Sample records for stop codon upstream

  1. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.

    PubMed

    Trotta, Edoardo

    2016-05-17

    The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.

  2. Negative and Translation Termination-Dependent Positive Control of FLI-1 Protein Synthesis by Conserved Overlapping 5′ Upstream Open Reading Frames in Fli-1 mRNA

    PubMed Central

    Sarrazin, Sandrine; Starck, Joëlle; Gonnet, Colette; Doubeikovski, Alexandre; Melet, Fabrice; Morle, François

    2000-01-01

    The proto-oncogene Fli-1 encodes a transcription factor of the ets family whose overexpression is associated with multiple virally induced leukemias in mouse, inhibits murine and avian erythroid cell differentiation, and induces drastic perturbations of early development in Xenopus. This study demonstrates the surprisingly sophisticated regulation of Fli-1 mRNA translation. We establish that two FLI-1 protein isoforms (of 51 and 48 kDa) detected by Western blotting in vivo are synthesized by alternative translation initiation through the use of two highly conserved in-frame initiation codons, AUG +1 and AUG +100. Furthermore, we show that the synthesis of these two FLI-1 isoforms is regulated by two short overlapping 5′ upstream open reading frames (uORF) beginning at two highly conserved upstream initiation codons, AUG −41 and GUG −37, and terminating at two highly conserved stop codons, UGA +35 and UAA +15. The mutational analysis of these two 5′ uORF revealed that each of them negatively regulates FLI-1 protein synthesis by precluding cap-dependent scanning to the 48- and 51-kDa AUG codons. Simultaneously, the translation termination of the two 5′ uORF appears to enhance 48-kDa protein synthesis, by allowing downstream reinitiation at the 48-kDa AUG codon, and 51-kDa protein synthesis, by allowing scanning ribosomes to pile up and consequently allowing upstream initiation at the 51-kDa AUG codon. To our knowledge, this is the first example of a cellular mRNA displaying overlapping 5′ uORF whose translation termination appears to be involved in the positive control of translation initiation at both downstream and upstream initiation codons. PMID:10757781

  3. A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream.

    PubMed

    Xu, Yi; Ju, Ho-Jong; DeBlasio, Stacy; Carino, Elizabeth J; Johnson, Richard; MacCoss, Michael J; Heck, Michelle; Miller, W Allen; Gray, Stewart M

    2018-06-01

    Translational readthrough of the stop codon of the capsid protein (CP) open reading frame (ORF) is used by members of the Luteoviridae to produce their minor capsid protein as a readthrough protein (RTP). The elements regulating RTP expression are not well understood, but they involve long-distance interactions between RNA domains. Using high-resolution mass spectrometry, glutamine and tyrosine were identified as the primary amino acids inserted at the stop codon of Potato leafroll virus (PLRV) CP ORF. We characterized the contributions of a cytidine-rich domain immediately downstream and a branched stem-loop structure 600 to 700 nucleotides downstream of the CP stop codon. Mutations predicted to disrupt and restore the base of the distal stem-loop structure prevented and restored stop codon readthrough. Motifs in the downstream readthrough element (DRTE) are predicted to base pair to a site within 27 nucleotides (nt) of the CP ORF stop codon. Consistent with a requirement for this base pairing, the DRTE of Cereal yellow dwarf virus was not compatible with the stop codon-proximal element of PLRV in facilitating readthrough. Moreover, deletion of the complementary tract of bases from the stop codon-proximal region or the DRTE of PLRV prevented readthrough. In contrast, the distance and sequence composition between the two domains was flexible. Mutants deficient in RTP translation moved long distances in plants, but fewer infection foci developed in systemically infected leaves. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing to determine the secondary structure of the mutant DRTEs revealed that the functional mutants were more likely to have bases accessible for long-distance base pairing than the nonfunctional mutants. This study reveals a heretofore unknown combination of RNA structure and sequence that reduces stop codon efficiency, allowing translation of a key viral protein. IMPORTANCE Programmed stop codon readthrough is used by many animal and plant viruses to produce key viral proteins. Moreover, such "leaky" stop codons are used in host mRNAs or can arise from mutations that cause genetic disease. Thus, it is important to understand the mechanism(s) of stop codon readthrough. Here, we shed light on the mechanism of readthrough of the stop codon of the coat protein ORFs of viruses in the Luteoviridae by identifying the amino acids inserted at the stop codon and RNA structures that facilitate this "leakiness" of the stop codon. Members of the Luteoviridae encode a C-terminal extension to the capsid protein known as the readthrough protein (RTP). We characterized two RNA domains in Potato leafroll virus (PLRV), located 600 to 700 nucleotides apart, that are essential for efficient RTP translation. We further determined that the PLRV readthrough process involves both local structures and long-range RNA-RNA interactions. Genetic manipulation of the RNA structure altered the ability of PLRV to translate RTP and systemically infect the plant. This demonstrates that plant virus RNA contains multiple layers of information beyond the primary sequence and extends our understanding of stop codon readthrough. Strategic targets that can be exploited to disrupt the virus life cycle and reduce its ability to move within and between plant hosts were revealed. Copyright © 2018 American Society for Microbiology.

  4. Co-expression of the Thermotoga neapolitana aglB gene with an upstream 3'-coding fragment of the malG gene improves enzymatic characteristics of recombinant AglB cyclomaltodextrinase.

    PubMed

    Lunina, Natalia A; Agafonova, Elena V; Chekanovskaya, Lyudmila A; Dvortsov, Igor A; Berezina, Oksana V; Shedova, Ekaterina N; Kostrov, Sergey V; Velikodvorskaya, Galina A

    2007-07-01

    A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.

  5. Statistical Analysis of Readthrough Levels for Nonsense Mutations in Mammalian Cells Reveals a Major Determinant of Response to Gentamicin

    PubMed Central

    Floquet, Célia; Hatin, Isabelle; Rousset, Jean-Pierre; Bidou, Laure

    2012-01-01

    The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the −1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable. PMID:22479203

  6. Complete mitochondrial genome of Chocolate Pansy, Junonia iphita (Lepidoptera: Nymphalidae: Nymphalinae).

    PubMed

    Vanlalruati, Catherine; Mandal, Surajit De; Gurusubramanian, Guruswami; Senthil Kumar, Nachimuthu

    2016-07-01

    The complete mitochondrial genome of Junonia iphita was determined to be 15,433 bp in length, including 37 typical mitochondrial genes and an AT-rich region. All the protein coding genes (PCGs) are initiated by typical ATN codons, except cox1 gene that is by CGA codon. Eight genes use complete termination codon (TAA), whereas the cox1, cox2 and nad5 genes end with single T; nad4 and nad1 ends with stop codon TA. All the tRNA show secondary cloverleaf structures except trnS1 (AGN). The A + T rich region is 546 bp in length containing ATAGA motif followed by a 18 bp poly-T stretch, two microsatellite-like (TA)9 elements and 8 bp poly-A stretch immediately upstream of trnM gene.

  7. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.

    PubMed Central

    Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R

    1982-01-01

    The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791

  8. Two alternative ways of start site selection in human norovirus reinitiation of translation.

    PubMed

    Luttermann, Christine; Meyers, Gregor

    2014-04-25

    The calicivirus minor capsid protein VP2 is expressed via termination/reinitiation. This process depends on an upstream sequence element denoted termination upstream ribosomal binding site (TURBS). We have shown for feline calicivirus and rabbit hemorrhagic disease virus that the TURBS contains three sequence motifs essential for reinitiation. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18 S rRNA leading to the model that hybridization between motif 1 and 18 S rRNA tethers the post-termination ribosome to the mRNA. Motif 2 and motif 2* are proposed to establish a secondary structure positioning the ribosome relative to the start site of the terminal ORF. Here, we analyzed human norovirus (huNV) sequences for the presence and importance of these motifs. The three motifs were identified by sequence analyses in the region upstream of the VP2 start site, and we showed that these motifs are essential for reinitiation of huNV VP2 translation. More detailed analyses revealed that the site of reinitiation is not fixed to a single codon and does not need to be an AUG, even though this codon is clearly preferred. Interestingly, we were able to show that reinitiation can occur at AUG codons downstream of the canonical start/stop site in huNV and feline calicivirus but not in rabbit hemorrhagic disease virus. Although reinitiation at the original start site is independent of the Kozak context, downstream initiation exhibits requirements for start site sequence context known for linear scanning. These analyses on start codon recognition give a more detailed insight into this fascinating mechanism of gene expression.

  9. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    PubMed

    Seligmann, Hervé

    2018-05-01

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response

    PubMed Central

    Loughran, Gary; Jungreis, Irwin; Tzani, Ioanna; Power, Michael; Dmitriev, Ruslan I.; Ivanov, Ivaylo P.; Kellis, Manolis; Atkins, John F.

    2018-01-01

    Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid–long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor. PMID:29386352

  11. Stop codons in the hepatitis B surface proteins are enriched during antiviral therapy and are associated with host cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colledge, Danielle; Soppe, Sally; Yuen, Lilly

    Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion.more » Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression. - Highlights: •Under normal circumstances, HBV replication is not cytopathic. •Premature stop codons in the HBV surface protein can be selected and enriched during nucleos(t)ide analogue therapy. •Replication of these variants can be cytopathic to the cell and promote apoptosis. •Inadequate antiviral therapy may actually promote disease progression.« less

  12. The positive regulatory function of the 5'-proximal open reading frames in GCN4 mRNA can be mimicked by heterologous, short coding sequences.

    PubMed Central

    Williams, N P; Mueller, P P; Hinnebusch, A G

    1988-01-01

    Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function. Images PMID:3065626

  13. Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters.

    PubMed

    Levin-Karp, Ayelet; Barenholz, Uri; Bareia, Tasneem; Dayagi, Michal; Zelcbuch, Lior; Antonovsky, Niv; Noor, Elad; Milo, Ron

    2013-06-21

    Translational coupling is the interdependence of translation efficiency of neighboring genes encoded within an operon. The degree of coupling may be quantified by measuring how the translation rate of a gene is modulated by the translation rate of its upstream gene. Translational coupling was observed in prokaryotic operons several decades ago, but the quantitative range of modulation translational coupling leads to and the factors governing this modulation were only partially characterized. In this study, we systematically quantify and characterize translational coupling in E. coli synthetic operons using a library of plasmids carrying fluorescent reporter genes that are controlled by a set of different ribosome binding site (RBS) sequences. The downstream gene expression level is found to be enhanced by the upstream gene expression via translational coupling with the enhancement level varying from almost no coupling to over 10-fold depending on the upstream gene's sequence. Additionally, we find that the level of translational coupling in our system is similar between the second and third locations in the operon. The coupling depends on the distance between the stop codon of the upstream gene and the start codon of the downstream gene. This study is the first to systematically and quantitatively characterize translational coupling in a synthetic E. coli operon. Our analysis will be useful in accurate manipulation of gene expression in synthetic biology and serves as a step toward understanding the mechanisms involved in translational expression modulation.

  14. Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.

    PubMed

    Alkalaeva, Elena; Mikhailova, Tatiana

    2017-03-01

    The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.

  15. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.

    PubMed

    Billon, Pierre; Bryant, Eric E; Joseph, Sarah A; Nambiar, Tarun S; Hayward, Samuel B; Rothstein, Rodney; Ciccia, Alberto

    2017-09-21

    Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Global analysis of translation termination in E. coli.

    PubMed

    Baggett, Natalie E; Zhang, Yan; Gross, Carol A

    2017-03-01

    Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins.

  17. Recent evidence for evolution of the genetic code

    NASA Technical Reports Server (NTRS)

    Osawa, S.; Jukes, T. H.; Watanabe, K.; Muto, A.

    1992-01-01

    The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.

  18. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    PubMed Central

    Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F

    2007-01-01

    Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing. PMID:17897476

  19. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobanov, Alexei V.; Heaphy, Stephen M.; Turanov, Anton A.

    2016-11-21

    The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared tomore » designate termination. Thus, a ‘stop codon’ is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.« less

  20. Expression of Human Hemojuvelin (HJV) Is Tightly Regulated by Two Upstream Open Reading Frames in HJV mRNA That Respond to Iron Overload in Hepatic Cells

    PubMed Central

    Onofre, Cláudia; Tomé, Filipa; Barbosa, Cristina; Silva, Ana Luísa

    2015-01-01

    The gene encoding human hemojuvelin (HJV) is one of the genes that, when mutated, can cause juvenile hemochromatosis, an early-onset inherited disorder associated with iron overload. The 5′ untranslated region of the human HJV mRNA has two upstream open reading frames (uORFs), with 28 and 19 codons formed by two upstream AUGs (uAUGs) sharing the same in-frame stop codon. Here we show that these uORFs decrease the translational efficiency of the downstream main ORF in HeLa and HepG2 cells. Indeed, ribosomal access to the main AUG is conditioned by the strong uAUG context, which results in the first uORF being translated most frequently. The reach of the main ORF is then achieved by ribosomes that resume scanning after uORF translation. Furthermore, the amino acid sequences of the uORF-encoded peptides also reinforce the translational repression of the main ORF. Interestingly, when iron levels increase, translational repression is relieved specifically in hepatic cells. The upregulation of protein levels occurs along with phosphorylation of the eukaryotic initiation factor 2α. Nevertheless, our results support a model in which the increasing recognition of the main AUG is mediated by a tissue-specific factor that promotes uORF bypass. These results support a tight HJV translational regulation involved in iron homeostasis. PMID:25666510

  1. RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera.

    PubMed Central

    Schuster, W; Brennicke, A

    1991-01-01

    An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921

  2. Global analysis of translation termination in E. coli

    PubMed Central

    Baggett, Natalie E.

    2017-01-01

    Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. PMID:28301469

  3. Massive programmed translational jumping in mitochondria

    PubMed Central

    Lang, B. Franz; Jakubkova, Michaela; Hegedusova, Eva; Daoud, Rachid; Forget, Lise; Brejova, Brona; Vinar, Tomas; Kosa, Peter; Fricova, Dominika; Nebohacova, Martina; Griac, Peter; Tomaska, Lubomir; Burger, Gertraud; Nosek, Jozef

    2014-01-01

    Programmed translational bypassing is a process whereby ribosomes “ignore” a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a “takeoff codon” immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching “landing triplet” 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions. PMID:24711422

  4. Complete mitochondrial genome of Palawan peacock-pheasant Polyplectron napoleonis (Galliformes, Phasianidae).

    PubMed

    Quach, Tommy; Brooks, Daniel M; Miranda, Hector C

    2016-01-01

    The complete mitochondrial genome of the Palawan peacock-pheasant Polyplectron napoleonis is 16,710 bp and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control-region. All protein-coding genes use the standard ATG start codon, except for cox1 which has GTG start codon. Seven out of 13 PCGs have TAA stop codons, two have AGG (cox1 and nd6), and three PCGs (nd2, cox2 and nd4) have incomplete stop codon of just T- - nucleotide.

  5. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila.

    PubMed Central

    Chao, Anna T; Dierick, Herman A; Addy, Tracie M; Bejsovec, Amy

    2003-01-01

    In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. PMID:14573473

  6. The Role of +4U as an Extended Translation Termination Signal in Bacteria

    PubMed Central

    Wei, Yulong; Xia, Xuhua

    2017-01-01

    Termination efficiency of stop codons depends on the first 3′ flanking (+4) base in bacteria and eukaryotes. In both Escherichia coli and Saccharomyces cerevisiae, termination read-through is reduced in the presence of +4U; however, the molecular mechanism underlying +4U function is poorly understood. Here, we perform comparative genomics analysis on 25 bacterial species (covering Actinobacteria, Bacteriodetes, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Proteobacteria, and Spirochaetae) with bioinformatics approaches to examine the influence of +4U in bacterial translation termination by contrasting highly- and lowly-expressed genes (HEGs and LEGs, respectively). We estimated gene expression using the recently formulated Index of Translation Elongation, ITE, and identified stop codon near-cognate transfer RNAs (tRNAs) from well-annotated genomes. We show that +4U was consistently overrepresented in UAA-ending HEGs relative to LEGs. The result is consistent with the interpretation that +4U enhances termination mainly for UAA. Usage of +4U decreases in GC-rich species where most stop codons are UGA and UAG, with few UAA-ending genes, which is expected if UAA usage in HEGs drives up +4U usage. In HEGs, +4U usage increases significantly with abundance of UAA nc_tRNAs (near-cognate tRNAs that decode codons differing from UAA by a single nucleotide), particularly those with a mismatch at the first stop codon site. UAA is always the preferred stop codon in HEGs, and our results suggest that UAAU is the most efficient translation termination signal in bacteria. PMID:27903612

  7. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.

    PubMed

    Kuscu, Cem; Parlak, Mahmut; Tufan, Turan; Yang, Jiekun; Szlachta, Karol; Wei, Xiaolong; Mammadov, Rashad; Adli, Mazhar

    2017-07-01

    CRISPR-Cas9-induced DNA damage may have deleterious effects at high-copy-number genomic regions. Here, we use CRISPR base editors to knock out genes by changing single nucleotides to create stop codons. We show that the CRISPR-STOP method is an efficient and less deleterious alternative to wild-type Cas9 for gene-knockout studies. Early stop codons can be introduced in ∼17,000 human genes. CRISPR-STOP-mediated targeted screening demonstrates comparable efficiency to WT Cas9, which indicates the suitability of our approach for genome-wide functional screenings.

