, the formation of black crusts plays a crucial role in the decay of the stone materials belonging to the church. Their formation occurs mainly on carbonate building materials, whose interaction with a sulfur oxide-enriched atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, forms the black crusts on the stone surface. To better understand the composition and the formation dynamics of this degradation product and to identify the pollutant sources and evaluate their impact on the stone material, an analytical study was carried out on the black crust samples collected from different areas of the building. For a complete characterization of the black crusts, several techniques were used, including laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy, micro infrared spectroscopy, optical and scanning electron microscopy. This battery of tests provided information about the nature and distribution of the mineralogical phases and the elements within the crusts and the crust-substrate interface, contributing to the identification of the major pollution sources responsible for the deterioration of the monument over time. In addition, the results revealed a relation among the height of sampling, the surface exposure and the concentration of heavy metals. Finally, information has been provided about the origin of the concentration gradients of some metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A cost-utility analysis for catheter ablation of atrial fibrillation in combination with warfarin and dabigatran based on the CHADS2 score in Japan.

    PubMed

    Kimura, Takehiro; Igarashi, Ataru; Ikeda, Shunya; Nakajima, Kazuaki; Kashimura, Shin; Kunitomi, Akira; Katsumata, Yoshinori; Nishiyama, Takahiko; Nishiyama, Nobuhiro; Fukumoto, Kotaro; Tanimoto, Yoko; Aizawa, Yoshiyasu; Fukuda, Keiichi; Takatsuki, Seiji

    2017-01-01

    We aimed to clarify the cost-effectiveness of an expensive combination therapy for atrial fibrillation (AF) using both catheter ablation and dabigatran compared with warfarin at each CHADS 2 score for patients in Japan. A Markov model was constructed to analyze costs and quality-adjusted life years associated with AF therapeutic options with a time horizon of 10 years. The target population was 60-year-old patients with paroxysmal AF. The indication for anticoagulation was determined according to the Japanese guideline. Anticoagulation-related data were derived from the RE-LY study and the AF recurrence rate was set at 2.7% per month during the first 12 months and at 0.40% per month afterwards. Stroke risk was determined according to AF recurrence, anticoagulation, and CHADS 2 score. The risks for stroke recurrence and stroke death were also considered. Costs were calculated from the healthcare payer's perspective, and only direct medical costs were included. Warfarin was the most preferred option for patients with a CHADS 2 score of 0 from a health economics aspect. Ablation under warfarin was preferred for a CHADS 2 score of 1-3, while ablation under dabigatran was preferred for a CHADS 2 score ≥4. The quality of life score for AF had the largest impact on the incremental cost-effectiveness ratios in the analysis between the anticoagulation arm and the anticoagulation+ablation arm for a CHADS 2 score of 2. Within the range of the Japanese willingness-to-pay threshold (¥5,000,000), the ablation+warfarin arm became the best option with its probability of 81.7% for a CHADS 2 score of 2; the dabigatran+ablation arm was the most preferred option with its probability of 56.1% for a CHADS 2 score of 4. Ablation under dabigatran therapy is an expensive therapeutic option, but it might benefit patients with a low quality of life and a high CHADS 2 score. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    PubMed Central

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-01-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs. PMID:26461978

  5. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates.

    PubMed

    Caldeira, Maria C; Lecomte, Xavier; David, Teresa S; Pinto, Joaquim G; Bugalho, Miguel N; Werner, Christiane

    2015-10-13

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  6. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    NASA Astrophysics Data System (ADS)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  7. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    NASA Astrophysics Data System (ADS)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.

  8. Determining the critical effective temperature and heat dispersal pattern in monopolar radiofrequency ablation using temperature-time integration

    PubMed Central

    TSENG, HOW; LIN, SEY-EN; CHANG, YEN-LIANG; CHEN, MING-HSU; HUNG, SHIH-HAN

    2016-01-01

    The radiofrequency ablation (RFA) lesion size is posited to be disproportionate to the total delivered energy, and temperature-time integration (TTI) may have a more critical effect on lesion size. The present study aimed to evaluate this hypothesis by determining the temperature threshold and temperature distribution over tissues during the RFA lesioning process. Using an ex vivo chicken tissue model and an in vivo rabbit model with RFA applied for 2 min under various target temperature settings, the resultant lesions were evaluated histologically using Masson's trichrome stain. The temperature distribution over the tissue during the RFA lesioning process was also determined using a VT02 Visual IR Thermometer. It was revealed that the thermal injury threshold for RFA in the chicken tissues was ~65°C, but that it ranged from 55–65°C in mammals. Using infra-red thermal imaging, the temperature gradient (from the center to the periphery) during the RFA lesioning process demonstrated a uniform heat diffusion pattern. This data supports the proposed hypothesis that TTI is a critical parameter in determining RFA lesion size and can be applied clinically using the following equation: [Target temperature − 55 (°C)] × time (sec) is proportional to RFA lesion size. PMID:26997990

  9. Spatial layout affects speed discrimination

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1997-01-01

    We address a surprising result in a previous study of speed discrimination with multiple moving gratings: discrimination thresholds decreased when the number of stimuli was increased, but remained unchanged when the area of a single stimulus was increased [Verghese & Stone (1995). Vision Research, 35, 2811-2823]. In this study, we manipulated the spatial- and phase relationship between multiple grating patches to determine their effect on speed discrimination thresholds. In a fusion experiment, we merged multiple stimulus patches, in stages, into a single patch. Thresholds increased as the patches were brought closer and their phase relationship was adjusted to be consistent with a single patch. Thresholds increased further still as these patches were fused into a single patch. In a fission experiment, we divided a single large patch into multiple patches by superimposing a cross with luminance equal to that of the background. Thresholds decreased as the large patch was divided into quadrants and decreased further as the quadrants were maximally separated. However, when the cross luminance was darker than the background, it was perceived as an occluder and thresholds, on average, were unchanged from that for the single large patch. A control experiment shows that the observed trend in discrimination thresholds is not due to the differences in perceived speed of the stimuli. These results suggest that the parsing of the visual image into entities affects the combination of speed information across space, and that each discrete entity effectively provides a single independent estimate of speed.

  10. Relationship between left atrium catheter contact force and pacing threshold.

    PubMed

    Barrio-López, Teresa; Ortiz, Mercedes; Castellanos, Eduardo; Lázaro, Carla; Salas, Jefferson; Madero, Sergio; Almendral, Jesús

    2017-08-01

    The purpose of this study is to analyze the relationship between contact force (CF) and pacing threshold in left atrium (LA). Six to ten LA sites were studied in 28 consecutive patients with atrial fibrillation undergoing pulmonary vein isolation. Median CF, bipolar and unipolar electrogram voltage, impedance, and bipolar and unipolar thresholds for consistent constant capture and for consistent intermittent capture were measured at each site. Pacing threshold measurements were performed at 188 LA sites. Both unipolar and bipolar pacing thresholds correlated significantly with median CF; however, unipolar pacing threshold correlated better (unipolar: Pearson R -0.45; p < 0.001; Spearman Rho -0.62; p < 0.001, bipolar: Pearson R -0.39; p < 0.001; Spearman Rho -0.52; p < 0.001). Consistent constant capture threshold had better correlation with median CF than consistent intermittent capture threshold for both unipolar and bipolar pacing (Pearson R -0.45; p < 0.001 and Spearman Rho -0.62; p < 0.001 vs. Pearson R -0.35; p < 0.001; Spearman Rho -0.52; p < 0.001). The best pacing threshold cutoff point to detect a good CF (>10 g) was 3.25 mA for unipolar pacing with 69% specificity and 73% sensitivity. Both increased to 80% specificity and 74% sensitivity for sites with normal bipolar voltage and a pacing threshold cutoff value of 2.85 mA. Pacing thresholds correlate with CF in human not previously ablated LA. Since the combination of a normal bipolar voltage and a unipolar pacing threshold <2.85 mA provide reasonable parameters of validity, pacing threshold could be of interest as a surrogate for CF in LA.

  11. Compact 1.5-GHz intra-burst repetition rate Yb-doped all-PM-fiber laser system for ablation-cooled material removal

    NASA Astrophysics Data System (ADS)

    Akcaalan, Onder; Kalaycioglu, Hamit; Ilday, F. Omer

    Although fs fiber laser systems are powerful technologies for material and tissue processing, limited ablation rates and high energy are drawbacks. Recently, we identified a new regime of laser-material interaction, ablation-cooled laser material removal, where the repetition rate has to be high enough so that the targeted spot size cannot cool down substantially by heat conduction which scales down ablation threshold by several orders of magnitude and reduces thermal effects to the bulk of the target. This opens the door to simplified laser systems for processing. In order to exploit this regime in tissue processing, a compact all-PM-fiber laser amplifier system with an intra-burst repetition rate of 1.5 GHz is developed on a 40 x 65 cm platform. The system is able to produce bursts ranging from 20-ns to 65-ns duration with 20 uJ to 80 uJ total energy, respectively, and pulses with up to 2 uJ individual energy and burst repetition rate ranging from 25 kHz to 200 kHz. The seed signal is generated by a home-built all-normal dispersion oscillator with 385 MHz repetition rate and converted to approximately 1.5 GHz by a multiplier. Amplified pulses are compressed to approximately 250-fs, the shortest pulse width for burst-mode fiber laser systems known to date.

  12. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue.

    PubMed

    Itah, Zeynep; Oral, Ozlem; Perk, Osman Yavuz; Sesen, Muhsincan; Demir, Ebru; Erbil, Secil; Dogan-Ekici, A Isin; Ekici, Sinan; Kosar, Ali; Gozuacik, Devrim

    2013-11-01

    Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.

  13. The holmium laser in urology.

    PubMed

    Wollin, T A; Denstedt, J D

    1998-02-01

    To review the physics related to the holmium laser, its laser-tissue interactions, and its application to the treatment of urological diseases. The holmium: YAG laser is a solid-state, pulsed laser that emits light at 2100 nm. It combines the qualities of the carbon dioxide and neodymium:YAG lasers providing both tissue cutting and coagulation in a single device. Since the holmium wavelength can be transmitted down optical fibers, it is especially suited for endoscopic surgery. The authors provide a review of the literature as it relates to the holmium laser and its application to urology. The holmium wavelength is strongly absorbed by water. Tissue ablation occurs superficially, providing for precise incision with a thermal injury zone ranging from 0.5 to 1.0 mm. This level of coagulation is sufficient for adequate hemostasis. The most common urologic applications of the holmium laser that have been reported include incision of urethral and ureteral strictures; ablation of superficial transitional cell carcinoma; bladder neck incision and prostate resection; and lithotripsy of urinary calculi. The holmium: YAG laser is a multi-purpose, multi-specialty surgical laser. It has been shown to be safe and effective for multiple soft tissue applications and stone fragmentation. Its utilization in urology is anticipated to increase with time as a result of these features.

  14. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  15. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  16. Growth factor independence-1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia

    PubMed Central

    Khandanpour, Cyrus; Phelan, James D.; Vassen, Lothar; Schütte, Judith; Chen, Riyan; Horman, Shane R.; Gaudreau, Marie-Claude; Krongold, Joseph; Zhu, Jinfang; Paul, William E.; Dührsen, Ulrich; Göttgens, Bertie; Grimes, H. Leighton; Möröy, Tarik

    2013-01-01

    Summary Most patients with acute lymphoblastic leukemia (ALL) fail current treatments highlighting the need for better therapies. Since oncogenic signaling activates a p53-dependent DNA-damage response and apoptosis, leukemic cells must devise appropriate countermeasures. We show here that growth factor independence 1 (Gfi1) can serve such a function, since Gfi1 ablation exacerbates p53 responses, and lowers the threshold for p53-induced cell death. Specifically, Gfi1 restricts p53 activity and expression of pro-apoptotic p53 targets such as Bax, Noxa (Pmaip1) and Puma (Bbc3). Subsequently, Gfi1 ablation cures mice from leukemia and limits the expansion of primary human T-ALL xenografts in mice. This suggests that targeting Gfi1 could improve the prognosis of patients with T-ALL or other lymphoid leukemias. PMID:23410974

  17. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    2018-01-01

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse energy and observe a near-perfect power law dependence. Simulations performed with the RALEF-2D radiation-hydrodynamic code are shown to be in good agreement with the power law above a specific threshold energy. The simulations highlight the importance of radiative losses which significantly modify the power of the pressure scaling. Having found a good agreement between the experiment and the simulations, we investigate the analytic origins of the obtained power law and conclude that none of the available analytic theories is directly applicable for explaining our power exponent.

  18. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    NASA Astrophysics Data System (ADS)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  19. Nervus terminalis innervation of the goldfish retina and behavioral visual sensitivity.

    PubMed

    Davis, R E; Kyle, A; Klinger, P D

    1988-08-31

    The possibility that axon terminals of the nervus terminalis in the goldfish retina regulate visual sensitivity was examined psychophysically. Fish were classically conditioned to respond in darkness to a diffuse red light conditioned stimulus. Bilateral ablation of the olfactory bulb and telencephalon had no significant effect on response threshold which was measured by a staircase method. Retinopetal nervus terminalis fibres thus appear to play no role in maintaining scotopic photosensitivity.

  20. Occupational exposure to respirable crystalline silica in the Iranian Mazandaran province industry workers.

    PubMed

    Mohammadyan, Mahmoud; Rokni, Mohammad; Yosefinejad, Razieh

    2013-01-01

    This study investigated occupational exposure to silica dust of 48 workers in stone cutting, glass making, ceramic, and sand blasting plants in the north of Iran. Samples were collected from the breathing zone using a personal sampling pump and a size-selective cyclone. Sample filters and blanks were analysed using infrared spectroscopy. The mean sampling period was 4.83 h. Mean exposure of workers to crystalline silica dust in glass making, ceramic, sand blasting, and stone cutting was 0.129 mg m-3, 0.169 mg m-3, 0.313 mg m-3 and 0.318 mg m-3, respectively. As exposure at each of the workplaces is three to 12 times higher than the current national and international thresholds, these workers run a greater risk of lung cancer and mortality. Our findings call for specific ventilation design and personal protection improvements in the four plants as well as stricter enforcement of the existing regulations by the authorities.

  1. Initial experience of a novel mapping system combined with remote magnetic navigation in the catheter ablation of atrial fibrillation.

    PubMed

    Lin, Changjian; Pehrson, Steen; Jacobsen, Peter Karl; Chen, Xu

    2017-12-01

    There have been advancements of sophisticated mapping systems used for ablation procedures over the last decade. Utilization of these novel mapping systems in combination with remote magnetic navigation (RMN) needs to be established. We investigated the new EnSite Precision mapping system (St. Jude Medical, Inc., St. Paul, MN, USA), which collects magnetic data for checking navigation field stability and is built on an open platform, allowing physicians to choose diagnostic and ablation catheters. We address its compatibility with RMN. To assess the clinical utility of a novel 3D mapping system (EnSite Precision mapping system) combined with RMN (Niobe ES, Stereotaxis, Inc., St. Louis, MO, USA) for atrial fibrillation (AF) ablation. In this prospective nonrandomized study, two groups of patients were treated in our center for drug refractory AF. Patients were consecutively enrolled in each group. Group A (n = 35, 14 persistent AF [PsAF]) was treated using the novel 3D mapping system combined with RMN. Group B (n = 38, 16 PsAF) was treated using Carto ® 3 (Biosense Webster, Inc., Diamond Bar, CA, USA) combined with RMN. In Group A, the left atrium (LA) was mapped with a circular magnetic catheter manually and was then replaced by a RMN ablation catheter. At the end of the procedures in Group A, the circular catheter was used for confirming field stability. In Group B, an ablation catheter was controlled by RMN to perform both LA mapping and ablation. All patients underwent pulmonary vein antrum isolation. Additional complex fractionated atrial electrograms (CFAEs) ablation was performed for PsAF. Procedural, ablation, and fluoroscopy times were recorded and complications were assessed. Electrophysiological end points were achieved in all patients. Using the novel mapping system, LA mapping time was fast (308 ± 60 seconds) with detailed anatomy points (178,831 ± 70,897) collected and magnetic points throughout LA. At the end of the procedures in Group A, the LA model was confirmed to be stable and its location was within the distance threshold (1 mm). Procedure time (117.9 ± 29.6 minutes vs. 119.2 ± 29.7 minutes, P = 0.89), fluoroscopy time (6.1 ± 2.4 minutes vs. 4.8 ± 2.2 minutes, P = 0.07), and ablation time (28.0 ± 12.9 minutes vs. 27.9 ± 15.8 minutes, P = 0.98) were similar in Group A versus Group B, respectively. No complications occurred in either group. LA mapped by the novel system is stable and reliable. Combined with RMN, it could be effectively used for AF ablation without impacting overall procedural times. © 2017 Wiley Periodicals, Inc.

  2. Polarization image segmentation of radiofrequency ablated porcine myocardial tissue

    PubMed Central

    Ahmad, Iftikhar; Gribble, Adam; Murtza, Iqbal; Ikram, Masroor; Pop, Mihaela; Vitkin, Alex

    2017-01-01

    Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA) lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy) zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02), sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08), specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17) and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10) for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification. PMID:28380013

  3. Comparison of plume dynamics for laser ablated metals: Al and Ti

    NASA Astrophysics Data System (ADS)

    Bauer, William; Perram, Glen P.; Haugan, Timothy

    2018-03-01

    Emissive plumes from pulsed laser ablation of bulk Ti and Al from KrF laser irradiation at laser fluence up to 3.5 J/cm2 and argon background pressures of 0-1 Torr have been observed using gated intensified charged-coupled device imagery. Mass loss for Ti increases from 0.1 to 0.8 μg/pulse as pulse energy increase from 174 to 282 mJ/pulse (35-170 photons/atom) and decreases by ˜30% as pressure increases from vacuum to 1 Torr. Early plume energies are described by the free expansion velocities of 1.57 ± 0.02 and of 1.81 ± 0.07 cm/μs for Ti and Al, respectively, and up to 90% of the incoming laser energy can be attributed to the Al shock front in the mid-field. The ablation thresholds of 90 ± 27 mJ (1.12 ± 0.34 J/cm2) for Ti and 126 ± 13 mJ (1.58 ± 0.16 J/cm2) for Al also represent 30%-70% of the incident laser energy. The decrease in mass loss at higher pressures is attributed to plasma shielding of the target surface.

  4. Gold Nanoparticles as a Photothermal Agent in Cancer Therapy: The Thermal Ablation Characteristic Length.

    PubMed

    Grosges, Thomas; Barchiesi, Dominique

    2018-05-31

    In cancer therapy, the thermal ablation of diseased cells by embedded nanoparticles is one of the known therapies. It is based on the absorption of the energy of the illuminating laser by nanoparticles. The resulting heating of nanoparticles kills the cell where these photothermal agents are embedded. One of the main constraints of this therapy is preserving the surrounding healthy cells. Therefore, two parameters are of interest. The first one is the thermal ablation characteristic length, which corresponds to an action distance around the nanoparticles for which the temperature exceeds the ablation threshold. This critical geometric parameter is related to the expected conservation of the body temperature in the surroundings of the diseased cell. The second parameter is the temperature that should be reached to achieve active thermal agents. The temperature depends on the power of the illuminating laser, on the size of nanoparticles and on their physical properties. The purpose of this paper is to propose behavior laws under the constraints of both the body temperature at the boundary of the cell to preserve surrounding cells and an acceptable range of temperature in the target cell. The behavior laws are deduced from the finite element method, which is able to model aggregates of nanoparticles. We deduce sensitivities to the laser power and to the particle size. We show that the tuning of the temperature elevation and of the distance of action of a single nanoparticle is not significantly affected by variations of the particle size and of the laser power. Aggregates of nanoparticles are much more efficient, but represent a potential risk to the surrounding cells. Fortunately, by tuning the laser power, the thermal ablation characteristic length can be controlled.

  5. Safety and feasibility of leadless pacemaker in patients undergoing atrioventricular node ablation for atrial fibrillation.

    PubMed

    Yarlagadda, Bharath; Turagam, Mohit K; Dar, Tawseef; Jangam, Pragna; Veerapaneni, Vaishnavi; Atkins, Donita; Bommana, Sudharani; Friedman, Paul; Deshmukh, Abhishek J; Doshi, Rahul; Reddy, Vivek Y; Dukkipati, Srinivas R; Natale, Andrea; Lakkireddy, Dhanunjaya

    2018-03-01

    Atrioventricular node (AVN) ablation and permanent pacing is an established strategy for rate control in the management of symptomatic atrial fibrillation (AF). Leadless pacemakers (LPs) can overcome some of the short-term and long-term limitations of conventional transvenous pacemakers (CTPs). The purpose of this study was to compare the feasibility and safety of LP with those of single-chamber CTP in patients with AF undergoing AVN ablation. We conducted a multicenter observational study of patients undergoing AVN ablation and pacemaker implantation (LP vs single-chamber CTP) between February 2014 and November 2016. The primary efficacy end points were acceptable sensing (R wave ≥5.0 mV) and pacing thresholds (≤2.0 V at 0.4 ms) at follow-up. Safety end points included device-related major and minor (early ≤1 month, late >1 month) adverse events. A total of 127 patients with LP (n = 60) and CTP (n = 67) were studied. The median follow-up was 12 months (interquartile range 12-18 months). Ninety-five percent of the LP group and 97% of the CTP group met the primary efficacy end point at follow-up (57 of 60 vs 65 of 67; P = .66). There was 1 major adverse event (loss of pacing and sensing) in the LP group and 2 (lead dislodgement) in the CTP group (1 of 60 vs 2 of 67; P = 1.00). There were 6 minor adverse events (5 early and 1 late) in the LP group and 3 (early) in the CTP group (6 of 60 vs 3 of 67; P = .30). Our results demonstrate the feasibility and safety of LP compared with CTP in patients undergoing AVN ablation for AF. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. The importance of source area mapping for rockfall hazard analysis

    NASA Astrophysics Data System (ADS)

    Valagussa, Andrea; Frattini, Paolo; Crosta, Giovanni B.

    2013-04-01

    A problem in the characterization of the area affected by rockfall is the correct source areas definition. Different positions or different size of the source areas along a cliff result in different possibilities of propagation and diverse interaction with passive countermeasures present in the area. Through the use of Hy-Stone (Crosta et al., 2004), a code able to perform 3D numerical modeling of rockfall processes, different types of source areas were tested on a case study slope along the western flank of the Mt. de La Saxe (Courmayeur, AO), developing between 1200 and 2055 m s.l.m. The first set of source areas consists of unstable rock masses identified on the basis of field survey and Terrestrial Laser Scanning (IMAGEO, 2011). A second set of source areas has been identified by using different thresholds of slope gradient. We tested slope thresholds between 50° and 75° at 5° intervals. The third source area dataset has been generating by performing a kinematic stability analysis. For this analysis, we mapped the join sets along the rocky cliff by means of the software COLTOP 3D (Jaboyedoff, 2004), and then we identified the portions of rocky cliff where planar/wedge and toppling failures are possible assuming an average friction angle of 35°. Through the outputs of the Hy-Stone models we extracted and analyzed the kinetic energy, height of fly and velocity of the blocks falling along the rocky cliff in order to compare the controls of different source areas. We observed strong variations of kinetic energy and fly height among the different models, especially when using unstable masses identified through Terrestrial Laser Scanning. This is mainly related to the size of the blocks identified as susceptible to failure. On the contrary, the slope gradient thresholds does not have a strong impact on rockfall propagation. This contribution highlights the importance of a careful and appropriate mapping of rockfall source area for rockfall hazard analysis and the design of passive countermeasures.

  7. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver.

    PubMed

    Petrusca, Lorena; Viallon, Magalie; Breguet, Romain; Terraz, Sylvain; Manasseh, Gibran; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana; Gross, Patrick; Sekins, K Michael; Becker, Christoph D; Salomir, Rares

    2014-01-16

    Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. At the end of the procedure, no ultrasound indication of the marker's presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.

  8. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver

    PubMed Central

    2014-01-01

    Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique. PMID:24433332

  9. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 um

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Ragadio, Jerome N.; Akrivou, Maria; Featherstone, John D.; Murray, Michael W.; Dickenson, Kevin M.

    2001-04-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed transverse excited atmospheric pressure (TEA) laser systems optimally tuned to the highly absorbed 9.6 micrometers wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce an initial high energy spike at the beginning of the laser pulse of submicrosecond duration followed by a long tail of about 1 - 4 microsecond(s) . The pulse duration is well matched to the 1 - 2 microsecond(s) thermal relaxation time of the deposited laser energy at 9.6 micrometers and effectively heats the enamel to the temperatures required for surface modification at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk of pulpal necrosis from excessive heat accumulation is minimized. At higher fluences, the high peak power of the laser pulse rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By lengthening the laser pulse to reduce the energy distributed in the initial high energy spike, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  10. Dental hard tissue modification and removal using sealed TEA lasers operating at λ=9.6 and 10.6 μm

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Murray, Michael W.; Featherstone, John D. B.; Akrivou, Maria; Dickenson, Kevin M.; Duhn, Clifford W.; Ojeda, Orlando P.

    1999-05-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed TEA laser systems optimally tuned to the highly absorbed 9.6 μm wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce a laser pulse wit a 100-200 ns gain switched spike followed by a long tail of about 1-4 μs in duration. the pulse duration is well matched to the 1-2 μs thermal relaxation time of the deposited laser energy at 9.6 μm and effectively heats the enamel to temperatures required for surface modification for caries prevention at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk, of pulpal necrosis form excessive heat accumulation is minimized. At higher fluences the high peak power of the gain-switched spike rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By slightly stretching the pulse to reduce the energy distributed in the initial 100-200 ns of the laser pulse, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  11. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound.

    PubMed

    Moonen, Chrit T W

    2007-06-15

    Local temperature elevation may be used for tumor ablation, gene expression, drug activation, and gene and/or drug delivery. High-intensity focused ultrasound (HIFU) is the only clinically viable technology that can be used to achieve a local temperature increase deep inside the human body in a noninvasive way. Magnetic resonance imaging (MRI) guidance of the procedure allows in situ target definition and identification of nearby healthy tissue to be spared. In addition, MRI can be used to provide continuous temperature mapping during HIFU for spatial and temporal control of the heating procedure and prediction of the final lesion based on the received thermal dose. The primary purpose of the development of MRI-guided HIFU was to achieve safe noninvasive tissue ablation. The technique has been tested extensively in preclinical studies and is now accepted in the clinic for ablation of uterine fibroids. MRI-guided HIFU for ablation shows conceptual similarities with radiation therapy. However, thermal damage generally shows threshold-like behavior, with necrosis above the critical thermal dose and full recovery below. MRI-guided HIFU is being clinically evaluated in the cancer field. The technology also shows great promise for a variety of advanced therapeutic methods, such as gene therapy. MR-guided HIFU, together with the use of a temperature-sensitive promoter, provides local, physical, and spatio-temporal control of transgene expression. Specially designed contrast agents, together with the combined use of MRI and ultrasound, may be used for local gene and drug delivery.

  12. The ACUSITT ultrasonic ablator: the first steerable needle with an integrated interventional tool

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Rucker, D. Caleb; Prakash, Punit; Diederich, Chris J.; Croom, Jordon M.; Clarke, Clyde; Stolka, Philipp; Juang, Titania; Boctor, Emad M.; Webster, Robert J., III

    2010-03-01

    Steerability in percutaneous medical devices is highly desirable, enabling a needle or needle-like instrument to avoid sensitive structures (e.g. nerves or blood vessels), access obstructed anatomical targets, and compensate for the inevitable errors induced by registration accuracy thresholds and tissue deformation during insertion. Thus, mechanisms for needle steering have been of great interest in the engineering community in the past few years, and several have been proposed. While many interventional applications have been hypothesized for steerable needles (essentially anything deliverable via a regular needle), none have yet been demonstrated as far as the authors are aware. Instead, prior studies have focused on model validation, control, and accuracy assessment. In this paper, we present the first integrated steerable needle-interventional device. The ACUSITT integrates a multi-tube steerable Active Cannula (AC) with an Ultrasonic Interstitial Thermal Therapy ablator (USITT) to create a steerable percutaneous device that can deliver a spatially and temporally controllable (both mechanically and electronically) thermal dose profile. We present our initial experiments toward applying the ACUSITT to treat large liver tumors through a single entry point. This involves repositioning the ablator tip to several different locations, without withdrawing it from the liver capsule, under 3D Ultrasound image guidance. In our experiments, the ACUSITT was deployed to three positions, each 2cm apart in a conical pattern to demonstrate the feasibility of ablating large liver tumors 7cm in diameter without multiple parenchyma punctures.

  13. Targeted ablation of cardiac sympathetic neurons improves ventricular electrical remodelling in a canine model of chronic myocardial infarction.

    PubMed

    Xiong, Liang; Liu, Yu; Zhou, Mingmin; Wang, Guangji; Quan, Dajun; Shen, Caijie; Shuai, Wei; Kong, Bin; Huang, Congxin; Huang, He

    2018-05-31

    The purpose of this study was to evaluate the cardiac electrophysiologic effects of targeted ablation of cardiac sympathetic neurons (TACSN) in a canine model of chronic myocardial infarction (MI). Thirty-eight anaesthetized dogs were randomly assigned into the sham-operated, MI, and MI-TACSN groups, respectively. Myocardial infarction-targeted ablation of cardiac sympathetic neuron was induced by injecting cholera toxin B subunit-saporin compound in the left stellate ganglion (LSG). Five weeks after surgery, the cardiac function, heart rate variability (HRV), ventricular electrophysiological parameters, LSG function and neural activity, serum norepinephrine (NE), nerve growth factor (NGF), and brain natriuretic peptide (BNP) levels were measured. Cardiac sympathetic innervation was determined with immunofluorescence staining of growth associated protein-43 (GAP43) and tyrosine hydroxylase (TH). Compared with MI group, TACSN significantly improved HRV, attenuated LSG function and activity, prolonged corrected QT interval, decreased Tpeak-Tend interval, prolonged ventricular effective refractory period (ERP), and action potential duration (APD), decreased the slopes of APD restitution curves, suppressed the APD alternans, increased ventricular fibrillation threshold, and reduced serum NE, NGF, and BNP levels. Moreover, the densities of GAP43 and TH-positive nerve fibres in the infarcted border zone in the MI-TACSN group were lower than those in the MI group. Targeted ablation of cardiac sympathetic neuron attenuates sympathetic remodelling and improves ventricular electrical remodelling in the chronic phase of MI. These data suggest that TACSN may be a novel approach to treating ventricular arrhythmias.

  14. Impact of solidification dynamics on crystal properties of silicon molten by a nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Meyer, Fabian; Büchler, Andreas; Brand, Andreas A.; Dasa, Manoj K.; Nekarda, Jan F.; Preu, Ralf

    2018-03-01

    In this study, we use pump-probe microscopy to examine the melting and solidification dynamics of silicon during and after a UV laser pulse with a duration of 30 ns. Below the ablation threshold, we observe lateral melt front contraction velocities of up to 600 ms^{-1}. The peak velocities spatially coincide with a ring of lower crystallinity within the formerly molten area, as we show with spatially resolved Raman spectroscopy.

  15. Spectrally and angularly resolved measurements of three-halves harmonic emission from laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Kang, N.; Liu, H.; Lin, Z.; Lei, A.; Zhou, S.; Fang, Z.; An, H.; Li, K.; Fan, W.

    2017-10-01

    Spectra of three-halves harmonic emissions (3{ω }0/2) from laser-produced plasmas were measured at different angles, including both forward and backward sides, from the direction of incident laser beams. The 3{ω }0/2 emitted from carbon-hydrogen (CH) targets was observed to be larger than that from aluminum (Al) targets with the same incident laser intensity, which supports the argument that the two-plasmon decay (TPD) instability could be inhibited by using medium-Z ablator instead of CH ablator in direct-drive inertial confinement fusion. Besides, the measured 3{ω }0/2-incident intensity curves for both materials suggest relatively lower threshold of TPD than the calculated values. In experiments with thin Al targets, the angular distribution of the blue- and red-shifted peaks of 3{ω }0/2 spectra were obtained, which shows that the most intense blue- and red-shifted peaks may not be produced in paired plasmons, but the spectra produced by their ‘twin’ plasmons were not observed. Because 3{ω }0/2 may have been influenced by other physical processes during their propagation from their birth places to the detectors, the mismatches on emission angle, wavelength shift, and threshold may be qualitatively explained through the assumption that small-scale light filaments widely existed in the corona of laser-produced plasmas.