  8. L-MPZ, a Novel Isoform of Myelin P0, Is Produced by Stop Codon Readthrough*

    PubMed Central

    Yamaguchi, Yoshihide; Hayashi, Akiko; Campagnoni, Celia W.; Kimura, Akio; Inuzuka, Takashi; Baba, Hiroko

    2012-01-01

    Myelin protein zero (P0 or MPZ) is a major myelin protein (∼30 kDa) expressed in the peripheral nervous system (PNS) in terrestrial vertebrates. Several groups have detected a P0-related 36-kDa (or 35-kDa) protein that is expressed in the PNS as an antigen for the serum IgG of patients with neuropathy. The molecular structure and function of this 36-kDa protein are, however, still unknown. We hypothesized that the 36-kDa protein may be derived from P0 mRNA by stop codon readthrough. We found a highly conserved region after the regular stop codon in predicted sequences from the 3′-UTR of P0 in higher animals. MS of the 36-kDa protein revealed that both P0 peptides and peptides deduced from the P0 3′-UTR sequence were found among the tryptic fragments. In transfected cells and in an in vitro transcription/translation system, the 36-kDa molecule was also produced from the identical mRNA that produced P0. We designated this 36-kDa molecule as large myelin protein zero (L-MPZ), a novel isoform of P0 that contains an additional domain at the C terminus. In the PNS, L-MPZ was localized in compact myelin. In transfected cells, just like P0, L-MPZ was localized at cell-cell adhesion sites in the plasma membrane. These results suggest that L-MPZ produced by the stop codon readthrough mechanism is potentially involved in myelination. Since this is the first finding of stop codon readthrough in a common mammalian protein, detailed analysis of L-MPZ expression will help to understand the mechanism of stop codon readthrough in mammals. PMID:22457349

  9. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma

    ERIC Educational Resources Information Center

    Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon…

  10. Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.

    PubMed Central

    Schuster, W; Unseld, M; Wissinger, B; Brennicke, A

    1990-01-01

    The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162

  11. Single nucleotide polymorphisms of Helicobacter pylori dupA that lead to premature stop codons.

    PubMed

    Moura, Sílvia B; Costa, Rafaella F A; Anacleto, Charles; Rocha, Gifone A; Rocha, Andreia M C; Queiroz, Dulciene M M

    2012-06-01

     The detection of the putative disease-specific Helicobacter pylori marker duodenal ulcer promoting gene A (dupA) is currently based on PCR detection of jhp0917 and jhp0918 that form the gene. However, mutations that lead to premature stop codons that split off the dupA leading to truncated products cannot be evaluated by PCR. We directly sequence the complete dupA of 75 dupA-positive strains of H. pylori isolated from patients with gastritis (n = 26), duodenal ulcer (n = 29), and gastric carcinoma (n = 20), to search for frame-shifting mutations that lead to stop codon. Thirty-four strains had single nucleotide mutations in dupA that lead to premature stop codon creating smaller products than the predicted 1839 bp product and, for this reason, were considered as dupA-negative. Intact dupA was more frequently observed in strains isolated from duodenal ulcer patients (65.5%) than in patients with gastritis only (46.2%) or with gastric carcinoma (50%). In logistic analysis, the presence of the intact dupA independently associated with duodenal ulcer (OR = 5.06; 95% CI = 1.22-20.96, p = .02).  We propose the primer walking methodology as a simple technique to sequence the gene. When we considered as dupA-positive only those strains that carry dupA gene without premature stop codons, the gene was associated with duodenal ulcer and, therefore, can be used as a marker for this disease in our population. © 2012 Blackwell Publishing Ltd.

  12. Mutation at Tyrosine in AMLRY (GILRY Like) Motif of Yeast eRF1 on Nonsense Codons Suppression and Binding Affinity to eRF3

    PubMed Central

    Akhmaloka; Susilowati, Prima Endang; Subandi; Madayanti, Fida

    2008-01-01

    Termination translation in Saccharomyces cerevisiae is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. Two regions in human eRF1, position at 281-305 and position at 411-415, were proposed to be involved on the interaction to eRF3. In this study we have constructed and characterized yeast eRF1 mutant at position 410 (correspond to 415 human eRF1) from tyrosine to serine residue resulting eRF1(Y410S). The mutations did not affect the viability and temperature sensitivity of the cell. The stop codons suppression of the mutant was analyzed in vivo using PGK-stop codon-LACZ gene fusion and showed that the suppression of the mutant was significantly increased in all of codon terminations. The suppression on UAG codon was the highest increased among the stop codons by comparing the suppression of the wild type respectively. In vitro interaction between eRF1 (mutant and wild type) to eRF3 were carried out using eRF1-(His)6 and eRF1(Y410S)-(His)6 expressed in Escherichia coli and indigenous Saccharomyces cerevisiae eRF3. The results showed that the binding affinity of eRF1(Y410S) to eRF3 was decreased up to 20% of the wild type binding affinity. Computer modeling analysis using Swiss-Prot and Amber version 9.0 programs revealed that the overall structure of eRF1(Y410S) has no significant different with the wild type. However, substitution of tyrosine to serine triggered the structural change on the other motif of C-terminal domain of eRF1. The data suggested that increasing stop codon suppression and decreasing of the binding affinity of eRF1(Y410S) were probably due to the slight modification on the structure of the C-terminal domain. PMID:18463713

  13. Termination and read-through proteins encoded by genome segment 9 of Colorado tick fever virus.

    PubMed

    Mohd Jaafar, Fauziah; Attoui, Houssam; De Micco, Philippe; De Lamballerie, Xavier

    2004-08-01

    Genome segment 9 (Seg-9) of Colorado tick fever virus (CTFV) is 1884 bp long and contains a large open reading frame (ORF; 1845 nt in length overall), although a single in-frame stop codon (at nt 1052-1054) reduces the ORF coding capacity by approximately 40 %. However, analyses of highly conserved RNA sequences in the vicinity of the stop codon indicate that it belongs to a class of 'leaky terminators'. The third nucleotide positions in codons situated both before and after the stop codon, shows the highest variability, suggesting that both regions are translated during virus replication. This also suggests that the stop signal is functionally leaky, allowing read-through translation to occur. Indeed, both the truncated 'termination' protein and the full-length 'read-through' protein (VP9 and VP9', respectively) were detected in CTFV-infected cells, in cells transfected with a plasmid expressing only Seg-9 protein products, and in the in vitro translation products from undenatured Seg-9 ssRNA. The ratios of full-length and truncated proteins generated suggest that read-through may be down-regulated by other viral proteins. Western blot analysis of infected cells and purified CTFV showed that VP9 is a structural component of the virion, while VP9' is a non-structural protein.

  14. Identification of a second flagellin gene and functional characterization of a sigma70-like promoter upstream of a Leptospira borgpetersenii flaB gene.

    PubMed

    Lin, Min; Dan, Hanhong; Li, Yijing

    2004-02-01

    Leptospira borgpetersenii, one of the causative agents of leptospirosis in both animals and humans, is a bacterial pathogen with characteristic motility that is mediated by the rotation of two periplasmic flagella (PF). The flaB gene coding for a core polypeptide subunit of PF was previously characterized by sequence analysis of its open reading frame (ORF) (M. Lin, J Biochem Mol Biol Biophys 2:181-187, 1999). The present study was undertaken to isolate and clone the uncharacterized sequence upstream of the flaB gene by using a PCR-based genome walking procedure. This has resulted in a 1470-bp genomic DNA sequence in which an 846-bp ORF coding for a 281-amino acid polypeptide (31.3 kDa) is identified 455 bp upstream from the flaB start codon. The encoded protein exhibits 72% amino acid identity to the deduced FlaB protein sequence of L. borgpetersenii and a high degree of sequence homology to the FlaB proteins of other spirochaetes. This has demonstrated for the first time that a second flaB gene homolog is present in a Leptospira species. The newly identified gene is designated flaB1, and the previously cloned flaB renamed flaB2. Within the intergenic sequence between flaB1 and flaB2, a potential stem-loop structure (12-bp inverted repeats) was identified 25 bp downstream of the flaB1 stop codon; this could serve as a transcription terminator for the flaB1 mRNA. Three E. coli-like promoter regions (I, II, and III) for binding Esigma(70), a regulatory sequence uncommonly found in flagellar genes, were predicted upstream of the flaB2 ORF. Only promoter region II contains a promoter that is functional in E. coli, as revealed at phenotypic and transcriptional levels by its capability of directing the expression of the chloramphenicol acetyltransferase (CAT) gene in the promoter probe vector pKK232-8. These observations may suggest that flaB1 and flaB2 are transcribed separately and do not form a transcriptional operon controlled by a single promoter.

  15. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma

    PubMed Central

    Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students’ ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. PMID:27909016

  16. Complete mitochondrial genome of the Yellownose skate: Zearaja chilensis (Rajiformes, Rajidae).

    PubMed

    Jeong, Dageum; Lee, Youn-Ho

    2016-01-01

    The complete sequence of mitochondrial DNA of a Yellownose skate, Zearaja chilensis was determined for the first time. It is 16,909 bp in length covering 2 rRNA, 22 tRNA and 13 protein coding genes with the identical gene order and structure as those of other Rajidae species. The nucleotide of L-strand is composed of low G (14.3%), and slightly high A + T (58.9%) nucleotides. The strong codon usage bias against the use of G (6.0%) is found at the third codon positions. Twelve of the 13 protein coding genes use ATG as the start codon while COX1 starts with GTG. As for the stop codon, only ND4 shows an incomplete stop codon TA. This is the first report of the mitogenome for a species in the genus Zearaja, providing a valuable source of genetic information on the evolution of the family Rajidae and the genus Zearaja as well as for establishment of a sustainble fishery management plan of the species.

  17. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.

  18. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    PubMed

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Origin of noncoding DNA sequences: molecular fossils of genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naora, H.; Miyahara, K.; Curnow, R.N.

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. The authors propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approx. 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approx. 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stopmore » codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. They attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.« less

  20. UPF1 silenced cellular model systems for screening of read-through agents active on β039 thalassemia point mutation.

    PubMed

    Salvatori, Francesca; Pappadà, Mariangela; Breveglieri, Giulia; D'Aversa, Elisabetta; Finotti, Alessia; Lampronti, Ilaria; Gambari, Roberto; Borgatti, Monica

    2018-05-15

    Nonsense mutations promote premature translational termination, introducing stop codons within the coding region of mRNAs and causing inherited diseases, including thalassemia. For instance, in β 0 39 thalassemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, ribosomal read-through molecules, such as aminoglycoside antibiotics, have been tested on mRNAs carrying premature stop codons. These findings have introduced new hopes for the development of a pharmacological approach to the β 0 39 thalassemia therapy. While several strategies, designed to enhance translational read-through, have been reported to inhibit NMD efficiency concomitantly, experimental tools for systematic analysis of mammalian NMD inhibition by translational read-through are lacking. We developed a human cellular model of the β 0 39 thalassemia mutation with UPF-1 suppressed and showing a partial NMD suppression. This novel cellular model could be used for the screening of molecules exhibiting preferential read-through activity allowing a great rescue of the mutated transcripts.

  1. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast.

    PubMed

    Beznosková, Petra; Gunišová, Stanislava; Valášek, Leoš Shivaya

    2016-03-01

    The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3. © 2016 Beznosková et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.

    PubMed

    Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T

    2017-11-14

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease. Copyright © 2017 Jones et al.

  3. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    PubMed Central

    Jones, Jennifer E.; Long, Kristin M.; Whitmore, Alan C.; Sanders, Wes; Thurlow, Lance R.; Brown, Julia A.; Morrison, Clayton R.; Vincent, Heather; Browning, Christian; Moorman, Nathaniel; Lim, Jean K.

    2017-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. PMID:29138302

  4. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster

    PubMed Central

    Dunn, Joshua G; Foo, Catherine K; Belletier, Nicolette G; Gavis, Elizabeth R; Weissman, Jonathan S

    2013-01-01

    Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001 PMID:24302569

  5. Introduction of translation stop codons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Kurath, G.

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.

  6. Efficient initiation of mammalian mRNA translation at a CUG codon.

    PubMed Central

    Dasso, M C; Jackson, R J

    1989-01-01

    Nucleotide substitutions were made at the initiation codon of an influenza virus NS cDNA clone in a vector carrying the bacteriophage T7 promoter. When capped mRNA transcripts of these constructs were translated in the rabbit reticulocyte lysate, a change in the initiation codon from...AUAAUGG...to...AUACUGG...reduced the in vitro translational efficiency by only 50-60%, and resulted in only a small increase in the yield of short products presumed to be initiated at downstream sites. Synthesis of the full-length product was initiated exclusively at the mutated codon, with negligible use either of in-frame upstream CUG or GUG codons, or of an in-frame downstream GUG codon. We conclude that CUG has the potential to function as an efficient initiation codon in mammalian systems, at least in certain contexts. Images PMID:2780285

  7. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency

    PubMed Central

    Lévy, Romain; Okada, Satoshi; Béziat, Vivien; Moriya, Kunihiko; Liu, Caini; Chai, Louis Yi Ann; Migaud, Mélanie; Hauck, Fabian; Al Ali, Amein; Cyrus, Cyril; Vatte, Chittibabu; Patiroglu, Turkan; Unal, Ekrem; Ferneiny, Marie; Hyakuna, Nobuyuki; Nepesov, Serdar; Oleastro, Matias; Ikinciogullari, Aydan; Dogu, Figen; Asano, Takaki; Ohara, Osamu; Yun, Ling; Della Mina, Erika; Bronnimann, Didier; Itan, Yuval; Gothe, Florian; Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Tahuil, Natalia; Aytekin, Caner; Salhi, Aicha; Al Muhsen, Saleh; Kobayashi, Masao; Toubiana, Julie; Abel, Laurent; Li, Xiaoxia; Camcioglu, Yildiz; Celmeli, Fatih; Klein, Christoph; AlKhater, Suzan A.; Casanova, Jean-Laurent; Puel, Anne

    2016-01-01

    Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC—autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency—was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface. PMID:27930337

  8. Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons

    PubMed Central

    Chen, Augustine; Kao, Y. F.; Brown, Chris M.

    2005-01-01

    The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins. PMID:15731337

  9. Methylation of class I translation termination factors: structural and functional aspects.

    PubMed

    Graille, Marc; Figaro, Sabine; Kervestin, Stéphanie; Buckingham, Richard H; Liger, Dominique; Heurgué-Hamard, Valérie

    2012-07-01

    During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. The complete mitochondrial genome of the Longnose skate: Raja rhina (Rajiformes, Rajidae).

    PubMed

    Jeong, Dageum; Lee, Youn-Ho

    2015-02-01

    The complete sequence of mitochondrial DNA of a longnose skate, Raja rhina was determined for the first time. It is 16,910 bp in length containing 2 rRNA, 22 tRNA and 13 protein coding genes with the same gene order and structure as those of other Rajidae species. The nucleotide of L-strand is composed of 30.1% A, 27.2% C, 28.5% T and 14.2% G, showing a slight A + T bias. The G is the least used base and markedly lower at the third codon position (5.4%). Twelve of the 13 protein coding genes use ATG as their start codon while the COX1 starts with GTG. As for stop codon, only ND4 shows incomplete stop codon TA. This mitogenome is the first report for a species of the genus Raja, and providing a valuable resource of genetic information for understanding the phylogenetic relationship and the evolution of the genus Raja as well as the family, Rajidae.

  11. Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals.

    PubMed

    Neves, Fabiana; Abrantes, Joana; Esteves, Pedro J

    2016-07-01

    The interactions between chemokines and their receptors are crucial for differentiation and activation of inflammatory cells. CC chemokine ligand 11 (CCL11) binds to CCR3 and to CCR5 that in leporids underwent gene conversion with CCR2. Here, we genetically characterized CCL11 in lagomorphs (leporids and pikas). All lagomorphs have a potentially functional CCL11, and the Pygmy rabbit has a mutation in the stop codon that leads to a longer protein. Other mammals also have mutations at the stop codon that result in proteins with different lengths. By employing maximum likelihood methods, we observed that, in mammals, CCL11 exhibits both signatures of purifying and positive selection. Signatures of purifying selection were detected in sites important for receptor binding and activation. Of the three sites detected as under positive selection, two were located close to the stop codon. Our results suggest that CCL11 is functional in all lagomorphs, and that the signatures of purifying and positive selection in mammalian CCL11 probably reflect the protein's biological roles. © The Author(s) 2016.

  12. Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe.