  16. Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Every, A. G., E-mail: arthur.every@wits.ac.za; Utegulov, Z. N., E-mail: zhutegulov@nu.edu.kz; Veres, I. A., E-mail: istvan.veres@recendt.at

    2015-03-31

    The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axiallymore » symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.« less

  17. Asbestos quantification in track ballast, a complex analytical problem

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2016-04-01

    Track ballast forms the trackbeb upon which railroad ties are laid. It is used to bear the load from the railroad ties, to facilitate water drainage, and also to keep down vegetation. It is typically made of angular crushed stone, with a grain size between 30 and 60 mm, with good mechanical properties (high compressive strength, freeze - thaw resistance, resistance to fragmentation). The most common rock types are represented by basalts, porphyries, orthogneisses, some carbonatic rocks and "green stones" (serpentinites, prasinites, amphibolites, metagabbros). Especially "green stones" may contain traces, and sometimes appreciable amounts of asbestiform minerals (chrysotile and/or fibrous amphiboles, generally tremolite - actinolite). In Italy, the chrysotile asbestos mine in Balangero (Turin) produced over 5 Mt railroad ballast (crushed serpentinites), which was used for the railways in northern and central Italy, from 1930 up to 1990. In addition to Balangero, several other serpentinite and prasinite quarries (e.g. Emilia Romagna) provided the railways ballast up to the year 2000. The legal threshold for asbestos content in track ballast is established in 1000 ppm: if the value is below this threshold, the material can be reused, otherwise it must be disposed of as hazardous waste, with very high costs. The quantitative asbestos determination in rocks is a very complex analytical issue: although techniques like TEM-SAED and micro-Raman are very effective in the identification of asbestos minerals, a quantitative determination on bulk materials is almost impossible or really expensive and time consuming. Another problem is represented by the discrimination of asbestiform minerals (e.g. chrysotile, asbestiform amphiboles) from the common acicular - pseudo-fibrous varieties (lamellar serpentine minerals, prismatic/acicular amphiboles). In this work, more than 200 samples from the main Italian rail yards were characterized by a combined use of XRD and a special SEM-EDS analytical procedure. The first step consists in the macroscopic petrographic description of the rock fragments, in order to identify and quantify the "green stones". The second step is represented by the "self-grinding" of the clasts (Los Angeles rattle test), and the powders (< 2 mm) are characterized by XRD (main rock-forming minerals) and quantitative SEM-EDS. Especially in serpentinic clasts with superficial slip-fibre chrysotile mineralizations, the "self-grinding" procedure allows to release a large part of the fibers. The third and last step consists in the total grinding of the bulk ballast sample ("self grinding" powders + remaining rock fragments), followed by quantitative SEM-EDS procedure. The most important aspects in the SEM-EDS procedure are represented by an accurate sample preparation (e.g. using ultrasound and a surfactant to avoid fiber agglomeration), as well as effective criteria for the distinction of asbestos fibers and non-asbestiform/pseudo-fibrous varieties (presence of fibril bundles, fibril diameter, splayed ends). The results show a great variability in the lithological composition of the ballast samples, and some critical issues in serpentinite-rich ballast, sometimes exceeding the legal threshold of 1000 ppm. On the other hand, the presence of metabasites (prasinites, amphibolites) is much less critical, because the presence of asbestiform amphiboles (especially tremolite - actinolite) is really rare.

  18. Feasibility study on a short-pulsed IR wavelength for effective calculus fragmentation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2015-05-01

    Laser-induced lithotripsy has been used for a minimally-invasive surgery to treat kidney-stone disease associated with urinary obstruction. A short-pulsed Tm:YAG laser (λ = 2.01 µm) was developed to improve fragmentation efficiency and was evaluated with a Ho:YAG laser (λ = 2.12 μm) as to its ablation feature and mass removal rate. Application of a train of sub-microsecond pulses with a lower energy at a frequency of 500 Hz created multiple events of cavitation that accompanied strong acoustic transients. During Tm:YAG irradiation, both high light absorption and secondary photomechanical impacts readily fragmented the calculus into small pieces (< 3 mm) and removed them 130 times faster than photothermal Ho:YAG lithotripsy. The proposed short-pulsed Tm:YAG approach may be an effective lithotripter for treating calculus disease.

  19. Fine-touch pressure thresholds in the adult penis.

    PubMed

    Sorrells, Morris L; Snyder, James L; Reiss, Mark D; Eden, Christopher; Milos, Marilyn F; Wilcox, Norma; Van Howe, Robert S

    2007-04-01

    To map the fine-touch pressure thresholds of the adult penis in circumcised and uncircumcised men, and to compare the two populations. Adult male volunteers with no history of penile pathology or diabetes were evaluated with a Semmes-Weinstein monofilament touch-test to map the fine-touch pressure thresholds of the penis. Circumcised and uncircumcised men were compared using mixed models for repeated data, controlling for age, type of underwear worn, time since last ejaculation, ethnicity, country of birth, and level of education. The glans of the uncircumcised men had significantly lower mean (sem) pressure thresholds than that of the circumcised men, at 0.161 (0.078) g (P = 0.040) when controlled for age, location of measurement, type of underwear worn, and ethnicity. There were significant differences in pressure thresholds by location on the penis (P < 0.001). The most sensitive location on the circumcised penis was the circumcision scar on the ventral surface. Five locations on the uncircumcised penis that are routinely removed at circumcision had lower pressure thresholds than the ventral scar of the circumcised penis. The glans of the circumcised penis is less sensitive to fine touch than the glans of the uncircumcised penis. The transitional region from the external to the internal prepuce is the most sensitive region of the uncircumcised penis and more sensitive than the most sensitive region of the circumcised penis. Circumcision ablates the most sensitive parts of the penis.

  20. Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system.

    PubMed

    Mangold, Stefanie; Thomas, Christoph; Fenchel, Michael; Vuust, Morten; Krauss, Bernhard; Ketelsen, Dominik; Tsiflikas, Ilias; Claussen, Claus D; Heuschmid, Martin

    2012-07-01

    To retrospectively determine which features of urinary calculi are associated with their detection after virtual elimination of contrast medium at dual-energy computed tomographic (CT) urography by using a novel tin filter. The institutional ethics committee approved this retrospective study, with waiver of informed consent. A total of 152 patients were examined with single-energy nonenhanced CT and dual-energy CT urography in the excretory phase (either 140 and 80 kV [n=44] or 140 and 100 kV [n=108], with tin filtration at 140 kV). The contrast medium in the renal pelvis and ureters was virtually removed from excretory phase images by using postprocessing software, resulting in virtual nonenhanced (VNE) images. The sensitivity regarding the detection of calculi on VNE images compared with true nonenhanced (TNE) images was determined, and interrater agreement was evaluated by using the Cohen k test. By using logistic regression, the influences of image noise, attenuation, and stone size, as well as attenuation of the contrast medium, on the stone detection rate were assessed. Threshold values with maximal sensitivity and specificity were calculated by means of receiver operating characteristic analyses. Eighty-seven stones were detected on TNE images; 46 calculi were identified on VNE images (sensitivity, 52.9%). Interrater agreement revealed a κ value of 0.95 with TNE images and 0.91 with VNE data. Size (long-axis diameter, P=.005; short-axis diameter, P=.041) and attenuation (P=.0005) of the calculi and image noise (P=.0031) were significantly associated with the detection rate on VNE images. As threshold values, size larger than 2.9 mm, maximum attenuation of the calculi greater than 387 HU, and image noise less than 20 HU were found. After virtual elimination of contrast medium, large (>2.9 mm) and high-attenuation (>387 HU) calculi can be detected with good reliability; smaller and lower attenuation calculi might be erased from images, especially with increased image noise. © RSNA, 2012.

  1. Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects

    NASA Astrophysics Data System (ADS)

    Pouli, Paraskevi; Oujja, Mohamed; Castillejo, Marta

    2012-02-01

    In the last twenty years lasers have acquired an important role in the study and the preservation of Cultural Heritage (CH) objects and Monuments, as they have effectively illuminated a number of complex diagnostic and restoration problems. Their unique properties have enabled their use in a wide range of conservation applications, since they ensure interventions with precise control, material selectivity and immediate feedback. Surface cleaning, based on laser ablation, is a delicate, critical and irreversible process, which, given the multitude of materials that may be present on a CH object and the often fragile or precarious condition of the original surfaces, is fraught with many potential complications. Therefore it is crucial to choose the best possible laser cleaning methodology for each individual case, which involves optimising the laser parameters according to material properties, as well as the thorough knowledge of the ablation mechanisms involved. In this context the systematic investigation and elucidation of potential damage or side effects occurring upon cleaning is essential, as it delineates the possibilities and limitations of laser ablation and allows the fine-tuning of the operating parameters for a successful cleaning intervention. This paper is an overview of studies investigating the mechanisms which are responsible for the laser-induced discoloration effects. Emphasis is given on the yellowing coloration observed on stonework upon infrared (IR) ablation of pollution encrustations, while the various theories introduced to approach the different physical and/or chemical processes and mechanisms responsible for such side effects are discussed. In this respect the different laser cleaning methodologies, which are based on the use of laser systems with different pulse durations and wavelength characteristics, introduced in order to rectify or prevent discoloration on stonework are presented. In parallel, the darkening phenomena which occur upon laser irradiation of painted surfaces are also considered. Studies on series of model paints performed in order to understand the sensitivity of pigments to laser irradiation are critically reviewed. In this respect the importance of the optimal wavelength and pulse-duration selection for a safe and controlled laser cleaning intervention is also addressed.

  2. Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial

    PubMed Central

    Saxena, Deepti; Spino, Michael; Tricta, Fernando; Connelly, John; Cracchiolo, Bernadette M.; Hanauske, Axel-Rainer; D’Alliessi Gandolfi, Darlene; Mathews, Michael B.; Karn, Jonathan; Holland, Bart; Park, Myung Hee; Pe’ery, Tsafi; Palumbo, Paul E.; Hanauske-Abel, Hartmut M.

    2016-01-01

    Antiretrovirals suppress HIV-1 production yet spare the sites of HIV-1 production, the HIV-1 DNA-harboring cells that evade immune detection and enable viral resistance on-drug and viral rebound off-drug. Therapeutic ablation of pathogenic cells markedly improves the outcome of many diseases. We extend this strategy to HIV-1 infection. Using drug-based lead discovery, we report the concentration threshold-dependent antiretroviral action of the medicinal chelator deferiprone and validate preclinical findings by a proof-of-concept double-blind trial. In isolate-infected primary cultures, supra-threshold concentrations during deferiprone monotherapy caused decline of HIV-1 RNA and HIV-1 DNA; did not allow viral breakthrough for up to 35 days on-drug, indicating resiliency against viral resistance; and prevented, for at least 87 days off-drug, viral rebound. Displaying a steep dose-effect curve, deferiprone produced infection-independent deficiency of hydroxylated hypusyl-eIF5A. However, unhydroxylated deoxyhypusyl-eIF5A accumulated particularly in HIV-infected cells; they preferentially underwent apoptotic DNA fragmentation. Since the threshold, ascertained at about 150 μM, is achievable in deferiprone-treated patients, we proceeded from cell culture directly to an exploratory trial. HIV-1 RNA was measured after 7 days on-drug and after 28 and 56 days off-drug. Subjects who attained supra-threshold concentrations in serum and completed the protocol of 17 oral doses, experienced a zidovudine-like decline of HIV-1 RNA on-drug that was maintained off-drug without statistically significant rebound for 8 weeks, over 670 times the drug’s half-life and thus clearance from circulation. The uniform deferiprone threshold is in agreement with mapping of, and crystallographic 3D-data on, the active site of deoxyhypusyl hydroxylase (DOHH), the eIF5A-hydroxylating enzyme. We propose that deficiency of hypusine-containing eIF5A impedes the translation of mRNAs encoding proline cluster (‘polyproline’)-containing proteins, exemplified by Gag/p24, and facilitated by the excess of deoxyhypusine-containing eIF5A, releases the innate apoptotic defense of HIV-infected cells from viral blockade, thus depleting the cellular reservoir of HIV-1 DNA that drives breakthrough and rebound. Trial Registration: ClinicalTrial.gov NCT02191657 PMID:27191165

  3. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-02

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  4. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    NASA Astrophysics Data System (ADS)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  5. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes.

    PubMed

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Carraro, Vinicio

    2007-05-01

    Temperature is the most important factor affecting growth at high altitudes. As trees use much of the allocated carbon gained from photosynthesis to produce branches and stems, information on the timing and dynamics of secondary wood growth is crucial to assessing temperature thresholds for xylogenesis. We have carried out histological analyses to determine cambial activity and xylem cell differentiation in conifers growing at the treeline on the eastern Alps in two sites during 2002-2004 with the aim of linking the growth process with temperature and, consequently, of defining thresholds for xylogenesis. Cambial activity occurred from May to July-August and cell differentiation from May-June to September-October. The earliest start of radial enlargement was observed in stone pine in mid-May, while Norway spruce was the last species to begin tracheid differentiation. The duration of wood formation varied from 90 to 137 days, depending on year and site, with no difference between species. Longer durations were observed in trees on the south-facing site because of the earlier onset and later ending of cell production and differentiation. The threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regressions. Xylogenesis was active when the mean daily air temperature was 5.6-8.5 degrees C and mean stem temperature was 7.2-9 degrees C. The similar thresholds among all trees suggested the existence of thermal limits in wood formation that correspond with temperatures of 6-8 degrees C that are supposed to limit growth at the treeline. Different soil temperature thresholds between sites indicated that soil temperature may not be the main factor limiting xylogenesis. This study represents the first attempt to define a threshold through comparative assessment of xylem growth and tissue temperatures in stem meristems at high altitudes.

  6. Dynamic response of laser ablative shock waves from coated and uncoated amorphous Boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Verma, Pankaj; Singh, Raja V.; Acrhem Collaboration; Hemrl Collaboration

    2015-06-01

    Nanoparticles (NP) improve the performance of solid rocket motors with increased burning rate and lower ignition threshold owing to their larger surface area. We present spatio-temporal evolution of laser ablative shock waves (LASWs) from compacted amorphous Boron (B) and Lithium Fluoride coated Boron (LiF-B) of 70-110nm sizes that were compacted to form pellets. Thickness of the LiF coating is 5.5 +/- 1 nm in LiF-B. Laser pulses from second harmonic of Nd:YAG laser (532 nm, 7 ns) are used to generate LASWs expanding in ambient air. The precise time of energy release from the pellets under extreme ablative pressures is studied using shadowgraphy with a temporal resolution of 1.5 ns. Different nature of the shock front (SF) following Sedov-Taylor theory, before and after detachment, indicated two specific time dependent stages of energy release. From the position of SF, velocity behind the SF, similar to that of exhaust velocity is measured. Specific impulse of 241 +/- 5 and 201 +/- 4 sec for LiF-B and B, respectively, at a delay of 0.8 μs from shock inducing laser pulse makes them potential candidates for laser based micro thruster applications. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  7. Explosive change in crater properties during high power nanosecond laser ablation of silicon

    NASA Astrophysics Data System (ADS)

    Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.

    2000-08-01

    Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.

  8. Assessment of Er:YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study.

    PubMed

    Al-Batayneh, Ola B; Seow, W Kim; Walsh, Laurence J

    2014-01-01

    Most studies of cavity preparation using Er:YAG lasers have employed permanent teeth. This study's purpose was to compare the cutting efficiency of an Er:YAG laser versus diamond burs in primary and permanent teeth in order to measure thermal effects on the pulp and evaluate lased surfaces using scanning electron microscopy (SEM). A total of 80 primary and permanent teeth were used. Crater depths and mass loss were measured after delivering laser pulses at varying energies onto sound or carious enamel or dentin using the Key-3 laser. Control samples were cut using diamond burs in an air turbine handpiece. Thermal changes were measured using miniature thermocouples placed into the pulp chamber. Lased surfaces were evaluated using SEM. Laser ablation crater-like defects were deeper in dentin than enamel at the same pulse energy. Greater ablation rates for dentin and enamel and significantly more efficient removal of carious tooth structure by laser was present in primary teeth. Temperature rises in the pulp did not exceed the 5.5 degrees Celsius threshold in any teeth during laser ablation. The Er:YAG laser is an efficient device for cavity preparations in primary teeth, with no unacceptable increases in temperature detected in this model.

  9. Focusing through the rib cage for MR-guided transcostal FUS

    NASA Astrophysics Data System (ADS)

    Gao, J.; Volovick, A.; Pekelny, Y.; Huang, ZH.; Cochran, S.; Melzer, A.

    2012-10-01

    The rib cage presents a significant obstacle in transcostal focused ultrasound surgery (FUS). This paper proposes a geometric solution, based on central projection from the focus to identify transducer elements affected by ribs shadowing which should be switched off. Its effectiveness in phantom experiments and simulations is reported, and ways are discussed to further reduce energy deposition on the ribs while enhancing heating at the focus. A tissue-mimicking phantom with phantom of ribs was sonicated using a 208-element 1.15 MHz bowl transducer and a 1000-element 550 kHz planar matrix transducer (both ExAblate, InSightec, Israel). The temperature evolution was monitored with real-time MRI thermometry (GE, USA). Numerical simulations were performed with FEA software (PZFlex, Weidlinger Associates, USA) to investigate different skin-focus and transducer-rib distances. The temperature rise near the ribs was reduced to 16°C and 4°C for the 1.15 MHz and 550 kHz transducers respectively. With the 1.15 MHz transducer, the focal temperature reached the ablation threshold. These measurements are in good agreement with simulations. The proposed method shows promising results for transcostal FUS. Residual temperature rise on the ribs can be further reduced by active cooling, allowing the higher energies essential for efficient ablation.

  10. Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064 nm: a multi-pulse model

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Cui, Xudong; Wang, Sha; Feng, Guoying; Deng, Guoliang; Hu, Ruifeng

    2017-10-01

    Paint removal by laser ablation is favoured among cleaning techniques due to its high efficiency. How to predict the optimal laser parameters without producing damage to substrate still remains challenging for accurate paint stripping. On the basis of ablation morphologies and combining experiments with numerical modelling, the underlying mechanisms and the optimal conditions for paint removal by laser ablation are thoroughly investigated. Our studies suggest that laser paint removal is dominated by the laser vaporization effect, thermal stress effect and laser plasma effect, in which thermal stress effect is the most favoured while laser plasma effect should be avoided during removal operations. Based on the thermodynamic equations, we numerically evaluated the spatial distribution of the temperature as well as thermal stress in the paint and substrate under the irradiation of laser pulse at 1064 nm. The obtained curves of the paint thickness vs. threshold fluences can provide the reference standard of laser parameter selection in view of the paint layer with different thickness. A multi-pulse model is proposed and validated under a constant laser fluence to perfectly remove a thicker paint layer. The investigations and the methods proposed here might give hints to the efficient operations on the paint removal and lowering the risk of substrate damages.

  11. Intraocular tissue ablation using an optical fibre to deliver the 5th harmonic of a Nd:YAG

    NASA Astrophysics Data System (ADS)

    Miller, Joseph; Yu, Xiaobo; Yu, Paula K.; Cringle, Stephen J.; Yu, Dao-Yi

    2009-02-01

    We report the evaluation of a system which delivers the 5th harmonic of an Nd:YAG (213nm) via optical fibre to ocular tissue sites. The 213nm beam is concentrated, using a hollow glass taper, prior to launch into 200 μm or 600 μm core diameter silica/silica optical fibre. The fibre tip was tapered to enhance the fluence delivered. An operating window of fluence values that could be delivered via 330 - 1100mm lengths of optical fibre was determined. The lower value of 0.2J/cm2 determined by the ablation threshold of the tissue and the upper value of 1.3J/cm2 by the launch, transmission and tip characteristics of the optical fibre. The fluence output decreased as a function of both transmitted pulse energy and number of pulses transmitted. Fresh retinal tissue was cleanly ablated with minimal damage to the surrounding tissue. Lesions were generated using 1, 3 and 10 pulses with fluences from 0.2 to 1.0J/cm2. The lesion depth demonstrated clear dose dependence. Lesions generated in ex vivo preparations of human trabecular meshwork in a fluid environment also demonstrated dose dependence, 50 pulses being sufficient to create a hole within the trabecular meshwork extending to Schlemm's canal. The dose dependence of the ablation depth combined with the ability of this technique to create a conduit through to Schlemm's canal demonstrates the potential of this technique for ophthalmological applications requiring precise and controlled intraocular tissue removal and has potential applications in the treatment and management of glaucoma.

  12. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  13. High-intensity focused ultrasound ablation of thyroid nodules: first human feasibility study.

    PubMed

    Esnault, Olivier; Franc, Brigitte; Ménégaux, Fabrice; Rouxel, Agnès; De Kerviler, Eric; Bourrier, Pierre; Lacoste, François; Chapelon, Jean-Yves; Leenhardt, Laurence

    2011-09-01

    Thyroid surgery is common, but complications may occur. High-intensity focused ultrasound (HIFU) is a minimally invasive alternative to surgery. We hypothesized that an optimized HIFU device could be safe and effective for ablating benign thyroid nodules without affecting neighboring structures. In this open, single-center feasibility study, 25 patients were treated with HIFU with real-time ultrasound imaging 2 weeks before a scheduled thyroidectomy for multinodular goiter. Thyroid ultrasonography imaging, thyroid function, were evaluated before and after treatment. Adverse events were carefully recorded. Each patient received HIFU for one thyroid nodule, solid or mixed, with mean diameter ≥8 mm, and no suspicion of malignancy. The HIFU device was progressively adjusted with stepwise testing. The energy level for ablation ranged from 35 to 94 J/pulse for different groups of patients. One pathologist examined all removed thyroids. Three patients discontinued treatment due to pain or skin microblister. Among the remaining 22 patients, 16 showed significant changes by ultrasound. Macroscopic and histological examinations showed that all lesions were confined to the targeted nodule without affecting neighboring structures. At pathological analysis, the extent of nodule destruction ranged from 2% to 80%. Five out of 22 patients had over 20% pathological lesions unmistakably attributed to HIFU. Seventeen cases had putative lesions including nonspecific necrosis, hemorrhage, nodule detachment, cavitations, and cysts. Among these 17 cases, 12 had both ultrasound changes and cavitation at histology that may be expected for an HIFU effect. In the last three patients ablated at the highest energy level, significant ultrasound changes and complete coagulative necrosis were observed in 80%, 78%, and 58% of the targeted area, respectively. There were no major complications of ablation. This study showed the potential efficacy of HIFU for human thyroid nodule ablation. Lesions were clearly visible by histology and ultrasound after high energy treatments, and safety and tolerability were good. We identified a power threshold for optimal necrosis of the target thyroid tissue. Further studies are ongoing to assess nodule changes at longer follow-up times.

  14. Novel oral applications of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wieger, V.; Wernisch, J.; Wintner, E.

    2007-02-01

    In the past decades, many efforts have been made to replace mechanical tools in oral applications by various laser systems. The reasons therefore are manifold: i) Friction causes high temperatures damaging adjacent tissue. ii) Smear layers and rough surfaces are produced. iii) Size and shape of traditional tools are often unsuitable for geometrically complicated incisions and for minimum invasive treatment. iv) Mechanical damage of the remaining tissue occurs. v) Online diagnosis for feedback is not available. Different laser systems in the µs and sub-&mrgs-pulse regime, among them Erbium lasers, have been tested in the hope to overcome the mentioned drawbacks and, to some extent, they represent the current state of the art with respect to commercial and hence practical application. In the present work the applicability of scanned ultrashort pulse lasers (USPLs) for biological hard tissue as well as dental restoration material removal was tested. It is shown that cavities with features superior to mechanically treated or Erbium laser ablated cavities can be generated if appropriate scan algorithms and optimum laser parameters are matched. Smooth cavity rims, no microcracks, melting or carbonisation and precise geometry are the advantages of scanned USLP ablation. For bone treatment better healing conditions are expected as the natural structure remains unaffected by the preparation procedure. The novelty of this work is represented by a comprehensive compilation of various experimental results intended to assess the performance of USPLs. In this context, various pulse durations in the picosecond and femtosecond regime were applied to dental and bone tissue as well as dental restoration materials which is considered to be indispensable for a complete assessment. Parameters like ablation rates describing the efficiency of the ablation process, and ablation thresholds were determined - some of them for the first time - and compared to the corresponding Erbium values. The morphology of the tissue surfaces remaining after laser preparation was investigated and the surface roughness was evaluateded. Selective ablation was stressed and the temperature impact induced by USPLs was analyzed. Due to the limited space only a selection of results can be presented.

  15. Femtosecond laser corneal surgery with in situ determination of the laser attenuation and ablation threshold by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Albert, Olivier; Mourou, Gérard A.; Savoldelli, Michèle; Dagonet, Françoise; Donate, David; Legeais, Jean-Marc

    2007-02-01

    Femtosecond lasers start to be routinely used in refractive eye surgery. Current research focuses on their application to glaucoma and cataract surgery as well as cornea transplant procedures. To avoid unwanted tissue damage during the surgical intervention it is of utmost importance to maintain a working energy just above the ablation threshold and maintain the laser energy at this working point independently of the local and global tissue properties. To quantify the attenuation of the laser power density in the tissue by absorption, scattering and modification of the point spread function we monitor the second harmonic radiation generated in the collagen matrix of the cornea when exposed to ultrashort laser pulses. We use a CPA system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ. The repetition rate is adjustable from single shot up to 10 kHz. The experiments are performed on human corneas provided by the French Eye bank. To capture the SHG radiation we use a photomultiplier tube connected to a lockin amplifier tuned to the laser repetition rate. The measured data indicates an exponential decay of the laser beam intensity in the volume of the sample and allows for the quantification of the attenuation coefficient and its correlation with the optical properties of the cornea. Complementary analyses were performed on the samples by ultrastructural histology.

  16. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  17. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  18. Transmural ultrasound imaging of thermal lesion and action potential changes in perfused canine cardiac wedge preparations by high intensity focused ultrasound ablation.

    PubMed

    Wu, Ziqi; Gudur, Madhu S R; Deng, Cheri X

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm(2)), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43 ± 1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96 ± 0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89 ± 0.01, n = 13) and change of APA (ROC AUC 0.79 ± 0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction.

  19. Transmural Ultrasound Imaging of Thermal Lesion and Action Potential Changes in Perfused Canine Cardiac Wedge Preparations by High Intensity Focused Ultrasound Ablation

    PubMed Central

    Wu, Ziqi; Gudur, Madhu S. R.; Deng, Cheri X.

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm2), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43±1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96±0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89±0.01, n = 13) and change of APA (ROC AUC 0.79±0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction. PMID:24349337

  20. Tetramethylammonium for in vivo marking of the cross-sectional area of the scala media in the guinea pig cochlea.

    PubMed

    Salt, A N; DeMott, J

    1992-01-01

    A physiologic technique was developed to measure endolymphatic cross-sectional area in vivo using tetramethylammonium (TMA) as a volume marker. The technique was evaluated in guinea pigs as an animal model. In the method, the cochlea was exposed surgically and TMA was injected into endolymph of the second turn at a constant rate by iontophoresis. The concentration of TMA was monitored during and after the injection using ion-selective electrodes. Cross-section estimates derived from the TMA concentration measurements were compared in normal animals and animals in which endolymphatic hydrops had been induced by ablation of the endolymphatic duct and sac 8 weeks earlier. The method demonstrated a mean increase in cross-sectional area of 258% in the hydropic group. Individually measured area values were compared with action potential threshold shifts and the magnitude of the endocochlear potential (EP). Hydropic animals typically showed an increase in threshold to 2 kHz stimuli and a decrease in EP. However, the degree of threshold shift or EP decrease did not correlate well with the degree of hydrops present.

  1. Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery

    PubMed Central

    Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Subramanian, Kaushik; Gabay, Ilan; Ben-Yakar, Adela; Tkaczyk, Tomasz

    2016-01-01

    A miniature laser ablation probe relying on an optical fiber to deliver light requires a high coupling efficiency objective with sufficient magnification in order to provide adequate power and field for surgery. A diffraction-limited optical design is presented that utilizes high refractive index zinc sulfide to meet specifications while reducing the miniature objective down to two lenses. The design has a hypercentric conjugate plane on the fiber side and is telecentric on the tissue end. Two versions of the objective were built on a diamond lathe—a traditional cylindrical design and a custom-tapered mount. Both received an antireflective coating. The objectives performed as designed in terms of observable resolution and field of view as measured by imaging a 1951 USAF resolution target. The slanted edge technique was used to find Strehl ratios of 0.75 and 0.78, respectively, indicating nearly diffraction-limited performance. Finally, preliminary ablation experiments indicated threshold fluence of gold film was comparable to similar reported probes. PMID:28579656

  2. Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery

    NASA Astrophysics Data System (ADS)

    Shadfan, Adam; Pawlowski, Michal; Wang, Ye; Subramanian, Kaushik; Gabay, Ilan; Ben-Yakar, Adela; Tkaczyk, Tomasz

    2016-02-01

    A miniature laser ablation probe relying on an optical fiber to deliver light requires a high coupling efficiency objective with sufficient magnification in order to provide adequate power and field for surgery. A diffraction-limited optical design is presented that utilizes high refractive index zinc sulfide to meet specifications while reducing the miniature objective down to two lenses. The design has a hypercentric conjugate plane on the fiber side and is telecentric on the tissue end. Two versions of the objective were built on a diamond lathe-a traditional cylindrical design and a custom-tapered mount. Both received an antireflective coating. The objectives performed as designed in terms of observable resolution and field of view as measured by imaging a 1951 USAF resolution target. The slanted edge technique was used to find Strehl ratios of 0.75 and 0.78, respectively, indicating nearly diffraction-limited performance. Finally, preliminary ablation experiments indicated threshold fluence of gold film was comparable to similar reported probes.

  3. The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging.

    PubMed

    Lo Vecchio, Silvia; Andersen, Hjalte Holm; Arendt-Nielsen, Lars

    2018-05-29

    Topically applied high-concentration capsaicin induces reversible dermo-epidermal denervation and depletion of capsaicin-sensitive nociceptors. This causes desensitization of distinct sensory modalities and is used to treat peripheral neuropathic pain and itch. For high-concentration capsaicin, the selectivity of loss of function and functional recovery rates of various afferent fibers subpopulations are unknown. This study used comprehensive quantitative sensory testing and vasomotor imaging to assess effectiveness, duration and sensory selectivity of high-concentration 8% capsaicin-ablation. Skin areas in 14 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 1 and 24 h and underwent comprehensive sensory and vasomotor testing at 1, 7 and 21 days postpatch removal. Tests consisted of thermal detection and pain thresholds, tactile and vibration detection thresholds, mechanical pain threshold and mechanical pain sensitivity as well as micro-vascular and itch reactivity to histamine provocations. The 24 h capsaicin drastically inhibited warmth detection (P < 0.001), heat pain (P < 0.001) as well as histamine-induced itch (P < 0.05) and neurogenic flare (P < 0.001), but had no impact on tactile sensitivity, cold detection and cold pain. A marginal decrease in mechanical pain sensitivity was observed (P < 0.05). Capsaicin for 1 h had limited and transient sensory effects only affecting warmth and heat sensations. Time-dependent functional recovery was almost complete 21 days after the 24 h capsaicin exposure, while recovery of neurogenic inflammatory responsiveness remained partial. The psychophysically assessed sensory deficiencies induced by the used 8% capsaicin-ablation correspond well with a predominant effect on TRPV1 + -cutaneous fibers. The method is easy to apply, well tolerated, and utilizable for studies on, e.g., interactions between skin barrier, inflammation and capsaicin-sensitive afferents.

  4. Micro-scale novel stable isotope fractionation during weathering disclosed by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Schuessler, J. A.; von Blanckenburg, F.

    2012-12-01

    The stable isotope fractionation of metals and metalloids during chemical weathering and alteration of rocks at low temperature is a topic receiving increasing scientific attention. For these systems, weathering of primary minerals leads to selective partitioning of isotopes between the secondary minerals formed from them, and the dissolved phase of soil or river water. While the isotopic signatures of these processes have been mapped-out at the catchment or the soil scale, the actual isotopic fractionation is occurring at the mineral scale. To identify the processes underlying such micro-scale fractionation, the development of micro-analytical tools allows to investigate mechanisms of isotope fractionation in-situ, in combination with textural information of weathering reactions. We have developed a second-generation UV femtosecond (fs) laser system at GFZ Potsdam. The advantage of UV-fs laser ablation is the reduction of laser-induced isotopic and elemental fractionation by avoiding 'thermal effects' during ablation, such that accurate isotope ratios can be measured by standard-sample-standard bracketing using laser ablation multicollector ICP-MS; where the matrix of the bracketing standard does not need to match that of the sample [1]. Our system consists of the latest generation femtosecond solid-state laser (Newport Spectra Physics Solstice), producing an ultra short pulse width of about 100 femtoseconds at a wavelength of 196 nm. The system is combined with a custom-build computer-controlled sample stage and allows fully automated isotope analyses through synchronised operation of the laser with the Neptune MC-ICP-MS. To assess precision and accuracy of our laser ablation method, we analysed various geological reference materials. We obtained δ30Si values of -0.31 ± 0.23 (2SD, n = 13) for basalt glass BHVO-2G, and -1.25 ± 0.21 (2SD, n = 27) for pure Si IRMM17 when bracketed against NBS-28 quartz. δ56Fe and δ26Mg values obtained from non-matrix matched standard-sample-bracketing laser ablation analyses on sulfides, oxides and silicates agree within 0.15 permil to measurements done by solution MC-ICP-MS after chromatographic matrix separation. With our laser ablation method all compartments of the weathering zone can be analysed with minimal sample preparation [2]. In a first application, we investigate Si isotope fractionation during deep (10 m) core stone weathering, where crystalline rock is altered, producing secondary clay minerals along 20 micrometer wide (biogenic?) alteration textures. While unweathered centers of plagioclase grains show a homogenous Si isotope composition of δ30Si = -0.20 ± 0.17 permil (2SD, n=12), the secondary weathering products found in fissures within and between plagioclase grains consistently show negative δ30Si values - as low as -1.13 permil. Comparison with isotope studies at the soil and catchment scale suggests that the isotopic weathering signatures found in dissolved and particulate Si in rivers can be traced to processes operating at the micro scale. [1] Horn & von Blanckenburg, Spectrochimica Acta B. 62, 2007 [2] Steinhoefel et al., Chem. Geol. 286, 2011

  5. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.