    PubMed

    Colagrossi, Luna; Hermans, Lucas E; Salpini, Romina; Di Carlo, Domenico; Pas, Suzan D; Alvarez, Marta; Ben-Ari, Ziv; Boland, Greet; Bruzzone, Bianca; Coppola, Nicola; Seguin-Devaux, Carole; Dyda, Tomasz; Garcia, Federico; Kaiser, Rolf; Köse, Sukran; Krarup, Henrik; Lazarevic, Ivana; Lunar, Maja M; Maylin, Sarah; Micheli, Valeria; Mor, Orna; Paraschiv, Simona; Paraskevis, Dimitros; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Simon, François; Stanojevic, Maja; Stene-Johansen, Kathrine; Tihic, Nijaz; Trimoulet, Pascale; Verheyen, Jens; Vince, Adriana; Lepej, Snjezana Zidovec; Weis, Nina; Yalcinkaya, Tülay; Boucher, Charles A B; Wensing, Annemarie M J; Perno, Carlo F; Svicher, Valentina

    2018-06-01

    HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe. This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-DNA and with an available HBsAg-sequence. The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D (resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined. Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence. At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend. By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape mutation (OR[95%CI]:2.20[1.32-3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by analysing drug-naïve patients (29.5% vs 21.2%, P = 0.032). Strong correlation was observed between sP120T and rtM204I/V (P < 0.001), and their co-presence determined an increased HBV-DNA. At least one NA-induced immune-escape mutation occurred in 28.6% of patients, and their selection correlated with genotype-A (OR[95%CI]:2.03[1.32-3.10],P = 0.001). Finally, stop-codons are present in 8.4% of patients also at HBsAg-positions 172 and 182, described to enhance viral oncogenic-properties. Immune-escape mutations and stop-codons develop in a large fraction of NA-exposed patients from Europe. This may represent a potential threat for horizontal and vertical HBV transmission also to vaccinated persons, and fuel drug-resistance emergence.

  13. In vitro incorporation of nonnatural amino acids into protein using tRNACys-derived opal, ochre, and amber suppressor tRNAs

    PubMed Central

    Gubbens, Jacob; Kim, Soo Jung; Yang, Zhongying; Johnson, Arthur E.; Skach, William R.

    2010-01-01

    Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies. PMID:20581130

  14. The complete mitochondrial genome of the Korean skate: Hongeo koreana (Rajiformes, Rajidae).

    PubMed

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Lee, Youn-Ho

    2014-12-01

    The complete mitochondrial genome of the Korean skate, Hongeo koreana, the sole member of its genus, is investigated for the first time. The genome consists of 16,906 bp in length including 2 rRNA, 22 tRNA and 13 protein coding genes with the same gene order and structure of the genome as those of other Rajidae species. The overall nucleotide composition of the L-strand is A = 29.8%, C = 27.9%, T = 27.9% and G = 14.3%, showing a high A + T bias. The anti-G bias (6.0%) is more significant in the third codon position. Twelve of the 13 protein-coding genes use ATG as their start codon while the COX1 gene starts with GTG. For stop codon, ND3 and ND4 genes show incomplete stop codon T. The mitogenome sequence of H. koreana will provide important information on the evolution and the phylogenetic relation of the genus Hongeo in relation to the other genera of the family Rajidae.

  15. Somatic mutations in cancer: Stochastic versus predictable.

    PubMed

    Gold, Barry

    2017-02-01

    The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes. Copyright © 2017. Published by Elsevier B.V.

  16. A common periodic table of codons and amino acids.

    PubMed

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  17. Stop Codon Reassignment in the Wild

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James

    Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hostsmore » must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences« less

  18. Conserved small mRNA with an unique, extended Shine-Dalgarno sequence

    PubMed Central

    Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald

    2017-01-01

    ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614

  19. An Upstream Open Reading Frame Is Essential for Feedback Regulation of Ascorbate Biosynthesis in Arabidopsis

    PubMed Central

    Laing, William A.; Martínez-Sánchez, Marcela; Wright, Michele A.; Bulley, Sean M.; Brewster, Di; Dare, Andrew P.; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C.; Hellens, Roger P.

    2015-01-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. PMID:25724639

  20. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis.

    PubMed

    Laing, William A; Martínez-Sánchez, Marcela; Wright, Michele A; Bulley, Sean M; Brewster, Di; Dare, Andrew P; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C; Hellens, Roger P

    2015-03-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. © 2015 American Society of Plant Biologists. All rights reserved.

  1. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion

    PubMed Central

    O’Donoghue, Patrick; Prat, Laure; Heinemann, Ilka U.; Ling, Jiqiang; Odoi, Keturah; Liu, Wenshe R.; Söll, Dieter

    2012-01-01

    Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to ‘statistical protein’ that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNAPyl orthogonal pair cannot completely outcompete contamination by natural amino acids. PMID:23036644

  2. Functional Analyses of c.2268dup in Thyroid Peroxidase Gene Associated with Goitrous Congenital Hypothyroidism

    PubMed Central

    Harun, Fatimah; Jalaludin, Muhammad Yazid; Lim, Chor Yin; Ng, Khoon Leong

    2014-01-01

    The c.2268dup mutation in thyroid peroxidase (TPO) gene was reported to be a founder mutation in Taiwanese patients with dyshormonogenetic congenital hypothyroidism (CH). The functional impact of the mutation is not well documented. In this study, homozygous c.2268dup mutation was detected in two Malaysian-Chinese sisters with goitrous CH. Normal and alternatively spliced TPO mRNA transcripts were present in thyroid tissues of the two sisters. The abnormal transcript contained 34 nucleotides originating from intron 12. The c.2268dup is predicted to generate a premature termination codon (PTC) at position 757 (p.Glu757X). Instead of restoring the normal reading frame, the alternatively spliced transcript has led to another stop codon at position 740 (p.Asp739ValfsX740). The two PTCs are located at 116 and 201 nucleotides upstream of the exons 13/14 junction fulfilling the requirement for a nonsense-mediated mRNA decay (NMD). Quantitative RT-PCR revealed an abundance of unidentified transcripts believed to be associated with the NMD. TPO enzyme activity was not detected in both patients, even though a faint TPO band of about 80 kD was present. In conclusion, the c.2268dup mutation leads to the formation of normal and alternatively spliced TPO mRNA transcripts with a consequential loss of TPO enzymatic activity in Malaysian-Chinese patients with goitrous CH. PMID:24745015

  3. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway

    PubMed Central

    Ge, Zhiyun; Quek, Bao Lin; Beemon, Karen L; Hogg, J Robert

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI: http://dx.doi.org/10.7554/eLife.11155.001 PMID:26744779

  4. Structural insights into eRF3 and stop codon recognition by eRF1

    PubMed Central

    Cheng, Zhihong; Saito, Kazuki; Pisarev, Andrey V.; Wada, Miki; Pisareva, Vera P.; Pestova, Tatyana V.; Gajda, Michal; Round, Adam; Kong, Chunguang; Lim, Mengkiat; Nakamura, Yoshikazu; Svergun, Dmitri I.; Ito, Koichi; Song, Haiwei

    2009-01-01

    Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1. PMID:19417105

  5. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code

    PubMed Central

    Hofhuis, Julia; Schueren, Fabian; Nötzel, Christopher; Lingner, Thomas; Gärtner, Jutta; Jahn, Olaf

    2016-01-01

    Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases. PMID:27881739

  6. New Universal Rules of Eukaryotic Translation Initiation Fidelity

    PubMed Central

    Zur, Hadas; Tuller, Tamir

    2013-01-01

    The accepted model of eukaryotic translation initiation begins with the scanning of the transcript by the pre-initiation complex from the 5′end until an ATG codon with a specific nucleotide (nt) context surrounding it is recognized (Kozak rule). According to this model, ATG codons upstream to the beginning of the ORF should affect translation. We perform for the first time, a genome-wide statistical analysis, uncovering a new, more comprehensive and quantitative, set of initiation rules for improving the cost of translation and its efficiency. Analyzing dozens of eukaryotic genomes, we find that in all frames there is a universal trend of selection for low numbers of ATG codons; specifically, 16–27 codons upstream, but also 5–11 codons downstream of the START ATG, include less ATG codons than expected. We further suggest that there is selection for anti optimal ATG contexts in the vicinity of the START ATG. Thus, the efficiency and fidelity of translation initiation is encoded in the 5′UTR as required by the scanning model, but also at the beginning of the ORF. The observed nt patterns suggest that in all the analyzed organisms the pre-initiation complex often misses the START ATG of the ORF, and may start translation from an alternative initiation start-site. Thus, to prevent the translation of undesired proteins, there is selection for nucleotide sequences with low affinity to the pre-initiation complex near the beginning of the ORF. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the Kozak rule alone (e.g. for protein levels r = 0.7 vs. r = 0.31; p<10−12). PMID:23874179

  7. The prediction of human exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyev, V.V.; Salamov, A.A.; Lawrence, C.B.

    1994-12-31

    Discriminant analysis is applied to the problem of recognition 5`-, internal and 3`-exons in human DNA sequences. Specific recognition functions were developed for revealing exons of particular types. The method based on a splice site prediction algorithm that uses the linear Fisher discriminant to combine the information about significant triplet frequencies of various functional parts of splice site regions and preferences of oligonucleotide in protein coding and nation regions. The accuracy of our splice site recognition function is about 97%. A discriminant function for 5`-exon prediction includes hexanucleotide composition of upstream region, triplet composition around the ATG codon, ORF codingmore » potential, donor splice site potential and composition of downstream introit region. For internal exon prediction, we combine in a discriminant function the characteristics describing the 5`- intron region, donor splice site, coding region, acceptor splice site and Y-intron region for each open reading frame flanked by GT and AG base pairs. The accuracy of precise internal exon recognition on a test set of 451 exon and 246693 pseudoexon sequences is 77% with a specificity of 79% and a level of pseudoexon ORF prediction of 99.96%. The recognition quality computed at the level of individual nucleotides is 89%, for exon sequences and 98% for intron sequences. A discriminant function for 3`-exon prediction includes octanucleolide composition of upstream nation region, triplet composition around the stop codon, ORF coding potential, acceptor splice site potential and hexanucleotide composition of downstream region. We unite these three discriminant functions in exon predicting program FEX (find exons). FEX exactly predicts 70% of 1016 exons from the test of 181 complete genes with specificity 73%, and 89% exons are exactly or partially predicted. On the average, 85% of nucleotides were predicted accurately with specificity 91%.« less

  8. Selenocysteine incorporation: A trump card in the game of mRNA decay

    PubMed Central

    Shetty, Sumangala P.; Copeland, Paul R.

    2015-01-01

    The incorporation of the 21st amino acid, selenocysteine (Sec), occurs on mRNAs that harbor in-frame stop codons because the Sec-tRNASec recognizes a UGA codon. This sets up an intriguing interplay between translation elongation, translation termination and the complex machinery that marks mRNAs that contain premature termination codons for degradation, leading to nonsense mediated mRNA decay (NMD). In this review we discuss the intricate and complex relationship between this key quality control mechanism and the process of Sec incorporation in mammals. PMID:25622574

  9. A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred

    PubMed Central

    Vidal, Ruben; Révész, Tamas; Rostagno, Agueda; Kim, Eugene; Holton, Janice L.; Bek, Toke; Bojsen-Møller, Marie; Braendgaard, Hans; Plant, Gordon; Ghiso, Jorge; Frangione, Blas

    2000-01-01

    Familial Danish dementia (FDD), also known as heredopathia ophthalmo-oto-encephalica, is an autosomal dominant disorder characterized by cataracts, deafness, progressive ataxia, and dementia. Neuropathological findings include severe widespread cerebral amyloid angiopathy, hippocampal plaques, and neurofibrillary tangles, similar to Alzheimer's disease. N-terminal sequence analysis of isolated leptomeningeal amyloid fibrils revealed homology to ABri, the peptide originated by a point mutation at the stop codon of gene BRI in familial British dementia. Molecular genetic analysis of the BRI gene in the Danish kindred showed a different defect, namely the presence of a 10-nt duplication (795–796insTTTAATTTGT) between codons 265 and 266, one codon before the normal stop codon 267. The decamer duplication mutation produces a frame-shift in the BRI sequence generating a larger-than-normal precursor protein, of which the amyloid subunit (designated ADan) comprises the last 34 C-terminal amino acids. This de novo-created amyloidogenic peptide, associated with a genetic defect in the Danish kindred, stresses the importance of amyloid formation as a causative factor in neurodegeneration and dementia. PMID:10781099

  10. Ribosomes slide on lysine-encoding homopolymeric A stretches

    PubMed Central

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  11. Characterization of the complete mitochondrial genome of the Grey-backed Shrike, Lanius tephronotus (Aves: Passeriformes): the first representative of the family Laniidae with a novel CAA stop codon at the end of cox2 gene.

    PubMed

    Qian, Chaoju; Yan, Xia; Guo, Zhichun; Wang, Yuanxiu; Li, Xixi; Yang, Jianke; Kan, Xianzhao

    2013-08-01

    The complete Grey-backed Shrike mitochondrial genome has been sequenced to be 16,820 bp in length, consisting of 37 encode genes: 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. In addition, a single control region was also observed. Compared with other reported Passeriformes mtgenome sequences, three bases CAA were detected at the end of Lanius tephronotus cox2 gene with the downstream adjacent base T. The first base of CAA probably occurred C to U transcript editing event resulting in a normal stop codon UAA.

  12. The LINEs and SINEs of Entamoeba histolytica: comparative analysis and genomic distribution.

    PubMed

    Bakre, Abhijeet A; Rawal, Kamal; Ramaswamy, Ram; Bhattacharya, Alok; Bhattacharya, Sudha

    2005-07-01

    Autonomous non-long terminal repeat retrotransposons are commonly referred to as long interspersed elements (LINEs). Short non-autonomous elements that borrow the LINE machinery are called SINES. The Entamoeba histolytica genome contains three classes of LINEs and SINEs. Together the EhLINEs/SINEs account for about 6% of the genome. The recognizable functional domains in all three EhLINEs included reverse transcriptase and endonuclease. A novel feature was the presence of two types of members-some with a single long ORF (less frequent) and some with two ORFs (more frequent) in both EhLINE1 and 2. The two ORFs were generated by conserved changes leading to stop codon. Computational analysis of the immediate flanking sequences for each element showed that they inserted in AT-rich sequences, with a preponderance of Ts in the upstream site. The elements were very frequently located close to protein-coding genes and other EhLINEs/SINEs. The possible influence of these elements on expression of neighboring genes needs to be determined.

  13. Deep intronic GPR143 mutation in a Japanese family with ocular albinism

    PubMed Central

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-01-01

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757

  14. Deep intronic GPR143 mutation in a Japanese family with ocular albinism.

    PubMed

    Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei

    2015-06-10

    Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.

  15. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke

    2010-03-15

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less

  16. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Atkins, John F.

    2008-01-01

    In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes. PMID:18626014

  17. Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger.

    PubMed

    Li, Kangxin; Yang, Fang; Abdullahi, A Y; Song, Meiran; Shi, Xianli; Wang, Minwei; Fu, Yeqi; Pan, Weida; Shan, Fang; Chen, Wu; Li, Guoqing

    2016-12-01

    Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina . This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

  18. Using Student Writing and Lexical Analysis to Reveal Student Thinking about the Role of Stop Codons in the Central Dogma.

    PubMed

    Prevost, Luanna B; Smith, Michelle K; Knight, Jennifer K

    2016-01-01

    Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students' ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. © 2016 L. B. Prevost et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon

    PubMed Central

    Jacinto-Loeza, Eva; Vivanco-Domínguez, Serafín; Guarneros, Gabriel; Hernández-Sánchez, Javier

    2008-01-01

    Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3–8 codon minigenes containing AGAAGA codons before the stop codon. β-Galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, β-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 μg/μl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of β-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNAArg4. These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA. PMID:18583364

  20. Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein.

    PubMed

    Koh, Dora Chin-Yen; Wang, Xiaoxing; Wong, Sek-Man; Liu, D X

    2006-12-01

    Viruses depend heavily on host cells for replication and exploit the host translation machinery for its gene expression using various unorthodox translation mechanisms. According to the conventional scanning model, only the 5'-proximal gene in the viral RNA is accessible to the ribosomes whereas other genes are silent. In this study, we use a model plant RNA virus, Hibiscus chlorotic ringspot virus (HCRSV), to investigate various translation mechanisms involved in regulation of the expression of internal genes. The 3'-end 1.2kb region of HCRSV genomic and subgenomic RNAs were shown to encode four polypeptides of 38, 27, 25 and 22.5kDa. Mutagenesis studies revealed that a CUG codon ((2570)CUG) is the initiation codon for p27, the longest of the three co-C-terminal products (p27, p25 and p22.5), and translation of p25 and p22.5 was initiated at (2603)AUG and (2666)AUG, respectively. Translation initiation of the p27 expression at the (2570)CUG codon regulates the expression of p38, the viral coat protein through a leaky scanning mechanism and mutational analysis of an upstream open reading frame (ORF) demonstrated that initiation of the p27 expression at this CUG codon (instead of an AUG) may play a role in maintaining the ratio of p27 and p38. In addition, a previously identified internal ribosome entry site was shown to control the expression of p27 and p38 in the subgenomic RNA 2.