    PubMed

    Chan, K F; Vassar, G J; Pfefer, T J; Teichman, J M; Glickman, R D; Weintraub, S T; Welch, A J

    1999-01-01

    Evidence is presented that the fragmentation process of long-pulse Holmium:YAG (Ho:YAG) lithotripsy is governed by photothermal decomposition of the calculi rather than photomechanical or photoacoustical mechanisms as is widely thought. The clinical Ho:YAG laser lithotriptor (2.12 microm, 250 micros) operates in the free-running mode, producing pulse durations much longer than the time required for a sound wave to propagate beyond the optical penetration depth of this wavelength in water. Hence, it is unlikely that shock waves are produced during bubble formation. In addition, the vapor bubble induced by this laser is not spherical. Thus the magnitude of the pressure wave produced at cavitation collapse does not contribute significantly to lithotripsy. A fast-flash photography setup was used to capture the dynamics of urinary calculus fragmentation at various delay times following the onset of the Ho:YAG laser pulse. These images were concurrently correlated with pressure measurements obtained with a piezoelectric polyvinylidene-fluoride needle-hydrophone. Stone mass-loss measurements for ablation of urinary calculi (1) in air (dehydrated and hydrated) and in water, and (2) at pre-cooled and at room temperatures were compared. Chemical and composition analyses were performed on the ablation products of several types of Ho:YAG laser irradiated urinary calculi, including calcium oxalate monohydrate (COM), calcium hydrogen phosphate dihydrate (CHPD), magnesium ammonium phosphate hexahydrate (MAPH), cystine, and uric acid calculi. When the optical fiber was placed perpendicularly in contact with the surface of the target, fast-flash photography provided visual evidence that ablation occurred approximately 50 micros after the initiation of the Ho:YAG laser pulse (250-350 micros duration; 375-400 mJ per pulse), long before the collapse of the cavitation bubble. The measured peak acoustical pressure upon cavitation collapse was negligible (< 2 bars), indicating that photomechanical forces were not responsible for the observed fragmentation process. When the fiber was placed in parallel to the calculus surface, the pressure peaks occurring at the collapse of the cavitation were on the order of 20 bars, but no fragmentation occurred. Regardless of fiber orientation, no shock waves were recorded at the beginning of bubble formation. Ablation of COM calculi (a total of 150 J; 0.5 J per pulse at an 8-Hz repetition rate) revealed different Ho:YAG efficiencies for dehydrated calculus, hydrated calculus, and submerged calculus. COM and cystine calculi, pre-cooled at -80 degrees C and then placed in water, yielded lower mass-loss during ablation (20 J, 1.0 J per pulse) compared to the mass-loss of calculi at room temperature. Chemical analyses of the ablated calculi revealed products resulting from thermal decomposition. Calcium carbonate was found in samples composed of COM calculi; calcium pyrophosphate was found in CHPD samples; free sulfur and cysteine were discovered in samples composed of cystine samples; and cyanide was found in samples of uric acid calculi. These experimental results provide convincing evidence that long-pulse Ho:YAG laser lithotripsy causes chemical decomposition of urinary calculi as a consequence of a dominant photothermal mechanism. Copyright 1999 Wiley-Liss, Inc.

  6. A hydrodynamic mechanism of meteor ablation. The melt-spraying model

    NASA Astrophysics Data System (ADS)

    Girin, Oleksandr G.

    2017-10-01

    Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid composition, initial radius and velocity being given. The movies associated to Figs. 6 and 7 are available at http://www.aanda.org

  7. A very sensitive ion collection device for plasma-laser characterization.

    PubMed

    Cavallaro, S; Torrisi, L; Cutroneo, M; Amato, A; Sarta, F; Wen, L

    2012-06-01

    In this paper a very sensitive ion collection device, for diagnostic of laser ablated-target plasma, is described. It allows for reducing down to few microvolts the signal threshold at digital scope input. A standard ion collector is coupled to a transimpedance amplifier, specially designed, which increases data acquisition sensitivity by a gain ≈1100 and does not introduce any significant distortion of input signal. By time integration of current intensity, an amount of charge as small as 2.7 × 10(-2) pC can be detected for photopeak events.

  8. Histotripsy Methods in Mechanical Disintegration of Tissue: Toward Clinical Applications

    PubMed Central

    Khokhlova, VA; Fowlkes, JB; Roberts, WW; Schade, GR; Xu, Z; Khokhlova, TD; Hall, TL; Maxwell, AD; Wang, YN; Cain, CA

    2015-01-01

    Purpose In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently, there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Material and Methods Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapor cavity causes tissue disintegration. Results Recent pre-clinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumors, kidney stone fragmentation, enhancing antitumor immune response, and tissue decellularization for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Conclusions Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilize different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of noninvasive surgery. PMID:25707817

  9. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Shugaev, Maxim V.; Gnilitskyi, Iaroslav; Bulgakova, Nadezhda M.; Zhigilei, Leonid V.

    2017-11-01

    One of the remarkable capabilities of ultrashort polarized laser pulses is the generation of laser-induced periodic surface structures (LIPSS). The origin of this phenomenon is largely attributed to the interference of the incident laser wave and surface electromagnetic wave that creates a periodic absorption pattern. Although, commonly, LIPSS are produced by repetitive irradiation of the same area by multiple laser pulses in the regime of surface melting and resolidification, recent reports demonstrate the formation of LIPSS in the single-pulse irradiation regime at laser fluences well above the ablation threshold. In this paper, we report results of a large-scale molecular dynamics simulation aimed at providing insights into the mechanisms of single-pulse ablative LIPSS formation. The simulation performed for a Cr target reveals an interplay of material removal and redistribution in the course of spatially modulated ablation, leading to the transient formation of an elongated liquid wall extending up to ˜600 nm above the surface of the target at the locations of the minima of the laser energy deposition. The upper part of the liquid wall disintegrates into droplets while the base of the wall solidifies on the time scale of ˜2 ns, producing a ˜100 -nm-tall frozen surface feature extending above the level of the initial surface of the target. The properties of the surface region of the target are modified by the presence of high densities of dislocations and vacancies generated due to the rapid and highly nonequilibrium nature of the melting and resolidification processes. The insights into the LIPSS formation mechanisms may help in designing approaches for increasing the processing speed and improving the quality of the laser-patterned periodic surface structures.

  10. H.M. never again! An analysis of H.M.'s epilepsy and treatment.

    PubMed

    Mauguière, F; Corkin, S

    2015-03-01

    On August 25, 1953, the patient H.M., aged 27, underwent a bilateral surgical destruction of the inner aspect of his temporal lobes performed by William Beecher Scoville with the aim to control H.M.'s drug refractory epileptic seizures and alleviate their impact on his quality of life. Postoperatively, H.M. presented for 55 years a "striking and totally unexpected grave loss of recent memories". This paper reports what we know about H.M.'s epilepsy before and after surgery and puts forward arguments supporting the syndromic classification of his epilepsy. We attempted to elucidate what could have been the rationale, in 1953, of Scoville's decision to carry out a bilateral ablation of H.M.'s medial temporal lobe structures, and we examined whether there was any convincing argument published before 1953 suggesting that bilateral hippocampal ablation could result in a permanent and severe amnesia. Our a posteriori analysis of H.M.'s medical history suggested that he was most probably suffering from idiopathic generalized epilepsy with absences and generalized convulsive seizures worsened by high dosage phenytoin treatment, or less probably from cryptogenic frontal lobe epilepsy. Importantly, he did not have temporal lobe epilepsy. Scoville based his proposal of bilateral mesial temporal lobe ablation on his experience as a psychosurgeon and on the assumption that the threshold of generalized epileptic activity could be lowered by some kind of hippocampal dysfunction potentially epileptic in nature. Given the scanty information on the link between amnesia and medial temporal lobe lesions that was available in humans in 1953, one can understand why Scoville was so surprised by the "striking and totally unexpected" memory loss he observed in H.M. after the bilateral ablation of his mesial temporal lobe structures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Laser selective microablation of sensitized intracellular components within auditory receptor cells

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Evans, Burt N.; Santos-Sacchi, Joseph

    1995-05-01

    A laser system can be coupled to a light microscope for laser microbeam ablation and trapping of single cells in vitro. We have extended this technology by sensitization of target structures with vital dyes to provide selective ablation of specific subcellular components. Isolated auditory receptor cells (outer hair cells, OHCs) are known to elongate and contract in response to electrical, chemical and mechanical stimulation. Various intracellular structures are candidate components mediating motility of OHCs, but the exact mechanism(s) is currently unknown. In ongoing studies of OHC motility, we have used the microbeam for selective ablation of lateral wall components and of an axial cytoskeletal core that extends from the nucleus to the cell apex. Both the area beneath the subsurface cistemae of the lateral wall and the core are rich in mitochondria. OHCs isolated from guinea pig cochlea are suspended in L- 15 medium containing 2.0 (mu) M Rhodamine 123, a porphyrin with an affinity for mitochondria. A spark-pumped nitrogen laser pumping a dye cell (Coumarin 500) was aligned on the optical axis of a Nikon Optiphot-2 to produce a 3 ns, 0.5 - 10 micrometers spot (diameter above ablation threshold w/50X water immersion, N.A. 0.8), and energy at the target approximately equals 10 (mu) J/pulse. At short incubation times in Rh123 irradiation caused local blebbing or bulging of cytoplastic membrane and thus loss of the OHC's cylindrical shape. At longer Rh123 incubation times when the central axis of the cell was targeted we observed cytoplasmic clearing, immediate cell elongation (approximately equals 5%) and clumping of core material at nuclear and apical attachments. Experiments are underway to examine the significance of these preliminary observations.

  12. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.

    PubMed

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2016-05-10

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes.

  13. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2018-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3–3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~ 20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C–90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability = 0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10°C to 14.9±1.4 MPa at 90°C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes. PMID:28113706

  14. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  15. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  16. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) <1 MPa, with only a small increase (∼2-3 MPa) in the intrinsic threshold for tendon (E = 380 MPa). Additionally, results for all samples revealed only a small increase of ∼2-3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7 and 30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly affected by tissue stiffness or ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. The Systematic Classification of Gallbladder Stones

    PubMed Central

    Qiao, Tie; Ma, Rui-hong; Luo, Xiao-bing; Yang, Liu-qing; Luo, Zhen-liang; Zheng, Pei-ming

    2013-01-01

    Background To develop a method for systematic classification of gallbladder stones, analyze the clinical characteristics of each type of stone and provide a theoretical basis for the study of the formation mechanism of different types of gallbladder stones. Methodology A total of 807 consecutive patients with gallbladder stones were enrolled and their gallstones were studied. The material composition of gallbladder stones was analyzed using Fourier Transform Infrared spectroscopy and the distribution and microstructure of material components was observed with Scanning Electron Microscopy. The composition and distribution of elements were analyzed by an X-ray energy spectrometer. Gallbladder stones were classified accordingly, and then, gender, age, medical history and BMI of patients with each type of stone were analyzed. Principal Findings Gallbladder stones were classified into 8 types and more than ten subtypes, including cholesterol stones (297), pigment stones (217), calcium carbonate stones (139), phosphate stones (12), calcium stearate stones (9), protein stones (3), cystine stones (1) and mixed stones (129). Mixed stones were those stones with two or more than two kinds of material components and the content of each component was similar. A total of 11 subtypes of mixed stones were found in this study. Patients with cholesterol stones were mainly female between the ages of 30 and 50, with higher BMI and shorter medical history than patients with pigment stones (P<0.05), however, patients with pigment, calcium carbonate, phosphate stones were mainly male between the ages of 40 and 60. Conclusion The systematic classification of gallbladder stones indicates that different types of stones have different characteristics in terms of the microstructure, elemental composition and distribution, providing an important basis for the mechanistic study of gallbladder stones. PMID:24124459

  18. Clonorcis sinensis eggs are associated with calcium carbonate gallbladder stones.

    PubMed

    Qiao, Tie; Ma, Rui-hong; Luo, Zhen-liang; Yang, Liu-qing; Luo, Xiao-bing; Zheng, Pei-ming

    2014-10-01

    Calcium carbonate gallbladder stones were easily neglected because they were previously reported as a rare stone type in adults. The aim of this study was to investigate the relationship between calcium carbonate stones and Clonorchis sinensis infection. A total of 598 gallbladder stones were studied. The stone types were identified by FTIR spectroscopy. The C. sinensis eggs and DNA were detected by microscopic examination and real-time fluorescent PCR respectively. And then, some egg-positive stones were randomly selected for further SEM examination. Corresponding clinical characteristics of patients with different types of stones were also statistically analyzed. The detection rate of C. sinensis eggs in calcium carbonate stone, pigment stone, mixed stone and cholesterol stone types, as well as other stone types was 60%, 44%, 36%, 6% and 30%, respectively, which was highest in calcium carbonate stone yet lowest in cholesterol stone. A total of 182 stones were egg-positive, 67 (37%) of which were calcium carbonate stones. The C. sinensis eggs were found adherent to calcium carbonate crystals by both light microscopy and scanning electron microscopy. Patients with calcium carbonate stones were mainly male between the ages of 30 and 60, the CO2 combining power of patients with calcium carbonate stones were higher than those with cholesterol stones. Calcium carbonate gallbladder stones are not rare, the formation of which may be associated with C. sinensis infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    PubMed

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (<9 mm) trended towards prolate ellipsoids ('rugby-ball' shaped), stones of 9-15 mm towards oblate ellipsoids (disc shaped), and stones >15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.

  20. Characterization of fieldstone for a provenance study of local building stones and artifacts

    NASA Astrophysics Data System (ADS)

    Goossens, M.; De Kock, T.; Dewanckele, J.; Boone, M.; De Boever, W.; Brabant, L.; Louwye, S.; De Ceukelaire, M.; Vanhaecke, F.; Cnudde, V.

    2012-04-01

    Fieldstone is a Belgian silicified sandstone speckled with glauconite. The hardness varies with the degree of silicification and its colour, which is usually greenish, can differ from bluish gray to orange depending on the degree of oxidation of the glauconite. Although recently discovered in the clayey interlayers, fieldstone mainly appears in the sandy units of the Eocene in Western Flanders (Belgium). It occurs as lenses and banks parallel to the stratification. From Roman times onwards, these were locally intensely cultivated as local building stones. Furthermore archeological evidence points out fieldstone was used in prehistoric times to make various artifacts like scrapers and jacks. The purpose of our study is to characterize fieldstone from the different known geographical and stratigraphical localities. Ambiguous stratigraphical classifications of fieldstone outcrops in the past have complicated previous studies of fieldstone. Therefore, we aim to provide clarity over its stratigraphical occurrence and deliver additional information about its formation. The ultimate goal is to trace back the origin of the fieldstone used in buildings and for archeological artifacts to a distinct locality. For the characterization of the fieldstone different techniques were used. Thin sections were examined by petrographical microscopy in order to study grain size, porosity, mineralogy, degree of silicification and in some samples microfossil content like silicified foraminifers. Porosity was determined with volumetric analysis and high resolution X-ray computer tomography. Attention towards the dinoflagellate content was given. This can provide information about the age and depositional environment of the silicified sands. In addition, it can act as a distinct feature that is characteristic for one locality or stratigraphic layer. A selected amount of samples were chemically analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometer in order to check if this could provide a chemical fingerprint which can be used to distinguish fieldstone coming from different localities from each other. By combining all this information we aim at composing an outline to trace back the origin of the fieldstone used as building stone and for artifacts.

  1. Effects of substrate on the femtosecond laser-induced damage properties of gold films

    NASA Astrophysics Data System (ADS)

    Huang, Haopeng; Wang, Leilei; Kong, Fanyu; Xia, Zhilin; Jin, Yunxia; Xu, Jiao; Chen, Junming; Cui, Yun; Shao, Jianda

    2018-07-01

    In this work, gold films on two different types of substrates were fabricated by electron beam (e-beam) evaporation, and the femtosecond laser-induced damage properties were evaluated. The first sample was gold film deposited on fused silica, whereas the second was gold deposited on photoresist. 1-on-1 damage tests were implemented by an 800 ± 30 nm laser with pulse duration of 30 fs. Different damage thresholds and morphologies were obtained for the two samples. The damage threshold of the gold film on fused silica was 0.64 J/cm2, with the typical damage morphology of thermal ablation and melting; the damage threshold of the gold film on photoresist was 0.30 J/cm2, with the typical damage morphology of blisters or peeling off. In order to better understand the impact of the substrate on the properties of the whole sample, the normalized electric field intensity, temperature, and thermal stress distributions were calculated. The adhesion between the gold film and substrate were measured and the experimental results well agreed with the theoretical analysis. The results indicate that gold films deposited onto grating-structured fused silica will have more powerful laser damage resistance performance.

  2. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less

  3. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    DOE PAGES

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; ...

    2018-01-29

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less

  4. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  5. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.

    2018-01-01

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  6. New quantitative, in-situ characterization of weathering in geomaterials.

    NASA Astrophysics Data System (ADS)

    Scrivano, Simona; Gaggero, Laura; Gisbert Aguilar, Josep; Yus Gonzalez, Adrian

    2016-04-01

    The mineralogical and microtextural analyses of weathered rocks and mortars are the main diagnostic tools to address the materials exposed under different environmental conditions in order to enucleate and mitigate the decay factors. The characterization of weathering intensity is mostly descriptive and non-quantitative (ICOMOS Glossary, 2008); the Fitzner indexes in arenites (Fitzner et al., 2002) and more recently applied to marbles (Scrivano et al., 2013) provide an operator dependent method. The current diagnostic of decay (Drdàcky & Slìzkovà, 2014) based on a scotch tape tearing off the surface was improved by a specifically adapted pocket penetrometer, and a joint gravimetric + minero-chemical analysis under SEM of ablational decay products. The steps are the following: i) Preparation of stubs for SEM with adherent conductive carbon tape (surface area 1.3 cm2) ii) Weighing of stub + tape + its plastic envelope at 0.001 g precision iii) Connecting the stub to a pocket penetrometer iv) Non invasive sampling of the incoherent dust applying a constant pressure of 2 kgf for 1 minute, and then packing away the stub without loosing grains v) Weighing of stub + tape + weathering products + their plastic envelope at 0.001 g precision vi) Recast the weight of removed material vii) Addressing the weathering products to SEM - EDS. Our quantitative peeling test was applied on a 96m long cladded wall in the Staglieno Monumental Cemetery in Genoa. The wall shows weathering gradients due to a neighbouring interred stream and to different insulation. Slabs of ophicalcite marble were tested from three different areas (5 samples were collected to the E, 5 samples at the centre, 5 samples to the W). The results highlighted capillary rise up to 2 meters height and a more weathered central area. On the whole, our protocol allows a delicate, virtually not impacting and reproducible factual sampling. Moreover, if carried out on a statistically significant population, the decay intensity results are defined and categorized. Drdàcky M. & Slìzkovà Z., 2014. In situ peeling tests for assessing the cohesion and consolidation characteristics of historic plasters and render surfaces. Studies in conservation, vol 0. Fitzner B. & Heinrichs K., 2002. Damage diagnosis on stone monuments weathering forms, damage categories and damage indices. - In: Prikryl R. and Viles H.A. (eds.): Understanding and managing stone decay. - Proceedings Internat. Conf. "Stone weathering and atmospheric pollution network (SWAPNET)": 11-56, Charles Univ. Prague (Karolinum Press). ICOMOS.ISCS, 2008 Illustrated glossary on stone deterioration patterns, 78 pp. Scrivano S., Gaggero L. & Taddei A., 2013. Alteration patterns of marble under different environmental exposures: a systematic approach from the Staglieno Monumental cemetery and museum collections in Genoa (Italy). In: Proceedings of the 12th International Congress on Deterioration and Conservation of Stone, New York, 22-26 October 2012. In press.

  7. Treatment of the Infected Stone.

    PubMed

    Marien, Tracy; Miller, Nicole L

    2015-11-01

    Infected kidney stones refer to stones that form because of urinary tract infections with urease-producing bacteria, secondarily infected stones of any composition, or stones obstructing the urinary tract leading to pyelonephritis. The mainstay of treatment of infection stones is complete stone removal. Kidney stones that obstruct the urinary tract and cause obstructive pyelonephritis are also frequently referred to as infected stones. Obstructive pyelonephritis is a urologic emergency as it can result in sepsis and even death. Infection stones and obstructive stones causing pyelonephritis are different disease processes, and their workup and management are described separately. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Localized Synthesis of Silicon Nanocrystals in Silicon-rich SiO2 by CO2 Laser Annealing

    DTIC Science & Technology

    2007-05-01

    damage problem since the peak Plaser of 4.4 MW/cm2 on the sample surface is far beyond the ablation threshold. Gallas et al. [16] then observed that...577-580, 2004. [9] A. F. Maciente, V. R. Mastelaro, A. L. Martinez , A. C. Hernandes, and C. A. C. Carneiro, “Surface crystallization of β-BaB2O4...J. Appl. Phys., vol. 95, pp. 4060-4068, 2004. [16] B. Gallas , C.-C. Kao, S. Fisson, G. Vuye, J. Rivory, Y. Bernard, and C. Belouet, “Laser

  9. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  10. Imaging-based assessment of the mineral composition of urinary stones: an in vitro study of the combination of hounsfield unit measurement in noncontrast helical computerized tomography and the twinkling artifact in color Doppler ultrasound.

    PubMed

    Hassani, Hakim; Raynal, Gauthier; Spie, Romain; Daudon, Michel; Vallée, Jean-Noël

    2012-05-01

    We evaluated the value of combining noncontrast helical computerized tomography (NCHCT) and color Doppler ultrasound in the assessment of the composition of urinary stones. In vitro, we studied 120 stones of known composition, that separate into the five main types: 18 calcium oxalate monohydrate (COM) stones, 41 calcium oxalate dihydrate (COD) stones, 24 uric acid stones, 25 calcium phosphate stones and 12 cystine calculi. Stones were characterized in terms of their Hounsfield density (HU) in NCHCT and the presence of a twinkling artifact (TA) in color Doppler ultrasound. There were statistically significant HU differences between calcium and non-calcium stones (p < 0.001), calcium oxalate stones and calcium phosphate stones (p < 0.001) and uric acid stones and cystine calculi (p < 0.001) but not between COM and COD stones (p = 0.786). Hence, the HU was a predictive factor of the composition of all types of stones, other than for COM and COD stones within the calcium oxalate class (p > 0.05). We found that the TA does not enable differentiation between calcium and non-calcium stones (p > 0.999), calcium oxalate stones and calcium phosphate stones (p = 0.15), or uric acid stones and cystine calculi (p = 0.079). However, it did reveal a significant difference between COM and COD stones (p = 0.002). The absence of a TA is a predictive factor for the presence of COM stones (p = 0.008). Hence, the association of NCHCT and Doppler enables the accurate classification of the five types of stones in vitro. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  12. Microstructure formation on liquid metal surface under pulsed action

    NASA Astrophysics Data System (ADS)

    Genin, D. E.; Beloplotov, D. V.; Panchenko, A. N.; Tarasenko, V. F.

    2018-04-01

    Experimental study and theoretical analysis of growth of microstructures (microtowers) on liquid metals by fs laser pulses have been carried out. Theoretical analysis has been performed on the basis of the two-temperature model. Compared to ns laser pulses, in fs irradiation regimes the heat-affected zone is strongly localized resulting in much larger temperatures and temperature gradients. In the experimental irradiation regimes, the surface temperature of liquid metals studied may reach or even exceed a critical level that culminates in phase explosion or direct atomization of a metal surface layer. However, before explosive ablation starts, a stress wave with an amplitude up to several GPa is formed which demolishes oxide covering. Moreover, at high laser fluences laser-induced breakdown is developed in oxide layer covering the metal surface that leads to destruction/ablation of oxide without damaging metal underneath. An overall scenario of microstructure growth with fs laser pulses is similar to that obtained for ns irradiation regimes though the growth threshold is lower due to smaller heat-conduction losses. Also we managed to obtain microstructures formation by the action of spark discharge.

  13. Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.

    2017-02-01

    Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.

  14. Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation

    PubMed Central

    Fujioka, Masato; Tokano, Hisashi; Fujioka, Keiko Shiina; Okano, Hideyuki; Edge, Albert S.B.

    2011-01-01

    Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. PMID:21576819

  15. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain

    PubMed Central

    Cheng, Longzhen; Duan, Bo; Huang, Tianwen; Zhang, Yan; Chen, Yangyang; Britz, Olivier; Garcia-Campmany, Lidia; Ren, Xiangyu; Vong, Linh; Lowell, Bradford B.; Goulding, Martyn; Wang, Yun; Ma, Qiufu

    2017-01-01

    Mechanical hypersensitivity is a debilitating symptom associated with millions of chronic pain patients. It exists in distinct forms, including brush-evoked dynamic and filament-evoked punctate. Here we report that dynamic mechanical hypersensitivity induced by nerve injury or inflammation was compromised in mice with ablation of spinal VT3Lbx1 neurons defined by coexpression of VGLUT3Cre and Lbx1Flpo, as indicated by the loss of brush-evoked nocifensive responses and conditional place aversion. Electrophysiological recordings show that VT3Lbx1 neurons form morphine-resistant polysynaptic pathways relaying inputs from low-threshold Aβ mechanoreceptors to lamina I output neurons. Meanwhile, the subset of somatostatin (SOM) lineage neurons preserved in VT3Lbx1 neuron-ablated mice is largely sufficient to mediate von Frey filament-evoked punctate mechanical hypersensitivity, including both morphine-sensitive and morphine-resistant forms. Furthermore, acute silencing of VT3Lbx1 neurons attenuated pre-established dynamic mechanical hypersensitivity induced by nerve injury, suggesting these neurons as a potential cellular target for treating this form of neuropathic pain. PMID:28436981

  16. Laser processing of sapphire with picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Ashkenasi, D.; Rosenfeld, A.; Varel, H.; Wähmer, M.; Campbell, E. E. B.

    1997-11-01

    Laser processing of sapphire using a Ti:sapphire laser at 790 and 395 nm and pulse widths varying between 0.2 and 5 ps is reported. A clear improvement in quality is demonstrated for multi-shot processing with sub-ps laser pulses. For fluences between 3 and 12 J/cm 2 two ablation phases were observed, in agreement with previous work from Tam et al. using 30 ps, 266 nm laser pulses [A.C. Tam, J.L. Brand, D.C. Cheng, W. Zapka, Appl. Phys. Lett. 55 (20) (1994) 2045]. During the `gentle ablation' phase periodic wavelike structures, i.e. ripples, were observed on the Al 2O 3 surface, perpendicular to the laser polarisation and with a spacing almost equalling the laser wavelength, indicating metallic-like behaviour. The ripple modulation depth was in the order of a few tens of nm. For fluences between 1 and 2.5 J/cm 2, below the single-shot surface damage threshold and at a pulse width above 200 fs, microstructures could be produced at the rear side of a 1 mm thick sapphire substrate without affecting the front surface.

  17. High-Frequency Ultrasound M-mode Imaging for Identifying Lesion and Bubble Activity during High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-01-01

    Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600 – 6100 W/cm2) was applied to ex-vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radiofrequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during, and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, as compared to macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies. PMID:22341055

  18. Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers

    NASA Astrophysics Data System (ADS)

    Petrović, Suzana; Peruško, D.; Kovač, J.; Panjan, P.; Mitrić, M.; Pjević, D.; Kovačević, A.; Jelenković, B.

    2017-09-01

    Formation of periodic nanostructures on the Ti/5x(Al/Ti)/Si multilayers induced by picosecond laser pulses is studied in order to better understand the formation of a laser-induced periodic surface structure (LIPSS). At fluence slightly below the ablation threshold, the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization is observed on the irradiated area. Prolonged irradiation while scanning results in the formation of a high spatial frequency-LIPSS (HSFL), on top of the LSFLs, creating a co-existence parallel periodic structure. HSFL was oriented parallel to the incident laser polarization. Intermixing between the Al and Ti layers with the formation of Al-Ti intermetallic compounds was achieved during the irradiation. The intermetallic region was formed mostly within the heat affected zone of the sample. Surface segregation of aluminium with partial ablation of the top layer of titanium was followed by the formation of an ultra-thin Al2O3 film on the surface of the multi-layered structure.

  19. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.

    2015-07-15

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  20. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Woo, K. M.; Nora, R.

    2015-07-02

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  1. Meteor research program

    NASA Technical Reports Server (NTRS)

    Southworth, R. B.; Mccrosky, R. E.

    1970-01-01

    An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned.

  2. Biomedical device prototype based on small scale hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  3. Determination of meteor parameters using laboratory simulation techniques

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Becker, D. G.

    1973-01-01

    Atmospheric entry of meteoritic bodies is conveniently and accurately simulated in the laboratory by techniques which employ the charging and electrostatic acceleration of macroscopic solid particles. Velocities from below 10 to above 50 km/s are achieved for particle materials which are elemental meteoroid constituents or mineral compounds with characteristics similar to those of meteoritic stone. The velocity, mass, and kinetic energy of each particle are measured nondestructively, after which the particle enters a target gas region. Because of the small particle size, free molecule flow is obtained. At typical operating pressures (0.1 to 0.5 torr), complete particle ablation occurs over distances of 25 to 50 cm; the spatial extent of the atmospheric interaction phenomena is correspondingly small. Procedures have been developed for measuring the spectrum of light from luminous trails and the values of fundamental quantities defined in meteor theory. It is shown that laboratory values for iron are in excellent agreement with those for 9 to 11 km/s artificial meteors produced by rocket injection of iron bodies into the atmosphere.

  4. Removal of graffiti paintings from the Mansion de Mattis site in Corato (Bari), Italy: Laser deveiling or complete cleaning?

    NASA Astrophysics Data System (ADS)

    Daurelio, G.; Andriani, E. S.; Albanese, A.; Catalano, I. M.; Teseo, G.; Marano, D.

    2008-10-01

    Nowadays one the main problem of stone monuments conservation is not only the natural environment deterioration but the defaced, in particular esthetic, due to graffiti. This paper presents the different stages of the cleaning graffiti research: the laboratory study phase, in which the aims were to investigate the laser cleaning effect on substrate and testing user-friendly and efficient solutions for in situ application; the application phase in which the study results were applied in the restoration of Palazzo de Mattis facade. The graffiti cleaning were carried out by using a Q-Switch Nd:YAG laser source (λ=1064 nm with pulse duration, t=8 ns, f=2 to 20 Hz, energy per impulse up to 280 mJ) in dry, wet and Very wet modes adopting the Daurelio technique n.1 (blade spot laser). The Q-Switch Nd:Yag laser source has demonstrated to be the most suitable for a fully or, according to new restoring theory, "de veiling" graffiti ablation.

  5. Thulium fiber laser damage to the ureter

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-07-01

    Our laboratory is studying experimental thulium fiber laser (TFL) as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to ureter tissue have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 150-500 Hz was delivered through a 100-μm-core, low-OH, silica optical fiber to the porcine ureter wall, in vitro. Ureter perforation times were measured and gross, histological, and optical coherence tomography images of the ablation zone were acquired. TFL operation at 150, 300, and 500 Hz produced mean ureter perforation times of 7.9, 3.8, and 1.8 s, respectively. Collateral damage averaged 510, 370, and 310 μm. TFL mean perforation time exceeded 1 s at each setting, which is a greater safety margin than previously reported during Holmium laser ureter perforation studies.

  6. Bladder stones after bladder augmentation are not what they seem.

    PubMed

    Szymanski, Konrad M; Misseri, Rosalia; Whittam, Benjamin; Lingeman, James E; Amstutz, Sable; Ring, Joshua D; Kaefer, Martin; Rink, Richard C; Cain, Mark P

    2016-04-01

    Bladder and renal calculi after bladder augmentation are thought to be primarily infectious, yet few studies have reported stone composition. The primary aim was to assess bladder stone composition after augmentation, and renal stone composition in those with subsequent nephrolithiasis. The exploratory secondary aim was to screen for possible risk factors for developing infectious stones. Patients treated for bladder stones after bladder augmentation at the present institution between 1981 and 2012 were retrospectively reviewed. Data were collected on demographics, surgeries and stone composition. Patients without stone analysis were excluded. Stones containing struvite, carbonate apatite or ammonium acid ureate were classified as infectious. The following variables were analyzed for a possible association with infectious bladder stone composition: gender, history of cloacal exstrophy, ambulatory status, nephrolithiasis, recurrent urea-splitting urinary tract infections, first vs recurrent stones, timing of presentation with a calculus, history of bladder neck procedures, catheterizable channel and vesicoureteral reflux. Fisher's exact test was used for analysis. Of the 107 patients with bladder stones after bladder augmentation, 85 met inclusion criteria. Median age at augmentation was 8.0 years (follow-up 10.8 years). Forty-four patients (51.8%) recurred (14 multiple recurrences, 143 bladder stones). Renal calculi developed in 19 (22.4%) patients with a bladder stone, and 10 (52.6%) recurred (30 renal stones). Overall, 30.8% of bladder stones were non-infectious (Table). Among patients recurring after an infectious bladder stone, 30.4% recurred with a non-infectious one. Among patients recurring after a non-infectious stone, 84.6% recurred with a non-infectious one (P = 0.005). Compared with bladder stones, renal stones were more likely to be non-infectious (60.0%, P = 0.003). Of patients with recurrent renal calculi after an infectious stone, 40.0% recurred with a non-infectious one. No clinical variables were significantly associated with infectious stone composition on univariate (≥0.28) or bivariate analysis (≥0.36). This study had several limitations: it was not possible to accurately assess adherence with bladder irrigations, and routine metabolic evaluations were not performed. The findings may not apply to patients in all clinical settings. While stone analysis was available for 3/4 of the stones, similar rates of incomplete stone analyses have been reported in other series. In patients with bladder augmentation, 1/3 of bladder stones and >1/2 of renal stones were non-infectious. Furthermore, an infectious stone does not imply an infectious recurrent stone and no known clinical variables appear to be associated with stone composition, suggesting that there is a possible metabolic component in stone formation after bladder augmentation. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  7. Renal stone composition does not affect the outcome of percutaneous nephrolithotomy in children.

    PubMed

    Kaygısız, Onur; Türegün, Fethi Ahmet; Satar, Nihat; Özen, Ender; Toksöz, Serdar; Doğan, Hasan Serkan; Pişkin, Mehmet Mesut; İzol, Volkan; Sarıkaya, Şaban; Kılıçarslan, Hakan; Çiçek, Tufan; Öztürk, Ahmet; Tekgül, Serdar; Önal, Bülent

    2018-05-14

    We sought to investigate the association between renal stone composition and percutaneous nephrolithotomy outcomes in pediatric patients and define the characterization of the stone composition. The data of 1157 children who underwent percutaneous nephrolithotomy between 1991 and 2012 were retrieved from the multicenter database of the Turkish Pediatric Urology Society. The study population comprised 359 children (160 girls, 199 boys) with stone analyses. Patients were divided into five groups according to the stone composition [group 1: calcium oxalate; group 2: calcium phosphate; group 3: infection stones (magnesium ammonium phosphate, ammonium urate); group 4: cystine; group 5: uric acid, xanthine stones]. Patient characteristics, perioperative, postoperative, and stone characteristics were compared considering the stone composition. There were no significant differences between the groups concerning age, sex, side involved, preoperative hematocrit levels, and solitary renal unit. Patients with cystine stones were more likely to have a history of stone treatment. Groups 2 and 5 had mostly solitary stones. However, group 3 had staghorn stone more often, and group 4 frequently had multiple stones. Overall stone-free rate (79.4%) was similar among the groups. Although stone composition was related to blood transfusion and prolonged operative and fluoroscopy screening times on univariate analysis, it was not a significant predictor of them on multivariate analysis. Stone composition was not a predictor of outcomes of pediatric percutaneous nephrolithotomy. However, cystine and infection stones, which are larger and filled multiple calyxes due to the nature of stone forming, were more challenging cases that need multiple tracts.

  8. Stone heterogeneity index on single-energy noncontrast computed tomography can be a positive predictor of urinary stone composition

    PubMed Central

    Lee, Jong Soo; Cho, Kang Su; Lee, Seung Hwan; Yoon, Young Eun; Kang, Dong Hyuk; Jeong, Won Sik; Jung, Hae Do; Kwon, Jong Kyou

    2018-01-01

    The aim of this study was to investigate the correlation between stone composition and single-energy noncontrast computed tomography (NCCT) parameters, including stone heterogeneity index (SHI) and mean stone density (MSD), in patients with urinary calculi. We retrospectively reviewed medical records of 255 patients who underwent operations or procedures for urinary stones or had spontaneous stone passage between December 2014 and October 2015. Among these, 214 patients with urinary calculi who underwent NCCT and stone composition analyses were included in the study. Maximal stone length (MSL), mean stone density (MSD), and stone heterogeneity index (SHI) were determined on pretreatment NCCT. The mean MSD (454.68±177.80 HU) and SHI (115.82±96.31 HU) of uric acid stones were lower than those of all other types. Based on post hoc tests, MSD was lower for uric acid stones than for the other types (vs. CaOx: P<0.001; vs. infection stones: P<0.001). SHI was lower for uric acid stones than for the other types (vs. CaOx: P<0.001; vs. infection stones: P<0.001) Receiver operating characteristic curves of uric acid stones for MSD and SHI demonstrated that SHI (cut-off value: 140.4 HU) was superior to MSD (cut-off value: 572.3 HU) in predicting uric acid stones (P<0.001). PMID:29649219

  9. MECHANISMS OF HUMAN KIDNEY STONE FORMATION

    PubMed Central

    Evan, Andrew P.; Worcester, Elaine M.; Coe, Fredric L.; Williams, James; Lingeman, James E.

    2014-01-01

    The precise mechanisms of kidney stone formation and growth are not completely known, even though human stone disease appears to be one of the oldest diseases known to medicine. With the advent of the new digital endoscope and detailed renal physiological studies performed on well phenotyped stone formers, substantial advances have been made in our knowledge of the pathogenesis of the most common type of stone former, the idiopathic calcium oxalate stone former (ICSF) as well as nine other stone forming groups. The observations from our group on human stone formers and those of others on model systems have suggested four entirely different pathways for kidney stone formation. Calcium oxalate stone growth over sites of Randall’s plaque appear to be the primary mode of stone formation for those patients with hypercalciuria. Overgrowths off the ends of Bellini duct plugs have been noted in most stone phenotypes, do they result in a clinical stone? Micro-lith formation does occur within the lumens of dilated inner medullary collecting ducts of cystinuric stone formers and appear to be confined to this space. Lastly, cystinuric stone formers also have numerous small, oval, smooth yellow appearing calyceal stones suggestive of formation in free solution. The scientific basis for each of these four modes of stone formation are reviewed and used to explore novel research opportunities. PMID:25108546

  10. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    PubMed Central

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  11. HIFU procedures at moderate intensities--effect of large blood vessels.

    PubMed

    Hariharan, P; Myers, M R; Banerjee, R K

    2007-06-21

    A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.

  12. HIFU procedures at moderate intensities—effect of large blood vessels

    NASA Astrophysics Data System (ADS)

    Hariharan, P.; Myers, M. R.; Banerjee, R. K.

    2007-07-01

    A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation and the bioheat equation in tissue. In the blood vessel the momentum and energy equations are satisfied. The model is first validated in a tissue phantom, to verify the absence of bubble formation and nonlinear effects. Temperature rise and lesion-volume calculations are then shown for different beam locations and orientations relative to a large vessel. Both single and multiple ablations are considered. Results show that when the vessel is located within about a beam width (few mm) of the ultrasound beam, significant reduction in lesion volume is observed due to blood flow. However, for gaps larger than a beam width, blood flow has no major effect on the lesion formation. Under the clinically representative conditions considered, the lesion volume is reduced about 40% (relative to the no-flow case) when the beam is parallel to the blood vessel, compared to about 20% for a perpendicular orientation. Procedures involving multiple ablation sites are affected less by blood flow than single ablations. The model also suggests that optimally focused transducers can generate lesions that are significantly larger (>2 times) than the ones produced by highly focused beams.

  13. Acute and chronic response of articular cartilage to Ho:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Trauner, Kenneth B.; Nishioka, Norman S.; Flotte, Thomas J.; Patel, Dinesh K.

    1992-06-01

    A Ho:YAG laser system operating at a wavelength of 2.1 microns has recently been introduced for use in arthroscopic surgery. The acceptability of this new tool will be determined not only by its ability to resect tissue, but also by its long term effects on articular surfaces. In order to investigate these issues further, we performed two studies to evaluate the acute and chronic effects of the laser on cartilaginous tissue. We evaluated the acute, in vitro effects of 2.1 micron laser irradiation on articular and fibrocartilage. This included the measurement of ablation efficiency, ablation threshold and thermal damage in both meniscus and articular cartilage. To document the chronic effects on articular cartilage in vivo, we next performed a ten week healing study. Eight sheep weighing 30 - 40 kg underwent bilateral arthrotomy procedures. Multiple full thickness and partial thickness defects were created. Animals were sacrificed at 0, 2, 4, and 10 weeks. The healing study demonstrated: (1) no healing of full or partial thickness defects at 10 weeks with hyaline cartilage; (2) fibrocartilaginous granulation tissue filling full thickness defects at two and four weeks, but no longer evident at ten weeks; (3) chondrocyte necrosis extending to greater than 900 microns distal to ablation craters at four weeks with no evidence of repair at later dates; and (4) chondrocyte hyperplasia at the borders of the damage zone at two weeks but no longer evident at later sacrifice dates.

  14. Short-pulse laser removal of organic coatings

    NASA Astrophysics Data System (ADS)

    Walters, Craig T.

    2000-08-01

    A major problem in the regular maintenance of aerospace systems is the removal of paint and other protective coatings from surfaces without polluting the atmosphere or endangering workers. Recent research has demonstrated that many organic coatings can be removed from surfaces efficiently using short laser pulses without the use of any chemical agents. The lasers employed in this study were repetitively-pulsed neodymium YAG devices operating at 1064 nm (15 - 30 ns, 10 - 20 Hz). The efficiency of removal can be cast in terms of an effective heat of ablation, Q* (kJ of laser energy incident per g of paint removed), although, for short pulses, the mechanism of removal is believed to be dominated more by thermo- mechanical or shock effects than by photo-ablation. Q* data were collected as a function of pulse fluence for several paint types. For many paint types, there was a fairly sharp threshold fluence per pulse near 1 J/cm2, above which Q* values dropped to levels which were a factor of four lower than those observed for long- pulse or continuous laser ablation of paint. In this regime, the coating is removed in fairly large particles or, in the case of one paint, the entire thickness of the coating was removed over the exposed area in one pulse. Hardware for implementing short-pulse laser paint stripping in the field is under development and will be highlighted in the presentation. Practical paint stripping rates achieved using the prototype hardware are presented for several paint types.

  15. Sub-15 femtosecond laser-induced nanostructures emerging on Si(100) surfaces immersed in water: analysis of structural phases

    NASA Astrophysics Data System (ADS)

    Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.

    2014-04-01

    Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.

  16. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.

    PubMed

    Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte

    2016-08-01

    The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  17. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    PubMed Central

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  18. The Effect of Stone Composition on the Efficacy of Retrograde Intrarenal Surgery: Kidney Stones 1 - 3 cm in Diameter.

    PubMed

    Xue, Yuquan; Zhang, Peng; Yang, Xiaojie; Chong, Tie

    2015-05-01

    The goal of this study was to analyze the effect of stone composition on the efficacy of retrograde intrarenal surgery (RIRS) with kidney stones of 1-3 cm, 1-2 cm, and 2-3 cm in diameter. We undertook a retrospective analysis of 74 patients with kidney stones who underwent RIRS. The patients were divided into two groups based on stone composition: Group I (n=47) (calcium oxalate monohydrate and calcium phosphate) was the hard to fragment stone group and group II (n=27) (calcium oxalate dihydrate, magnesium ammonium phosphate, and uric acid) was the easy to fragment stone group. Forty-six patients with kidney stones 1 to 2 cm in diameter were divided into group A (n=30) (smaller than 20 mm, hard to fragment stones) and group B (n=16) (smaller than 20 mm, easy to fragment stones). Twenty-eight patients with stones 2 to 3 cm in diameter were divided into group C (n=17) (larger than 20 mm, hard to fragment stones) and group D (n=11) (larger than 20 mm, easy-to-crush stones). The stone clearance rates of group I and group II were 66.0% and 88.9%, respectively (P<0.05). The stone clearance rates of group A and group B were 73.3% and 100% (P<0.05). The stone clearance rates of group C and group D were 52.9% and 72.7%, respectively. Stone composition has a significant impact on the efficacy of RIRS in the management of 1 to 3 cm kidney stones. For 2-3 cm calcium oxalate dihydrate stones, uric acid stones, and magnesium ammonium phosphate stones, the outcome of RIRS treatment was relatively good, and RIRS is recommended.

  19. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro.

    PubMed

    Zarse, Chad A; Hameed, Tariq A; Jackson, Molly E; Pishchalnikov, Yuri A; Lingeman, James E; McAteer, James A; Williams, James C

    2007-08-01

    Calcium oxalate monohydrate (COM) stones are often resistant to breakage using shock wave (SW) lithotripsy. It would be useful to identify by computed tomography (CT) those COM stones that are susceptible to SW's. For this study, 47 COM stones (4-10 mm in diameter) were scanned with micro CT to verify composition and also for assessment of heterogeneity (presence of pronounced lobulation, voids, or apatite inclusions) by blinded observers. Stones were then placed in water and scanned using 64-channel helical CT. As with micro CT, heterogeneity was assessed by blinded observers, using high-bone viewing windows. Then stones were broken in a lithotripter (Dornier Doli-50) over 2 mm mesh, and SW's counted. Results showed that classification of stones using micro CT was highly repeatable among observers (kappa = 0.81), and also predictive of stone fragility. Stones graded as homogeneous required 1,874 +/- 821 SW/g for comminution, while stones with visible structure required half as many SW/g, 912 +/- 678. Similarly, when stones were graded by appearance on helical CT, classification was repeatable (kappa = 0.40), and homogeneous stones required more SW's for comminution than did heterogeneous stones (1,702 +/- 993 SW/g, compared to 907 +/- 773). Stone fragility normalized to stone size did not correlate with Hounsfield units (P = 0.85). In conclusion, COM stones of homogeneous structure require almost twice as many SW's to comminute than stones of similar mineral composition that exhibit internal structural features that are visible by CT. This suggests that stone fragility in patients could be predicted using pre-treatment CT imaging. The findings also show that Hounsfield unit values of COM stones did not correlate with stone fragility. Thus, it is stone morphology, rather than X-ray attenuation, which correlates with fragility to SW's in this common stone type.

  20. A comparative study of mud-like and coralliform calcium carbonate gallbladder stones.

    PubMed

    Ma, Rui-Hong; Luo, Xiao-Bing; Wang, Xiao-Feng; Qiao, Tie; Huang, Hai-Yi; Zhong, Hai-Qiang

    2017-07-01

    To gain insight to underlying mechanism of the formation of calcium carbonate (CaCO 3 ) gallbladder stones, we did comparative study of stones with mud appearance and those with coralliform appearance. A total of 93 gallbladder stones with mud appearance and 50 stones with coralliform appearance were analyzed. The appearance, color, texture, and the detection of Clonorchis sinensis eggs by microscopic examination were compared between the two groups. Then, the material compositions of stones were analyzed using Fourier Transform Infrared spectroscopy and the spectrogram characteristics were compared. Moreover, microstructure characteristics of the two kinds of stones were observed and compared with Scanning Electron Microscopy. Mud-like gallbladder stones were mainly earthy yellow or brown with brittle or soft texture, while coralliform stones were mainly black with extremely hard texture, the differences between the two groups was significant (p < .05). The analytic results of FTIR spectroscopy showed that 95.7% (89/93) of the mud-like gallbladder stones were CaCO 3 stones, and mainly aragonite; while all of the coralliform stones were CaCO 3 stones, and mainly calcite (p < .05). Meanwhile, microscopic examination indicated that the detection rate of Clonorchis sinensis eggs in mud-like CaCO 3 stones was lower than that in coralliform CaCO 3 stones (p < .05), and that in aragonite CaCO 3 stones was lower than that in calcite CaCO 3 stones(p < .05). Mud-like CaCO 3 stones mainly happened to patients with cystic duct obstruction. Clonorchis sinensis infection was mainly associated with coralliform (calcite) CaCO 3 stones. Cystic duct obstruction was mainly associated with mud-like (aragonite) CaCO 3 stones. © 2017 Wiley Periodicals, Inc.

  1. Is There A Difference Between Presence of Single Stone And Multiple Stones in Flexible Ureterorenoscopy And Laser Lithotripsy For Renal Stone Burden < 300mm2 ?

    PubMed

    Ozgor, Faruk; Kucuktopcu, Onur; Ucpinar, Burak; Gurbuz, Zafer Gokhan; Sarilar, Omer; Berberoglu, Ahmet Yalcin; Baykal, Murat; Binbay, Murat

    2016-01-01

    In this study, we aim to evaluate and compare the effectiveness of flexible ureterorenoscopy (f-URS) for solitary and multiple renal stones with < 300 mm2 stone burden. Patients' charts who treated with f-URS for kidney stone between January 2010 and June 2015 were reviewed, retrospectively. Patients with solitary kidney stones (n:111) were enrolled in group 1. We selected 111 patients with multiple kidney stones to serve as the control group and the patients were matched at a 1:1 ratio with respect to the patient's age, gender, body mass index and stone burden. Additionally, patients with multiple stones were divided into two groups according to the presence or abscence of lower pole stones. Stone free status was accepted as complete stone clearence and presence of residual fragments < 2 mm. According to the study design; age, stone burden, body mass index were comparable between groups. The mean operation time was longer in group 2 (p= 0.229). However, the mean fluoroscopy screening time in group 1 and in group 2 was 2.1±1.7 and 2.6±1.5 min, respectively and significantly longer in patients with multiple renal stones (P=0.043). The stone-free status was significantly higher in patients with solitary renal stones after a single session procedure (p=0.02). After third month follow up, overall success rate was 92.7% in Group 1 and 86.4% in Group 2. Our study revealed that F-URS achieved better stone free status in solitary renal stones < 300 mm2. However, outcomes of F-URS were acceptable in patients with multiple stones. Copyright® by the International Brazilian Journal of Urology.

  2. Bacteria entombed in the center of cholesterol gallstones induce fewer infectious manifestations than bacteria in the matrix of pigment stones.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-10-01

    The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.

  3. The Guy's stone score--grading the complexity of percutaneous nephrolithotomy procedures.

    PubMed

    Thomas, Kay; Smith, Naomi C; Hegarty, Nicholas; Glass, Jonathan M

    2011-08-01

    To report the development and validation of a scoring system, the Guy's stone score, to grade the complexity of percutaneous nephrolithotomy (PCNL). Currently, no standardized method is available to predict the stone-free rate after PCNL. The Guy's stone score was developed through a combination of expert opinion, published data review, and iterative testing. It comprises 4 grades: grade I, solitary stone in mid/lower pole or solitary stone in the pelvis with simple anatomy; grade II, solitary stone in upper pole or multiple stones in a patient with simple anatomy or a solitary stone in a patient with abnormal anatomy; grade III, multiple stones in a patient with abnormal anatomy or stones in a caliceal diverticulum or partial staghorn calculus; grade IV, staghorn calculus or any stone in a patient with spina bifida or spinal injury. It was assessed for reproducibility using the kappa coefficient and validated on a prospective database of 100 PCNL procedures performed in a tertiary stone center. The complications were graded using the modified Clavien score. The clinical outcomes were recorded prospectively and assessed with multivariate analysis. The Guy's stone score was the only factor that significantly and independently predicted the stone-free rate (P = .01). It was found to be reproducible, with good inter-rater agreement (P = .81). None of the other factors tested, including stone burden, operating surgeon, patient weight, age, and comorbidity, correlated with the stone-free rate. The Guy's stone score accurately predicted the stone-free rate after PCNL. It was easy to use and reproducible. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Soft x-ray free-electron laser induced damage to inorganic scintillators

    DOE PAGES

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; ...

    2015-01-07

    An irreversible response of inorganic scintillators to intense soft x-ray laser radiation was investigated at the FLASH (Free-electron LASer in Hamburg) facility. Three ionic crystals, namely, Ce:YAG (cerium-doped yttrium aluminum garnet), PbWO4 (lead tungstate), and ZnO (zinc oxide), were exposed to single 4.6 nm ultra-short laser pulses of variable pulse energy (up to 12 μJ) under normal incidence conditions with tight focus. Damaged areas produced with various levels of pulse fluences, were analyzed on the surface of irradiated samples using differential interference contrast (DIC) and atomic force microscopy (AFM). The effective beam area of 22.2 ± 2.2 μm2 was determinedmore » by means of the ablation imprints method with the use of poly(methyl methacrylate) - PMMA. Applied to the three inorganic materials, this procedure gave almost the same values of an effective area. The single-shot damage threshold fluence was determined for each of these inorganic materials. The Ce:YAG sample seems to be the most radiation resistant under the given irradiation conditions, its damage threshold was determined to be as high as 660.8 ± 71.2 mJ/cm2. Contrary to that, the PbWO4 sample exhibited the lowest radiation resistance with a threshold fluence of 62.6 ± 11.9 mJ/cm2. The threshold for ZnO was found to be 167.8 ± 30.8 mJ/cm2. Both interaction and material characteristics responsible for the damage threshold difference are discussed in the article.« less

  5. Incidence of kidney stones in kidney transplant recipients: A systematic review and meta-analysis

    PubMed Central

    Cheungpasitporn, Wisit; Thongprayoon, Charat; Mao, Michael A; Kittanamongkolchai, Wonngarm; Jaffer Sathick, Insara J; Dhondup, Tsering; Erickson, Stephen B

    2016-01-01

    AIM To evaluate the incidence and characteristics of kidney stones in kidney transplant recipients. METHODS A literature search was performed using MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews from the inception of the databases through March 2016. Studies assessing the incidence of kidney stones in kidney transplant recipients were included. We applied a random-effects model to estimate the incidence of kidney stones. RESULTS Twenty one studies with 64416 kidney transplant patients were included in the analyses to assess the incidence of kidney stones after kidney transplantation. The estimated incidence of kidney stones was 1.0% (95%CI: 0.6%-1.4%). The mean duration to diagnosis of kidney stones after kidney transplantation was 28 ± 22 mo. The mean age of patients with kidney stones was 42 ± 7 years. Within reported studies, approximately 50% of kidney transplant recipients with kidney stones were males. 67% of kidney stones were calcium-based stones (30% mixed CaOx/CaP, 27%CaOx and 10%CaP), followed by struvite stones (20%) and uric acid stones (13%). CONCLUSION The estimated incidence of kidney stones in patients after kidney transplantation is 1.0%. Although calcium based stones are the most common kidney stones after transplantation, struvite stones (also known as “infection stones”) are not uncommon in kidney transplant recipients. These findings may impact the prevention and clinical management of kidney stones after kidney transplantation. PMID:28058231

  6. Flexible Ureterorenoscopy for Treatment of Kidney Stones: Establishment as Primary Standard Therapy in a Tertiary Stone Center.

    PubMed

    Ising, Stephan; Labenski, Heike; Baltes, Stefan; Khaffaf, Aso; Thomas, Christian; Wiesner, Christoph

    2015-01-01

    To analyze the primary stone free rate (pSFR) of flexible ureterorenoscopy (fURS) in the treatment of renal stones and to identify clinical predictors for the primary freedom from renal stones. Two hundred and seventy five patients, who underwent fURS for kidney stones were analyzed. Index stone size was 6 mm. The stone was located in the lower calyx in 48%. Ureteral access sheath was used in 97%. Operation time was 35 min and primary stone clearance was 83%. pSFR increased from 74% in 2012 to 83% in 2013 and 90% in 2014 (p = 0.001). Preoperative stenting, index stone size, cumulative stone size, lithotripsy, ureteral access sheath and operation time were significantly correlated with the pSFR by univariate analysis. Multivariate regression analysis showed index stone size, cumulative stone size, ureteral access sheath and operation time as independent parameters for pSFR. fURS for kidney stones is safe with a high pSFR. Clinical parameters for pSFR are stone size, use of ureteral access sheath and operation time. In future, the effective use of fURS for the removal of kidney stones needs to be checked by prospective randomized trials. © 2015 S. Karger AG, Basel.

  7. Pneumatic ureteroscopic lithotripsy: is it still a reasonable treatment option for multiple ureteric stones?

    PubMed

    Isen, Kenan

    2012-01-01

    To assess the efficacy and safety of ureteroscopic pneumatic lithotripsy for multiple ureteric stones. 36 patients with multiple ureteric stones were treated with ureteroscopic lithotripsy (URSL). A 8/9.8-Fr Wolf semirigid ureteroscope and pneumatic lithotripter were used for stone fragmentation. 87 stones were treated with URSL. Successful fragmentation was achieved in 77 (88.5%) of the stones. The retreatment rate was 11.5%. The stone-free rate (SFR) of lower ureteric stones (93.3%) and middle ureteric stones (87.5%) was significantly higher compared with upper (73.3%) ureteric stones (p < 0.05). For patients with stones less than 1 cm and greater than 1 cm, the SFR was 91.5 and 75.0%, respectively (p < 0.05). Perforation occurred in 1 patient, mucosal injury occurred in 5 and stone migration in 5. No long-term complication was observed in any patient. Ureteroscopic pneumatic lithotripsy is still a reasonable treatment option for multiple ureteric stones. The procedure has high success rates with minimal morbidity. However, success rate can be affected by stone size and ureteric location. Copyright © 2012 S. Karger AG, Basel.

  8. The use of chemical treatments for improved comminution of artificial stones.

    PubMed

    Heimbach, D; Kourambas, J; Zhong, P; Jacobs, J; Hesse, A; Mueller, S C; Delvecchio, F C; Cocks, F H; Preminger, G M

    2004-05-01

    The acoustic and mechanical properties of various stone compositions are significantly different and thus result in varying degrees of fragility. Consequently, results to shock wave lithotripsy (SWL) are influenced accordingly. We report the results of a study of fragility of various stone compositions, and the influence on each stone's baseline physical properties and fragility when exposed to various chemolytic solutions. Before SWL artificial stones of differing compositions were irrigated with various chemolytic solutions. Calcium oxalate monohydrate (COM) stones were treated with ethylenediaminetetraacetic acid (EDTA), stones composed of magnesium ammonium phosphate hydrogen were treated with hemiacidrin, and stones made of uric acid (UA) were treated with tromethamine. Synthetic urine served as a control for all stone groups. Using an ultrasound transmission technique, longitudinal wave propagation speed was measured in all groups of artificial stones. Stone density was also measured by using a pycnometer (based on Archimedes' principle). Based on these measurements transverse (shear) wave speed (assuming a constant Poisson's ratio), wave impedance and dynamic mechanical properties of the artificial stones were calculated. Moreover, the microhardness of these artificial stones was measured, and fragility testing using SWL with and without pretreatment with the previously mentioned chemolytic solutions, was performed. Wave speed, wave impedance, dynamic mechanical properties and microhardness of EDTA treated COM stones and tromethamine treated UA stones were found to decrease compared to untreated (synthetic urine) control groups. The suggestion that chemolytic pretreatment increases stone fragility was verified by the finding of increased stone comminution after SWL testing. Combining this medical pretreatment and SWL, the findings demonstrate a significant impact of various solvents on stone comminution, in particular EDTA treated COM stones, tromethamine treated UA stones and hemiacidrin treated magnesium ammonium phosphate hydrogen stones. These data suggest that by altering the chemical environment of the fluid surrounding the stones it is possible to increase the fragility of renal calculi in vitro. These results indicate that appropriate chemical treatments may provide a useful adjunctive modality for improving the efficacy of stone comminution during shock wave lithotripsy.

  9. Nonthermal ablation of deep brain targets: A simulation study on a large animal model

    PubMed Central

    Top, Can Barış; White, P. Jason; McDannold, Nathan J.

    2016-01-01

    Purpose: Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently limited to central brain targets because of heating and other beam effects caused by the presence of the skull. Recently, it was shown that it is possible to ablate tissues without depositing thermal energy by driving intravenously administered microbubbles to inertial cavitation using low-duty-cycle burst sonications. A recent study demonstrated that this ablation method could ablate tissue volumes near the skull base in nonhuman primates without thermally damaging the nearby bone. However, blood–brain disruption was observed in the prefocal region, and in some cases, this region contained small areas of tissue damage. The objective of this study was to analyze the experimental model with simulations and to interpret the cause of these effects. Methods: The authors simulated prior experiments where nonthermal ablation was performed in the brain in anesthetized rhesus macaques using a 220 kHz clinical prototype transcranial MRI-guided FUS system. Low-duty-cycle sonications were applied at deep brain targets with the ultrasound contrast agent Definity. For simulations, a 3D pseudospectral finite difference time domain tool was used. The effects of shear mode conversion, focal steering, skull aberrations, nonlinear propagation, and the presence of skull base on the pressure field were investigated using acoustic and elastic wave propagation models. Results: The simulation results were in agreement with the experimental findings in the prefocal region. In the postfocal region, however, side lobes were predicted by the simulations, but no effects were evident in the experiments. The main beam was not affected by the different simulated scenarios except for a shift of about 1 mm in peak position due to skull aberrations. However, the authors observed differences in the volume, amplitude, and distribution of the side lobes. In the experiments, a single element passive cavitation detector was used to measure the inertial cavitation threshold and to determine the pressure amplitude to use for ablation. Simulations of the detector’s acoustic field suggest that its maximum sensitivity was in the lower part of the main beam, which may have led to excessive exposure levels in the experiments that may have contributed to damage in the prefocal area. Conclusions: Overall, these results suggest that case-specific full wave simulations before the procedure can be useful to predict the focal and the prefocal side lobes and the extent of the resulting bioeffects produced by nonthermal ablation. Such simulations can also be used to optimally position passive cavitation detectors. The disagreement between the simulations and the experiments in the postfocal region may have been due to shielding of the ultrasound field due to microbubble activity in the focal region. Future efforts should include the effects of microbubble activity and vascularization on the pressure field. PMID:26843248

  10. Kidney stones during pregnancy: an investigation into stone composition.

    PubMed

    Ross, Ashley E; Handa, Shelly; Lingeman, James E; Matlaga, Brian R

    2008-05-01

    Kidney stones can be a source of considerable morbidity for pregnant women. Although there is a body of literature confirming that different stone compositions predominate for different age and sex cohorts, there have been no similar reports characterizing the nature of stone disease during pregnancy. We performed a multi-institutional study to define the composition of renal calculi diagnosed during pregnancy. We retrospectively reviewed the records from two stone referral centers of all patients diagnosed with a de novo kidney stone during pregnancy who underwent a procedure for the purpose of stone removal from June 2001 through September 2007. A total of 27 patients were identified, with a mean age of 26.8 years (range, 21-34). Twenty patients (74%) had no history of prior stone formation. Seven patients (26%) had previously formed stones, although none of these patients had a known kidney stone at the time they became pregnant. Stones were removed in the first, second, third trimester and immediately post-partum in 4, 52, 22, and 22% respectively. Stone removal was performed without complication in all cases. Analysis found that in 74% of all cases (20 patients) stones were composed predominantly of calcium phosphate (hydroxyapatite). In 26% of cases, (7 patients) the stones were composed predominantly of calcium oxalate. Of the seven patients with prior stone history, three patients had previously formed calcium phosphate stones and four patients had previously formed calcium oxalate stones. Calcium oxalate calculi are the most common stone in non-pregnant women of a comparable age as our subjects. However, our present data suggest that stones detected during pregnancy are most commonly composed of calcium phosphate (hydroxyapatite). Indeed, it is the minority of stones that are composed of calcium oxalate. Although the reason for this unusual preponderance of calcium phosphate calculi is unclear, physiologic alterations that occur during pregnancy may be influential.

  11. The influence of the energy density and other clinical parameters on bond strength of Er:YAG-conditioned dentin compared to conventional dentin adhesion.

    PubMed

    Gisler, Gottfried; Gutknecht, Norbert

    2014-01-01

    The aim of this in vitro study was to optimise clinical parameters and the energy density of Er:YAG laser-conditioned dentin for class V fillings. Shear tests in three test series were conducted with 24 freshly extracted human third molars as samples for each series. For every sample, two orofacial and two approximal dentin surfaces were prepared. The study design included different laser energies, a thin vs a thick bond layer, the influence of adhesives as well as one-time- vs two-time treatment. The best results with Er:YAG-conditioned dentin were obtained with fluences just above the ablation threshold (5.3 J/cm(2)) in combination with a self-etch adhesive, a thin bond layer and when bond and composite were two-time cured. Dentin conditioned this way reached an averaged bond strength of 23.32 MPa (SD 5.3) and 24.37 MPa (SD 6.06) for two independent test surfaces while showing no statistical significance to conventional dentin adhesion and two-time treatment with averaged bond strength of 24.93 MPa (SD 11.51). Significant reduction of bond strength with Er:YAG-conditioned dentin was obtained when using either a thick bond layer, twice the laser energy (fluence 10.6 J/cm(2)) or with no dentin adhesive. The discussion showed clearly that in altered (sclerotic) dentin, e.g. for class V fillings of elderly patients, bond strengths in conventional dentin adhesion are constantly reduced due to the change of the responsibles, bond giving dentin structures, whereas for Er:YAG-conditioned dentin, the only way to get an optimal microretentive bond pattern is a laser fluence just above the ablation threshold of sclerotic dentin.