  1. The Mitochondrial Genome and Transcriptome of the Basal Dinoflagellate Hematodinium sp.: Character Evolution within the Highly Derived Mitochondrial Genomes of Dinoflagellates

    PubMed Central

    Gornik, S. G.; Waller, R. F.

    2012-01-01

    The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA. PMID:22113794

  2. The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates.

    PubMed

    Jackson, C J; Gornik, S G; Waller, R F

    2012-01-01

    The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA.

  3. Upstream open reading frames regulate the expression of the nuclear Wnt13 isoforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Tao; Rector, Kyle; Barnett, Corey D.

    2008-02-22

    Wnt proteins control cell survival and cell fate during development. Although Wnt expression is tightly regulated in a spatio-temporal manner, the mechanisms involved both at the transcriptional and translational levels are poorly defined. We have identified a downstream translation initiation codon, AUG(+74), in Wnt13B and Wnt13C mRNAs responsible for the expression of Wnt13 nuclear forms. In this report, we demonstrate that the expression of the nuclear Wnt13C form is translationally regulated in response to stress and apoptosis. Though the 5'-leaders of both Wnt13C and Wnt13B mRNAs have an inhibitory effect on translation, they did not display an internal ribosome entrymore » site activity as demonstrated by dicistronic reporter assays. However, mutations or deletions of the upstream AUG(-99) and AUG(+1) initiation codons abrogate these translation inhibitory effects, demonstrating that Wnt13C expression is controlled by upstream open reading frames. Since long 5'-untranslated region with short upstream open reading frames characterize other Wnt transcripts, our present data on the translational control of Wnt13 expression open the way to further studies on the translation control of Wnt expression as a modulator of their subcellular localization and activity.« less

  4. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    PubMed

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  5. Complete mitochondrial genome of Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae).

    PubMed

    Omeire, Destiny; Abdin, Shaunte; Brooks, Daniel M; Miranda, Hector C

    2015-04-01

    The Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae) is classified as Near Threatened on the IUCN Red List. The complete mitochondrial genome of P. germaini is 16,699 bp, consisting of 13 protein-coding genes, 2 rRNA, 22 tRNA genes and 1 control region. All of the 13 protein-coding genes have ATG as start codon. Eight of the 13 protein-coding genes have TAA as stop codon.

  6. Correlations of HBV Genotypes, Mutations Affecting HBeAg Expression and HBeAg/ anti-HBe Status in HBV Carriers

    PubMed Central

    Lim, Chee Kent; Tan, Joanne Tsui Ming; Khoo, Jason Boo Siang; Ravichandran, Aarthi; Low, Hsin Mei; Chan, Yin Chyi; Ton, So Har

    2006-01-01

    This study was carried out to determine the effects of hepatitis B virus genotypes, core promoter mutations (A1762G1764→T1762A1764) as well as precore stop codon mutations (TGG→TAG) on HBeAg expression and HBeAg/ anti-HBe status. Study was also performed on the effects of codon 15 variants (C1858/ T1858) on the predisposition of precore stop codon mutations (TGG→TAG). A total of 77 sera samples were analyzed. Fifty one samples were successfully genotyped of which the predominant genotype was genotype B (29/ 51, 56.9 %), followed by genotype C (16/ 51, 31.4 %). Co-infections by genotypes B and C were observed in four samples (7.8 %). To a lesser degree, genotypes D and E (2.0 % each) were also observed. For core promoter mutations, the prevalence was 68.8 % (53/ 77) for A1762G1764 wild-type and 14.3 % (11/ 77) for T1762A1764 mutant while 9.1 % (7/ 77) was co-infected by both strains. The prevalence of codon 15 variants was found to be 42.9 % (33/ 77) for T1858 variant and 16.9 % (13/ 77) for C1858 variant. No TAG mutation was found. In our study, no associations were found between genotypes (B and C) and core promoter mutations as well as codon 15 variants. Also no correlation was observed between HBeAg/ anti-HBe status with genotypes (B and C) and core promoter mutations. PMID:16421626

  7. Control of total GFP expression by alterations to the 3′ region nucleotide sequence

    PubMed Central

    2013-01-01

    Background Previously, we distinguished the Escherichia coli type II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for unfolded and folded soluble target proteins. The translocation of folded protein to the periplasm for soluble expression via the Tat pathway was controlled by an N-terminal hydrophilic leader sequence. In this study, we investigated the effect of the hydrophilic C-terminal end and its nucleotide sequence on total and soluble protein expression. Results The native hydrophilic C-terminal end of GFP was obtained by deleting the C-terminal peptide LeuGlu-6×His, derived from pET22b(+). The corresponding clones induced total and soluble GFP expression that was either slightly increased or dramatically reduced, apparently through reconstruction of the nucleotide sequence around the stop codon in the 3′ region. In the expression-induced clones, the hydrophilic C-terminus showed increased Tat pathway specificity for soluble expression. However, in the expression-reduced clone, after analyzing the role of the 5′ poly(A) coding sequence with a substituted synonymous codon, we proved that the longer 5′ poly(A) coding sequence interacted with the reconstructed 3′ region nucleotide sequence to create a new mRNA tertiary structure between the 5′ and 3′ regions, which resulted in reduced total GFP expression. Further, to recover the reduced expression by changing the 3′ nucleotide sequence, after replacing selected C-terminal 5′ codons and the stop codon in the ORF with synonymous codons, total GFP expression in most of the clones was recovered to the undeleted control level. The insertion of trinucleotides after the stop codon in the 3′-UTR recovered or reduced total GFP expression. RT-PCR revealed that the level of total protein expression was controlled by changes in translational or transcriptional regulation, which were induced or reduced by the substitution or insertion of 3′ region nucleotides. Conclusions We found that the hydrophilic C-terminal end of GFP increased Tat pathway specificity and that the 3′ nucleotide sequence played an important role in total protein expression through translational and transcriptional regulation. These findings may be useful for efficiently producing recombinant proteins as well as for potentially controlling the expression level of specific genes in the body for therapeutic purposes. PMID:23834827

  8. The Complete Mitochondrial Genome of the Rice Moth, Corcyra cephalonica

    PubMed Central

    Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong

    2012-01-01

    The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)3. The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)9, (AT)8 elements. PMID:23413968

  9. The complete mitochondrial genome of the rice moth, Corcyra cephalonica.

    PubMed

    Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong

    2012-01-01

    The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.

  10. The CUG-initiated larger form coat protein of Chinese wheat mosaic virus binds to the cysteine-rich RNA silencing suppressor.

    PubMed

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Ratti, Claudio; Chen, Jianping

    2013-10-01

    Some viruses use alternative translation initiation at non-AUG codons as a strategy to produce multiple proteins during gene expression. Here we show that, using this strategy, Chinese wheat mosaic virus (CWMV; Furovirus) expresses a larger form of coat protein (N-ext/CP) in infected plants. Site-directed mutagenesis and transient expression analysis confirmed that CWMV N-ext/CP is initiated at an upstream in-frame CUG codon at nucleotide position 207-209 of RNA 2, which adds a 39 amino acid (aa) N-terminal extension to the major CP. Interestingly, in planta and in vitro analyses indicated that CWMV N-ext/CP but not CP interacts with the CWMV cysteine-rich protein (CRP), an RNA silencing suppressor. We further determined that the N-terminal 39 aa extension, particularly the 10 aa region immediately upstream of the major CP coding region is responsible for the interaction of N-ext/CP with CRP. In an Agrobacterium co-infiltration assay, co-expression with N-ext/CP did not affect CRP silencing suppression activity. Thus the alternative translation initiation at a CUG codon provides the CWMV N-ext/CP with the ability to bind to the viral silencing suppressor. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High-level tetracycline resistance mediated by efflux pumps Tet(A) and Tet(A)-1 with two start codons.

    PubMed

    Wang, Weixia; Guo, Qinglan; Xu, Xiaogang; Sheng, Zi-ke; Ye, Xinyu; Wang, Minggui

    2014-11-01

    Efflux is the most common mechanism of tetracycline resistance. Class A tetracycline efflux pumps, which often have high prevalence in Enterobacteriaceae, are encoded by tet(A) and tet(A)-1 genes. These genes have two potential start codons, GTG and ATG, located upstream of the genes. The purpose of this study was to determine the start codon(s) of the class A tetracycline resistance (tet) determinants tet(A) and tet(A)-1, and the tetracycline resistance level they mediated. Conjugation, transformation and cloning experiments were performed and the genetic environment of tet(A)-1 was analysed. The start codons in class A tet determinants were investigated by site-directed mutagenesis of ATG and GTG, the putative translation initiation codons. High-level tetracycline resistance was transferred from the clinical strain of Klebsiella pneumoniae 10-148 containing tet(A)-1 plasmid pHS27 to Escherichia coli J53 by conjugation. The transformants harbouring recombinant plasmids that carried tet(A) or tet(A)-1 exhibited tetracycline MICs of 256-512 µg ml(-1), with or without tetR(A). Once the ATG was mutated to a non-start codon, the tetracycline MICs were not changed, while the tetracycline MICs decreased from 512 to 64 µg ml(-1) following GTG mutation, and to ≤4 µg ml(-1) following mutation of both GTG and ATG. It was presumed that class A tet determinants had two start codons, which are the primary start codon GTG and secondary start codon ATG. Accordingly, two putative promoters were predicted. In conclusion, class A tet determinants can confer high-level tetracycline resistance and have two start codons. © 2014 The Authors.

  12. A novel mutation in the FGB: c.1105C>T turns the codon for amino acid Bβ Q339 into a stop codon causing hypofibrinogenemia.

    PubMed

    Marchi, Rita; Brennan, Stephen; Meyer, Michael; Rojas, Héctor; Kanzler, Daniela; De Agrela, Marisela; Ruiz-Saez, Arlette

    2013-03-01

    Routine coagulation tests on a 14year-old male with frequent epistaxis showed a prolonged thrombin time together with diminished functional (162mg/dl) and gravimetric (122mg/dl) fibrinogen concentrations. His father showed similar aberrant results and sequencing of the three fibrinogen genes revealed a novel heterozygous nonsense mutation in the FGB gene c.1105C>T, which converts the codon for residue Bβ 339Q to stop, causing deletion of Bβ chain residues 339-461. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and RP-HPLC (reverse-phase high-pressure liquid chromatography) of purified fibrinogen showed only normal Aα, Bβ, and γ chains, indicating that molecules with the truncated 37,990Da β chain were not secreted into plasma. Functional analysis showed impaired fibrin polymerization, fibrin porosity, and elasticity compared to controls. By laser scanning confocal microscopy the patient's fibers were slightly thinner than normal. Electrospray ionization mass spectrometry (ESI MS) presented normal sialylation of the oligosaccharide chains, and liver function tests showed no evidence of liver dysfunction that might explain the functional abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Representation mutations from standard genetic codes

    NASA Astrophysics Data System (ADS)

    Aisah, I.; Suyudi, M.; Carnia, E.; Suhendi; Supriatna, A. K.

    2018-03-01

    Graph is widely used in everyday life especially to describe model problem and describe it concretely and clearly. In addition graph is also used to facilitate solve various kinds of problems that are difficult to be solved by calculation. In Biology, graph can be used to describe the process of protein synthesis in DNA. Protein has an important role for DNA (deoxyribonucleic acid) or RNA (ribonucleic acid). Proteins are composed of amino acids. In this study, amino acids are related to genetics, especially the genetic code. The genetic code is also known as the triplet or codon code which is a three-letter arrangement of DNA nitrogen base. The bases are adenine (A), thymine (T), guanine (G) and cytosine (C). While on RNA thymine (T) is replaced with Urasil (U). The set of all Nitrogen bases in RNA is denoted by N = {C U, A, G}. This codon works at the time of protein synthesis inside the cell. This codon also encodes the stop signal as a sign of the stop of protein synthesis process. This paper will examine the process of protein synthesis through mathematical studies and present it in three-dimensional space or graph. The study begins by analysing the set of all codons denoted by NNN such that to obtain geometric representations. At this stage there is a matching between the sets of all nitrogen bases N with Z 2 × Z 2; C=(\\overline{0},\\overline{0}),{{U}}=(\\overline{0},\\overline{1}),{{A}}=(\\overline{1},\\overline{0}),{{G}}=(\\overline{1},\\overline{1}). By matching the algebraic structure will be obtained such as group, group Klein-4,Quotien group etc. With the help of Geogebra software, the set of all codons denoted by NNN can be presented in a three-dimensional space as a multicube NNN and also can be represented as a graph, so that can easily see relationship between the codon.

  14. Conserved nonsense-prone CpG sites in apoptosis-regulatory genes: conditional stop signs on the road to cell death.

    PubMed

    Zhao, Yongzhong; Epstein, Richard J

    2013-01-01

    Methylation-prone CpG dinucleotides are strongly conserved in the germline, yet are also predisposed to somatic mutation. Here we quantify the relationship between germline codon mutability and somatic carcinogenesis by comparing usage of the nonsense-prone CGA (→TGA) codons in gene groups that differ in apoptotic function; to this end, suppressor genes were subclassified as either apoptotic (gatekeepers) or repair (caretakers). Mutations affecting CGA codons in sporadic tumors proved to be highly asymmetric. Moreover, nonsense mutations were 3-fold more likely to affect gatekeepers than caretakers. In addition, intragenic CGA clustering nonrandomly affected functionally critical regions of gatekeepers. We conclude that human gatekeeper suppressor genes are enriched for nonsense-prone codons, and submit that this germline vulnerability to tumors could reflect in utero selection for a methylation-dependent capability to short-circuit environmental insults that otherwise trigger apoptosis and fetal loss.

  15. Analysis of four families with the Stickler syndrome by linkage studies. Identification of a new premature stop codon in the COL2A1 gene in a family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonaventure, J.; Lasselin, C.; Toutain, A.

    1994-09-01

    The Stickler syndrome is an arthro-ophthalmopathy which associates progressive myopia with vitreal degeneration and retinal detachment. Cleft palate, cranio-facial abnormalities, deafness and osteoarthritis are often associated symptoms. Genetic heterogeneity of this autosomal dominant disease was consistent with its large clinical variability. Linkage studies have provided evidence for cosegregation of the disease with COL2A1, the gene coding for type II collagen, in about 50% of the families. Four additional families are reported here. Linkage analyses by using a VNTR located in the 3{prime} region of the gene were achieved. In three families, positive lod scores were obtained with a cumulative maximalmore » value of 3.5 at a recombination fraction of 0. In one of these families, single strand conformation analysis of 25 exons disclosed a new mutation in exon 42. Codon for glutamic acid at position a1-803 was converted into a stop codon. The mutation was detected in DNA samples from all the affected members of the family but not in the unaffected. This result confirms that most of the Stickler syndromes linked to COL2A1 are due to premature stop codons. In a second family, an abnormal SSCP pattern of exon 34 was detected in all the affected individuals. The mutation is likely to correspond to a splicing defect in the acceptor site of intron 33. In one family the disease did not segregate with the COL2A1 locus. Further linkage studies with intragenic dimorphic sites in the COL10A1 gene and highly polymorphic markers close to the COL9A1 locus indicated that this disorder did not result from defects in these two genes.« less

  16. Codon Optimization of the Human Papillomavirus E7 Oncogene Induces a CD8+ T Cell Response to a Cryptic Epitope Not Harbored by Wild-Type E7

    PubMed Central

    Lorenz, Felix K. M.; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J.; Uckert, Wolfgang

    2015-01-01

    Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237

  17. A protocol for isolating insect mitochondrial genomes: a case study of NUMT in Melipona flavolineata (Hymenoptera: Apidae).

    PubMed

    Françoso, Elaine; Gomes, Fernando; Arias, Maria Cristina

    2016-07-01

    Nuclear mitochondrial DNA insertions (NUMTs) are mitochondrial DNA sequences that have been transferred into the nucleus and are recognized by the presence of indels and stop codons. Although NUMTs have been identified in a diverse range of species, their discovery was frequently accidental. Here, our initial goal was to develop and standardize a simple method for isolating NUMTs from the nuclear genome of a single bee. Subsequently, we tested our new protocol by determining whether the indels and stop codons of the cytochrome c oxidase subunit I (COI) sequence of Melipona flavolineata are of nuclear origin. The new protocol successfully demonstrated the presence of a COI NUMT. In addition to NUMT investigations, the protocol described here will also be very useful for studying mitochondrial mutations related to diseases and for sequencing complete mitochondrial genomes with high read coverage by Next-Generation technology.

  18. Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames.