  12. Hemorrhagic Complications of Percutaneous Cryoablation for Renal Tumors: Results from a 7-year Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakarala, Bharat, E-mail: bkakara1@jhmi.edu, E-mail: bharat.kakarala@gmail.com; Frangakis, Constantine E., E-mail: cfrangak@jhsph.edu; Rodriguez, Ron, E-mail: rodriguezr32@uthscsa.edu

    PurposeCryoablation of renal tumors is assumed to have a higher risk of hemorrhagic complications compared to other ablative modalities. Our purpose was to establish the exact risk and to identify hemorrhagic risk factors.Materials and MethodsThis IRB approved, 7-year prospective study included 261 renal cryoablations. Procedures were under conscious sedation and CT guidance. Pre- and postablation CT was obtained, and hemorrhagic complications were CTCAE tabulated. Age, gender, tumor size, histology, and probes number were tested based on averages or proportions using their exact permutation distribution. “High-risk” subgroups (those exceeding the thresholds of all variables) were tested for each variable alone, andmore » for all combinations of variable threshold values. We compared the subgroup with the best PPV using one variable, with the subgroup with the best PPV using all variables (McNemmar test).ResultsThe hemorrhagic complication rate was 3.5 %. Four patients required transfusions, two required emergent angiograms, one required both a transfusion and angiogram, and two required bladder irrigation for outlet obstruction. Perirenal space hemorrhage was more clinically significant than elsewhere. Univariate risks were tumor size >2 cm, number of probes >2, and malignant histology (P = 0.005, 0.002, and 0.033, respectively). Multivariate analysis showed that patients >55 years with malignant tumors >2 cm requiring 2 or more probes yielded the highest PPV (7.5 %).ConclusionsAlthough older patients (>55 years old) with larger (>2 cm), malignant tumors have an increased risk of hemorrhagic complications, the low PPV does not support the routine use of embolization. Percutaneous cryoablation has a 3.5 % risk of significant hemorrhage, similar to that reported for other types of renal ablative modalities.« less

  13. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation.

    PubMed

    Kolbach-Mandel, A M; Mandel, N S; Cohen, S R; Kleinman, J G; Ahmed, F; Mandel, I C; Wesson, J A

    2017-04-01

    Drug-related kidney stones are a diagnostic problem, since they contain a large matrix (protein) fraction and are frequently incorrectly identified as matrix stones. A urine proteomics study patient produced a guaifenesin stone during her participation, allowing us to both correctly diagnose her disease and identify proteins critical to this drug stone-forming process. The patient provided three random midday urine samples for proteomics studies; one of which contained stone-like sediment with two distinct fractions. These solids were characterized with optical microscopy and Fourier transform infrared spectroscopy. Immunoblotting and quantitative mass spectrometry were used to quantitatively identify the proteins in urine and stone matrix. Infrared spectroscopy showed that the sediment was 60 % protein and 40 % guaifenesin and its metabolite guaiacol. Of the 156 distinct proteins identified in the proteomic studies, 49 were identified in the two stone-components with approximately 50 % of those proteins also found in this patient's urine. Many proteins observed in this drug-related stone have also been reported in proteomic matrix studies of uric acid and calcium containing stones. More importantly, nine proteins were highly enriched and highly abundant in the stone matrix and 8 were reciprocally depleted in urine, suggesting a critical role for these proteins in guaifenesin stone formation. Accurate stone analysis is critical to proper diagnosis and treatment of kidney stones. Many matrix proteins were common to all stone types, but likely not related to disease mechanism. This protocol defined a small set of proteins that were likely critical to guaifenesin stone formation based on their high enrichment and high abundance in stone matrix, and it should be applied to all stone types.

  14. Evaluation of stone volume distribution in renal collecting system as a predictor of stone-free rate after percutaneous nephrolithotomy: a retrospective single-center study.

    PubMed

    Atalay, Hasan Anıl; Canat, Lutfi; Bayraktarlı, Recep; Alkan, Ilter; Can, Osman; Altunrende, Fatih

    2017-06-23

    We analyzed our stone-free rates of PNL with regard to stone burden and its ratio to the renal collecting system volume. Data of 164 patients who underwent PNL were analyzed retrospectively. Volume segmentation of renal collecting system and stones were done using 3D segmentation software with the images obtained from CT data. Analyzed stone volume (ASV) and renal collecting system volume (RCSV) were measured and the ASV-to-RCSV ratio was calculated after the creation of a 3D surface volume rendering of renal stones and the collecting system. Univariate and multivariate statistical analyses were performed to determine factors affecting stone-free rates; also we assessed the predictive accuracy of the ASV-to-RCSV ratio using the receiving operating curve (ROC) and AUC. The stone-free rate of PNL monotherapy was 53% (164 procedures).The ASV-to-RCSV ratio and calyx number with stones were the most influential predictors of stone-free status (OR 4.15, 95% CI 2.24-7.24, <0.001, OR 2.62, 95% CI 1.38-4.97, p < 0.001, respectively). Other factors associated with the stone-free rate were maximum stone size (p < 0.029), stone surface area (p < 0.010), and stone burden volume (p < 0.001). Predictive accuracy of the ASV-to-RCSV ratio was AUC 0.76. Stone burden volume distribution in the renal collecting system, which is calculated using the 3D volume segmentation method, is a significant determinant of the stone-free rate before PCNL surgery. It could be used as a single guide variable by the clinician before renal stone surgery to predict extra requirements for stone clearance.

  15. Cystine Stone Formers Have Impaired Health-Related Quality of Life Compared with Noncystine Stone Formers: A Case-Referent Study Piloting the Wisconsin Stone Quality of Life Questionnaire Among Patients with Cystine Stones.

    PubMed

    Streeper, Necole M; Wertheim, Margaret L; Nakada, Stephen Y; Penniston, Kristina L

    2017-04-01

    Cystinuria is a rare cause of urolithiasis. Affected patients have an earlier onset and more aggressive disease than patients with other stone etiologies. We assessed the health-related quality of life (HRQOL) of cystine stone-forming patients using the disease-specific Wisconsin Stone Quality of Life questionnaire (WISQOL). Cystine patients treated in our stone clinics (n = 12) completed the WISQOL; information about medical and stone histories was gathered. Patients were matched with noncystine stone formers (n = 12) for gender, age, and comorbidities. In addition, a second control group (n = 90), also from our institution and consisting of mixed calcium stone formers, was included. WISQOL responses were compared between groups. Cystine patients had significantly lower total WISQOL scores than noncystine patients. Compared with noncystine stone formers, cystine stone formers also had lower HRQOL scores for subscales (domains) related to social impact, emotional impact, disease impact, and vitality (p ≤ 0.04 for all). On specific items, cystine patients reported significantly more sleep problems (p = 0.02), more bother with nocturia (p = 0.03), and feeling tired or fatigued (p = 0.02). Among those with current stones, cystine patients scored lower than noncystine patients for total score and in two of four domains. Using a stone-specific questionnaire, patients with cystine stones have lower HRQOL compared with noncystine stone formers. Identifying and addressing specific areas of decrement in patients with cystine stones may improve disease management and patients' HRQOL.

  16. Definition and Facts for Kidney Stones in Adults

    MedlinePlus

    ... Eating, Diet, & Nutrition Clinical Trials Definition & Facts for Kidney Stones What are kidney stones? Kidney stones are hard, pebble-like pieces ... stone may get stuck along the way. Do kidney stones have another name? The scientific name for ...

  17. Spontaneous passage of ureteral stones in patients with indwelling ureteral stents.

    PubMed

    Baumgarten, Lee; Desai, Anuj; Shipman, Scott; Eun, Daniel D; Pontari, Michel A; Mydlo, Jack H; Reese, Adam C

    2017-10-01

    To determine rates of spontaneous ureteral stone passage in patients with indwelling ureteral stents, and to identify factors associated with the spontaneous passage of stones while a ureteral stent is in place. From our institutional database, we identified patients who underwent ureteroscopic procedures for stone disease between January 1, 2013 and March 1, 2015. We compared the rates of spontaneous stone passage between patients who had previously undergone ureteral stent placement and those who had not. In patients with indwelling stents, multivariate logistic regression was performed to identify factors associated with spontaneous stone passage. A total of 194 patients met inclusion criteria. Spontaneous stone passage rates were similar in the stented (17/119, 14%) and non-stented (15/75, 20%) groups (p = 0.30). In bivariate analysis of stented patients, smaller stone size (p < 0.001) and distal stone location (p = 0.01) were significantly associated with spontaneous stone passage. Multivariate logistic regression analysis of stented patients showed that only small stone size was significantly associated with the likelihood of stone passage (p = 0.01), whereas stent duration, stone location, and stone laterality were not. A small, but clinically significant percentage of ureteral stones pass spontaneously with a ureteral stent in place. Small stone size is associated with an increased likelihood of spontaneous passage in patients with indwelling stents. These findings may help to identify patients who can potentially avoid additional surgical procedures for definitive stone removal after ureteral stent placement.

  18. Extracorporeal shock wave lithotripsy of proximal and distal ureteral stones.

    PubMed

    Pettersson, B; Tiselius, H G

    1988-01-01

    Extracorporeal shock wave lithotripsy (ESWL) was used for treatment of 105 patients with ureteral stones. There were 77 stones in the upper part of the ureter, i.e. above the pelvic brim, and 28 in the lower part, i.e. below the sacroiliac joint. Successful fragmentation was attained in 101 (96%). In 93% of the patients with stones in the upper ureter and in 100% with stones in the lower ureter the fragments were eliminated completely. In 87% of the patients with stones in the upper ureter, a ureteral catheter was introduced under local anesthesia but without fluoroscopic control. It was thereby possible to remove 30% of the stones from the ureter to the kidney. For the remaining stones, saline was infused through the catheter during ESWL. For patients with stones in the lower part of the ureter, a ureteral catheter was passed in 79% and saline infused during treatment. Whereas some form of anesthesia was used for treatment of all upper ureteral stones, 89% of the treatments for lower ureteral stones were performed without anesthesia. Auxiliary procedures after ESWL were limited to four ureteral catheter manipulations for distal stones. Four proximal stones which remained unaffected by ESWL had to be treated by open surgery (3 stones) or percutaneous surgery (1 stone). Of 82 ureteric stones treated in situ the success fragmentation rate was 95%. The average number of ESWL sessions was 1.04 for both proximal and distal ureteral stones.

  19. Shock ignition targets: gain and robustness vs ignition threshold factor

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  20. Toward continuous-wave operation of organic semiconductor lasers

    PubMed Central

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  1. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  2. Threshold Ionization and Spin-Orbit Coupling of Cerium Monoxide

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Zhang, Yuchen; Wu, Lu; Yang, Dong-Sheng

    2017-06-01

    Cerium oxides are widely used in heterogeneous catalysis due to their ability to switch between different oxidation states. We report here the mass-analyzed threshold ionization (MATI) spectroscopy of cerium monoxide (CeO) produced by laser ablating a Ce rod in a molecular beam source. The MATI spectrum in the range of 40000-45000 \\wn exhibits several band systems with similar vibrational progressions. The strongest band is at 43015 (5) \\wn, which can be assigned as the adiabatic ionization energy of the neutral species. The spectrum also shows Ce-O stretching frequencies of 817 and 890 \\wn in the neutral and ion states, respectively. By comparing with spin-orbit coupled multireference quasi-degenerate perturbation theory (SO-MCQDPT) calculations, the observed band systems are assigned to transitions from various low-energy spin-orbit levels of the neutral oxide to the two lowest spin-orbit levels of the corresponding ion. The current work will also be compared with previous experimental and computational studies on the neutral species.

  3. Multiplexing of Motor Information in the Discharge of a Collision Detecting Neuron during Escape Behaviors

    PubMed Central

    Fotowat, Haleh; Harrison, Reid R; Gabbiani, Fabrizio

    2010-01-01

    Locusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Co-contraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold. Thereafter, the number of DCMD spikes predicted precisely motoneuron activity and jump occurrence. Additionally, the time of DCMD peak firing rate predicted that of jump. Ablation experiments suggest that the DCMD, together with a nearly identical ipsilateral descending neuron, is responsible for the timely execution of the escape. Thus, three distinct features that are multiplexed in a single neuron’s sensory response to impending collision – firing rate threshold, peak firing time, and spike count – likely control three distinct motor aspects of escape behaviors. PMID:21220105

  4. Toward continuous-wave operation of organic semiconductor lasers.

    PubMed

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-04-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  5. Metabolic Characteristics and Risks Associated with Stone Recurrence in Korean Young Adult Stone Patients.

    PubMed

    Kang, Ho Won; Seo, Sung Pil; Kim, Won Tae; Kim, Yong-June; Yun, Seok-Joong; Kim, Wun-Jae; Lee, Sang-Cheol

    2017-08-01

    The aim of this study was to assess the metabolic characteristics and risks of stone recurrence in young adult stone patients in Korea. The medical records of 1532 patients presenting with renal or ureteric stones at our stone clinic between 1994 and 2015 were retrospectively reviewed. Patients were grouped according to age (young adult, 18-29 years; intermediate onset, 30-59 years; old age, ≥60 years) at first presentation, and measurements of clinicometabolic characteristics and risks of stone recurrence were compared. Overall, excretion of urinary stone-forming substances was highest in the intermediate onset group, followed by the young adult and old age groups. Importantly, excretion of urinary citrate was lowest in the young adult group. Kaplan-Meier analyses identified a significant difference between the three age groups in terms of stone recurrence (log rank test, p < 0.001). Multivariate Cox regression analyses revealed that age at first stone presentation was an independent risk factor for stone recurrence. Urinary citrate excretion was an independent risk factor for stone recurrence in young adult stone patients. Younger age (18-29 years) at first stone presentation was a significant risk factor for stone recurrence, and urinary citrate excretion was an independent risk factor affecting recurrence in this group. Metabolic evaluation and potassium citrate therapy should be considered for young adult stone patients to prevent recurrence.

  6. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

    PubMed Central

    Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J. M.; Guijarro, M.; Ribeiro, A.

    2012-01-01

    This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. PMID:22623899

  7. Appropriate kidney stone size for ureteroscopic lithotripsy: When to switch to a percutaneous approach

    PubMed Central

    Takazawa, Ryoji; Kitayama, Sachi; Tsujii, Toshihiko

    2015-01-01

    Flexible ureteroscopy (fURS) has become a more effective and safer treatment for whole upper urinary tract stones. Percutaneous nephrolithotomy (PNL) is currently the first-line recommended treatment for large kidney stones ≥ 20 mm and it has an excellent stone-free rate for large kidney stones. However, its invasiveness is not negligible considering its major complication rates. Staged fURS is a practical treatment for such large kidney stones because fURS has a minimal blood transfusion risk, short hospitalization and few restrictions on daily routines. However, as the stone size becomes larger, the stone-free rate decreases, and the number of operations required increases. Therefore, in our opinion, staged fURS is a practical option for kidney stones 20 to 40 mm. Miniaturized PNL combined with fURS should be considered to be a preferred option for stones larger than 40 mm. Moreover, URS is an effective treatment for multiple upper urinary tract stones. Especially for patients with a stone burden < 20 mm, URS is a favorable option that promises a high stone-free rate after a single session either unilaterally or bilaterally. However, for patients with a stone burden ≥ 20 mm, a staged operation should be considered to achieve stone-free status. PMID:25664253

  8. Investigations on the destruction of ultrasound contrast agents: Fragmentation thresholds, inertial cavitation, and bioeffects

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang

    Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the 'tadpole-shaped' lesion formed during high-intensity, focused ultrasound treatment was the result of bubble formation by boiling.

  9. Is scoring system of computed tomography based metric parameters can accurately predicts shock wave lithotripsy stone-free rates and aid in the development of treatment strategies?

    PubMed Central

    Badran, Yasser Ali; Abdelaziz, Alsayed Saad; Shehab, Mohamed Ahmed; Mohamed, Hazem Abdelsabour Dief; Emara, Absel-Aziz Ali; Elnabtity, Ali Mohamed Ali; Ghanem, Maged Mohammed; ELHelaly, Hesham Abdel Azim

    2016-01-01

    Objective: The objective was to determine the predicting success of shock wave lithotripsy (SWL) using a combination of computed tomography based metric parameters to improve the treatment plan. Patients and Methods: Consecutive 180 patients with symptomatic upper urinary tract calculi 20 mm or less were enrolled in our study underwent extracorporeal SWL were divided into two main groups, according to the stone size, Group A (92 patients with stone ≤10 mm) and Group B (88 patients with stone >10 mm). Both groups were evaluated, according to the skin to stone distance (SSD) and Hounsfield units (≤500, 500–1000 and >1000 HU). Results: Both groups were comparable in baseline data and stone characteristics. About 92.3% of Group A rendered stone-free, whereas 77.2% were stone-free in Group B (P = 0.001). Furthermore, in both group SWL success rates was a significantly higher for stones with lower attenuation <830 HU than with stones >830 HU (P < 0.034). SSD were statistically differences in SWL outcome (P < 0.02). Simultaneous consideration of three parameters stone size, stone attenuation value, and SSD; we found that stone-free rate (SFR) was 100% for stone attenuation value <830 HU for stone <10 mm or >10 mm but total number SWL sessions and shock waves required for the larger stone group were higher than in the smaller group (P < 0.01). Furthermore, SFR was 83.3% and 37.5% for stone <10 mm, mean HU >830, SSD 90 mm and SSD >120 mm, respectively. On the other hand, SFR was 52.6% and 28.57% for stone >10 mm, mean HU >830, SSD <90 mm and SSD >120 mm, respectively. Conclusion: Stone size, stone density (HU), and SSD is simple to calculate and can be reported by radiologists to applying combined score help to augment predictive power of SWL, reduce cost, and improving of treatment strategies. PMID:27141192

  10. Fire effects on flaked stone, ground stone, and other stone artifacts [Chapter 4

    Treesearch

    Krista Deal

    2012-01-01

    Lithic artifacts can be divided into two broad classes, flaked stone and ground stone, that overlap depending on the defining criteria. For this discussion, flaked stone is used to describe objects that cut, scrape, pierce, saw, hack, etch, drill, or perforate, and the debris (debitage) created when these items are manufactured. Objects made of flaked stone include...

  11. Novel ultrasound method to reposition kidney stones

    PubMed Central

    Shah, Anup; Owen, Neil R.; Lu, Wei; Cunitz, Bryan W.; Kaczkowski, Peter J.; Harper, Jonathan D.; Bailey, Michael R.; Crum, Lawrence A.

    2011-01-01

    The success of surgical management of lower pole stones is principally dependent on stone fragmentation and residual stone clearance. Choice of surgical method depends on stone size, yet all methods are subject to post-surgical complications resulting from residual stone fragments. Here we present a novel method and device to reposition kidney stones using ultrasound radiation force delivered by focused ultrasound and guided by ultrasound imaging. The device couples a commercial imaging array with a focused annular array transducer. Feasibility of repositioning stones was investigated by implanting artificial and human stones into a kidney-mimicking phantom that simulated a lower pole and collecting system. During experiment, stones were located by ultrasound imaging and repositioned by delivering short bursts of focused ultrasound. Stone motion was concurrently monitored by fluoroscopy, ultrasound imaging, and video photography, from which displacement and velocity were estimated. Stones were seen to move immediately after delivering focused ultrasound and successfully repositioned from the lower pole to the collecting system. Estimated velocities were on the order of 1 cm/s. This in vitro study demonstrates a promising modality to facilitate spontaneous clearance of kidney stones and increased clearance of residual stone fragments after surgical management. PMID:20967437

  12. [Factors affecting residual stones after percutaneous nephrolithotomy in patients with renal calculus].

    PubMed

    Qiao, Mingzhou; Zhang, Haifang; Zhou, Chenlong

    2015-11-24

    To explore the factors affecting the residual stones after percutaneous nephrolithotomy (PCNL) in patients with renal calculus. A retrospective analysis was performed for 1 200 patients who were affected by renal calculus and treated with PCNL between Jan 2008 and May 2014 in People's Hospital of Anyang City. Among those patients, 16 were diagnosed as bilateral renal stone and had two successive operations. The size, location and number of stones, previous history of surgery, the degree of hydronephrosis, urinary infection were included in the univariate analysis. Significant factors in univariate analysis were included in the multivariate analysis to determine factors affecting stone residual. A total of 385 cases developed stone residual after surgery. The overall residual rate was 31.7%. In univariate analysis, renal pelvis combined with caliceal calculus (P=0.006), stone size larger than 4 cm (P=0.005), stone number more than 4 (P=0.002), the amount of bleeding more than 200 ml (P=0.025), operation time longer than 120 minutes (P=0.028) were associated with an increased rate of stone residual. When subjected to the Cox multivariate analysis, the independent risk factors for residual stones were renal pelvis combined with caliceal calculus (P=0.049), stone size larger than 4 cm (P=0.038) and stone number more than 4 (P=0.018). Factors affecting the incidence of residual stones after PCNL are the size, location and number of stones. Larger size stone and the presence of renal pelvis combined with caliceal calculus are significantly associated with residual stones. Nevertheless, stone number less than 4 indicates an increased stone clearance rate.

  13. Significance of lower-pole pelvicaliceal anatomy on stone clearance after shockwave lithotripsy in nonobstructive isolated renal pelvic stones.

    PubMed

    Sozen, Sinan; Kupeli, Bora; Acar, Cenk; Gurocak, Serhat; Karaoglan, Ustunol; Bozkirli, Ibrahim

    2008-05-01

    To investigate the probable effect of lower-pole pelvicaliceal anatomy on stone clearance after shockwave lithotripsy (SWL) in patients with nonobstructive renal pelvic stones. The clinical records of patients with isolated renal pelvic stones who underwent SWL between 1996 and 2005 were reviewed. After excluding patients with obstruction leading to dilatation, major anatomic abnormalities, noncalcium stones, metabolic abnormalities, history of recurrent stone disease, multiple stones, and previous renal surgery, 153 patients were enrolled in the study. Lower pole infundibulopelvic angle (IPA) and infundibular length and width were measured from intravenous urography. Patients were classified into three groups according to stone burden (group 1, <100 mm(2); group 2, 101-200 mm(2); group 3, 201-400 mm(2)). The mean stone size was 142.08+/-86.3 mm(2). Overall stone-free rate was 53.6%. Localization of clinically significant or insignificant residual fragments was in the lower calix, renal pelvis, and both in 50 (32.6%), 29 (18.9%), and 8 (5.2%) patients, respectively. There was no statistically significant difference in pelvicaliceal anatomic features except narrower IPA (P=0.02) in group 1 patients with residual stones. The falling of stone fragments to the lower calix in spite of the ureter whether clinically significant or not after SWL of pelvic stones initially seems to be related to stone burden rather than lower caliceal anatomy. However, existence of a more narrow IPA in group 1 patients with residual fragments led us to believe that lower-pole IPA can play a role in stone clearance, especially for smaller stones, probably because of smaller residual fragment size or the more mobile nature of the primary stone.

  14. In Idiopathic Calcium Oxalate Stone Formers, Unattached Stones Show Evidence of Having Originated as Attached Stones on Randall’s Plaque

    PubMed Central

    Miller, Nicole L.; Williams, James C.; Evan, Andrew P.; Bledsoe, Sharon B.; Coe, Fredric L.; Worcester, Elaine M.; Munch, Larry C.; Handa, Shelly E.; Lingeman, James E.

    2009-01-01

    Objective To analyze the structure and composition of unattached stones in idiopathic calcium oxalate stone formers (ICSF) and compare them to attached stones from the same cohort in order to investigate whether more than one pathogenic mechanism exists for stone formation in ICSF. Patients and methods ICSF undergoing percutaneous nephrolithotomy or ureteroscopy for treatment of nephrolithiasis were consented for this study. All accessible renal papillae were endoscopically imaged using a digital endoscope. All stones were removed and determined by the operating surgeon to be attached or unattached to the underlying papilla. Micro-computed tomography (micro-CT), which provides three-dimensional analysis of entire stones, was used to compare the structure and composition of attached versus unattached stones. Results Of 115 stones collected from 9 patients (12 renal units), only 25 stones were found not to be attached to renal papillae. Of these 25 stones, 4 were lost and 12 showed definite morphological evidence of having been attached to tissue, probably having been knocked off of papillae during access. For the remaining 9 stones, micro-CT analysis revealed at least one internal region of calcium phosphate within each of these unattached calcium oxalate (CaOx) stones. That is, the internal structure of the unattached stones is consistent with their having originated attached to RP, and then having become detached but retained in the kidney, with new layers of CaOx eventually covering the original attachment site. Conclusions Micro CT analysis supports the hypothesis that in ICSF, both attached and unattached stones occur as a result of a common pathogenic mechanism. That is, in this type of stone former, CaOx stones—even those not showing morphology that betrays attachment—all originate attached to interstitial plaque on the renal papilla. PMID:19549258

  15. Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.

    PubMed

    Zwaschka, Theresa A; Ahn, Justin S; Cunitz, Bryan W; Bailey, Michael R; Dunmire, Barbrina; Sorensen, Mathew D; Harper, Jonathan D; Maxwell, Adam D

    2018-04-01

    Burst wave lithotripsy (BWL) is a new technology in development to fragment urinary stones. Ultrasonic propulsion (UP) is a separate technology under investigation for displacing stones. We measure the effect of propulsion pulses on stone fragmentation from BWL. Two artificial stone models (crystalline calcite, BegoStone plaster) and human calcium oxalate monohydrate (COM) stones measuring 5 to 8 mm were subjected to ultrasound exposures in a polyvinyl chloride tissue phantom within a water bath. Stones were exposed to BWL with and without propulsion pulses interleaved for set time intervals depending on stone type. Fragmentation was measured as a fraction of the initial stone mass fragmented to pieces smaller than 2 mm. BegoStone model comminution improved from 6% to 35% (p < 0.001) between BWL and BWL with interleaved propulsion in a 10-minute exposure. Propulsion alone did not fragment stones, whereas addition of propulsion after BWL slightly improved BegoStone model comminution from 6% to 11% (p < 0.001). BegoStone model fragmentation increased with rate of propulsion pulses. Calcite stone fragmentation improved from 24% to 39% in 5 minutes (p = 0.047) and COM stones improved from 17% to 36% (p = 0.01) with interleaved propulsion. BWL with UP improved stone fragmentation compared with BWL alone in vitro. The improvement was greatest when propulsion pulses are interleaved with BWL treatment and when propulsion pulses are applied at a higher rate. Thus, UP may be a useful adjunct to enhance fragmentation in lithotripsy in vivo.

  16. Black and brown pigment gallstones differ in microstructure and microcomposition.

    PubMed

    Malet, P F; Takabayashi, A; Trotman, B W; Soloway, R D; Weston, N E

    1984-01-01

    The two subtypes of pigment gallstones, black and brown stones, differ in chemical composition and pathogenesis. We examined a black bilirubinate stone and a black phosphate stone (which represented opposite ends of the compositional spectrum of black noncarbonate stones), a black carbonate stone, and a brown pigment stone using scanning electron microscopy and microchemical techniques to determine if stone microstructure and microcomposition reflected different patterns of formation. The cross-sectional surfaces of the black bilirubinate and black phosphate stones were smooth and homogenous. Electron probe microanalysis demonstrated high concentrations of sulfur and copper in the center of the black bilirubinate stone; sulfur was in a low valence state consistent with disulfide linkages in proteins. The brown stone was rough-surfaced with lamellated bands on cross-section. The lighter-colored bands in this stone contained virtually all of the detected calcium palmitate, while the darker sections contained much more calcium bilirubinate. Plasma oxygen etching demonstrated a network of protein interdigitating with calcium bilirubinate salts in the black bilirubinate and black phosphate stones but not in the black carbonate or brown stones. Argon ion etching demonstrated that calcium bilirubinate was in a closely packed rod-shaped arrangement in all three black stones but not in the brown stone. We conclude that the marked differences in structure and composition between the black noncarbonate and brown pigment gallstones support the hypothesis that the two major pigment gallstone types form by different mechanisms. In addition, the layered structures of the black carbonate and brown stones suggest that stone growth is affected by cyclic changes in biliary composition.

  17. Is retrograde intrarenal surgery the game changer in the management of upper tract calculi? A single-center single-surgeon experience of 131 cases.

    PubMed

    Parikh, Kandarp Priyakant; Jain, Ravi Jineshkumar; Kandarp, Aditya Parikh

    2018-01-01

    Success of any modality for stone disease needs to be evaluated in terms of Stone Free Rates (SFR), auxiliary procedures needed; complications and follow up. SFR in RIRS is subject to parameters like stone burden, location, number, hardness, composition; calyceal and ureter anatomy; use of ureteric access sheath (UAS); surgeon experience etc. The aim of this study is to evaluate the efficacy and safety of RIRS for managing upper tract stones. The objectives include evaluating SFR in RIRS in relation to stone burden, location and number. Other objectives include evaluating SFR after re RIRS in relation to stone burden, necessity of pre DJ stenting, use of UAS and post operative complication rate. 131 patients operated by single surgeon for single/multiple renal and/or upper ureteric stones were evaluated. Stone size > 3 mm on follow up CT KUB was considered as residual. Re RIRS was required for residual stones. The overall SFR was 76%. SFR were statistically lower with stone burden > 1.5 cm, lower calyceal stones and single stones with stone burden > 1.5 cm. SFR was 90% after 2 nd RIRS and 98.5% after 3 rd RIRS procedure. No significant difference in SFR was noted between single v/s multiple stones, single calyx v/s multiple calyx stones and renal v/s upper ureteric stones. No major complication was noted. Larger stone burden and lower calyceal location are important factors deciding SFR in RIRS. With auxiliary procedure, RIRS is safe and effective compared to PCNL.

  18. Impact of stone density on outcomes in percutaneous nephrolithotomy (PCNL): an analysis of the clinical research office of the endourological society (CROES) pcnl global study database.

    PubMed

    Anastasiadis, Anastasios; Onal, Bulent; Modi, Pranjal; Turna, Burak; Duvdevani, Mordechai; Timoney, Anthony; Wolf, J Stuart; De La Rosette, Jean

    2013-12-01

    This study aimed to explore the relationship between stone density and outcomes of percutaneous nephrolithotomy (PCNL) using the Clinical Research Office of the Endourological Society (CROES) PCNL Global Study database. Patients undergoing PCNL treatment were assigned to a low stone density [LSD, ≤ 1000 Hounsfield units (HU)] or high stone density (HSD, > 1000 HU) group based on the radiological density of the primary renal stone. Preoperative characteristics and outcomes were compared in the two groups. Retreatment for residual stones was more frequent in the LSD group. The overall stone-free rate achieved was higher in the HSD group (79.3% vs 74.8%, p = 0.113). By univariate regression analysis, the probability of achieving a stone-free outcome peaked at approximately 1250 HU. Below or above this density resulted in lower treatment success, particularly at very low HU values. With increasing radiological stone density, operating time decreased to a minimum at approximately 1000 HU, then increased with further increase in stone density. Multivariate non-linear regression analysis showed a similar relationship between the probability of a stone-free outcome and stone density. Higher treatment success rates were found with low stone burden, pelvic stone location and use of pneumatic lithotripsy. Very low and high stone densities are associated with lower rates of treatment success and longer operating time in PCNL. Preoperative assessment of stone density may help in the selection of treatment modality for patients with renal stones.

  19. Histopathology Predicts the Mechanism of Stone Formation

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.

    2007-04-01

    About 5% of American women and 12% of men will develop a kidney stone at some time in their life and these numbers appear to be on the rise. Despite years of scientific research into the mechanisms of stone formation and growth, limited advances have been made until recently. Randall's original observations and thoughts on the mechanisms for kidney stone formation have been validated for idiopathic calcium oxalate stone formers (ICSF) but not for most other stone forming groups. Our current studies on selected groups of human stone formers using intraoperative papillary biopsies has shown overwhelming evidence for the presence of Randall's plaque in ICSF and that stone formation and growth are exclusively linked to its availability to urinary ions and proteins. Intense investigation of the plaque-stone junction is needed if we are to understand the factors leading to the overgrowth process on exposed regions of plaque. Such information should allow the development of treatment strategies to block stone formation in ICSF patients. Patients who form brushite stones, or who form apatite stones because of distal renal tubular acidosis (dRTA), or patients with calcium oxalate stones due to obesity bypass procedures, or patients with cystinuria, get plugged inner medullary collecting ducts (IMCD) which leads to total destruction of the lining cells and focal sites of interstitial fibrosis. These stone formers have plaque but at levels equal to or below non-stone formers, which would suggest that they form stones by a different mechanism than do ICSF patients.