    PubMed

    Gamo, F J; Lafuente, M J; Casamayor, A; Ariño, J; Aldea, M; Casas, C; Herrero, E; Gancedo, C

    1996-06-15

    We report the sequence of a 15.5 kb DNA segment located near the left telomere of chromosome XV of Saccharomyces cerevisiae. The sequence contains nine open reading frames (ORFs) longer than 300 bp. Three of them are internal to other ones. One corresponds to the gene LGT3 that encodes a putative sugar transporter. Three adjacent ORFs were separated by two stop codons in frame. These ORFs presented homology with the gene CPS1 that encodes carboxypeptidase S. The stop codons were not found in the same sequence derived from another yeast strain. Two other ORFs without significant homology in databases were also found. One of them, O0420, is very rich in serine and threonine and presents a series of repeated or similar amino acid stretches along the sequence.

  19. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

    PubMed Central

    Schueren, Fabian; Lingner, Thomas; George, Rosemol; Hofhuis, Julia; Dickel, Corinna; Gärtner, Jutta; Thoms, Sven

    2014-01-01

    Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI: http://dx.doi.org/10.7554/eLife.03640.001 PMID:25247702

  20. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2015-12-22

    Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate identification and improvement of the combinations of sense codons and orthogonal pairs that display efficient reassignment.

  1. Severe Hemophilia A in a Male Old English Sheep Dog with a C→T Transition that Created a Premature Stop Codon in Factor VIII

    PubMed Central

    Lozier, Jay N; Kloos, Mark T; Merricks, Elizabeth P; Lemoine, Nathaly; Whitford, Margaret H; Raymer, Robin A; Bellinger, Dwight A; Nichols, Timothy C

    2016-01-01

    Animals with hemophilia are models for gene therapy, factor replacement, and inhibitor development in humans. We have actively sought dogs with severe hemophilia A that have novel factor VIII mutations unlike the previously described factor VIII intron 22 inversion. A male Old English Sheepdog with recurrent soft-tissue hemorrhage and hemarthrosis was diagnosed with severe hemophilia A (factor VIII activity less than 1% of normal). We purified genomic DNA from this dog and ruled out the common intron 22 inversion; we then sequenced all 26 exons. Comparing the results with the normal canine factor VIII sequence revealed a C→T transition in exon 12 of the factor VIII gene that created a premature stop codon at amino acid 577 in the A2 domain of the protein. In addition, 2 previously described polymorphisms that do not cause hemophilia were present at amino acids 909 and 1184. The hemophilia mutation creates a new TaqI site that facilitates rapid genotyping of affected offspring by PCR and restriction endonuclease analyses. This mutation is analogous to the previously described human factor VIII mutation at Arg583, which likewise is a CpG dinucleotide transition causing a premature stop codon in exon 12. Thus far, despite extensive treatment with factor VIII, this dog has not developed neutralizing antibodies (‘inhibitors’) to the protein. This novel mutation in a dog gives rise to severe hemophilia A analogous to a mutation seen in humans. This model will be useful for studies of the treatment of hemophilia. PMID:27780008

  2. Circuitry linking the global Csr and σE-dependent cell envelope stress response systems.

    PubMed

    Yakhnin, Helen; Aichele, Robert; Ades, Sarah E; Romeo, Tony; Babitzke, Paul

    2017-09-18

    CsrA of Escherichia coli is an RNA-binding protein that globally regulates a wide variety of cellular processes and behaviors including carbon metabolism, motility, biofilm formation, and the stringent response. CsrB and CsrC are sRNAs that sequester CsrA, thereby preventing CsrA-mRNA interaction. RpoE (σ E ) is the extracytoplasmic stress response sigma factor of E. coli Previous RNA-seq studies identified rpoE mRNA as a CsrA target. Here we explored the regulation of rpoE by CsrA and found that CsrA represses rpoE translation. Gel mobility shift, footprint and toeprint studies identified three CsrA binding sites in the rpoE leader transcript, one of which overlaps the rpoE Shine-Dalgarno (SD) sequence, while another overlaps the rpoE translation initiation codon. Coupled in vitro transcription-translation experiments showed that CsrA represses rpoE translation by binding to these sites. We further demonstrate that σ E indirectly activates transcription of csrB and csrC , leading to increased sequestration of CsrA such that repression of rpoE by CsrA is reduced. We propose that the Csr system fine-tunes the σ E -dependent cell envelope stress response. We also identified a 51 amino acid coding sequence whose stop codon overlaps the rpoE start codon, and demonstrate that rpoE is translationally coupled with this upstream open reading frame (ORF51). Loss of coupling reduces rpoE translation by more than 50%. Identification of a translationally coupled ORF upstream of rpoE suggests that this previously unannotated protein may participate in the cell envelope stress response. In keeping with existing nomenclature, we name ORF51 as rseD , resulting in an operon arrangement of rseD-rpoE-rseA-rseB-rseC IMPORTANCE CsrA posttranscriptionally represses genes required for bacterial stress responses, including the stringent response, catabolite repression, and the RpoS (σ S )-mediated general stress response. We show that CsrA represses translation of rpoE , encoding the extracytoplasmic stress response sigma factor and that σ E indirectly activates transcription of csrB and csrC , resulting in reciprocal regulation of these two global regulatory systems. These findings suggest that extracytoplasmic stress leads to derepression of rpoE translation by CsrA, and CsrA-mediated repression helps to reset RpoE abundance to pre-stress levels once envelope damage is repaired. The discovery of an ORF, RseD, translationally coupled with rpoE adds further complexity to translational control of rpoE . Copyright © 2017 American Society for Microbiology.

  3. Complete mitogenome of the semi-aquatic grasshopper Oxya intricate (Stål.) (Insecta: Orthoptera: Catantopidae).

    PubMed

    Dong, Jia-Jia; Guan, De-Long; Xu, Sheng-Quan

    2016-09-01

    The complete mitogenome of Oxya intricate (Stål.) has been reconstructed from whole-genome Illumina sequencing data with an average coverage of 294×. The circular genome is 15,466 bp in length, and consists of 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs) and 1 D-loop region. All PCGs are initiated with ATN codons, and are terminated with TAR codons except for ND5 with the incomplete stop codon T. The nucleotide composition is asymmetric (42.5%A, 14.6%C, 10.6%G, 32.3%T) with an overall GC content of 25.2%. These data would contribute to the design of novel molecular markers for population and evolutionary studies of this and related orthopteran species.

  4. Family acholeplasmataceae (including phytoplasmas)

    USDA-ARS?s Scientific Manuscript database

    The family Acholeplasmataceae was originally established to accommodate the genus Acholeplasma, comprising the mollicutes that could be cultivated without the supplement of cholesterol and that use UGA as a stop codon instead of coding for tryptophan. It was later shown that the phytoplasmas, a larg...

  5. JGH Foundation emerging leadership lecture. Significance of hepatitis B virus genotypes and mutations in the development of hepatocellular carcinoma in Asia.

    PubMed

    Chan, Henry Lik-Yuen

    2011-01-01

    Advances in molecular biology technology in the last two decades have allowed detailed study of the viral mutations and genomic heterogeneity of hepatitis B virus (HBV). The first mutant discovered was precore stop codon mutation. It was reported in HBeAg-negative patients and initially thought to associate with fulminant hepatitis. Subsequent studies have suggested that it is merely one of the mechanisms of losing HBeAg by the virus. Another mutation that can downregulate the production of HBeAg is the basal core promoter mutation, which is located in the X gene upstream of the precore region. Based on the configuration of codon 15 and the stability of the epsilon of the precore region, these two mutants will be differentially selected during the course of HBeAg seroconversion. The most common HBV genotypes in South-East Asia are genotype B and C HBV. The higher hepatocellular carcinoma (HCC) risk of genotype C HBV has been confirmed by longitudinal studies in Hong Kong and Taiwan. One possible carcinogenic mechanism is its association with basal core promoter mutation, which has also been found to be a risk factor of HCC. Within genotype C HBV, subgenotype Cs is predominant in South-East Asia and subgenotype Ce is predominant in East Asia. Subgenotype Ce HBV has been found to have the highest risk of HCC as compared with subgenotype Cs or genotype B HBV. The understanding of the carcinogenic mechanisms of these HBV strains may shed light into future therapeutics in the prevention and treatment of HBV-related HCC. © 2010 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  6. The Enterococcus faecalis EbpA Pilus Protein: Attenuation of Expression, Biofilm Formation, and Adherence to Fibrinogen Start with the Rare Initiation Codon ATT

    PubMed Central

    Montealegre, Maria Camila; La Rosa, Sabina Leanti; Roh, Jung Hyeob; Harvey, Barrett R.

    2015-01-01

    ABSTRACT The endocarditis and biofilm-associated pili (Ebp) are important in Enterococcus faecalis pathogenesis, and the pilus tip, EbpA, has been shown to play a major role in pilus biogenesis, biofilm formation, and experimental infections. Based on in silico analyses, we previously predicted that ATT is the EbpA translational start codon, not the ATG codon, 120 bp downstream of ATT, which is annotated as the translational start. ATT is rarely used to initiate protein synthesis, leading to our hypothesis that this codon participates in translational regulation of Ebp production. To investigate this possibility, site-directed mutagenesis was used to introduce consecutive stop codons in place of two lysines at positions 5 and 6 from the ATT, to replace the ATT codon in situ with ATG, and then to revert this ATG to ATT; translational fusions of ebpA to lacZ were also constructed to investigate the effect of these start codons on translation. Our results showed that the annotated ATG does not start translation of EbpA, implicating ATT as the start codon; moreover, the presence of ATT, compared to the engineered ATG, resulted in significantly decreased EbpA surface display, attenuated biofilm, and reduced adherence to fibrinogen. Corroborating these findings, the translational fusion with the native ATT as the initiation codon showed significantly decreased expression of β-galactosidase compared to the construct with ATG in place of ATT. Thus, these results demonstrate that the rare initiation codon of EbpA negatively regulates EbpA surface display and negatively affects Ebp-associated functions, including biofilm and adherence to fibrinogen. PMID:26015496

  7. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes.

    PubMed

    Seligmann, Hervé

    2013-05-07

    GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    PubMed

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  9. The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning Mechanism

    PubMed Central

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P.; Pino, Karla; Tischler, Nicole D.; Ohlmann, Théophile; Darlix, Jean-Luc

    2012-01-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism. PMID:22156529

  10. Novel mutations responsible for α-thalassemia in Iranian families.

    PubMed

    Bayat, Nooshin; Farashi, Samaneh; Hafezi-Nejad, Nima; Faramarzi, Negin; Ashki, Mehri; Vakili, Shadi; Imanian, Hashem; Khosravi, Mohsen; Azar-Keivan, Azita; Najmabadi, Hossein

    2013-01-01

    α-Thalassemia (α-thal) is usually caused by deletions on the α-globin gene cluster and the role of point mutations is less well investigated. In the present study, a total of 1048 individuals with hypochromic microcytic anemia, who did not present the most common α-thal deletions, were referred for α-globin gene DNA sequencing. The nucleotide changes were studied and a total of five new mutations was identified, of which three were located on the α2 gene [codon7 (Lys→Stop), codon 34 (Leu→Pro) and codon 83 (Leu→Arg)] and two on the α1 gene [IVS-I-116 (A>G) and codon 44 (+C)]. These novel mutations not only explain new findings by molecular analysis of the α-globin gene but also have clinical importance due to their changes in α-globin production in means of decreased hemoglobin (Hb) related values. Moreover, considerations of its role in combination with other mutations, and the possibility of causing Hb H (β4) are yet to be studied.

  11. Multiple copies of a bile acid-inducible gene in Eubacterium sp. strain VPI 12708.

    PubMed Central

    Gopal-Srivastava, R; Mallonee, D H; White, W B; Hylemon, P B

    1990-01-01

    Eubacterium sp. strain VPI 12708 is an anaerobic intestinal bacterium which possesses inducible bile acid 7-dehydroxylation activity. Several new polypeptides are produced in this strain following induction with cholic acid. Genes coding for two copies of a bile acid-inducible 27,000-dalton polypeptide (baiA1 and baiA2) have been previously cloned and sequenced. We now report on a gene coding for a third copy of this 27,000-dalton polypeptide (baiA3). The baiA3 gene has been cloned in lambda DASH on an 11.2-kilobase DNA fragment from a partial Sau3A digest of the Eubacterium DNA. DNA sequence analysis of the baiA3 gene revealed 100% homology with the baiA1 gene within the coding region of the 27,000-dalton polypeptides. The baiA2 gene shares 81% sequence identity with the other two genes at the nucleotide level. The flanking nucleotide sequences associated with the baiA1 and baiA3 genes are identical for 930 bases in the 5' direction from the initiation codon and for at least 325 bases in the 3' direction from the stop codon, including the putative promoter regions for the genes. An additional open reading frame (occupying from 621 to 648 bases, depending on the correct start codon) was found in the identical 5' regions associated with the baiA1 and baiA3 clones. The 5' sequence 930 bases upstream from the baiA1 and baiA3 genes was totally divergent. The baiA2 gene, which is part of a large bile acid-inducible operon, showed no homology with the other two genes either in the 5' or 3' direction from the polypeptide coding region, except for a 15-base-pair presumed ribosome-binding site in the 5' region. These studies strongly suggest that a gene duplication (baiA1 and baiA3) has occurred and is stably maintained in this bacterium. Images PMID:2376563

  12. Multiple origins of the phenol reaction negative phenotype in foxtail millet, Setaria italica (L.) P. Beauv., were caused by independent loss-of-function mutations of the polyphenol oxidase (Si7PPO) gene during domestication.

    PubMed

    Inoue, Takahiko; Yuo, Takahisa; Ohta, Takeshi; Hitomi, Eriko; Ichitani, Katsuyuki; Kawase, Makoto; Taketa, Shin; Fukunaga, Kenji

    2015-08-01

    Foxtail millet shows variation in positive phenol color reaction (Phr) and negative Phr in grains, but predominant accessions of this crop are negative reaction type, and the molecular genetic basis of the Phr reaction remains unresolved. In this article, we isolated polyphenol oxidase (PPO) gene responsible for Phr using genome sequence information and investigated molecular genetic basis of negative Phr and crop evolution of foxtail millet. First of all, we searched for PPO gene homologs in a foxtail millet genome database using a rice PPO gene as a query and successfully found three copies of the PPO gene. One of the PPO gene homologs on chromosome 7 showed the highest similarity with PPO genes expressed in hulls (grains) of other cereal species including rice, wheat, and barley and was designated as Si7PPO. Phr phenotypes and Si7PPO genotypes completely co-segregated in a segregating population. We also analyzed the genetic variation conferring negative Phr reaction. Of 480 accessions of the landraces investigated, 87 (18.1 %) showed positive Phr and 393 (81.9 %) showed negative Phr. In the 393 Phr negative accessions, three types of loss-of-function Si7PPO gene were predominant and independently found in various locations. One of them has an SNP in exon 1 resulting in a premature stop codon and was designated as stop codon type, another has an insertion of a transposon (Si7PPO-TE1) in intron 2 and was designated as TE1-insertion type, and the other has a 6-bp duplication in exon 3 resulting in the duplication of 2 amino acids and was designated as 6-bp duplication type. As a rare variant of the stop codon type, one accession additionally has an insertion of a transposon, Si7PPO-TE2, in intron 2 and was designated as "stop codon +TE2 insertion type". The geographical distribution of accessions with positive Phr and those with three major types of negative Phr was also investigated. Accessions with positive Phr were found in subtropical and tropical regions at frequencies of ca. 25-67 % and those with negative Phr were broadly found in Europe and Asia. The stop codon type was found in 285 accessions and was broadly distributed in Europe and Asia, whereas the TE-1 insertion type was found in 99 accessions from Europe and Asia but was not found in India. The 6-bp duplication type was found in only 8 accessions from Nansei Islands (Okinawa Prefecture) of Japan. We also analyzed Phr in the wild ancestor and concluded that the negative Phr type was likely to have originated after domestication of foxtail millet. It was also implied that negative Phr of foxtail millet arose by multiple independent loss of function of PPO gene through dispersal because of some advantages under some environmental conditions and human selection as in rice and barley.

  13. RNA Editing and Its Molecular Mechanism in Plant Organelles

    PubMed Central

    Ichinose, Mizuho; Sugita, Mamoru

    2016-01-01

    RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified. PMID:28025543

  14. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell.

    PubMed

    Miller-Fleming, Leonor; Olin-Sandoval, Viridiana; Campbell, Kate; Ralser, Markus

    2015-10-23

    The polyamines (PAs) spermidine, spermine, putrescine and cadaverine are an essential class of metabolites found throughout all kingdoms of life. In this comprehensive review, we discuss their metabolism, their various intracellular functions and their unusual and conserved regulatory features. These include the regulation of translation via upstream open reading frames, the over-reading of stop codons via ribosomal frameshifting, the existence of an antizyme and an antizyme inhibitor, ubiquitin-independent proteasomal degradation, a complex bi-directional membrane transport system and a unique posttranslational modification-hypusination-that is believed to occur on a single protein only (eIF-5A). Many of these features are broadly conserved indicating that PA metabolism is both concentration critical and evolutionary ancient. When PA metabolism is disrupted, a plethora of cellular processes are affected, including transcription, translation, gene expression regulation, autophagy and stress resistance. As a result, the role of PAs has been associated with cell growth, aging, memory performance, neurodegenerative diseases, metabolic disorders and cancer. Despite comprehensive studies addressing PAs, a unifying concept to interpret their molecular role is missing. The precise biochemical function of polyamines is thus one of the remaining mysteries of molecular cell biology. Copyright © 2015. Published by Elsevier Ltd.