  20. Open stone surgery: a still-in-use approach for complex stone burden.

    PubMed

    Çakici, Özer Ural; Ener, Kemal; Keske, Murat; Altinova, Serkan; Canda, Abdullah Erdem; Aldemir, Mustafa; Ardicoglu, Arslan

    2017-06-30

    Urinary stone disease is a major urological condition. Endourologic techniques have influenced the clinical approach and outcomes. Open surgery holds a historic importance in the management of most conditions. However, complex kidney stone burden may be amenable to successful results with open stone surgery. In this article, we report our eighteen cases of complex urinary stone disease who underwent open stone removal. A total of 1701 patients have undergone surgical treatment for urinary stone disease in our clinic between July 2012 and July 2016, comprising eighteen patients who underwent open stone surgery. Patients' demographic data, stone analysis results, postoperative clinical data, and stone status were evaluated retrospectively. The choice of surgical approach is mostly dependent on the surgeon's preference. In two patients, open surgery was undertaken because of perioperative complications. We did not observe any Clavien-Dindo grade 4 or 5 complications. Three patients were managed with a course of antibiotics due to postoperative fever. One patient had postoperative pleurisy, one patient had urinoma, and two patients had postoperative ileus. Mean operation time was 84 (57-124) minutes and mean hospitalization time was 5.5 (3-8) days. Stone-free status was achieved in 15 patients (83.3%). Endourologic approaches are the first options for treatment of urinary stone disease. However, open stone surgery holds its indispensable position in complicated cases and in complex stone burden. Open stone surgery is also a valid alternative to endourologic techniques in all situations.

  1. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    NASA Astrophysics Data System (ADS)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (<5) of applied pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  2. [Infrared spectrophotometry for crystalline composition of staghorn calculi].

    PubMed

    Ma, Kai; Huang, Xiao-bo; Xu, Qing-quan; Li, Jian-xing; Xiong, Liu-lin; Yang, Bo; Ye, Xiong-jun; Chen, Liang; Wang, Xiao-feng; Na, Yan-qun

    2010-11-30

    To provide theoretic rationales for treatment and prevention of staghorn calculi by analyzing stone composition and studying the relationship between stone and urinary tract infections. The clinical data of 51 staghorn calculi patients were analyzed retrospectively. The stone compositions were studied by infrared spectrophotometry. Six types of stone compositions were obtained. There were calcium oxalate monohydrate, calcium oxalate dehydrate, carbonate apatite, magnesium ammonium phosphate hexahydrate, uric acid and L-cystine. The majority of stones were of mixed compositions, pure stones were found in 15 cases (29.4%). Among all stones, calcium oxalate stones were found in 41 cases (80.4%) and uric stones in 10 cases (19.6%). Infectious stones were found in 26 cases (51.0%). Urinary tract infections were found in 40 (78.4%) patients and positive urine/stone culture was detected in 33 (64.7%) patients. With multiple crystalline compositions and etiological factors, the staghorn calculi are closely correlated with urinary tract infections.

  3. Salivary stones: symptoms, aetiology, biochemical composition and treatment.

    PubMed

    Kraaij, S; Karagozoglu, K H; Forouzanfar, T; Veerman, E C I; Brand, H S

    2014-12-05

    Salivary stones, also known as sialoliths, are calcified concrements in the salivary glands. Sialoliths are more frequently located in the submandibular gland (84%), than in the parotid gland (13%). The majority of the submandibular stones are located in Wharton's duct (90%), whereas parotid stones are more often located in the gland itself. Salivary stones consist of an amorphous mineralised nucleus, surrounded by concentric laminated layers of organic and inorganic substances. The organic components of salivary stones include collagen, glycoproteins, amino acids and carbohydrates. The major inorganic components are hydroxyapatite, carbonate apatite, whitlockite and brushite. The management of salivary stones is focused on removing the salivary stones and preservation of salivary gland function which depends on the size and location of the stone. Conservative management of salivary stones consists of salivary gland massage and the use of sialogogues. Other therapeutic options include removal of the stone or in some cases surgical removal of the whole salivary gland.

  4. Single-session ureteroscopic pneumatic lithotripsy for the management of bilateral ureteric stones.

    PubMed

    Isen, Kenan

    2012-01-01

    In nowadays there is no consensus on single-session ureteroscopic lithotripsy (URSL) for the management of bilateral ureteric stones. The aim of this study was to evaluate efficacy and safety of single-session URSL in patients with bilateral ureteric stones. 41 patients who have undergone bilateral single-session URSL were evaluted in this study. A 8/9.8 Fr Wolf semi-rigid ureteroscope was used for the procedures, and the stones were fragmented with pneumatic lithotripter. A high stone-free rate was achieved (90.2%) after single endoscopic procedure with a retreatment rate of 9.8%. The procedure was most successful for distal ureteric stones with a 96.2% stone-free rate followed by middle ureteric stones with a 81.8% stone-free rate while the least success was achieved for proximal ureteric stones with a 77.7% stone-free rate (p < 0.05). A greater stone-free rate was obtained in those with stones less than 10 mm (93.7%) than in those with stones larger than 10 mm (77.7%) (p < 0.05). Ureteral perforation occurred in only one patient (2.4%). No long-term complication was observed in any patient. Bilateral single-session URSL can be performed effectively and safely with a low complication rate in patients with bilateral ureteric stones. It can reduce the need of anaesthetics and hospital stay.

  5. Using Helical CT to Predict Stone Fragility in Shock Wave Lithotripsy (SWL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, James C. Jr.; Zarse, Chad A.; Jackson, Molly E.

    2007-04-05

    Great variability exists in the response of urinary stones to SWL, and this is true even for stones composed of the same mineral. Efforts have been made to predict stone fragility to shock waves using computed tomography (CT) patient images, but most work to date has focused on the use of stone CT number (i.e., Hounsfield units). This is an easy number to measure on a patient stone, but its value depends on a number of factors, including the relationship of the size of the stone to me resolution (i.e., the slicewidth) of the CT scan. Studies that have shownmore » a relationship between stone CT number and failure in SWL are reviewed, and all are shown to suffer from error due to stone size, which was not accounted for in the use of Hounsfield unit values. Preliminary data are then presented for a study of calcium oxalate monohydrate (COM) stones, in which stone structure-rather than simple CT number values-is shown to correlate with fragility to shock waves. COM stones that were observed to have structure by micro CT (e.g., voids, apatite regions, unusual shapes) broke to completion in about half the number of shock waves required for COM stones that were observed to be homogeneous in structure by CT. This result suggests another direction for the use of CT in predicting success of SWL: the use of CT to view stone structure, rather than simply measuring stone CT number. Viewing stone structure by CT requires the use of different viewing windows than those typically used for examining patient scans, but much research to date indicates that stone structure can be observed in the clinical setting. Future clinical studies will need to be done to verify the relationship between stone structure observed by CT and stone fragility in SWL.« less

  6. Characteristics of renal papillae in kidney stone formers.

    PubMed

    Marien, Tracy P; Miller, Nicole L

    2016-12-01

    The mechanism of kidney stone formation is not well understood. In order to better understand the pathophysiology for specific kidney stone compositions and systemic diseases associated with kidney stones, endoscopic papillary mapping studies with concurrent biopsies have been conducted. This review will summarize the findings of these studies and proposed mechanisms for thirteen disease processes associated with kidney stones. A review of the literature was performed identifying thirteen studies that endoscopically mapped and biopsied renal papillae of different stone formers. These studies characterized renal papillae based on amount of Randall's plaque, Bellini's duct pathology, papillary contour changes, presence of attached stones, pitting, and frequently papillary and cortical biopsies. The groups studied and reviewed here are kidney stone formers who have a history of idiopathic calcium oxalate stone formation, cystinuria, brushite stones, gastric bypass, ileostomy, small bowel resection, primary hyperparathyroidism, distal renal tubular acidosis (dRTA), primary hyperoxaluria, idiopathic calcium phosphate stone formation, medullary sponge kidney (MSK), uric acid stones, and struvite stones. A proposed standardized scoring system for papillary pathology was also reviewed. The series showed various degrees and types of changes to the renal papillae and corresponding histopathologic changes for each type of stone former reviewed. Those with predominantly alone Randall's plaque pathology had less tissue damage versus those with extensive Bellini's duct lesions who had more interstitial fibrosis and cortical pathology. Randall's plaques are associated with stone formers who have low urinary volume, high urinary calcium, and acidic urine and thus are frequently seen in those with brushite stones, primary hyperparathyroidism, small bowel resection, and idiopathic calcium phosphate stone formers. Bellini's duct plugging and pathology is theorized to occur via free solution crystallization, ductal obstruction, inflammation, cellular injury, fibrosis, and acidification defects. Ureteroscopic manifestations of stone disease can vary from normal appearing papillae to significantly diseased appearing papillae. Some diseases have very characteristic papillary changes. Further studies are necessary to fully elucidate the mechanisms of stone formation in patients with nephrolithiasis.

  7. Advances in lithotripsy and stone disease treatment.

    PubMed

    Newman, J

    1996-01-01

    Stone disease can be traced back as far as the human record. This article traces the diagnosis and treatment of stone disease from primitive attempts at stone removal in ancient civilizations to the advent of extracorporeal shock wave lithotripsy (ESWL) in the 1970s. ESWL revolutionized the treatment of stone disease, offering patients a less painful alternative to the traditional surgical removal of stones. This article discusses recent advances in ESWL, describes the radiologic technologist's role in diagnosing and managing stone disease, and outlines future prospects in the treatment of stone disease.

  8. Infection (urease) stones.

    PubMed

    Griffith, D P; Osborne, C A

    1987-01-01

    Infection-induced stones in man probably form solely as a consequence of urealysis which is catalyzed by the bacterial protein urease. Urease stones composed of struvite and carbonate-apatite may form primarily, or as secondary stones or pre-existent metabolic stones. Struvite stones form and grow rapidly owing to (a) supersaturation of urine with stone forming salts, (b) 'salting out' of poorly soluble organic substances normally dissolved in urine and (c) ammonia-induced destruction of the normally protective urothelial glycosaminoglycan layer. Immature (predominantly organic) matrix stones mature into densely mineralized stones. Curative treatment is possible only by eliminating all of the stone and by eradicating all urinary and parenchymal infection. A variety of operative and pharmaceutical approaches are available. Patient treatment must be individualized inasmuch as some patients are better candidates for one type of treatment than another.

  9. [Impact of CHA2DS2 VASc score on substrate for persistent atrial fibrillation and outcome post catheter ablation of atrial fibrillation].

    PubMed

    Ribo, Tang; Jianzeng, Dong; Xiaohui, Liu; Meisheng, Shang; Ronghui, Yu; Deyong, Long; Xin, Du; Junping, Kang; Jiahui, Wu; Man, Ning; Caihua, Sang; Chenxi, Jiang; Rong, Bai; Songnan, Li; Yan, Yao; Songnan, Wen; Changsheng, Ma

    2015-08-01

    To explore if CHA2DS2 VASc score can predict substrate for persistent atrial fibrillation ( AF) and outcome post catheter ablation of AF. From January 2011 to December 2012,116 patients underwent catheter ablation of persistent AF in our department and were enrolled in this study. CHA2DS2VASc score was calculated as follows: two points were assigned for a history of stroke or transient ischemic attack and age ≥ 75 and 1 point each was assigned for age ≥ 65, a history of hypertension, diabetes,recent cardiac failure, vessel disease, female. Left atrial geometry ( LA) was reconstructed with a 3.5 mm tip ablation catheter with fill-in threshold 10 in CARTO system. The mapping catheter was stabled at each endocardial location for at least 3 seconds for recording. The electrogram recordings at each endocardial location were analyzed with a custom software embedded in the CARTO mapping system. Interval confidence level (ICL) was used to characterize complex fractionated atrial electrograms (CFAEs) . As the default setting of the software, ICL more than or equal to 7 was considered sites with a highly repetitive CFAEs complex. CFAEs index was defined as the fraction of area of ICL more than or equal to 7 to the left atrial surface. The CFAEs index and outcome of catheter ablation among different CHA2DS2VASc groups were compared. Of the 116 patients, CHA2DS2VASc was 0 in 33 patients, 1 in 31 patients and ≥ 2 in 52 patients. Left atrial surface ((121.2 ± 18.9) cm2, (133.6 ± 23.8) cm2, (133.9 ± 16.1) cm2, P = 0.008), left atrial volume ((103.6 ± 24.8) ml, (118.3 ± 27.8) ml, (120.9 ± 20.9) ml, P = 0.005) and CFAEs index (44.6% ± 22.4%, 54.2% ± 22.2%, 58.7% ± 23.1%, P = 0.023) increased in proportion with increasing CHA2DS2VASc. ICLmax, ICLmin and CFAEs spatial distribution were similar among the three groups. During the mean follow-up of (13 ± 8) months, the recurrence rate were 36.4%, 35.5%, 55.8% among the three groups (P = 0.025). A high CHA2DS2VASc score is associated with extensive AF substrate and higher recurrence rate post catheter ablation of persistent AF.

  10. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides, carbonates and oxides in situ with a precision of better than 0.1‰ (2SD) without using a matrix-matched standard during laser ablation analyses. Thus, this is a suitable tool to resolve Cu isotopic zoning larger than 0.1‰ in Cu-sulfides, carbonates and oxides.

  11. Risk factors for recurrent symptomatic pigmented biliary stones after percutaneous transhepatic biliary extraction.

    PubMed

    Kim, Dong Won; Lee, Sang Yun; Cho, Jin-Han; Kang, Myong Jin; Noh, Myung Hwan; Park, Byeong-Ho

    2010-07-01

    To evaluate risk factors for the recurrence of biliary stones after a percutaneous transhepatic biliary stone extraction. The procedures were performed on 339 patients between July 2004 and December 2008 (54 months). Medical records and images were retrospectively reviewed for 135 patients (mean age, 66.4 years; 83 men and 52 women) who had undergone follow-up for a mean of 13.2 months (range, 3-37 months). To evaluate risk factors for the recurrence of biliary stones, variables were evaluated with univariate and multivariate analyses. Variables included sex, age, stone location, number of stones, stone size, presence of a peripapillary diverticulum, application of antegrade sphincteroplasty, presence of a biliary stricture, largest biliary diameter before the procedure, and gallbladder status. Thirty-three of the 135 patients (24%) had recurrent symptomatic biliary stones and underwent an additional extraction. The mean time to recurrence was 17.2 months +/- 8.7. Univariate analysis of risk factors for recurrence of biliary stones demonstrated that location, number of stones, stone size, application of antegrade sphincteroplasty, presence of a biliary stricture, and biliary diameter were significant factors (P < .05). With use of multivariate analysis, the number of stones (> or =6; relative risk, 64.8; 95% confidence interval: 5.8, 717.6) and stone size (> or =14 mm; relative risk, 3.8; 95% confidence interval: 1.138, 13.231) were determined to be significant risk factors. The independent risk factors for recurrence of symptomatic biliary stones after percutaneous transhepatic biliary stone extraction were a stone size of at least 14 mm and the presence of at least six stones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  12. Stone clearance after extracorporeal shockwave lithotripsy in patients with solitary pure calcium oxalate stones smaller than 1.0 cm in the proximal ureter, with special reference to monohydrate and dihydrate content.

    PubMed

    Ichiyanagi, Osamu; Nagaoka, Akira; Izumi, Takuji; Kawamura, Yuko; Tsukigi, Masaaki; Ishii, Tatsuya; Ohji, Hiroshi; Kato, Tomoyuki; Tomita, Yoshihiko

    2013-04-01

    The aim of this study was to assess stone-free rates following extracorporeal shockwave lithotripsy (ESWL) of pure calcium oxalate (CaOx) stones in the proximal ureter. The investigators retrospectively examined 53 patients with 5-10 mm pure CaOx stones in the proximal ureter from the medical archives of 593 consecutive patients treated with ESWL. The compositions of calcium oxalate monohydrate (COM) and dihydrate (COD) in a given stone were determined by infrared spectrometry. Stone size, attenuation number and stone-to-skin distance (SSD) were measured using plain radiography and computed tomography (CT). ESWL success was evaluated by stone-free status after the first single session. On average, calculi were 8.0 × 5.3 mm in size, with an SSD of 11.0 cm. The mean CT attenuation value was 740.1 HU. Attenuation numbers correlated significantly with stone diameter (r = 0.49), but had no correlation with the stone content of COM or COD. A negative correlation was observed between COM and COD content (r = -0.925). With regard to patients' physical characteristics and COM and COD content, no differences were found between study subgroups with stone-free and residual status (n = 38 and 15, respectively). There were also no differences in clinical features between patient subgroups with COM- or COD-predominant stones (n = 22 and 31, respectively). The findings indicated that the differences in COM and COD content of CaOx stones had no impact on stone clearance after ESWL and that a favorable stone-free rate of the stones treated with ESWL may be achieved independently of CaOx hydration.

  13. Combined retrograde flexible ureteroscopic lithotripsy with holmium YAG laser for renal calculi associated with ipsilateral ureteral stones.

    PubMed

    Cocuzza, Marcello; Colombo, Jose R; Ganpule, Arvind; Turna, Burak; Cocuzza, Antonio; Dhawan, Divyar; Santos, Bruno; Mazzucchi, Eduardo; Srougi, Miguel; Desai, Mahesh; Desai, Mihir

    2009-02-01

    The purpose of this study was to evaluate the effectiveness of combined ureteroscopic holmium YAG lithotripsy for renal calculi associated with ipsilateral ureteral stones. Between August 2002 and March 2007, retrograde flexible ureteroscopic stone treatment was attempted in 351 cases. Indication for treatment was concurrent symptomatic ureteral stones in 63 patients (group I). Additional operative time and perioperative complication rates were compared to a group of 39 patients submitted to ureteroscopic treatment for ureteral calculi exclusively (group II). Mean ureteral stone size was 8.0 +/- 2.6 mm and 8.1 +/- 3.4 mm for groups I and II, respectively. Mean operative time for group I was 67.9 +/- 29.5 minutes and for group 2 was 49.3 +/- 13.2 minutes (p < 0.001). Flexible ureteroscopic therapy for renal calculi increased 18 minutes in the mean operative time. The overall complication rate was 3.1% and 2.5% for groups I and II, respectively (p = 0.87). Mean renal stone size was 10.7 +/- 6.4 mm, overall stone free rate in group I was 81%. However, considering only patients with renal stones smaller than 15 mm, the stone free rate was 88%. Successful treatment occurred in 81% of patients presenting lower pole stones, but only 76% of patients with multiple renal stones became stone free. As expected, stone free rate showed a significant negative correlation with renal stone size (p = 0.03; r = -0.36). Logistic regression model indicated an independent association of renal stones smaller than 15 mm and stone free rate (OR = 13.5; p = 0.01). Combined ureteroscopic treatment for ureteral and ipsilateral renal calculi is a safe and attractive option for patients presenting for symptomatic ureteral stone and ipsilateral renal calculi smaller than 15 mm.

  14. Stone-Mode Ultrasound for Determining Renal Stone Size.

    PubMed

    May, Philip C; Haider, Yasser; Dunmire, Barbrina; Cunitz, Bryan W; Thiel, Jeff; Liu, Ziyue; Bruce, Matthew; Bailey, Michael R; Sorensen, Mathew D; Harper, Jonathan D

    2016-09-01

    The purpose of this study was to measure the accuracy of stone-specific algorithms (S-mode) and the posterior acoustic shadow for determining kidney stone size with ultrasound (US) in vivo. Thirty-four subjects with 115 renal stones were prospectively recruited and scanned with S-mode on a research US system. S-mode is gray-scale US adjusted to enhanced stone contrast and resolution by minimizing compression and averaging, and increasing line density and frequency. Stone and shadow width were compared with a recent CT scan and, in 5 subjects with 18 stones, S-mode was compared with a clinical US system. Overall, 84% of stones identified on CT were detected on S-mode and 66% of these shadowed. Seventy-three percent of the stone measurements and 85% of the shadow measurements were within 2 mm of the size on CT. A posterior acoustic shadow was present in 89% of stones over 5 mm versus 53% of stones under 5 mm. S-mode visualized 78% of stones, versus 61% for the clinical system. S-mode stone and shadow measurements differed from CT by 1.6 ± 1.0 mm and 0.8 ± 0.6 mm, respectively, compared with 2.0 ± 1.5 mm and 1.6 ± 1.0 mm for the clinical system. S-mode offers improved visualization and sizing of renal stones. With S-mode, sizing of the stone itself and the posterior acoustic shadow were similarly accurate. Stones that do not shadow are most likely <5 mm and small enough to pass spontaneously.

  15. Natural history of asymptomatic renal stones and prediction of stone related events.

    PubMed

    Kang, Ho Won; Lee, Sang Keun; Kim, Won Tae; Kim, Yong-June; Yun, Seok-Joong; Lee, Sang-Cheol; Kim, Wun-Jae

    2013-05-01

    The appropriate management for asymptomatic renal stones remains unclear. We assessed the natural history and progression rate of such stones and identified clinical factors associated with an increased risk of stone related events. We retrospectively reviewed the medical records of 201 male and 146 female patients with asymptomatic renal stones. It was recommended that patients be followed every 6 months. Mean followup was 31 months (range 6 to 180). Patients were divided into 2 groups by stone related events, including spontaneous stone passage, flank pain, stone growth or the need for intervention during followup. Spontaneous passage occurred in 101 patients (29.1%). Of the patients 186 (53.6%) and 161 (46.4%) did and did not have stone related events, respectively. Of the whole cohort 85 patients (24.5%) required intervention but only 4.6% needed surgery. At 19 months after diagnosis 50% of the patients had a symptom. Those with stone related events were more likely to be younger (mean ± SD age 46.6 ± 12.7 vs 49.3 ± 12.6 years) and male, and have a stone history (p = 0.047, 0.017 and 0.014, respectively). Male gender significantly decreased the probability of freedom from stone related events (log rank test p = 0.0135) and it was an independent predictor of stone related events (HR 1.521, p = 0.009). Younger patients, and those with smaller stones and no stone growth were more likely to experience spontaneous passage and less likely to undergo intervention (each p <0.05). Asymptomatic renal stones can be followed safely but long-term followup is necessary. Periodic followup and early intervention should be recommended in patients with risk factors. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period

    PubMed Central

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K.

    2015-01-01

    Introduction: Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. Material and Methods: All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. Results: A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Conclusions: Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations. PMID:25657543

  17. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period.

    PubMed

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K

    2015-01-01

    Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations.

  18. KIDNEY STONES: AN UPDATE ON CURRENT PHARMACOLOGICAL MANAGEMENT AND FUTURE DIRECTIONS

    PubMed Central

    Xu, Hongshi; Zisman, Anna L.; Coe, Fredric L.; Worcester, Elaine M.

    2013-01-01

    Introduction Kidney stones are a common problem worldwide with substantial morbidities and economic costs. Medical therapy reduces stone recurrence significantly. Much progress has been made in the last several decades in improving therapy of stone disease. Areas covered 1) effect of medical expulsive therapy on spontaneous stone passage, 2) pharmacotherapy in the prevention of stone recurrence, 3) future directions in the treatment of kidney stone disease. Expert Opinion fluid intake to promote urine volume of at least 2.5L each day is essential to prevent stone formation. Dietary recommendations should be adjusted based on individual metabolic abnormalities. Properly dosed thiazide treatment is the standard therapy for calcium stone formers with idiopathic hypercalciuria. Potassium alkali therapy is considered for hypocitraturia, but caution should be taken to prevent potential risk of calcium phosphate stone formation. For absorptive hyperoxaluria, low oxalate diet and increased dietary calcium intake are recommended. Pyridoxine has been shown effective in some cases of primary hyperoxaluria type I. Allopurinol is used in calcium oxalate stone formers with hyperuricosuria. Treatment of cystine stones remains challenging. Tiopronin can be used if urinary alkalinization and adequate fluid intake are insufficient. For struvite stones, complete surgical removal coupled with appropriate antibiotic therapy is necessary. PMID:23438422

  19. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemini, Laura; Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto; FNSPE, Czech Technical University in Prague, 11519 Prague

    Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600 nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material.

  20. Retrograde intrarenal surgery for the treatment of renal stones in children: factors influencing stone clearance and complications.

    PubMed

    Azili, Mujdem Nur; Ozcan, Fatma; Tiryaki, Tugrul

    2014-07-01

    Retrograde intrarenal surgery (RIRS) is a known option for the treatment of upper tract calculi with an excellent success. However, the reports of RIRS in prepubertal children are limited. In this study, we evaluated the factors which affected the success rate and the complications of RIRS at renal stone treatment in childhood. We retrospectively reviewed the records of children under 14 years old who underwent RIRS for renal stone disease between January 2009 and December 2012. Patients' age, gender, body mass index (BMI), stone size, stone location, stone number, intraoperative complications, stone free status, postoperative complications were recorded. There were 80 ureterorenoscopic procedures performed in 58 renal units of 47 children (23 males and 24 females). The patients' ages ranged from 8 months to 14 years (mean age 4.7 ± 3.4 years). There was a difference in the distribution of symptoms in age groups. UTI was higher in the 1-4 years age group, abdominal pain was seen mostly in children aged 5-14 years. Multiple stones (included staghorn stone) were noted in 60.4% of patients. In 27.6% of patients, ureteral stones were accompanied by renal stones in our series. In the infancy group, cystine and staghorn stones were more frequently seen, mostly bilateral. After a single ureteroscopic procedure for intrarenal stones in children, we achieved stone free status in 50.9% of the ureters (n=26). After the repeated sessions, the stone clearance rate reached to 85.1%. Retrograde intrarenal surgery can be used as a first line therapy to treat renal stones in children. This is especially important if an associated ureteral stone is present that requires treatment; or in patients with cystinuria, which is not favorably treated with ESWL. Complications were seen more frequently in patients with cystine stones. Extravasation was noted more frequently in patients admitted with UTIs. There was a significant relationship between the conversion to open procedures and the age groups, with most procedures occurring in infancy. The parents should be informed about the probability of multiple procedures to achieve stone free status. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. What happens to asymptomatic lower pole kidney stones smaller than 10 mm in children during watchful waiting?

    PubMed

    Telli, Onur; Hamidi, Nurullah; Bagci, Uygar; Demirbas, Arif; Hascicek, Ahmet Metin; Soygur, Tarkan; Burgu, Berk

    2017-05-01

    The optimal management of lower pole kidney (LPK) stones in children is controversial. The aim of this study was to determine the outcomes of children with asymptomatic isolated LPK stones smaller than 10 mm during follow-up. A total of 242 patients with 284 stones presenting at our institution between June 2004 and December 2014 with an asymptomatic, single LPK stone with a diameter of <10 mm were enrolled in the study. All children were assigned to receive first-line therapy and then categorized according to the need for medical intervention. Age, gender, stone laterality, stone size and type, associated urinary tract problems, and uncontrolled metabolic status were assessed as predictive factors of medical treatment for small (<10 mm) asymptomatic LPK stones. Stone-free rates were compared between interventions. The mean age and mean stone size were 9.4 ± 1.9 years and 7.4 ± 0.6 mm at admission, respectively. Stone progression rate was 61.2%, and the mean time for intervention was 19.2 ± 4.6 months. Flexible ureterorenoscopy (n = 68) or micro-percutaneous nephrolithotomy (n = 4) were performed for 72 stones (25.4%; group 1), and extracorporeal shock wave lithotripsy was performed for 102 stones (35.9%; group 2). The stone-free rates were 81.8 and 79.3% in group 1 and 2, respectively (p > 0.05). The remaining asymptomatic stones (110, 38.8%; group 3) were managed by continued observation, and at the end of the observation time (mean 40.8 ± 20.8 months) the spontaneous passage rate was 9.1% in this group. In the multivariate analysis, stone size of >7 mm, concurrent renal anomalies, and stones composed of magnesium ammonium phosphate (struvite) and cystine were statistically significant predictors of the need for intervention. Children with stones larger than 7 mm, renal anomalies, or stones composed of metabolically active cystine or struvite are more likely to require intervention, and those with asymptomatic LPK stones smaller than 10 mm can be managed by continued observation.

  2. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    PubMed

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting the optimal treatment for patients with urinary stones. Copyright © 2014. Published by Elsevier Taiwan.

  3. Factors affecting stone-free rate and complications of percutaneous nephrolithotomy for treatment of staghorn stone.

    PubMed

    el-Nahas, Ahmed R; Eraky, Ibrahim; Shokeir, Ahmed A; Shoma, Ahmed M; el-Assmy, Ahmed M; el-Tabey, Nasr A; Soliman, Shady; Elshal, Ahmed M; el-Kappany, Hamdy A; el-Kenawy, Mahmoud R

    2012-06-01

    To determine factors affecting the stone-free rate and complications of percutaneous nephrolithotomy (PNL) for treatment of staghorn stones. The computerized database of patients who underwent PNL for treatment of staghorn stones between January 2003 and January 2011 was reviewed. All perioperative complications were recorded and classified according to modified Clavien classification system. The stone-free rate was evaluated with low-dose noncontrast computed tomography (CT). Univariate and multivariate statistical analyses were performed to determine factors affecting stone-free and complication rates. The study included 241 patients (125 male and 116 female) with a mean age of 48.7 ±14.3 years. All patients underwent 251 PNL (10 patients had bilateral stones). The stone-free rate of PNL monotherapy was 56% (142 procedures). At 3 months, the stone-free rate increased to 73% (183 kidneys) after shock wave lithotripsy. Independent risk factors for residual stones were complete staghorn stone and presence of secondary calyceal stones (relative risks were 2.2 and 3.1, respectively). The complication rate was 27% (68 PNL). Independent risk factors for development of complications were performance of the procedure by urologists other than experienced endourologist and positive preoperative urine culture (relative risks were 2.2 and 2.1, respectively). Factors affecting the incidence of residual stones after PNL are complete staghorn stones and the presence of secondary calyceal stones. Complications are significantly high if PNL is not performed by an experienced endourologist or if preoperative urine culture is positive. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cholecystolithiasis is associated with Clonorchis sinensis infection.

    PubMed

    Qiao, Tie; Ma, Rui-hong; Luo, Xiao-bing; Luo, Zhen-liang; Zheng, Pei-ming

    2012-01-01

    The objective of this study was to analyze gallbladder stones for direct evidence of a relationship between Clonorchis sinensis infection and gallbladder stones formation. We investigated one hundred eighty-three gallbladder stones for the presence of Clonorchis sinensis eggs using microscopy, and analyzed their composition using Fourier transform infrared spectroscopy. We confirmed the presence of Clonorchis sinensis eggs in the gallbladder stones using real-time fluorescent PCR and scanning electron microscopy. Clonorchis sinensis eggs were detected in 122 of 183 gallbladder stones based on morphologic characteristics and results from real-time fluorescent PCR. The proportion of pigment stones, cholesterol stones and mixed gallstones in the egg-positive stones was 79.5% (97/122), 3.3% (4/122) and 17.2% (21/122), respectively, while 29.5% (18/61), 31.1% (19/61) and 39.3% (24/61) in the egg-negative stones. The proportion of pigment stone in the Clonorchis sinensis egg-positive stones was higher than in egg-negative stones (P<0.0001). In the 30 egg-positive stones examined by scanning electron microscopy, dozens or even hundreds of Clonorchis sinensis eggs were visible (×400) showing a distinct morphology. Many eggs were wrapped with surrounding particles, and in some, muskmelon wrinkles was seen on the surface of the eggs. Also visible were pieces of texture shed from some of the eggs. Some eggs were depressed or without operculum while most eggs were adhered to or wrapped with amorphous particles or mucoid matter (×3000). Clonorchis sinensis eggs were detected in the gallbladder stones which suggests an association between Clonorchis sinensis infection and gallbladder stones formation, especially pigment stones.

  5. [Composition of 359 kidney stones from the East region of Algeria].

    PubMed

    Bouslama, S; Boutefnouchet, A; Hannache, B; Djemil, T; Kadi, A; Dahdouh, A; Saka, S; Daudon, M

    2016-01-01

    Determine stones composition of the upper urinary tract in the eastern region of Algeria. Our study focuses on a set of 359 stones of the upper urinary tract collected between January 2007 and December 2012 at hospitals in the eastern region of Algeria and analyzed by Fourier transform infrared spectroscopy. The male/female ratio was only 1.32. Calcium oxalate prevailed in 68.5% of stones and 49.3% of nuclei, mainly as whewellite (51.8% of stones and 37.9% of nuclei vs 16.7% and 11.4% respectively for weddellite). Carbapatite prevailed in 15% of stones and 29.8% of nuclei. The struvite, identified in 11.1% of calculi, prevailed in 3.9% of stones and 3.1% of nuclei. Among purines, uric acid prevailed with frequencies quite close to 8.9% and 7% respectively in the stone and in the nucleus while the ammonium urate prevailed in only 0.3% of stones and 3.3% of nuclei. The cystine frequency was 3.6% in both stone and nucleus. The frequency of stone with umbilication was 26.2%. Whewellite was the main component of umbilicated stones with Randall's plaque. Our results suggest that stones of the urinary tract in the Algerian east region resemble those observed in industrialized countries. Some features such as stones location, the whewellite prevalence, the frequencies of main components in both the stone and the nucleus as well as the formation of stones on renal papilla confirm this trend. 4. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. 12. FLOOR 2; STONE CRANE IN PLACE FOR ROCK STONES; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. FLOOR 2; STONE CRANE IN PLACE FOR ROCK STONES; STONE CRANE HAS OAK SPAR, JIB AND BRACE, METAL SCREW, IRON YOKE AND DOGS; IRON PINS FIT THROUGH HOLES IN DOGS INTO HOLES DRILLED IN RUNNER STONE - Hook Windmill, North Main Street at Pantigo Road, East Hampton, Suffolk County, NY

  7. Kidney Stones (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Kidney Stones KidsHealth / For Parents / Kidney Stones What's in ... other treatments to help remove the stones. How Kidney Stones Form It's the kidneys' job to remove ...

  8. Pediatric ureteroscopic management of intrarenal calculi.

    PubMed

    Tanaka, Stacy T; Makari, John H; Pope, John C; Adams, Mark C; Brock, John W; Thomas, John C

    2008-11-01

    Data addressing ureteroscopic management of intrarenal calculi in prepubertal children are limited. We reviewed our experience from January 2002 through December 2007. We retrospectively reviewed ureteroscopic procedures for intrarenal calculi in children younger than 14 years. Stone-free status was determined with postoperative imaging. Multiple logistic regression analysis was used to assess the influence of preoperative factors on initial stone-free status and the need for additional procedures. Intrarenal calculi were managed ureteroscopically in 52 kidneys in 50 children with a mean age of 7.9 years (range 1.2 to 13.6). Mean stone size was 8 mm (range 1 to 16). Stone-free rate after a single ureteroscopic procedure was 50% (25 of 50 patients) on initial postoperative imaging and 58% (29 of 50) with extended followup. Initial stone-free status was dependent on preoperative stone size (p = 0.005) but not stone location. Additional stone procedures were required in 18 upper tracts. Younger patient age (p = 0.04) and larger preoperative stone size (p = 0.002) were associated with the need for additional procedures. Additional procedures were required in more than half of the stones 6 mm or larger but in no stone smaller than 6 mm. Ureteroscopy is a safe method for the treatment of intrarenal calculi in the prepubertal population. Our ureteroscopic stone-free rate for intrarenal stones is lower than that reported for ureteral stones. Parents should be informed that additional procedures will likely be required, especially in younger patients and those with stones larger than 6 mm.

  9. Urinary stone composition in Oman: with high incidence of cystinuria.

    PubMed

    Al-Marhoon, Mohammed S; Bayoumi, Riad; Al-Farsi, Yahya; Al-Hinai, Abdullhakeem; Al-Maskary, Sultan; Venkiteswaran, Krishna; Al-Busaidi, Qassim; Mathew, Josephkunju; Rhman, Khalid; Sharif, Omar; Aquil, Shahid; Al-Hashmi, Intisar

    2015-06-01

    Urinary stones are a common problem in Oman and their composition is unknown. The aim of this study is to analyze the components of urinary stones of Omani patients and use the obtained data for future studies of etiology, treatment, and prevention. Urinary stones of 255 consecutive patients were collected at the Sultan Qaboos University Hospital. Stones were analyzed by Fourier transform infrared spectrophotometer. The biochemical, metabolic, and radiological data relating to the patients and stones were collected. The mean age was 41 years, with M:F ratio of 3.7:1. The common comorbidities associated with stone formation were hypertension; diabetes, benign prostate hyperplasia; urinary tract infection; obesity; and atrophic kidney. The common presentation was renal colic and flank pain (96%). Stones were surgically retrieved in 70% of patients. Mean stone size was 9 ± 0.5 mm (range 1.3-80). Stone formers had a BMI ≥ 25 in 56% (P = 0.006) and positive family history of stones in 3.8%. The most common stones in Oman were as follows: Calcium Oxalates 45% (114/255); Mixed calcium phosphates & calcium oxalates 22% (55/255); Uric Acid 16% (40/255); and Cystine 4% (10/255). The most common urinary stones in Oman are Calcium Oxalates. Overweight is an important risk factor associated with stone formation. The hereditary Cystine stones are three times more common in Oman than what is reported in the literature that needs further genetic studies.

  10. Laser-induced breakdown spectroscopy is a reliable method for urinary stone analysis

    PubMed Central

    Mutlu, Nazım; Çiftçi, Seyfettin; Gülecen, Turgay; Öztoprak, Belgin Genç; Demir, Arif

    2016-01-01

    Objective We compared laser-induced breakdown spectroscopy (LIBS) with the traditionally used and recommended X-ray diffraction technique (XRD) for urinary stone analysis. Material and methods In total, 65 patients with urinary calculi were enrolled in this prospective study. Stones were obtained after surgical or extracorporeal shockwave lithotripsy procedures. All stones were divided into two equal pieces. One sample was analyzed by XRD and the other by LIBS. The results were compared by the kappa (κ) and Spearman’s correlation coefficient (rho) tests. Results Using LIBS, 95 components were identified from 65 stones, while XRD identified 88 components. LIBS identified 40 stones with a single pure component, 20 stones with two different components, and 5 stones with three components. XRD demonstrated 42 stones with a single component, 22 stones with two different components, and only 1 stone with three different components. There was a strong relationship in the detection of stone types between LIBS and XRD for stones components (Spearman rho, 0.866; p<0.001). There was excellent agreement between the two techniques among 38 patients with pure stones (κ index, 0.910; Spearman rho, 0.916; p<0.001). Conclusion Our study indicates that LIBS is a valid and reliable technique for determining urinary stone composition. Moreover, it is a simple, low-cost, and nondestructive technique. LIBS can be safely used in routine daily practice if our results are supported by studies with larger numbers of patients. PMID:27011877

  11. Direct peroral cholangioscopy using an ultraslim upper endoscope for management of residual stones after mechanical lithotripsy for retained common bile duct stones.

    PubMed

    Lee, Y N; Moon, J H; Choi, H J; Min, S K; Kim, H I; Lee, T H; Cho, Y D; Park, S-H; Kim, S-J

    2012-09-01

    The incidence of residual stones after mechanical lithotripsy for retained common bile duct (CBD) stones is relatively high. Peroral cholangioscopy using a mother-baby system may be useful for confirming complete extraction of stones, but has several limitations regarding routine use. We evaluated the role of direct peroral cholangioscopy (DPOC) using an ultraslim upper endoscope for the evaluation and removal of residual CBD stones after mechanical lithotripsy. From August 2006 to November 2010, 48 patients who had undergone mechanical lithotripsy for retained CBD stones with no evidence of filling defects in balloon cholangiography were recruited. The bile duct was inspected by DPOC after balloon cholangiography. Detected residual CBD stones were directly retrieved with a basket or balloon catheter under DPOC. The incidence of residual stones detected by DPOC, and the success rate of residual stone retrieval under DPOC were investigated. DPOC was successfully performed in 46 of the 48 patients (95.8%). Of these, 13 patients (28.3%) had residual CBD stones (mean number 1.4, range 1-3; mean diameter 4.5 mm, range 2.3-9.6). The residual stones were removed directly under DPOC in 11 of these patients (84.6%). There were no complications associated with DPOC or stone removal. DPOC using an ultraslim upper endoscope is a useful endoscopic procedure for the evaluation and extraction of residual stones after mechanical lithotripsy for retained CBD stones. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Lesion Generation Through Ribs Using Histotripsy Therapy Without Aberration Correction

    PubMed Central

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A.

    2012-01-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction. PMID:22083767

  13. Lesion generation through ribs using histotripsy therapy without aberration correction.

    PubMed

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A

    2011-11-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.

  14. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.

    PubMed

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-01-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  15. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.

    PubMed

    Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W

    2018-02-02

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700  μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14}  W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14}  W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  16. Calcium carbonate gallstones in children.

    PubMed

    Stringer, Mark D; Soloway, Roger D; Taylor, Donald R; Riyad, Kallingal; Toogood, Giles

    2007-10-01

    In the United States, cholesterol stones account for 70% to 95% of adult gallstones and black pigment stones for most of the remainder. Calcium carbonate stones are exceptionally rare. A previous analysis of a small number of pediatric gallstones from the north of England showed a remarkably high prevalence of calcium carbonate stones. The aims of this study were to analyze a much larger series of pediatric gallstones from our region and to compare their chemical composition with a series of adult gallstones from the same geographic area. A consecutive series of gallbladder stones from 63 children and 50 adults from the north of England were analyzed in detail using Fourier transform infrared microspectroscopy. Demographic and clinical data were collected on all patients. The relative proportions of each major stone component were assessed: cholesterol, protein and calcium salts of bilirubin, fatty acids, calcium carbonate, and hydroxyapatite. Thirty-nine (78%) adults had typical cholesterol stones, 7 (14%) had black pigment bilirubinate stones, and only 2 (4%) had calcium carbonate stones. In contrast, 30 (48%) children had black pigment stones, 13 (21%) had cholesterol stones, 15 (24%) had calcium carbonate stones, 3 (5%) had protein dominant stones, and 2 (3%) had brown pigment stones. In children, cholesterol stones were more likely in overweight adolescent girls with a family history of gallstones, whereas black pigment stones were equally common in boys and girls and associated with hemolysis, parenteral nutrition, and neonatal abdominal surgery. Calcium carbonate stones were more common in boys, and almost half had undergone neonatal abdominal surgery and/or required neonatal intensive care. The composition of pediatric gallstones differs significantly from that found in adults. In particular, one quarter of the children in this series had calcium carbonate stones, previously considered rare. Geographic differences are not the major reason for the high prevalence of calcium carbonate gallstones in children.

  17. Compositional analysis of various layers of upper urinary tract stones by infrared spectroscopy

    PubMed Central

    He, Zhang; Jing, Zhang; Jing-Cun, Zheng; Chuan-Yi, Hu; Fei, Gao

    2017-01-01

    The objective of the present study was to determine the composition of various layers of upper urinary stones and assess the mechanisms of stone nucleation and aggregation. A total of 40 integrated urinary tract stones with a diameter of >0.8 cm were removed from the patients. All of the stones were cut in half perpendicularly to the longitudinal axis. Samples were selected from nuclear, internal and external layers of each stone. Fourier transform infrared spectroscopy (FT-IR) was adopted for qualitative and quantitative analysis of all of the fragments and compositional differences among nuclear, internal and external layers of various types of stone were subsequently investigated. A total of 25 cases of calcium oxalate (CaOx) stones and 10 cases of calcium phosphate (CaP) stones were identified to be mixed stones, while 5 uric acid (UA) calculi were pure stones (purity, >95%). In addition, the contents of CaOx and carbapatite (CA.AP) crystals in various layers of the mixed stones were found to be variable. In CaOx stones, the content of CA.AP in nuclear layers was significantly higher than that of the outer layers (32.0 vs. 6.8%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (57.6 vs. 86.6%; P<0.05). In CaP stones, the content of CA.AP in the nuclear layers was higher than that in the outer layers (74.0 vs. 47.3%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (7.0 vs. 40.0%; P<0.05). The UA stones showed no significant differences in their composition among different layers. In conclusion, FT-IR analysis of various layers of human upper urinary tract stones revealed that CaOx and CaP stones showed differences in composition between their core and surface, while all of the UA calculi were pure stones. The composition showed a marked variation among different layers of the stones, indicating that metabolism has an important role in different phases of the evolution of stones. The present study provided novel insight into the pathogenesis of urinary tract stones and may contribute to their prevention and treatment. PMID:28912866

  18. Surgical management of pediatric urolithiasis

    PubMed Central

    Mishra, Shashi K.; Ganpule, A.; Manohar, T.; Desai, Mahesh R.

    2007-01-01

    Pediatric urolithiasis poses a technical challenge to the urologist. A review of the recent literature on the subject was performed to highlight the various treatment modalities in the management of pediatric stones. A Medline search was used to identify manuscripts dealing with management options such as percutaneous nephrolithotomy, shock wave lithotripsy, ureteroscopy and cystolithotripsy in pediatric stone diseases. We also share our experience on the subject. Shock wave lithotripsy should be the treatment modality for renal stone less than 1cm or < 150 mm2 and proximal non-impacted ureteric stone less than 1 cm with normal renal function, no infection and favorable anatomy. Indications for PCNL in children are large burden stone more than 2cm or more than 150mm2 with or without hydronephrosis, urosepsis and renal insufficiency, more than 1cm impacted upper ureteric stone, failure of SWL and significant volume of residual stones after open surgery. Shock wave lithotripsy can be offered for more soft (< 900 HU on CT scan) renal stones between 1-2cm. Primary vesical stone more than 1cm can be tackled with percutaneous cystolithomy or open cystolithotomy. Open renal stone surgery can be done for renal stones with associated structural abnormalities, large burden infective and staghorn stones, large impacted proximal ureteric stone. The role of laparoscopic surgery for stone disease in children still needs to be explored. PMID:19718300

  19. Analysis of the utility of stone gram stain in urolithiasis treated with percutaneous nephrolithotomy.

    PubMed

    Cockerill, Patrick A; Rivera, Marcelino E; Krambeck, Amy E

    2014-06-01

    To define the sensitivity and specificity of stone gram stain for infected urolithiasis treated with percutaneous nephrolithotomy (PCNL). PCNL procedures performed at our institution were analyzed between January 2009 and May 2013. Stone fragments were sent in a sterile fashion for aerobic and fungal cultures. A gram stain and fungal smear were performed on the stones and reported within 24 hours of collection. A total of 228 patients underwent 248 PCNLs. Of the 248 stones, 81 (33%) had a positive stone culture. Stone gram stain was positive in 31 cases and negative in 50. There were 167 negative stone cultures, and in these cases, gram stain was positive in 5 and negative in 162. The calculated sensitivity and specificity of stone gram stain were 38% and 97%. The positive and negative predictive values were 86% and 76%, respectively. In the subset of 16 patients with positive stone fungal cultures, fungal smear was performed in 12 and was positive in 4, giving fungal smear a sensitivity of 33%. The results of this study suggest that stone gram stain cannot be relied on to detect a positive stone culture and may fail to detect up to 62% of infected stones. However, when positive, gram stain accurately predicts a positive stone culture in 86% of cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Treatment and prevention of kidney stones: an update.

    PubMed

    Frassetto, Lynda; Kohlstadt, Ingrid

    2011-12-01

    The incidence of nephrolithiasis (kidney stones) is rising worldwide, especially in women and with increasing age. Kidney stones are associated with chronic kidney disease. Preventing recurrence is largely specific to the type of stone (e.g., calcium oxalate, calcium phosphate, cystine, struvite [magnesium ammonium phosphate]), and uric acid stones); however, even when the stone cannot be retrieved, urine pH and 24-hour urine assessment provide information about stone-forming factors that can guide prevention. Medications, such as protease inhibitors, antibiotics, and some diuretics, increase the risk of some types of kidney stones, and patients should be counseled about the risks of using these medications. Managing diet, medication use, and nutrient intake can help prevent the formation of kidney stones. Obesity increases the risk of kidney stones. However, weight loss could undermine prevention of kidney stones if associated with a high animal protein intake, laxative abuse, rapid loss of lean tissue, or poor hydration. For prevention of calcium oxalate, cystine, and uric acid stones, urine should be alkalinized by eating a diet high in fruits and vegetables, taking supplemental or prescription citrate, or drinking alkaline mineral waters. For prevention of calcium phosphate and struvite stones, urine should be acidified; cranberry juice or betaine can lower urine pH. Antispasmodic medications, ureteroscopy, and metabolic testing are increasingly being used to augment fluid and pain medications in the acute management of kidney stones.

  1. Development of upper tract stones in patients with congenital neurogenic bladder.

    PubMed

    Stephany, Heidi A; Clayton, Douglass B; Tanaka, Stacy T; Thomas, John C; Pope, John C; Brock, John W; Adams, Mark C

    2014-02-01

    Patients with neurogenic bladder are at increased risk of developing upper tract stones. We hypothesized that patients with lower urinary tract stone disease are at greater risk of developing upper tract stones. We performed a 10-year retrospective case-control study of patients with neurogenic bladder to determine the association between bladder and upper tract stones. Independent risk factors for upper tract stones were assessed. Cases and controls were matched 1:1. Univariable analysis was performed by Fisher's exact test and the Mann-Whitney U test. Multivariable logistic regression was performed. 52 cases and controls were identified. Cases were significantly more likely to be non-ambulatory, have bowel-urinary tract interposition, thoracic level dysraphism, and history of bladder stones. On multivariable analysis, independent predictors of stone formation were male sex (OR 2.82; p = 0.02), dysraphism involving the thoracic spine (OR 3.37; p = 0.014) bowel-urinary tract interposition (OR 2.611; p = 0.038), and a history of bladder stones (OR 3.57; p = 0.015). Patients with neurogenic bladder are at increased risk for upper tract stones. The presence of bladder stones may herald the development of upper tract stones. The predictors of stone disease identified should guide prospective studies to better understand the natural history of upper tract stone development in this population. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  2. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures.

    PubMed

    Pramanik, Rocky; Asplin, John R; Jackson, Molly E; Williams, James C

    2008-10-01

    Apatite and brushite kidney stones share calcium and phosphate as their main inorganic components. We tested the hypothesis that these stone types differ in the amount of proteins present in the stones. Intact stones were intensively analyzed by microcomputed tomography (micro CT) for both morphology (including the volume of voids, i.e., space devoid of X-ray dense material) and mineral type. To extract all proteins present in kidney stones in soluble form we developed a three-step extraction procedure using the ground stone powder. Apatite stones had significantly higher levels of total protein content and void volume compared to brushite stones. The void volume was highly correlated with the total protein contents in all stones (r2 = 0.61, P < 0.0001), and brushite stones contained significantly fewer void regions and proteins than did apatite stones (3.2 +/- 4.5% voids for brushite vs. 10.8 +/- 11.2% for apatite, P < 0.005; 4.1 +/- 1.6% protein for brushite vs. 6.0 +/- 2.4% for apatite, P < 0.03). Morphological observations other than void volume did not correlate with protein content of stones, and neither did the presence or absence of minor mineral components. Our results show that protein content of brushite and apatite stones is higher than that was previously thought, and also suggest that micro CT-visible void regions are related to the presence of protein.

  3. Epidemiological study of urinary tract stones in a northern Italian city.

    PubMed

    Borghi, L; Ferretti, P P; Elia, G F; Amato, F; Melloni, E; Trapassi, M R; Novarini, A

    1990-03-01

    An epidemiological study of stone disease in a Northern Italian city was carried out by means of a postal questionnaire mailed to 6000 individuals (2.5% of the entire population). It was found that the incidence of stone disease was comparable to that of industrialised Western Europe. There was a relationship between stone disease and gout and stone disease and a positive family history. The frequency of uric acid stones was high (26.5%). Stone-formers showed no alimentary differences from non-stone formers apart from the use of spices and herbs. Stone-formers used less water from public aqueducts and more uncarbonated mineral water, but only 19% of these drank at least 2 litres a day.

  4. Motion artifacts in kidney stone imaging using single-source and dual-source dual-energy CT scanners: a phantom study.

    PubMed

    Ibrahim, El-Sayed H; Cernigliaro, Joseph G; Pooley, Robert A; Williams, James C; Haley, William E

    2015-10-01

    Dual-energy computed tomography (DECT) has shown the capability of differentiating uric acid (UA) from non-UA stones with 90-100% accuracy. With the invention of dual-source (DS) scanners, both low- and high-energy images are acquired simultaneously. However, DECT can also be performed by sequential acquisition of both images on single-source (SS) scanners. The objective of this study is to investigate the effects of motion artifacts on stone classification using both SS-DECT and DS-DECT. 114 kidney stones of different types and sizes were imaged on both DS-DECT and SS-DECT scanners with tube voltages of 80 and 140 kVp with and without induced motion. Postprocessing was conducted to create material-specific images from corresponding low- and high-energy images. The dual-energy ratio (DER) and stone material were determined and compared among different scans. For the motionless scans, all stones were correctly classified with SS-DECT, while two cystine stones were misclassified with DS-DECT. When motion was induced, 94% of the stones were misclassified with SS-DECT versus 11% with DS-DECT (P < 0.0001). Stone size was not a factor in stone misclassification under motion. Stone type was not a factor in stone misclassification under motion with SS-DECT, although with DS-DECT, cystine showed higher number of stone misclassification. Motion artifacts could result in stone misclassification in DECT. This effect is more pronounced in SS-DECT versus DS-DECT, especially if stones of different types lie in close proximity to each other. Further, possible misinterpretation of the number of stones (i.e., missing one, or thinking that there are two) in DS-DECT could be a potentially significant problem.

  5. After urgent drainage of an obstructed kidney by internal ureteric stenting; is ureteroscopic stone extraction always needed?

    PubMed Central

    Taha, Diaa-Eldin; Elshal, Ahmed M.; Zahran, Mohamed H.; Harraz, Ahmed M.; El-Nahas, Ahmed R.; Shokeir, Ahmed A.

    2015-01-01

    Objectives To assess the probability of spontaneous stone passage and its predictors after drainage of obstructed kidney by JJ stent, as insertion of an internal ureteric stent is often used for renal drainage in cases of calcular ureteric obstruction. Patients and methods Between January 2011 and June 2013, patients for whom emergent drainage by ureteric stents were identified. The patients’ demographics, presentation, and stone characteristics were reviewed. The primary endpoint for this study was stone-free status at the time of stent removal, where all patients underwent non-contrast spiral computed tomography (NCCT) before stent removal. Ureteroscopic stone extraction was performed for CT detectable ureteric stones at the time of stent removal. Potential factors affecting the need for ureteroscopic stone extraction at the time of stent removal were assessed using univariate and multivariate statistical analyses. Results Emergent ureteric stents were undertaken in 196 patients (112 males, 84 females) with a mean (SD) age of 53.7 (16.2) years, for renal obstruction drainage. At the time of stent removal, 83 patients (42.3%) were stone free; with the remaining 113 patients (57.7%) undergoing ureteroscopic stone extraction. On multivariate analysis, stone width [odds ratio (OR) 15.849, 95% confidence interval (CI) 2.83; P = 0.002) and radio-opaque stones (OR 12.035, 95% CI 4.65; P < 0.001) were independent predictors of the need for ureteroscopic stone extraction at the time of stent removal. Conclusion Spontaneous ureteric stone passage is possible after emergent drainage of an obstructed kidney by ureteric stenting. Stone opacity, larger stone width, and positive preoperative urine culture are associated with a greater probability of requiring ureteroscopic stone extraction after emergent drainage by ureteric stenting. PMID:26609444

  6. Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images.

    PubMed

    Dai, Jessica C; Dunmire, Barbrina; Sternberg, Kevan M; Liu, Ziyue; Larson, Troy; Thiel, Jeff; Chang, Helena C; Harper, Jonathan D; Bailey, Michael R; Sorensen, Mathew D

    2018-05-01

    Posterior acoustic shadow width has been proposed as a more accurate measure of kidney stone size compared to direct measurement of stone width on ultrasound (US). Published data in humans to date have been based on a research using US system. Herein, we compared these two measurements in clinical US images. Thirty patient image sets where computed tomography (CT) and US images were captured less than 1 day apart were retrospectively reviewed. Five blinded reviewers independently assessed the largest stone in each image set for shadow presence and size. Shadow size was compared to US and CT stone sizes. Eighty percent of included stones demonstrated an acoustic shadow; 83% of stones without a shadow were ≤ 5 mm on CT. Average stone size was 6.5 ± 4.0 mm on CT, 10.3 ± 4.1 mm on US, and 7.5 ± 4.2 mm by shadow width. On average, US overestimated stone size by 3.8 ± 2.4 mm based on stone width (p < 0.001) and 1.0 ± 1.4 mm based on shadow width (p < 0.0098). Shadow measurements decreased misclassification of stones by 25% among three clinically relevant size categories (≤ 5, 5.1-10, > 10 mm), and by 50% for stones ≤ 5 mm. US overestimates stone size compared to CT. Retrospective measurement of the acoustic shadow from the same clinical US images is a more accurate reflection of true stone size than direct stone measurement. Most stones without a posterior shadow are ≤ 5 mm.

  7. Cholecystolithiasis Is Associated with Clonorchis sinensis Infection

    PubMed Central

    Qiao, Tie; Ma, Rui-hong; Luo, Xiao-bing; Luo, Zhen-liang; Zheng, Pei-ming

    2012-01-01

    Background The objective of this study was to analyze gallbladder stones for direct evidence of a relationship between Clonorchis sinensis infection and gallbladder stones formation. Methodology We investigated one hundred eighty-three gallbladder stones for the presence of Clonorchis sinensis eggs using microscopy, and analyzed their composition using Fourier transform infrared spectroscopy. We confirmed the presence of Clonorchis sinensis eggs in the gallbladder stones using real-time fluorescent PCR and scanning electron microscopy. Principal Findings Clonorchis sinensis eggs were detected in 122 of 183 gallbladder stones based on morphologic characteristics and results from real-time fluorescent PCR. The proportion of pigment stones, cholesterol stones and mixed gallstones in the egg-positive stones was 79.5% (97/122), 3.3% (4/122) and 17.2% (21/122), respectively, while 29.5% (18/61), 31.1% (19/61) and 39.3% (24/61) in the egg-negative stones. The proportion of pigment stone in the Clonorchis sinensis egg-positive stones was higher than in egg-negative stones (P<0.0001). In the 30 egg-positive stones examined by scanning electron microscopy, dozens or even hundreds of Clonorchis sinensis eggs were visible (×400) showing a distinct morphology. Many eggs were wrapped with surrounding particles, and in some, muskmelon wrinkles was seen on the surface of the eggs. Also visible were pieces of texture shed from some of the eggs. Some eggs were depressed or without operculum while most eggs were adhered to or wrapped with amorphous particles or mucoid matter (×3000). Conclusion Clonorchis sinensis eggs were detected in the gallbladder stones which suggests an association between Clonorchis sinensis infection and gallbladder stones formation, especially pigment stones. PMID:22905137

  8. Incidence and characteristics of kidney stones in patients with horseshoe kidney: A systematic review and meta-analysis

    PubMed Central

    Pawar, Aditya S.; Thongprayoon, Charat; Cheungpasitporn, Wisit; Sakhuja, Ankit; Mao, Michael A.; Erickson, Stephen B.

    2018-01-01

    Introduction: The horseshoe kidney (HSK) is the most common type of renal fusion anomaly. The incidence and characteristics of kidney stones in patients with HSK are not well studied. The aim of this meta-analysis was to evaluate the incidence and types of kidney stones in patients with HSK. Methods: A systematic literature search was performed using MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews from the databases' inception through November 2016. Studies assessing the incidence and types of kidney stones in patients with HSK were included. We applied a random-effects model to estimate the incidence of kidney stones. The study protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews; no. CRD42016052037). Results: A total of 14 observational studies with 943 patients (522 adults and 421 pediatric) with HSK were enrolled. The estimated pooled incidence of kidney stones was 36% (95% confidence interval [CI], 15%–59%) in adults with the HSK. Kidney stones were less common in pediatric patients with HSK with an estimated pooled incidence of 3% (95% CI, 2%–5%). The mean age of adult stone formers with HSK was 44.9 ± 6.2 years, and 75% were males. Within reported studies, 89.2% of kidney stones were calcium-based stones (64.2% calcium oxalate [CaOx], 18.8% calcium phosphate [CaP], and 6.2% mixed CaOx/CaP), followed by struvite stones (4.2%), uric acid stones (3.8%), and others (2.8%). Conclusions: Kidney stones are very common in adult patients with HSK with an estimated incidence of 36%. Calcium-based stones are the most prevalent kidney stones in adults with HSKs. These findings may impact the prevention and clinical management of kidney stones in patients with HSK. PMID:29416282

  9. The natural history of nonobstructing asymptomatic renal stones managed with active surveillance.

    PubMed

    Dropkin, Benjamin M; Moses, Rachel A; Sharma, Devang; Pais, Vernon M

    2015-04-01

    We documented the natural history of asymptomatic nonobstructing renal calculi managed with active surveillance and explored factors predicting stone related events to better inform shared decision making. Patients with asymptomatic nonobstructing renal calculi electing active surveillance of their stone(s) were retrospectively reviewed. Stone characteristics, patient characteristics, and stone related events were collected. We evaluated the effects of stone size and location on development of symptoms, spontaneous passage, requirement for surgical intervention, and stone growth. We identified 160 stones with an average size of 7.0 ± 4.2 mm among 110 patients with average followup of 41 ± 19 months. Forty-five (28% of total) stones caused symptoms during followup. Notably 3 stones (3% of asymptomatic subgroup, 2% of total stones) caused painless silent obstruction necessitating intervention after an average of 37 ± 17 months. The only significant predictor of spontaneous passage or symptom development was location. Upper pole/mid renal stones were more likely than lower pole stones to become symptomatic (40.6% vs 24.3%, p = 0.047) and to pass spontaneously (14.5% vs 2.9%, p = 0.016). Among asymptomatic nonobstructing renal calculi managed with active surveillance, most remained asymptomatic through an average followup of more than 3 years. Less than 30% caused renal colic, less than 20% were operated on for pain and 7% spontaneously passed. Lower poles stones were significantly less likely to cause symptoms or pass spontaneously. Despite 3 stones causing silent hydronephrosis suggestive of obstruction, regular followup imaging facilitated interventions that prevented renal loss. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Accurately Diagnosing Uric Acid Stones from Conventional Computerized Tomography Imaging: Development and Preliminary Assessment of a Pixel Mapping Software.

    PubMed

    Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj

    2018-02-01

    Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Risk Factors for Stone Recurrence after Percutaneous Nephrolithotomy

    NASA Astrophysics Data System (ADS)

    Krambeck, Amy E.; Rangel, Laureano J.; LeRoy, Andrew J.; Patterson, David E.; Gettman, Matthew T.

    2008-09-01

    Recent studies have demonstrated more than 30% of percutaneous nephrolithotomy (PCNL) patients will experience a stone recurrence over a 20 year period. The goal of our study was to identify risk factors for stone recurrence after PCNL. Chart review identified 754 patients treated with PCNL for urolithiasis from March of 1983 to July 1984 at our institution. Of this cohort, 87 patients continued to receive medical care at our clinic and had been evaluated within the last 5 years. Of the 87 patients, 80 had recent radiographic imaging. Average follow-up was 19.2 years and 32 (40.0%) experienced at least 1 stone recurrence. There was no difference in preoperative BMI (p = 0.453) or change in BMI (p = 0.964) between patients that did and did not have a stone recurrence. Renal stone location (p = 0.605) and stone size (p = 0.238) were not predictive of recurrence. Patients with calcium oxalate monohydrate stones were less likely to recur (38.7% vs. 41.6%, p = 0.004) and those with calcium oxalate dihydrate (COD) were more likely to recur (31.1% vs. 19.6%, p = 0.006) compared to other compositions. Diabetes mellitus was not associated with recurrent stones (p = 0.810). Those patients with residual stones or fragments <3 mm were more likely to recur and to recur earlier than patients rendered entirely stone free at time of PCNL (p = 0.015). Stone recurrences were associated with the late development of renal insufficiency (25% vs. 2.1%, p = 0.002). In conclusion, stone composition, as well as the presence of residual fragments was associated with recurrent symptomatic stone events after PCNL. Recurrent stone events were significantly associated with the risk of developing renal insufficiency, further stressing the need for complete stone clearance at time of PCNL.

  12. A neural network - based algorithm for predicting stone -free status after ESWL therapy

    PubMed Central

    Seckiner, Ilker; Seckiner, Serap; Sen, Haluk; Bayrak, Omer; Dogan, Kazım; Erturhan, Sakip

    2017-01-01

    ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. PMID:28727384

  13. Chronic Kidney Disease in Kidney Stone Formers

    PubMed Central

    Krambeck, Amy E.; Lieske, John C.

    2011-01-01

    Summary Recent population studies have found symptomatic kidney stone formers to be at increased risk for chronic kidney disease (CKD). Although kidney stones are not commonly identified as the primary cause of ESRD, they still may be important contributing factors. Paradoxically, CKD can be protective against forming kidney stones because of the substantial reduction in urine calcium excretion. Among stone formers, those with rare hereditary diseases (cystinuria, primary hyperoxaluria, Dent disease, and 2,8 dihydroxyadenine stones), recurrent urinary tract infections, struvite stones, hypertension, and diabetes seem to be at highest risk for CKD. The primary mechanism for CKD from kidney stones is usually attributed to an obstructive uropathy or pyelonephritis, but crystal plugs at the ducts of Bellini and parenchymal injury from shockwave lithotripsy may also contribute. The historical shift to less invasive surgical management of kidney stones has likely had a beneficial impact on the risk for CKD. Among potential kidney donors, past symptomatic kidney stones but not radiographic stones found on computed tomography scans were associated with albuminuria. Kidney stones detected by ultrasound screening have also been associated with CKD in the general population. Further studies that better classify CKD, better characterize stone formers, more thoroughly address potential confounding by comorbidities, and have active instead of passive follow-up to avoid detection bias are needed. PMID:21784825

  14. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  15. Modeling of laser-induced ionization of solid dielectrics for ablation simulations: role of effective mass

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-11-01

    Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.