  15. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    PubMed

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  16. Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes.

    PubMed

    Seligmann, Hervé

    2013-03-01

    Usual DNA→RNA transcription exchanges T→U. Assuming different systematic symmetric nucleotide exchanges during translation, some GenBank RNAs match exactly human mitochondrial sequences (exchange rules listed in decreasing transcript frequencies): C↔U, A↔U, A↔U+C↔G (two nucleotide pairs exchanged), G↔U, A↔G, C↔G, none for A↔C, A↔G+C↔U, and A↔C+G↔U. Most unusual transcripts involve exchanging uracil. Independent measures of rates of rare replicational enzymatic DNA nucleotide misinsertions predict frequencies of RNA transcripts systematically exchanging the corresponding misinserted nucleotides. Exchange transcripts self-hybridize less than other gene regions, self-hybridization increases with length, suggesting endoribonuclease-limited elongation. Blast detects stop codon depleted putative protein coding overlapping genes within exchange-transcribed mitochondrial genes. These align with existing GenBank proteins (mainly metazoan origins, prokaryotic and viral origins underrepresented). These GenBank proteins frequently interact with RNA/DNA, are membrane transporters, or are typical of mitochondrial metabolism. Nucleotide exchange transcript frequencies increase with overlapping gene densities and stop densities, indicating finely tuned counterbalancing regulation of expression of systematic symmetric nucleotide exchange-encrypted proteins. Such expression necessitates combined activities of suppressor tRNAs matching stops, and nucleotide exchange transcription. Two independent properties confirm predicted exchanged overlap coding genes: discrepancy of third codon nucleotide contents from replicational deamination gradients, and codon usage according to circular code predictions. Predictions from both properties converge, especially for frequent nucleotide exchange types. Nucleotide exchanging transcription apparently increases coding densities of protein coding genes without lengthening genomes, revealing unsuspected functional DNA coding potential. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. The control of lambda DNA terminase synthesis.

    PubMed Central

    Murialdo, H; Davidson, A; Chow, S; Gold, M

    1987-01-01

    Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques. Images PMID:3029667

  18. The complete mitochondrial genome of Gryllotalpa unispina Saussure, 1874 (Orthoptera: Gryllotalpoidea: Gryllotalpidae).

    PubMed

    Zhang, Yulong; Shao, Dandan; Cai, Miao; Yin, Hong; Zhang, Daochuan

    2016-01-01

    The complete mitochondrial genome of Gryllotalpa unispina was 15,513 bp in length and contained 70.9% AT. All G. unispina protein-coding sequences except for the nad2 started with a typical ATN codon. The usual termination codons (TAA) and incomplete stop codons (T) were found from 13 protein-coding genes. All tRNA genes were folded into the typical cloverleaf secondary structure, except trnS(AGN) lacking the dihydrouridine arm. The sizes of the large and small ribosomal RNA genes were 1245 and 725 bp, respectively. The A + T-rich region was 917 bp in length with 76.8%. The orientation and gene order of the G. unispina mitogenome were identical to the G. orientalis and G. pluvialis, there was no phenomenon of "DK rearrangement" which has been widely reported in Caelifera.

  19. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  20. The complete mitochondrial genome of Setaria digitata (Nematoda: Filarioidea): Mitochondrial gene content, arrangement and composition compared with other nematodes.

    PubMed

    Yatawara, Lalani; Wickramasinghe, Susiji; Rajapakse, R P V J; Agatsuma, Takeshi

    2010-09-01

    In the present study, we determined the complete mitochondrial (mt) genome sequence (13,839bp) of parasitic nematode Setaria digitata and its structure and organization compared with Onchocerca volvulus, Dirofilaria immitis and Brugia malayi. The mt genome of S. digitata is slightly larger than the mt genomes of other filarial nematodes. S. digitata mt genome contains 36 genes (12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs) that are typically found in metazoans. This genome contains a high A+T (75.1%) content and low G+C content (24.9%). The mt gene order for S. digitata is the same as those for O. volvulus, D. immitis and B. malayi but it is distinctly different from other nematodes compared. The start codons inferred in the mt genome of S. digitata are TTT, ATT, TTG, ATG, GTT and ATA. Interestingly, the initiation codon TTT is unique to S. digitata mt genome and four protein-coding genes use this codon as a translation initiation codon. Five protein-coding genes use TAG as a stop codon whereas three genes use TAA and four genes use T as a termination codon. Out of 64 possible codons, only 57 are used for mitochondrial protein-coding genes of S. digitata. T-rich codons such as TTT (18.9%), GTT (7.9%), TTG (7.8%), TAT (7%), ATT (5.7%), TCT (4.8%) and TTA (4.1%) are used more frequently. This pattern of codon usage reflects the strong bias for T in the mt genome of S. digitata. In conclusion, the present investigation provides new molecular data for future studies of the comparative mitochondrial genomics and systematic of parasitic nematodes of socio-economic importance. 2010 Elsevier B.V. All rights reserved.

  1. Mapping of herpes simplex virus-1 neurovirulence to. gamma. sub 1 34. 5, a gene nonessential for growth in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, J.; Roizman, B.; Kern, E.R.

    1990-11-30

    The gene designated {gamma}{sub 1}34.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to reactmore » with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the {gamma}{sub 1}34.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.« less

  2. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    PubMed Central

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  3. The cytochrome oxidase subunit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences

    PubMed Central

    Hiesel, Rudolf; Schobel, Werner; Schuster, Wolfgang; Brennicke, Axel

    1987-01-01

    Two loci encoding subunit III of the cytochrome oxidase (COX) in Oenothera mitochondria have been identified from a cDNA library of mitochondrial transcripts. A 657-bp sequence block upstream from the open reading frame is also present in the two copies of the COX subunit I gene and is presumably involved in homologous sequence rearrangement. The proximal points of sequence rearrangements are located 3 bp upstream from the COX I and 1139 bp upstream from the COX III initiation codons. The 5'-termini of both COX I and COX III mRNAs have been mapped in this common sequence confining the promoter region for the Oenothera mitochondrial COX I and COX III genes to the homologous sequence block. ImagesFig. 5. PMID:15981332

  4. Introduction of translation stop condons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, Kyle A.; Conway, Carla M.; Kurath, Gael

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine.

  5. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.

    PubMed

    Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P

    2015-01-01

    HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.

  6. The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Qian, Xiao-Cheng; Li, Ping; Li, Xiao-Fei; Wang, An-Tai

    2014-02-01

    The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae) is a linear molecule of 16,189 bp in length, containing 13 protein-coding genes, small and large subunit ribosomal RNAs, methionine and tryptophan transfer RNAs, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mitochondrial DNA. The A + T content of the overall base composition of H-strand is 77.2% (T: 41.7%; C: 10.9%; A: 35.5%; and G: 11.9%). COI and ND1 genes begin with GTG as start codon, while other 11 protein-coding genes start with a typical ATG initiation codon. COII, ATP8, ATP6, COIII, ND5, ND6, ND3, ND1, ND4 and COI genes are terminated with TAA as stop codon, ND4L ends with TAG, ND2 ends with TA and Cyt b ends with T.

  7. Systematic screening for mutations in the human serotonin 1F receptor gene in patients with bipolar affective disorder and schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimron-Abarbanell, D.; Harms, H.; Erdmann, J.

    1996-04-09

    Using single strand conformational analysis we screened the complete coding sequence of the serotonin 1F (5-HT{sub 1F}) receptor gene for the presence of DNA sequence variation in a sample of 137 unrelated individuals including 45 schizophrenic patients, 46 bipolar patients, as well as 46 healthy controls. We detected only three rare sequence variants which are characterized by single base pair substitutions, namely a silent T{r_arrow}A transversion in the third position of codon 261 (encoding isoleucine), a silent C{r_arrow}T transition in the third position of codon 176 (encoding histidine), and a C{r_arrow}T transition in position -78 upstream from the start codon.more » The lack of significant mutations in patients suffering from schizophrenia and bipolar affective disorder indicates that the 5-HT{sub 1F} receptor is not commonly involved in the etiology of these diseases. 12 refs., 1 fig., 2 tabs.« less

  8. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis.

    PubMed

    Kim, Seon-Hee; Kong, Yoon; Bae, Young-An

    2017-06-01

    Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A novel pathogenic variant in an Iranian Ataxia telangiectasia family revealed by next-generation sequencing followed by in silico analysis.

    PubMed

    Tabatabaiefar, Mohammad Amin; Alipour, Paria; Pourahmadiyan, Azam; Fattahi, Najmeh; Shariati, Laleh; Golchin, Neda; Mohammadi-Asl, Javad

    2017-08-15

    Ataxia telangiectasia (A-T) is a neurodegenerative autosomal recessive disorder with the main characteristics of progressive cerebellar degeneration, sensitivity to ionizing radiation, immunodeficiency, telangiectasia, premature aging, recurrent sinopulmonary infections, and increased risk of malignancy, especially of lymphoid origin. Ataxia Telangiectasia Mutated gene, ATM, as a causative gene for the A-T disorder, encodes the ATM protein, which plays an important role in the activation of cell-cycle checkpoints and initiation of DNA repair in response to DNA damage. Targeted next-generation sequencing (NGS) was performed on an Iranian 5-year-old boy presented with truncal and limb ataxia, telangiectasia of the eye, Hodgkin lymphoma, hyper pigmentation, total alopecia, hepatomegaly, and dysarthria. Sanger sequencing was used to confirm the candidate pathogenic variants. Computational docking was done using the HEX software to examine how this change affects the interactions of ATM with the upstream and downstream proteins. Three different variants were identified comprising two homozygous SNPs and one novel homozygous frameshift variant (c.80468047delTA, p.Thr2682ThrfsX5), which creates a stop codon in exon 57 leaving the protein truncated at its C-terminal portion. Therefore, the activation and phosphorylation of target proteins are lost. Moreover, the HEX software confirmed that the mutated protein lost its interaction with upstream and downstream proteins. The variant was classified as pathogenic based on the American College of Medical Genetics and Genomics guideline. This study expands the spectrum of ATM pathogenic variants in Iran and demonstrates the utility of targeted NGS in genetic diagnostics. Copyright © 2017. Published by Elsevier B.V.

  10. Tissue specific expression of the retinoic acid receptor-beta 2: regulation by short open reading frames in the 5'-noncoding region

    PubMed Central

    1994-01-01

    The 40-S subunit of eukaryotic ribosomes binds to the capped 5'-end of mRNA and scans for the first AUG in a favorable sequence context to initiate translation. Most eukaryotic mRNAs therefore have a short 5'- untranslated region (5'-UTR) and no AUGs upstream of the translational start site; features that seem to assure efficient translation. However, approximately 5-10% of all eukaryotic mRNAs, particularly those encoding for regulatory proteins, have complex leader sequences that seem to compromise translational initiation. The retinoic-acid- receptor-beta 2 (RAR beta 2) mRNA is such a transcript with a long (461 nucleotides) 5'-UTR that contains five, partially overlapping, upstream open reading frames (uORFs) that precede the major ORF. We have begun to investigate the function of this complex 5'-UTR in transgenic mice, by introducing mutations in the start/stop codons of the uORFs in RAR beta 2-lacZ reporter constructs. When we compared the expression patterns of mutant and wild-type constructs we found that these mutations affected expression of the downstream RAR beta 2-ORF, resulting in an altered regulation of RAR beta 2-lacZ expression in heart and brain. Other tissues were unaffected. RNA analysis of adult tissues demonstrated that the uORFs act at the level of translation; adult brains and hearts of transgenic mice carrying a construct with either the wild-type or a mutant UTR, had the same levels of mRNA, but only the mutant produced protein. Our study outlines an unexpected role for uORFs: control of tissue-specific and developmentally regulated gene expression. PMID:7962071

  11. Mitochondrial genetic codes evolve to match amino acid requirements of proteins.

    PubMed

    Swire, Jonathan; Judson, Olivia P; Burt, Austin

    2005-01-01

    Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.

  12. Dental anomalies in pediatric patients with familial adenomatous polyposis.

    PubMed

    Septer, Seth; Bohaty, Brenda; Onikul, Robin; Kumar, Vandana; Williams, Karen B; Attard, Thomas M; Friesen, Craig A; Friesen, Lynn Roosa

    2018-04-01

    Familial adenomatous polyposis patients often present with non-malignant extra-intestinal manifestations which include dental anomalies that may be evident prior to the appearance of the colonic adenomas. The aims of this study were to describe the prevalence and type of dental anomalies and the relationships between gene mutations and dental anomalies in these patients. Twenty-two pediatric familial adenomatous polyposis patients and 46 controls, who were age and gender matched participated. Familial adenomatous polyposis patient's had a dental examination with panoramic radiograph and medical record review for age at diagnosis, the presence of the adenomatous polyposis coli gene mutation, and determination of other extra-intestinal manifestations on the body. The control group was identified from a retrospective chart review and selected if there was a current panoramic radiograph. The only significant difference between familial adenomatous polyposis patients and controls were the presence of jaw osteomas and sclerosis (p = .0001). Patients with a mutation in, or upstream of codon 1309 had a higher frequency of osteomas (77.8%) and jaw-bone sclerosis (44.4%), and 77% of these had at least one dental anomaly. This preliminary study showed an association between a genetic variant at, or upstream of codon 1309, and radiographic dental anomalies.

  13. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain.

    PubMed

    Zhang, Xin; Huang, Danping; Jia, Xiwei; Zou, Zhihua; Wang, Yilei; Zhang, Ziping

    2018-04-01

    In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection

    USDA-ARS?s Scientific Manuscript database

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...

  15. The first complete mitochondrial genome of Dacus longicornis (Diptera: Tephritidae) using next-generation sequencing and mitochondrial genome phylogeny of Dacini tribe

    PubMed Central

    Jiang, Fan; Pan, Xubin; Li, Xuankun; Yu, Yanxue; Zhang, Junhua; Jiang, Hongshan; Dou, Liduo; Zhu, Shuifang

    2016-01-01

    The genus Dacus is one of the most economically important tephritid fruit flies. The first complete mitochondrial genome (mitogenome) of Dacus species – D. longicornis was sequenced by next-generation sequencing in order to develop the mitogenome data for this genus. The circular 16,253 bp mitogenome is the typical set and arrangement of 37 genes present in the ancestral insect. The mitogenome data of D. longicornis was compared to all the published homologous sequences of other tephritid species. We discovered the subgenera Bactrocera, Daculus and Tetradacus differed from the subgenus Zeugodacus, the genera Dacus, Ceratitis and Procecidochares in the possession of TA instead of TAA stop codon for COI gene. There is a possibility that the TA stop codon in COI is the synapomorphy in Bactrocera group in the genus Bactrocera comparing with other Tephritidae species. Phylogenetic analyses based on the mitogenome data from Tephritidae were inferred by Bayesian and Maximum-likelihood methods, strongly supported the sister relationship between Zeugodacus and Dacus. PMID:27812024

  16. Unusual AIP mutation and phenocopy in the family of a young patient with acromegalic gigantism.

    PubMed

    Imran, Syed Ali; Aldahmani, Khaled A; Penney, Lynette; Croul, Sidney E; Clarke, David B; Collier, David M; Iacovazzo, Donato; Korbonits, Márta

    2018-01-01

    Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein ( AIP ) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy. Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions.Unusual, previously not described AIP variant with loss of the stop codon.Phenocopy may occur in families with a disease-causing germline mutation.

  17. Unusual AIP mutation and phenocopy in the family of a young patient with acromegalic gigantism

    PubMed Central

    Aldahmani, Khaled A; Penney, Lynette; Croul, Sidney E; Clarke, David B; Collier, David M; Iacovazzo, Donato; Korbonits, Márta

    2018-01-01

    Summary Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein (AIP) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy. Learning points: Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions. Unusual, previously not described AIP variant with loss of the stop codon. Phenocopy may occur in families with a disease-causing germline mutation. PMID:29472986

  18. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products.

    PubMed

    Anwar, Munir A; Kralj, Slavko; Piqué, Anna Villar; Leemhuis, Hans; van der Maarel, Marc J E C; Dijkhuizen, Lubbert

    2010-04-01

    Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. Here, we report an evaluation of fructan synthesis in three Lactobacillus gasseri strains, identification of the fructansucrase-encoding genes and characterization of the recombinant proteins and fructan (oligosaccharide) products. High-performance anion-exchange chromatography and nuclear magnetic resonance analysis of the fructo-oligosaccharides (FOS) and polymers produced by the L. gasseri strains and the recombinant enzymes revealed that, in situ, L. gasseri strains DSM 20604 and 20077 synthesize inulin (and oligosaccharides) and levan products, respectively. L. gasseri DSM 20604 is only the second Lactobacillus strain shown to produce inulin polymer and FOS in situ, and is unique in its distribution of FOS synthesized, ranging from DP2 to DP13. The probiotic bacterium L. gasseri DSM 20243 did not produce any fructan, although we identified a fructansucrase-encoding gene in its genome sequence. Further studies showed that this L. gasseri DSM 20243 gene was prematurely terminated by a stop codon. Exchanging the stop codon for a glutamine codon resulted in a recombinant enzyme producing inulin and FOS. The three recombinant fructansucrase enzymes characterized from three different L. gasseri strains have very similar primary protein structures, yet synthesize different fructan products. An interesting feature of the L. gasseri strains is that they were unable to ferment raffinose, whereas their respective recombinant enzymes converted raffinose into fructan and FOS.