  16. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    NASA Astrophysics Data System (ADS)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  17. Regional differences in constituents of gall stones.

    PubMed

    Ashok, M; Nageshwar Reddy, D; Jayanthi, V; Kalkura, S N; Vijayan, V; Gokulakrishnan, S; Nair, K G M

    2005-01-01

    The pathogenesis of pigment and mixed gall stone formation remains elusive. The elemental constituents of gall stones from southern states of Tamil Nadu, Kerala and Karnataka have been characterized. Our aim was to determine the elemental concentration of representative samples of pigment, mixed and cholesterol gall stones from Andhra Pradesh using proton-induced X-ray emission (PIXE) using a 3 MV horizontal pelletron accelerator. Pigment gall stones had significantly high concentrations of copper, iron and lead; chromium was absent. Except for iron all these elements were significantly low in cholesterol gall stones and intermediate levels were seen in mixed gall stones. Highest concentrations of chromium was seen in cholesterol and titanium in mixed gall stones respectively; latter similar to other southern states. Arsenic was distinctly absent in cholesterol and mixed gall stones. The study has identified differences in elemental components of the gall stones from Andhra Pradesh.

  18. Cholecystectomy for Prevention of Recurrence after Endoscopic Clearance of Bile Duct Stones in Korea.

    PubMed

    Song, Myung Eun; Chung, Moon Jae; Lee, Dong Jun; Oh, Tak Geun; Park, Jeong Youp; Bang, Seungmin; Park, Seung Woo; Song, Si Young; Chung, Jae Bock

    2016-01-01

    Cholecystectomy in patients with an intact gallbladder after endoscopic removal of stones from the common bile duct (CBD) remains controversial. We conducted a case-control study to determine the risk of recurrent CBD stones and the benefit of cholecystectomy for prevention of recurrence after endoscopic removal of stones from the CBD in Korean patients. A total of 317 patients who underwent endoscopic CBD stone extraction between 2006 and 2012 were included. Possible risk factors for the recurrence of CBD stones including previous cholecystectomy history, bile duct diameter, stone size, number of stones, stone composition, and the presence of a periampullary diverticulum were analyzed. The mean duration of follow-up after CBD stone extraction was 25.4±22.0 months. A CBD diameter of 15 mm or larger [odds ratio (OR), 1.930; 95% confidence interval (CI), 1.098 to 3.391; p=0.022] and the presence of a periampullary diverticulum (OR, 1.859; 95% CI, 1.014 to 3.408; p=0.045) were independent predictive factors for CBD stone recurrence. Seventeen patients (26.6%) in the recurrence group underwent elective cholecystectomy soon after endoscopic extraction of CBD stones, compared to 88 (34.8%) in the non-recurrence group; the difference was not statistically significant (p=0.212). A CBD diameter of 15 mm or larger and the presence of a periampullary diverticulum were found to be potential predictive factors for recurrence after endoscopic extraction of CBD stones. Elective cholecystectomy after clearance of CBD stones did not reduce the incidence of recurrent CBD stones in Korean patients.

  19. [Correlation between urinary stones and urinary tract infections].

    PubMed

    Chen, Peilin; Zhang, Liguo; Meng, Bin

    2014-05-01

    To explore the correlation of urinary stones and urinary tract infections. 300 cases with urinary tract stones received in our hospital from Feb. 2010 to Oct. 2013 were chosen as study samples. Urine routine index, situation of urine positivity and urinary tract infection after surgery were analyzed while, intraoperative cotton swabs were tested after being dipped in liquid near stones. Main components of stones in non-infected and infected stone group were analyzed and compared. Data on urolithiasis was collected. 96 infected stones were found in 300 patients, accounting for 32%, which including 35 cases of E. coli (36.5%), 28 cases of Staphylococcus epidermidis (29.2%), and 15 cases of Proteus mirabilis (15.6%). Numbers of urine abnormalities, urine positivities, positive intraoperative cotton swabs and urinary tract infections in patients in the group with infected stones, were significantly higher than in the group without infected stones and the differences were statistically significant (χ² = 8.203, 73.99, 178.9, 24.26, P < 0.05). The incidence rates of hexahydrate magnesium ammonium phosphate, carbonate apatite and hydroxyapatite stones in the group with infected stones were significantly higher than those in the non-infected-rock group while the incidence rates of calcium oxalate and uric acid stones were found significantly lower than those in the non-infected-stone group, with differences statistically significant (χ² = 167.6, 21.00, 8.586, 73.17, 48.79, P < 0.05). Bacteria could cause urinary tract stones, and infected stones were always associated with urinary tract infections. Bacteria detection in patients with urinary calculi was particularly important to avoid the urinary tract infections.

  20. Nutritional Management of Kidney Stones (Nephrolithiasis)

    PubMed Central

    Segal, Adam M.; Seifter, Julian L.; Dwyer, Johanna T.

    2015-01-01

    The incidence of kidney stones is common in the United States and treatments for them are very costly. This review article provides information about epidemiology, mechanism, diagnosis, and pathophysiology of kidney stone formation, and methods for the evaluation of stone risks for new and follow-up patients. Adequate evaluation and management can prevent recurrence of stones. Kidney stone prevention should be individualized in both its medical and dietary management, keeping in mind the specific risks involved for each type of stones. Recognition of these risk factors and development of long-term management strategies for dealing with them are the most effective ways to prevent recurrence of kidney stones. PMID:26251832

  1. Villamayor stone (Golden Stone) as a Global Heritage Stone Resource from Salamanca (NW of Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Talegon, Jacinta; Iñigo, Adolfo; Vicente-Tavera, Santiago

    2013-04-01

    Villamayor stone is an arkosic stone of Middle Eocene age and belongs to the Cabrerizos Sandstone Formation that comprising braided fluvial systems and paleosoils at the top of each stratigraphic sequence. The sandstone is known by several names: i) the Villamayor Stone because the quarries are located in Villamayor de Armuña village that are situated at 7 km to the North from Salamanca city; ii) the Golden Stone due to its patina that produced a ochreous/golden color on the façades of monuments of Salamanca (World Heritage City,1988) built in this Natural stone (one of the silicated rocks utilised). We present in this work, the Villamayor Stone to be candidate as Global Heritage Stone Resource. The Villamayor Stone were quarrying for the construction and ornamentation of Romanesque religious monuments as the Old Cathedral and San Julian church; Gothic (Spanish plateresc style) as the New Cathedral, San Esteban church and the sculpted façade of the Salamanca University, one of the oldest University in Europe (it had established in 1250); and this stone was one of the type of one of the most sumptuous Baroque monuments is the Main Square of the its galleries and arcades (1729). Also, this stone was used in building palaces, walls and reconstruction of Roman bridge. Currently, Villamayor Stone is being quarried by small and family companies, without a modernized processing, for cladding of the façades of the new buildings until that the construction sector was burst (in 2008 the international economic crisis). However, Villamayor Stone is the main stone material used in the city of Salamanca for the restoration of monuments and, even in small quantities when compared with just before the economic crisis, it would be of great importance for future generations protect their quarries and the craft of masonry. Villamayor Stone has several varieties from channels facies to floodplains facies, in this work the selected varieties are: i) the fine-grained stone, microporous, is partially cemented by dolomite, 27% (bulk porosity), ii) the ochre and fine-grained stone, microporous, with smectite, 30% (bulk porosity), iii) the medium-grained stone, 38% (bulk porosity). Main components for all three varieties: Quartz (up to 60%), feldspars, 2:1 layered silicates (smectites), palygorskite-type fibrous silicates, and small amounts of micaceous minerals (illite/mica).

  2. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis.

    PubMed

    Tavichakorntrakool, Ratree; Prasongwattana, Vitoon; Sungkeeree, Seksit; Saisud, Phitsamai; Sribenjalux, Pipat; Pimratana, Chaowat; Bovornpadungkitti, Sombat; Sriboonlue, Pote; Thongboonkerd, Visith

    2012-11-01

    Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P < 0.001) between bacterial types in urine and stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of microorganisms in kidney stone formation.

  3. Contribution of stone size to chronic kidney disease in kidney stone formers.

    PubMed

    Ahmadi, Farrokhlagha; Etemadi, Samira Motedayen; Lessan-Pezeshki, Mahbob; Mahdavi-Mazdeh, Mitra; Ayati, Mohsen; Mir, Alireza; Yazdi, Hadi Rokni

    2015-01-01

    To determine whether stone burden correlates with the degree of chronic kidney disease in kidney stone formers. A total of 97 extracorporeal shockwave lithotripsy candidates aged 18 years and older were included. Size, number and location of the kidney stones, along with cumulative stone size, defined as the sum of diameters of all stones) were determined. Estimated glomerular filtration rate was determined using the Chronic Kidney Disease Epidemiology Collaboration cystatin C/creatinine equation, and chronic kidney disease was defined as estimated glomerular filtration rate <60 mL/min/1.73 m(2). In individuals with cumulative stone size <20 mm, estimated glomerular filtration rate significantly decreased when moving from the first (estimated glomerular filtration rate 75.5 ± 17.8 mL/min/1.73 m(2)) to the fourth (estimated glomerular filtration rate 56.4 ± 20.44 mL/min/1.73 m(2) ) quartile (P = 0.004). When patients with a cumulative stone size ≥ 20 mm were included, the observed association was rendered non-significant. In individuals with a cumulative stone size < 20 mm, each 1-mm increase in cumulative stone size was associated with a 20% increased risk of having chronic kidney disease. The relationship persisted even after adjustment for age, sex, body mass index, C-reactive protein, fasting plasma glucose, thyroid stimulating hormone, presence of microalbuminuria, history of renal calculi, history of extracorporeal shockwave lithotripsy, number and location of the stones (odds ratio 1.24, 95% confidence interval 1.02-1.52). The same was not observed for individuals with a cumulative stone size ≥ 20 mm. In kidney stone formers with a cumulative stone size up to 20 mm, estimated glomerular filtration rate linearly declines with increasing cumulative stone size. Additionally, cumulative stone size is an independent predictor of chronic kidney disease in this group of patients. © 2014 The Japanese Urological Association.

  4. Risk of Hypertension among First-Time Symptomatic Kidney Stone Formers

    PubMed Central

    Kittanamongkolchai, Wonngarm; Mara, Kristin C.; Mehta, Ramila A.; Vaughan, Lisa E.; Denic, Aleksandar; Knoedler, John J.; Enders, Felicity T.; Lieske, John C.

    2017-01-01

    Background and objectives Prior work has suggested a higher risk of hypertension in kidney stone formers but lacked disease validation and adjustment for potential confounders. Certain types of stone formers may also be at higher risk of hypertension. Design, setting, participants, & measurements In our study, incident symptomatic stone formers in Olmsted County from 2000 to 2011 were manually validated by chart review and age and sex matched to Olmsted County controls. We followed up patients through November 20, 2015. Hypertension was also validated by manual chart review, and the risk of hypertension in stone formers compared with controls was assessed both univariately and after adjusting for comorbidities. The risk of hypertension among different subtypes of stone formers was also evaluated. Results Among 3023 coded stone formers from 2000 to 2011, a total of 1515 were validated and matched to 1515 controls (mean age was 45 years old, and 56% were men). After excluding those with baseline hypertension (20% of stone formers and 18% of controls), 154 stone formers and 110 controls developed hypertension. Median follow-up time was 7.8 years in stone formers and 9.6 years in controls. Stone formers were found to have a higher risk of hypertension compared with controls (hazard ratio, 1.50; 95% confidence interval, 1.18 to 1.92), even after adjusting for age, sex, body mass index, serum creatinine, CKD, diabetes, gout, coronary artery disease, dyslipidemia, tobacco use, and alcohol abuse (hazard ratio, 1.58; 95% confidence interval, 1.12 to 2.21). Results were similar after excluding patients who were ever on a thiazide diuretic (hazard ratio, 1.65; 95% confidence interval, 1.16 to 2.38). Stone composition, radiographic stone burden, number of subsequent stone events, and stone removal surgeries were not associated with hypertension (P>0.05 for all). Conclusions The risk of hypertension was higher after the first symptomatic kidney stone event. However, kidney stone severity, type, and treatment did not associate with hypertension. PMID:28148559

  5. Has the pelvic renal stone position inside the upper loop of JJ stent any influence on the extracorporeal shock wave lithotripsy results?

    PubMed

    Pricop, Catalin; Serban, Dragomir N; Serban, Ionela Lacramioara; Cumpanas, Alin-Adrian; Gingu, Constantin-Virgil

    2016-01-01

    JJ stents are often encountered in patients with pelvic renal stones referred for shock wave lithotripsy, most of them being placed either for obstructive renal pelvic stones or for ureteric stones mobilized retrograde during the JJ stent insertion. The aim of the study was to determine whether the relative stone position in the upper loop of the JJ stent during extracorporeal shock wave lithotripsy (SWL) influences the efficiency of the procedure. The study was designed as a prospective cohort study on 162 patients addressing the same urological department, with single renal pelvic stone (primary or mobilized to the renal pelvis during the insertion of JJ stent), smaller than 15 mm, with JJ stent, treated by SWL using a second generation spark gap lithotripter, 18 kV, 3000 waves/session. Patients were divided in three groups according to the relative position of the stone to the upper loop of the JJ stent as appears on plain X-ray: stone-inside-loop, loop-crossing-stone and stone-outside the loop. The SWL success rate was the primary outcome of the study. p Value, Chi square and Kruskal-Wallis tests were used for statistical analysis. For stone-inside-loop cases, SWL efficiency was 22.7 versus 42 % for all the other cases (p = 0.002). Other factors for decreased SWL success rate were: higher stone radio-opacity, larger JJ of stent and obese patients. Study limitation is represented by the relative small study group and by the evaluation of stone density using plain X-ray instead of computer tomography. For pelvic renal stones having the same density characteristics studied by plain X-ray, the SWL efficiency is lower in stone-inside-loop cases comparing with the other positions. The overall stone free rate for renal pelvic stones could be explained by the second generation lithotripter used for all procedures.

  6. Wanted: suitable replacement stones for the Lede stone (Belgium)

    NASA Astrophysics Data System (ADS)

    De Kock, T.; Dewanckele, J.; Boone, M. A.; De Boever, W.; De Schutter, G.; Jacobs, P.; Cnudde, V.

    2012-04-01

    The Lede stone is an arenaceous limestone with a Lutetian age, occurring as discrete (most of the times three) stone banks in the marine sandy sediments of the Lede Formation (Belgium). It has a quartz content of approximate 40%. This increases abrasion strength and together with the cementation results in an average compressive strength of about 80-85 MPa. The cement is a microsparitic calcite cement. Other carbonate particles are both microfossils (mainly foraminifers) and macrofossils (bivalves, serpulids, echinoderms, …). This great diversity gives the stone a heterogeneous, animated appearance. The intra- and interparticle porosity is in total 5-10 % in average and the apparent density is 2400-2550 kg/m3. Another important constituent is glauconite, present in a few percent. In fresh state, the stone has a greenish-grey colour, but when it is exposed to atmospheric conditions for a couple of years, the stone acquires a yellowish to rust-coloured patina due to the weathering of glauconite. Sulphatation causes severe damage to the stone, and black gypsum crusts are common in urban environments on stones protected from runoff. This stone was excavated in both open air and underground quarries in the areas of Brussels and Ghent. The proximity of main rivers such as the Scheldt and Zenne provided transport routes for export towards the north (e.g. Antwerp and The Netherlands). Its first known use dates back to Roman times but the stone flourished in Gothic architecture due to its easy workability and its 'divine' light coloured patina. This results nowadays in a dominant occurrence in the cultural heritage of northwestern Belgium and the south of The Netherlands. Socio-economical reasons caused several declines and revivals of Lede stone in use. In the beginning of the 20th century, only a few excavation sites remained, with as main quarry the one located at Bambrugge (Belgium). By the end of the first half of the 20th century, however, no quarry sites remained. In the sixties, a sand quarry located in Balegem (Belgium) started with the extraction of Lede stone combined with its other activities. Until now, only this site supplies blocks of fresh Lede stones and it doesn't seem there will rise an opportunity of a new site in the near future. Therefore, during the huge amount of renovation works in the past century, the Lede stone was often replaced by imported (mostly French) limestones such as Massangis stone, Savonnières stone and Euville stone. The commercial value seems to have had a large impact and too little attention was paid on the optical appearance, ageing and technical compatibility of the stones. The use of especially Massangis stone was taken for granted. In the 21st century, there is a growing awareness of the impact of such consequent replacement for the historical value of our cultural heritage and several alternative stones are suggested and even used. These include stones from France, Spain and Portugal, but also from other regions in Belgium. For the moment, there is no consensus on the most appropriate replacement stone and further research should be done in order to evaluate compatibility of the different stone types with Lede stone. In this context, it is also very important to actively search for better alternatives, which resemble the Lede stone in both a mechanical and aesthetical point of view. Therefore, this abstract is an open question to its readers. Any commercial natural stone suggestions with affiliation to the aforementioned properties are welcome by e-mailing the corresponding author.

  7. Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond

    NASA Astrophysics Data System (ADS)

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheg; Xu, Zhizhan

    2009-03-01

    Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

  8. Regulation and Measurement of the Heat Generated by Automatic Tooth Preparation in a Confined Space.

    PubMed

    Yuan, Fusong; Zheng, Jianqiao; Sun, Yuchun; Wang, Yong; Lyu, Peijun

    2017-06-01

    The aim of this study was to assess and regulate heat generation in the dental pulp cavity and circumambient temperature around a tooth during laser ablation with a femtosecond laser in a confined space. The automatic tooth preparing technique is one of the traditional oral clinical technology innovations. In this technique, a robot controlled an ultrashort pulse laser to automatically complete the three-dimensional teeth preparing in a confined space. The temperature control is the main measure for protecting the tooth nerve. Ten tooth specimens were irradiated with a femtosecond laser controlled by a robot in a confined space to generate 10 teeth preparation. During the process, four thermocouple sensors were used to record the pulp cavity and circumambient environment temperatures with or without air cooling. A statistical analysis of the temperatures was performed between the conditions with and without air cooling (p < 0.05). The recordings showed that the temperature with air cooling was lower than that without air cooling and that the heat generated in the pulp cavity was lower than the threshold for dental pulp damage. These results indicate that femtosecond laser ablation with air cooling might be an appropriate method for automatic tooth preparing.

  9. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    NASA Astrophysics Data System (ADS)

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  10. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  11. Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2014-12-01

    Thin aluminum film homogeneously heated by intense IR femtosecond laser pulses exhibits on the excitation timescale consequent fluence-dependent rise and drop of the IR-pump self-reflectivity, followed by its final saturation at higher fluences F > 0.3 J/cm2. This prompt optical dynamics correlates with the initial monotonic increase in the accompanying laser-induced electron emission, which is succeeded by its non-linear (three-photon) increase for F > 0.3 J/cm2. The underlying electronic dynamics is related to the initial saturation of IR resonant interband transitions in this material, followed by its strong instantaneous electronic heating via intraband transitions during the pump pulse resulting in thermionic emission. Above the threshold fluence of 0.3 J/cm2, the surface electronic heating is balanced during the pump pulse by simultaneous cooling via intense plasma removal (prompt ablation). The relationship between the deposited volume energy density in the film and its prompt electronic temperature derived from the self-reflection measurements using a Drude model, demonstrates a kind of electron "liquid-vapor" phase transition, driven by strong cubic optical non-linearity of the photo-excited aluminum.

  12. Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation

    NASA Astrophysics Data System (ADS)

    Ji, Xu; Jiang, Lan; Li, Xiaowei; Han, Weina; Liu, Yang; Wang, Andong; Lu, Yongfeng

    2015-01-01

    A cross-patterned surface periodic structure in femtosecond laser processing of crystalline silicon was revealed under a relatively low shots (4 < N < 10) with the pulse energy slightly higher than the ablation threshold. The experimental results indicated that the cross-pattern was composed of mutually orthogonal periodic structures (ripples). Ripples with a direction perpendicular to laser polarization (R⊥) spread in the whole laser-modified region, with the periodicity around 780 nm which was close to the central wavelength of the laser. Other ripples with a direction parallel to laser polarization (R‖) were found to be distributed between two of the adjacent ripples R⊥, with a periodicity about the sub-wavelength of the irradiated laser, 390 nm. The geometrical morphology of two mutually orthogonal ripples under static femtosecond laser irradiation could be continuously rotated as the polarization directions changed, but the periodicity remained almost unchanged. The underlying physical mechanism was revealed by numerical simulations based on the finite element method. It was found that the incubation effect with multiple shots, together with the redistributed electric field after initial ablation, plays a crucial role in the generation of the cross-patterned periodic surface structures.

  13. Urinary Tract Stones and Osteoporosis: Findings From the Women’s Health Initiative

    PubMed Central

    Carbone, Laura D; Hovey, Kathleen M; Andrews, Christopher A; Thomas, Fridtjof; Sorensen, Mathew D; Crandall, Carolyn J; Watts, Nelson B; Bethel, Monique; Johnson, Karen C

    2017-01-01

    Kidney and bladder stones (urinary tract stones) and osteoporosis are prevalent, serious conditions for postmenopausal women. Men with kidney stones are at increased risk of osteoporosis; however, the relationship of urinary tract stones to osteoporosis in postmenopausal women has not been established. The purpose of this study was to determine whether urinary tract stones are an independent risk factor for changes in bone mineral density (BMD) and incident fractures in women in the Women’s Health Initiative (WHI). Data were obtained from 150,689 women in the Observational Study and Clinical Trials of the WHI with information on urinary tract stones status: 9856 of these women reported urinary tract stones at baseline and/or incident urinary tract stones during follow-up. Cox regression models were used to determine the association of urinary tract stones with incident fractures and linear mixed models were used to investigate the relationship of urinary tract stones with changes in BMD that occurred during WHI. Follow-up was over an average of 8 years. Models were adjusted for demographic and clinical factors, medication use, and dietary histories. In unadjusted models there was a significant association of urinary tract stones with incident total fractures (HR 1.10; 95% CI, 1.04 to 1.17). However, in covariate adjusted analyses, urinary tract stones were not significantly related to changes in BMD at any skeletal site or to incident fractures. In conclusion, urinary tract stones in postmenopausal women are not an independent risk factor for osteoporosis. PMID:25990099

  14. Should metabolic evaluation be performed in patients with struvite stones?

    PubMed

    Iqbal, Muhammad Waqas; Shin, Richard H; Youssef, Ramy F; Kaplan, Adam G; Cabrera, Fernando J; Hanna, Jonathan; Scales, Charles D; Ferrandino, Michael N; Preminger, Glenn M; Lipkin, Michael E

    2017-04-01

    Previous studies suggested that patients with pure struvite calculi rarely have underlying metabolic abnormalities. Therefore, most of these patients do not undergo metabolic studies. We report our experience with these patients and their response to directed medical therapy. Between 1/2005 and 9/2012, 75 patients treated with percutaneous nephrolithotomy for struvite stones were identified. Of these, 7 had pure struvite stones (Group 1), 32 had mixed struvite stones (Group 2), both with metabolic evaluation, and 17 had pure struvite stones without metabolic evaluation (Group 3). The frequency of metabolic abnormalities and stone activity (defined as stone growth or stone-related events) was compared between groups. The median age was 55 years and 64 % were female. No significant difference in race, infection history, family history, stone location or volume existed between groups. Metabolic abnormalities were found in 57 % of Group 1 and 81 % of Group 2 patients. A similar proportion of Group 1 and 2 patients received modification to or continuation of metabolic therapy, whereas no Group 3 patients received any directed therapy. In patients with >6 months follow-up, the stone activity rate between Groups 1 and 2 appeared similar whereas Group 3 trended towards higher stone activity rate. Metabolic abnormalities in pure struvite stone formers appear to be more common than previously reported. Directed medical therapy in these patients may reduce stone activity. The role of metabolic evaluation and directed medical therapy needs reconsideration in patients with pure struvite stones.

  15. [Management of Intrahepatic Duct Stone].

    PubMed

    Cha, Sang Woo

    2018-05-25

    Intrahepatic duct (IHD) stone is the presence of calculi within the intrahepatic bile duct specifically located proximal to the confluence of the left and right hepatic ducts. This stone is characterized by its intractable nature and frequent recurrence, requiring multiple therapeutic interventions. Without proper treatment, biliary strictures and retained stones can lead to repeated episodes of cholangitis, liver abscesses, secondary biliary cirrhosis, portal hypertension, and death from sepsis or hepatic failure. The ultimate treatment goals for IHD stones are complete removal of the stone, the correction of the associated strictures, and the prevention of recurrent cholangitis. A surgical resection can satisfy the goal of treatment for hepatolithiasis, i.e., complete removal of the IHD stones, stricture, and the risk of cholangiocarcinogenesis. On the other hand, in some cases, such as bilateral IHD stones, surgery alone cannot achieve these goals. Therefore, the optimal treatments require a multidisciplinary approach, including endoscopic and radiologic interventional procedures before and/or after surgery. Percutaneous transhepatic cholangioscopic lithotomy (PTCS-L) is particularly suited for patients at poor surgical risk or who refuse surgery and those with previous biliary surgery or stones distributed in multiple segments. PTCS-L is relatively safe and effective for the treatment of IHD stones, and complete stone clearance is mandatory to reduce the sequelae of IHD stones. An IHD stricture is the main factor contributing to incomplete clearance and stone recurrence. Long-term follow-up is required because of the overall high recurrence rate of IHD stones and the association with cholangiocarcinoma.

  16. Preventing stone retropulsion during intracorporeal lithotripsy.

    PubMed

    Elashry, Osama M; Tawfik, Ahmad M

    2012-12-01

    Several studies of ureteroscopic treatment for ureteral stones have reported that most stone clearance failures can be attributed to stone fragment retropulsion. Stone retropulsion can result in increased operative time and cost-resulting from the need to change from the semi-rigid ureteroscope to a flexible instrument to chase migrated calculi-and additional procedures to treat residual migrated fragments are often required. The degree of migration depends mainly on the energy source used for lithotripsy; pneumatic and electrohydraulic lithotripters are associated with a greater degree of retropulsion than lasers. Different stone-trapping strategies and devices have been developed to minimize stone migration. Novel devices include the Lithovac(®) suction device, the Passport(™) balloon, the Stone Cone(™), the PercSys Accordion(®), the NTrap(®), and stone baskets such as the LithoCatch(™), the Parachute(™), and the Escape(®). Some authors have also reported on the use of lubricating jelly and BackStop(®) gel (a reverse thermosensitive polymeric plug); these devices are instilled proximal to the stone prior to the application of kinetic energy in order to prevent retrograde stone migration.

  17. Evaluation of biochemical urinary stone composition and its relationship to tap water hardness in Qom province, central Iran.

    PubMed

    Moslemi, Mohammad Kazem; Saghafi, Hossein; Joorabchin, Seyed Mohammad Amin

    2011-01-01

    The aim of this study was to evaluate the biochemical stone composition in general population of Qom province, central Iran, and its relationship with high tap water hardness. In a prospective study, from March 2008 to July 2011, biochemical analysis of urinary stones in patients living in Qom province for at least 5 years was performed. Stones were retrieved by spontaneous passage, endoscopic or open surgery, and after extracorporeal shockwave lithotripsy. Demographic findings and the drinking water supply of patients were evaluated and compared with biochemical stone analysis. Stone analysis was performed in 255 patients. The most dominant composition of urinary stones was calcium oxalate (73%), followed by uric acid (24%), ammonium urate (2%), and cystine (1%). The peak incidence of urinary stone was in patients in their forties. Overall male to female ratio was 4.93:1. The dominant stone composition in inhabitants of central Iran, where tap water hardness is high, was calcium oxalate stones. On the basis of this study, biochemical urinary stone composition of Qom does not differ from other regions of Iran with lower water hardness.

  18. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: A review

    PubMed Central

    Alok, Shashi; Jain, Sanjay Kumar; Verma, Amita; Kumar, Mayank; Sabharwal, Monika

    2013-01-01

    Medicinal plants have been known for millennia and are highly esteemed all over the world as a rich source of therapeutic agents for the prevention of various ailments. Today large number of population suffers from kidney stone, gall stone and urinary calculi. Stone disease has gained increasing significance due to changes in living conditions i.e. industrialization and malnutrition. Changes in prevalence and incidence, the occurrence of stone types and stone location, and the manner of stone removal are explained. Medicinal plants are used from centuries due to its safety, efficacy, cultural acceptability and lesser side effects as compared to synthetic drugs. The present article deals with measures to be adopted for the potential of medicinal plants in stone dissolving activity. The problem of urinary stones or calculi is a very ancient one and many remedies have been employed during the ages these stones are found in all parts of the urinary tract, the kidney, the ureters and the urinary bladder and may vary considerably in size. In the present article, an attempt has been made to emphasis on herbal option for urinary stone.

  19. Prediction of calcium level in melamine-related urinary calculi with helical CT: diagnostic performance evaluation and clinical significance.

    PubMed

    Yuan, Li; Xiaorui, Ru; Gang, Huang; Xinsheng, Xi; Xiaogang, Huang; Li, Dong; Yirong, Chen

    2012-06-01

    The aim of the study was to investigate the relationship between CT-attenuation and stone calcium level in melamine-related urinary calculi (MRUC). A total of 25 MRUC with known composition and calcium level were included (11 uric acid stones, 2 calcium oxalate stones and 12 mixture stones of uric acid and calcium oxalate). Of all, 18 renal stones accepted alkalization therapy except for 5 lower urinary tract stones and 2 stones of unknown position. With well-matched composition, 61 adult urinary stones were included as controls. Every stone was scanned by helical CT (80 kV/120 kV, 300 mA, pitch 0.625 mm) and the highest CT-attenuation value measured. CT-attenuation values of MRUC increased gradually from uric acid stones, mixture stones to calcium oxalate stones, but were always lower than the values of controls. Furthermore, a strong positive correlation was found between stone CT-attenuation value and stone calcium level (n = 25, r (80kV) = 0.883, p = 0.000; r (120kV) = 0.855, p = 0.000). Compared with alkalization-therapy-alone group, stone CT-attenuation values and stone calcium level in the comprehensive-therapy group were significantly greater (CT(80kV) 1,057 ± 639 vs. 172 ± 61 HU, p = 0.001; CT(120kV) 783 ± 476 vs. 162 ± 60 HU, p = 0.001; Ca 19.83 ± 7.48% vs. 1.30 ± 1.51%, p = 0.000). Fisher's exact test suggested that the stones with higher CT-attenuation values tended to resist alkalization when 400 HU served as the cutoff value (P (80kV) = 0.002, P (120kV) = 0.000). In conclusion, the study was the first to illustrate that the CT-attenuation value could reflect calcium level in MRUC and found that stones with higher CT-attenuation value were not amenable to alkalization because they probably contained greater calcium. For those patients, we believe that comprehensive therapy will be the best choice.

  20. Mineralogy and chemistry of urinary stones: patients from North Jordan.

    PubMed

    Abboud, Iyad Ahmed

    2008-10-01

    Urinary stone diseases are increasing in the Middle East. The majority of urinary stone cases are found in the northern part of the country. Stone samples taken from patients living in the Irbid area were collected from Princess Basma Hospital. The present study concentrates on the mineralogical and chemical composition of the urinary stones and on the effective environmental factors that assist in developing the different types of urinary stones. Using X-ray diffraction techniques, the mineralogical composition of the urinary stones was found to be as follows: oxalate, cholesten, and uric acid, with cystine stones occuring more frequently than the others. Cholesten and calcium oxalate stones are the most dominant types of stones. Calcium oxalate is the most common type of oxalate stone. Calcium oxalate is represented in: whewellite, wheddellite, and calcium carbonate oxalate hydrate minerals, in addition to other minerals such as brushite, ammonium phosphate, vaterite, valleriite, and bobierrite from other types of stones. Bobierrite (phosphate group) is a new mineral reported in urinary stones, and this has not been determined in any previous study worldwide. Apatite (calcium phosphate) is deduced using scanning electron microscope (SEM) images. The SEM technique determined crystal forms and systems, shapes, morphological features, and the names of the minerals forming urine stones, while optical properties are studied by polarizing microscope. X-ray fluorescence technique determined the concentrations of major and some trace elements. It revealed that Ca is the main constituent of the urinary stones, especially those composed of calcium oxalate and calcium phosphate. The concentration of trace elements was Ba = 1.57, P = 3.61, Fe = 1.78, S = 2.08, Zr = 4.63, Mo = 3.92, Cu = 1.89, Co = 1.56, and F = 4.2% and was higher in the urinary stones of Jordanian patients than in foreigners in the country. Questionnaires completed by patients suggest that the most significant factors directly effecting the formation of stones are water, climate conditions, food rich in protein and rich in different chemicals. Moreover, some drugs and diseases might also help in developing other stones.

Top