  19. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6

    PubMed Central

    Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505

  20. Computational Analysis and Low-Scale Constitutive Expression of Laccases Synthetic Genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris

    PubMed Central

    Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A.; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M.

    2015-01-01

    Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications. PMID:25611746

  1. Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris.

    PubMed

    Rivera-Hoyos, Claudia M; Morales-Álvarez, Edwin David; Poveda-Cuevas, Sergio Alejandro; Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M

    2015-01-01

    Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.

  2. Beyond the Triplet Code: Context Cues Transform Translation.

    PubMed

    Brar, Gloria A

    2016-12-15

    The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.

    PubMed

    Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R

    2003-01-01

    Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.

  4. Analyses of frameshifting at UUU-pyrimidine sites.

    PubMed

    Schwartz, R; Curran, J F

    1997-05-15

    Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.

  5. Analyses of frameshifting at UUU-pyrimidine sites.

    PubMed Central

    Schwartz, R; Curran, J F

    1997-01-01

    Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage. PMID:9115369

  6. Exon 2-mediated c-myc mRNA decay in vivo is independent of its translation.

    PubMed Central

    Pistoi, S; Roland, J; Babinet, C; Morello, D

    1996-01-01

    We have previously shown that the steady-state level of c-myc mRNA in vivo is primarily controlled by posttranscriptional regulatory mechanisms. To identify the sequences involved in this process, we constructed a series of H-2/myc transgenic lines in which various regions of the human c-MYC gene were placed under the control of the quasi-ubiquitous H-2K class I regulatory sequences. We demonstrated that the presence of one of the two coding exons, exon 2 or exon 3, is sufficient to confer a level of expression of transgene mRNA similar to that of endogenous c-myc in various adult tissues as well as after partial hepatectomy or after protein synthesis inhibition. We now focus on the molecular mechanisms involved in modulation of expression of mRNAs containing c-myc exon 2 sequences, with special emphasis on the coupling between translation and c-myc mRNA turnover. We have undertaken an analysis of expression, both at the mRNA level and at the protein level, of new transgenic constructs in which the translation is impaired either by disruption of the initiation codon or by addition of stop codons upstream of exon 2. Our results show that the translation of c-myc exon 2 is not required for regulated expression of the transgene in the different situations analyzed, and therefore they indicate that the mRNA destabilizing function of exon 2 is independent of translation by ribosomes. Our investigations also reveal that, in the thymus, some H-2/myc transgenes express high levels of mRNA but low levels of protein. Besides the fact that these results suggest the existence of tissue-specific mechanisms that control c-myc translatability in vivo, they also bring another indication of the uncoupling of c-myc mRNA translation and degradation. PMID:8756668

  7. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein.

    PubMed

    Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf

    2013-02-01

    Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.

  8. Two novel mutations in the alpha-galactosidase gene in Japanese classical hemizygotes with Fabry disease.

    PubMed

    Okumiya, T; Takenaka, T; Ishii, S; Kase, R; Kamei, S; Sakuraba, H

    1996-09-01

    Four alpha-galactosidase gene mutations were identified in Japanese male patients with Fabry disease who had no detectable alpha-galactosidase activity. Two of them were novel mutations, an 11-bp deletion in exon 2 and a g-1 to t substitution at the 3' end of the splice acceptor site in intron 1. The former caused a frameshift and led to the creation of a new stop codon at codon 118. The latter was predicted to provoke aberrant mRNA splicing followed by accelerated degradation of the mRNA. A nonsense mutation, R301X, and a 2-bp deletion starting at nucleotide position 718, which were reported previously, were also identified in unrelated patients.

  9. alpha-Tubulin of Histriculus cavicola (Ciliophora; Hypotrichea).

    PubMed

    Pérez-Romero, P; Villalobo, E; Díaz-Ramos, C; Calvo, P; Santos-Rosa, F; Torres, A

    1997-03-01

    An alpha-tubulin gene fragment amplified by PCR from the hypotrichous ciliate Histriculus cavicola has been sequenced. This fragment, 1,182 bp long, contains an in-frame "stop" codon (UAA), which in other hypotrichous species codes for a glutamine residue. The comparison of the alpha-tubulin genes from several ciliates classes have revealed amino acid positions which could serve to distinguish these taxonomic groups.

  10. Ancient nature of alternative splicing and functions of introns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but intronsmore » retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.« less

  11. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  12. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  13. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.

    PubMed

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J

    2017-01-24

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.

  14. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China.

    PubMed

    Fang, Zhi-Li; Zhang, Li-Yan; Huang, Ying-Min; Qing, Yun; Cao, Kai-Yuan; Tian, Guo-Bao; Huang, Xi

    2014-01-01

    To investigate the mechanisms involved in imipenem resistance of Pseudomonas aeruginosa in southern China, 61 imipenem-resistant P. aeruginosa clinical isolates were collected from 4 hospitals between October 2011 and June 2012. All isolates were resistant to imipenem, whereas 21.3% were susceptible or intermediate to meropenem. Variable degrees of resistance to other β-lactam and non-β-lactam antimicrobials were observed. PFGE revealed high-level of clonal diversity. Among the 61 isolates, 50 isolates had OprD loss by disrupted oprD mutations, including 43 with frameshift mutations of oprD and 7 with a premature stop codon by single point mutation. Six isolates were oprD-negative by PCR, suggestive of a major disruption of oprD genes. Five isolates had intact oprD but had reduced expression of oprD genes. In addition, only one isolate with disrupted oprD mutation by a premature stop codon was confirmed to be a metallo-β-lactamase producer (IMP-9). Our results show that the loss of OprD, as well as reduced expression of oprD and MBL production, were the predominant mechanisms of imipenem resistance in P. aeruginosa in southern China. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    PubMed Central

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403

  16. RNA-ID, a highly sensitive and robust method to identify cis-regulatory sequences using superfolder GFP and a fluorescence-based assay.

    PubMed

    Dean, Kimberly M; Grayhack, Elizabeth J

    2012-12-01

    We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.

  17. Mucopolysaccharidosis IVA: Four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi

    1996-05-01

    We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resultedmore » in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.« less

  18. Comparative mitochondrial genome analysis of Daphnis nerii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships

    PubMed Central

    Sun, Yu; Chen, Chen; Gao, Jin; Abbas, Muhammad Nadeem; Kausar, Saima; Qian, Cen; Wang, Lei; Wei, Guoqing; Zhu, Bao-Jian

    2017-01-01

    In the present study, the complete sequence of the mitochondrial genome (mitogenome) of Daphnis nerii (Lepidoptera: Sphingidae) is described. The mitogenome (15,247 bp) of D.nerii encodes13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an adenine (A) + thymine (T)-rich region. Its gene complement and order is similar to that of other sequenced lepidopterans. The 12 PCGs initiated by ATN codons except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon as documented in other insect mitogenomes. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. This mitogenome has six major intergenic spacers, with the exception of A+T-rich region, spanning at least 10 bp. The A+T-rich region is 351 bp long, and contains some conserved regions, including ‘ATAGA’ motif followed by a 17 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element. Phylogenetic analyses based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that D. nerii resides in the Sphingidae family. PMID:28598968

  19. Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms

    PubMed Central

    Telford, Maximilian J.; Herniou, Elisabeth A.; Russell, Robert B.; Littlewood, D. Timothy J.

    2000-01-01

    Shared molecular genetic characteristics other than DNA and protein sequences can provide excellent sources of phylogenetic information, particularly if they are complex and rare and are consequently unlikely to have arisen by chance convergence. We have used two such characters, arising from changes in mitochondrial genetic code, to define a clade within the Platyhelminthes (flatworms), the Rhabditophora. We have sampled 10 distinct classes within the Rhabditophora and find that all have the codon AAA coding for the amino acid Asn rather than the usual Lys and AUA for Ile rather than the usual Met. We find no evidence to support claims that the codon UAA codes for Tyr in the Platyhelminthes rather than the standard stop codon. The Rhabditophora are a very diverse group comprising the majority of the free-living turbellarian taxa and the parasitic Neodermata. In contrast, three other classes of turbellarian flatworm, the Acoela, Nemertodermatida, and Catenulida, have the standard invertebrate assignments for these codons and so are convincingly excluded from the rhabditophoran clade. We have developed a rapid computerized method for analyzing genetic codes and demonstrate the wide phylogenetic distribution of the standard invertebrate code as well as confirming already known metazoan deviations from it (ascidian, vertebrate, echinoderm/hemichordate). PMID:11027335

  20. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    PubMed

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  1. Molecular genetic analysis of macular corneal dystrophy patients from North India.

    PubMed

    Paliwal, Preeti; Sharma, Arundhati; Tandon, Radhika; Sharma, Namrata; Titiyal, Jeevan S; Sen, Seema; Vajpayee, Rasik B

    2012-01-01

    To identify underlying genetic defects in the carbohydrate sulfotransferase-6 (CHST6) gene in North Indian patients with macular corneal dystrophy (MCD). 30 clinically diagnosed MCD patients from 21 families and 50 healthy normal controls were recruited in the study. Detailed clinical evaluation in the patients was undertaken followed by histopathology and ultrastructural studies in corneal tissues. DNA from blood samples was amplified for the CHST6 coding and upstream region followed by direct sequencing and in silico analysis. We identified pathogenic mutations in 17 patients from 11 families. Of these 4 were novel (p.Ser54Tyr, p.Gln58Arg, p.Leu59His and p.Leu293Phe), 2 were previously reported (Arg93His and Glu274Lys) homozygous, 1 heterozygous stop codon (p.Trp123X) and 2 compound heterozygous (p.Arg93His + p.Arg97Pro; p.Leu22Arg + p.Gln58X) mutations. A missense single-nucleotide polymorphism was also identified in 11 patients. The novel mutations were conserved as shown by in silico analysis. Thirteen patients did not show any pathogenic CHST6 changes. This is the first report on molecular analysis of MCD in North Indian patients. All cases could not be explained by mutations in CHST6, suggesting that MCD may result from other changes in the regulatory elements of CHST6 or from genetic heterogeneity. Copyright © 2012 S. Karger AG, Basel.

  2. A Novel de novo CDH1 Germline Variant Aids in the Classification of C-terminal E-cadherin Alterations Predicted to Escape Nonsense-Mediated mRNA Decay.

    PubMed

    Krempely, Kate; Karam, Rachid

    2018-05-24

    Most truncating CDH1 pathogenic alterations confer an elevated lifetime risk of diffuse gastric cancer and lobular breast cancer. However, transcripts containing carboxyl-terminal (C-terminal) premature stop codons have been demonstrated to escape the nonsense-mediated mRNA decay (NMD) pathway, and gastric and breast cancer risks associated with these truncations should be carefully evaluated. A female patient underwent multigene panel testing due to a personal history of invasive lobular breast cancer diagnosed at age 54, which identified the germline CDH1 nonsense alteration, c.2506G>T (p.E836*), in the last exon of the gene. Subsequent parental testing for the alteration was negative and additional short tandem repeat analysis confirmed the familial relationships and the de novo occurrence in the proband. Based on the de novo occurrence, clinical history, and rarity in general population databases, this alteration was classified as a likely pathogenic variant. This is the most C-terminal pathogenic alteration reported to date. Additionally, this alteration contributed to the classification of six other upstream CDH1 C-terminal truncating variants as pathogenic or likely pathogenic. Identifying the most distal pathogenic alteration provides evidence to classify other C-terminal truncating variants as either pathogenic or benign, a fundamental step to offering pre-symptomatic screening and prophylactic procedures to the appropriate patients. Cold Spring Harbor Laboratory Press.

  3. Potential role for a B-catenin coactivator (high mobility group AT-hook 1 protein) during the latency-reactivation cycle of bovine herpesverus 1

    USDA-ARS?s Scientific Manuscript database

    The latency-related (LR)-RNA encoded by bovine herpes virus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to play a dominant role during the latency-reactivation cycle because a mutant virus containing stop codons...

  4. Molecular prenatal diagnosis of megalencephalic leukoencephalopathy with subcortical cysts in a child from southwest of Iran.

    PubMed

    Shariati, Gholamreza; Hamid, Mohammad; Saberi, Alihossein; Andashti, Behnaz; Galehdari, Hamid

    2015-02-01

    Megalencephalic leukoencephalopathy (MLC) is a rare neurological disorder with an autosomal recessive pattern. Clinical diagnosis was based on macrocephaly, recurrent seizure, and magnetic resonance imaging (MRI). Here we report first finding of a novel homozygous single base deletion in the MLC1 gene in an affected Iranian child causing a premature stop codon (p.L150fs.160X).

  5. A premature stop codon within the tvb receptor gene results in decreased susceptibility to infection by avian leukosis virus subgroups B, D, and E

    USDA-ARS?s Scientific Manuscript database

    Avian leukosis virus (ALV) is an oncogenic virus causing a variety of neoplasms in chickens. The group of avian leukosis virus in chickens contains six closely related subgroups, A to E and J. The prevalence of ALVs in hosts may have imposed strong selection pressure toward resistance to ALV infecti...

  6. Unit-length line-1 transcripts in human teratocarcinoma cells.

    PubMed Central

    Skowronski, J; Fanning, T G; Singer, M F

    1988-01-01

    We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389

  7. Whole exome sequencing identifies a homozygous nonsense variation in ALMS1 gene in a patient with syndromic obesity.

    PubMed

    Das Bhowmik, Aneek; Gupta, Neerja; Dalal, Ashwin; Kabra, Madhulika

    In the present study we report on genetic analysis in a patient with developmental delay, truncal obesity and vision problem, to find the causative mutation. Whole exome sequencing was performed on genomic DNA extracted from whole blood of the patient which revealed a homozygous nonsense variant (c.2816T>A) in exon 8 of ALMS1 gene that results in a stop codon and premature truncation at codon 939 (p.L939Ter) of the protein. The mutation was confirmed by Sanger sequencing. Exome sequencing was helpful in establishing diagnosis of Alstrom syndrome in this patient. This case highlights the utility of exome sequencing in clinical practice. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  8. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    PubMed Central

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine–pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism. PMID:26791911

  9. Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia.

    PubMed Central

    Collins, D R; Knott, T J; Pease, R J; Powell, L M; Wallis, S C; Robertson, S; Pullinger, C R; Milne, R W; Marcel, Y L; Humphries, S E

    1988-01-01

    Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here we describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant, apo-B(His1795----Met-Trp-Leu-Val-Thr-Term) is predicted to be 1799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant, apo-B(Arg1306----Term), is caused by mutation of a CpG dinucleotide in arginine codon 1306 converting it to a stop codon and predicting a protein of 1305 residues. The product of this allele could not be detected in the circulation. The differences in size and behaviour of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins. Images PMID:2843815

  10. The mitochondrial genome of the multicolored Asian lady beetle Harmonia axyridis (Pallas) and a phylogenetic analysis of the Polyphaga (Insecta: Coleoptera).

    PubMed

    Niu, Fang-Fang; Zhu, Liang; Wang, Su; Wei, Shu-Jun

    2016-07-01

    Here, we report the mitochondrial genome sequence of the multicolored Asian lady beetle Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) (GenBank accession No. KR108208). This is the first species with sequenced mitochondrial genome from the genus Harmonia. The current length with partitial A + T-rich region of this mitochondrial genome is 16,387 bp. All the typical genes were sequenced except the trnI and trnQ. As in most other sequenced mitochondrial genomes of Coleoptera, there is no re-arrangement in the sequenced region compared with the pupative ancestral arrangement of insects. All protein-coding genes start with ATN codons. Five, five and three protein-coding genes stop with termination codon TAA, TA and T, respectively. Phylogenetic analysis using Bayesian method based on the first and second codon positions of the protein-coding genes supported that the Scirtidae is a basal lineage of Polyphaga. The Harmonia and the Coccinella form a sister lineage. The monophyly of Staphyliniformia, Scarabaeiformia and Cucujiformia was supported. The Buprestidae was found to be a sister group to the Bostrichiformia.

  11. Suppression of Amber Codons in Caulobacter crescentus by the Orthogonal Escherichia coli Histidyl-tRNA Synthetase/tRNAHis Pair

    PubMed Central

    Ko, Jae-hyeong; Llopis, Paula Montero; Heinritz, Jennifer; Jacobs-Wagner, Christine; Söll, Dieter

    2013-01-01

    While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair. PMID:24386240

  12. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code.

    PubMed

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-21

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  13. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    NASA Astrophysics Data System (ADS)

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  14. Modeling Treatment Response for Lamin A/C Related Dilated Cardiomyopathy in Human Induced Pluripotent Stem Cells.

    PubMed

    Lee, Yee-Ki; Lau, Yee-Man; Cai, Zhu-Jun; Lai, Wing-Hon; Wong, Lai-Yung; Tse, Hung-Fat; Ng, Kwong-Man; Siu, Chung-Wah

    2017-07-28

    Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the LMNA gene are of nonsense mutation. PTC124 induces translational read-through over the premature stop codon and restores production of the full-length proteins from the affected genes. In this study we generated human induced pluripotent stem cells-derived cardiomyocytes from patients who harbored different LMNA mutations (nonsense and frameshift) to evaluate the potential therapeutic effects of PTC124 in LMNA -related cardiomyopathy. We generated human induced pluripotent stem cells lines from 3 patients who carried distinctive mutations (R225X, Q354X, and T518fs) in the LMNA gene. The cardiomyocytes derived from these human induced pluripotent stem cells lines reproduced the pathophysiological hallmarks of LMNA -related cardiomyopathy. Interestingly, PTC124 treatment increased the production of full-length LMNA proteins in only the R225X mutant, not in other mutations. Functional evaluation experiments on the R225X mutant further demonstrated that PTC124 treatment not only reduced nuclear blebbing and electrical stress-induced apoptosis but also improved the excitation-contraction coupling of the affected cardiomyocytes. Using cardiomyocytes derived from human induced pluripotent stem cells carrying different LMNA mutations, we demonstrated that the effect of PTC124 is codon selective. A premature stop codon UGA appeared to be most responsive to PTC124 treatment. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana

    PubMed Central

    Kim, Younghyun; Lee, Goeun; Jeon, Eunhyun; Sohn, Eun ju; Lee, Yongjik; Kang, Hyangju; Lee, Dong wook; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes. PMID:24084084

  16. Posttranscriptional mRNA processing as a mechanism for regulation of human A1 adenosine receptor expression.

    PubMed Central

    Ren, H; Stiles, G L

    1994-01-01

    The human A1 adenosine receptor gene contains six exons with exons 1, 2, 3, 4, and part of 5 representing 5' untranslated regions. Reverse transcription-PCR with exon-specific primers showed two distinct transcripts containing either exons 3, 5, and 6 or exons 4, 5, and 6, with exons 3 and 4 being mutually exclusive. No mature mRNAs containing exons 1 and 2 have been detected. All human tissues that express any A1 receptors contain mRNA with exons 4, 5, and 6. Tissues which express high levels of A1 receptors contain mRNA with exons 3, 5, and 6. Exon 4 contains two upstream ATG codons whereas exon 3 contains none. COS cells transfected with expression vectors containing exon 4 (exons 1-6, 3-6, or Ex4-6) express much lower levels of A1 receptors than vectors without exon 4 (exons 3, 5, and 6). Mutation of upstream ATG codons in exon 4 leads to 3- to 7-fold increased A1 receptor expression, up to the level seen with the construct containing exons 3, 5, and 6. Thus, in human tissues "basal" levels of A1 receptors can be expressed by use of mRNA containing exons 4, 5, and 6, but when high levels are needed, alternative transcripts with exons 3, 5, and 6 are produced. Images PMID:8197148

  17. Characterisation of the canine rod-cone dysplasia type one gene (rod photoreceptor cGMP phosphodiesterase beta subunit (PDEB)) - a model for human retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, P.J.M.; Gregory, C.Y.; Petersen-Jones, S.M.

    1994-09-01

    Rod-cone dysplasia type one (rod-1) is an early onset, autosomal recessive retinal dystrophy segregating in the Irish setter breed. It is a model for certain forms of human autosomal recessive retinitis pigmentosa (arRP) caused by mutations in the same gene, PDEB. We confirmed the codon 807 Trp to Stop mutation and were the first to show cosegregation of the mutant allele with disease in a pedigree. We believe that this currently represents the best animal model available for some aspects of arRP, since canine tissues are relatively easy to access compared to human and yet the canine eye is ofmore » comparable size, unlike that of the rd mouse. This facilitates therapeutic intervention particularly at the subretinal level. In order to more fully investigate this model we have been characterizing the PDEB gene in the normal dog. Using PCR we have partially mapped the intron/exon structure, demonstrating a very high degree of evolutionary conservation with the mouse and human genes. RT-PCR has been used to reveal expression in a variety of neural and non-neural tissues. A PCR product spanning exons 19 to 22 (which also contains the site for the rcd-1 mutation) is detected in retina but also in tissues such as visual cortex, cerebral cortex, cerebellum, lateral geniculate nucleus, adrenal gland, lung, kidney and ovary. All of these tissues gave a negative result with primers for rds/peripherin, a gene which is expressed in rods and cones. This raises interesting questions about the regulation of PDEB transcripts which is initially being investigated by Northern analysis. In addition, anchored PCR techniques have generated upstream genomic sequences and we are currently mapping the 5{prime} extent of the mRNA transcript in the retina. This will facilitate the analysis of potential upstream promoter elements involved in directing expression.« less

  18. The helicase Ded1p controls use of near-cognate translation initiation codons in 5' UTRs.

    PubMed

    Guenther, Ulf-Peter; Weinberg, David E; Zubradt, Meghan M; Tedeschi, Frank A; Stawicki, Brittany N; Zagore, Leah L; Brar, Gloria A; Licatalosi, Donny D; Bartel, David P; Weissman, Jonathan S; Jankowsky, Eckhard

    2018-06-27

    The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation 1 . Mutations in DDX3 are linked to tumorigenesis 2-4 and intellectual disability 5 , and the enzyme is targeted by a range of viruses 6 . How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.

  19. Tobacco chloroplast tRNALys(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron

    PubMed Central

    Sugita, Mamoru; Shinozaki, Kazuo; Sugiura, Masahiro

    1985-01-01

    The nucleotide sequence of a tRNALys(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNAGly(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long. Images PMID:16593561

  20. Tobacco chloroplast tRNA(UUU) gene contains a 2.5-kilobase-pair intron: An open reading frame and a conserved boundary sequence in the intron.

    PubMed

    Sugita, M; Shinozaki, K; Sugiura, M

    1985-06-01

    The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.

  1. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches.

    PubMed

    Fairclough, Rebecca J; Wood, Matthew J; Davies, Kay E

    2013-06-01

    Duchenne muscular dystrophy (DMD) is a devastating progressive disease for which there is currently no effective treatment except palliative therapy. There are several promising genetic approaches, including viral delivery of the missing dystrophin gene, read-through of translation stop codons, exon skipping to restore the reading frame and increased expression of the compensatory utrophin gene. The lessons learned from these approaches will be applicable to many other disorders.

  2. Multiple conversion between the genes encoding bacterial class-I release factors

    PubMed Central

    Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji

    2015-01-01

    Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102

  3. Detection of a premature stop codon in the surface gene of hepatitis B virus from an HBsAg and antiHBc negative blood donor.

    PubMed

    Datta, Sibnarayan; Banerjee, Arup; Chandra, Partha K; Chakraborty, Subhasis; Basu, Subir Kumar; Chakravarty, Runu

    2007-11-01

    In blood donors, HBV infection is detected by the presence of serum hepatitis B surface antigen (HBsAg). However, some mutations in the surface gene region may result in altered or truncated HBsAg that can escape from immunoassay-based diagnosis. Such diagnostic escape mutants pose a potential risk for blood transfusion services. In the present study, we report a blood donor seronegative for HBsAg and antiHBc, but positive for antiHBs who was HBV DNA positive by PCR. Sequencing of the HBsAg gene revealed presence of a point mutation (T-A) at 207th nucleotide of the HBsAg ORF, which resulted in a premature stop codon at position 69. This results in a truncated HBsAg gene lacking the entire 'a' determinant region. However, follow-up of the donor after 2 years revealed clearance of HBV DNA from the serum. The case illustrates an unusual mutation, which causes HBsAg negativity. The finding emphasizes the importance of molecular assays in reducing the possibility of HBV transmission through blood transfusion. However, developing more sensitive serological assays, capable of detecting HBV mutants, is an alternative to expensive and complex amplification-based assays for developing countries.

  4. Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans

    PubMed Central

    Sokolowski, Mark; Chynces, May; deHaro, Dawn; Christian, Claiborne M.

    2017-01-01

    Abstract Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events. PMID:28431148

  5. [Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].

    PubMed

    Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi

    2010-02-01

    The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.

  6. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants

    PubMed Central

    Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit

    2014-01-01

    Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576

  7. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-04-30

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.

  8. Thiamine-responsive megaloblastic anemia: early diagnosis may be effective in preventing deafness.

    PubMed

    Onal, Hasan; Bariş, Safa; Ozdil, Mine; Yeşil, Gözde; Altun, Gürkan; Ozyilmaz, Isa; Aydin, Ahmet; Celkan, Tiraje

    2009-01-01

    Thiamine-responsive megaloblastic anemia syndrome is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anemia and sensorineural hearing loss. Mutations in the SLC19A2 gene, encoding a high-affinity thiamine transporter protein, THTR-1, are responsible for the clinical features associated with thiamine-responsive megaloblastic anemia syndrome in which treatment with pharmacological doses of thiamine correct the megaloblastic anemia and diabetes mellitus. The anemia can recur when thiamine is withdrawn. Thiamine may be effective in preventing deafness if started before two months. Our patient was found homozygous for a mutation, 242insA, in the nucleic acid sequence of exon B, with insertion of an adenine introducing a stop codon at codon 52 in the high-affinity thiamine transporter gene, SLC19A2, on chromosome 1q23.3.

  9. Function of the SpoVAEa and SpoVAF Proteins of Bacillus subtilis Spores

    DTIC Science & Technology

    2014-06-01

    outer surface of the spore’s inner membrane, as SpoVAEa was accessible to an external biotinylation agent in spores and SpoVAEa disappeared in parallel...codon was PCR amplified from PS832 chromosomal DNA with primers that inserted BamHI and PstI restriction sites upstream and downstream, respectively... chromosomal structure, and this strain was termed PS4348 (spoVAEa mutant). A B. subtilis strain with a deletion of the spoVF gene was constructed by a two

  10. The scanning model for translation: an update

    PubMed Central

    1989-01-01

    The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained. PMID:2645293

  11. tRNAs as Therapeutic Agents of Breast Cancer

    DTIC Science & Technology

    2013-07-01

    their anticodon sequence. Wild-type tRNA reads codon for serine, Suppressor (Sup) tRNA for amber stop, and killer tRNA for isoleucine . Figure 6...endoplasmic reticulum (ER) is a eukaryotic organelle that performs the major functions of synthesizing and packaging pro- teins. Overloading of...anticodons tested in HeLa, tRNASer with the AAU anticodon (tRNASer(AAU)) leads to the substitution of isoleucine with serine within the proteome and

  12. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    PubMed

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of peroxisomal MDAR 1 transcripts in pea plants grown under the mentioned stress conditions. These findings show that the peroxisomal MDAR 1 has a differential regulation that could be indicative of its specific function in peroxisomes. All these biochemical and molecular data represent a significant step to understand the specific physiological role of each MDAR isoenzyme and its participation in the antioxidant mechanisms of plant cells.

  13. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, J.Y.; Lei, K.J.; Shelly, L.L.

    1994-09-01

    Glycogen storage disease (GSD) type la (von Gierke disease) is caused by the deficiency of glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. The disease presents with clinical manifestations of severe hypoglycemia, hepatomegaly, growth retardation, lactic acidemia, hyperlipidemia, and hyperuricemia. We have succeeded in isolating a murine G6Pase cDNA from a normal mouse liver cDNA library by differentially screening method. We then isolated the human G6Pase cDNA and gene. To date, we have characterized the G6Pase genes of twelve GSD type la patients and uncovered a total of six different mutations. The mutations are comprised of R83C (an Arg atmore » codon 83 to a Cys), Q347X (a Gly at codon 347 to a stop codon), 459insTA (a two basepair insertion at nucleotide 459 yielding a truncated G6Pase of 129 residues), R295C (an Arg at codon 295 to a Cys), G222R (a Gly at codon 222 to an Arg) and {delta}F327 (a codon deletion for Phe-327 at nucleotides 1058 to 1060). The relative incidences of these mutations are 37.5% (R83C), 33.3% (Q347X), 16.6% (459insTA), 4.2% (G222R), 4.2% (R295C) and 4.2% ({delta}F327). Site-directed mutagenesis and transient expression assays demonstrated that the R83C, Q347X, R295C, and {delta}F327 mutations abolished whereas the G222R mutation greatly reduced G6Pase activity. We further characterized the structure-function requirements of amino acids 83, 222, and 295 in G6Pase catalysis. The identification of mutations in GSD type la patients has unequivocally established the molecular basis of the type la disorder. Knowledge of the mutations may be applied to prenatal diagnosis and opens the way for developing and evaluating new therapeutic approaches.« less

  14. Mitochondrial genome of Pteronotus personatus (Chiroptera: Mormoopidae): comparison with selected bats and phylogenetic considerations.

    PubMed

    López-Wilchis, Ricardo; Del Río-Portilla, Miguel Ángel; Guevara-Chumacero, Luis Manuel

    2017-02-01

    We described the complete mitochondrial genome (mitogenome) of the Wagner's mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.

  15. The mitochondrial genome of Polistes jokahamae and a phylogenetic analysis of the Vespoidea (Insecta: Hymenoptera).

    PubMed

    Song, Sheng-Nan; Chen, Peng-Yan; Wei, Shu-Jun; Chen, Xue-Xin

    2016-07-01

    The mitochondrial genome sequence of Polistes jokahamae (Radoszkowski, 1887) (Hymenoptera: Vespidae) (GenBank accession no. KR052468) was sequenced. The current length with partial A + T-rich region of this mitochondrial genome is 16,616 bp. All the typical mitochondrial genes were sequenced except for three tRNAs (trnI, trnQ, and trnY) located between the A + T-rich region and nad2. At least three rearrangement events occurred in the sequenced region compared with the pupative ancestral arrangement of insects, corresponding to the shuffling of trnK and trnD, translocation or remote inversion of tnnY and translocation of trnL1. All protein-coding genes start with ATN codons. Eleven, one, and another one protein-coding genes stop with termination codon TAA, TA, and T, respectively. Phylogenetic analysis using the Bayesian method based on all codon positions of the 13 protein-coding genes supports the monophyly of Vespidae and Formicidae. Within the Formicidae, the Myrmicinae and Formicinae form a sister lineage and then sister to the Dolichoderinae, while within the Vespidae, the Eumeninae is sister to the lineage of Vespinae + Polistinae.

  16. Optimizing doped libraries by using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas

    1997-01-01

    The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore, the calculations probe the fitness landscape locally and allow apreliminary assessment of its structure.

  17. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames

    PubMed Central

    1996-01-01

    An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204

  18. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1989-01-01

    The gene coding for Escherichia coli arginyl-tRNA synthetase (argS) was isolated as a fragment of 2.4 kb after analysis and subcloning of recombinant plasmids from the Clarke and Carbon library. The clone bearing the gene overproduces arginyl-tRNA synthetase by a factor 100. This means that the enzyme represents more than 20% of the cellular total protein content. Sequencing revealed that the fragment contains a unique open reading frame of 1734 bp flanked at its 5' and 3' ends respectively by 247 bp and 397 bp. The length of the corresponding protein (577 aa) is well consistent with earlier Mr determination (about 70 kd). Primer extension analysis of the ArgRS mRNA by reverse transcriptase, located its 5' end respectively at 8 and 30 nucleotides downstream of a TATA and a TTGAC like element (CTGAC) and 60 nucleotides upstream of the unusual translation initiation codon GUG; nuclease S1 analysis located the 3'-end at 48 bp downstream of the translation termination codon. argS has a codon usage pattern typical for highly expressed E. coli genes. With the exception of the presence of a HVGH sequence similar to the HIGH consensus element, ArgRS has no relevant sequence homologies with other aminoacyl-tRNA synthetases. Images PMID:2668891

  19. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, R.D. Jr.; Wessler, S.R.

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open readingmore » frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.« less

  20. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed Central

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-01-01

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004

  1. Congenital deficiency of alpha feto-protein.

    PubMed

    Sharony, Reuven; Zadik, Idit; Parvari, Ruti

    2004-10-01

    Alpha-fetoprotein (AFP) is the main fetus serum glycoprotein with a very low concentration in the adult. AFP deficiency is a rare phenomenon. We studied two families with congenital AFP deficiency and searched for mutations in the AFP gene. We identified one mutation of 2 base deletion in exon 8, in both families, that leads to the congenital deficiency of AFP. The mutation nt930-931delCT (T294fs25X) creates a frameshift after codon 294 that leads to a stop codon after 24 amino acids, thus truncating the normal length of AFP of 609 amino acids. All the affected children were found to be homozygous for the mutation as was one of the fathers. The affected individuals were asymptomatic and presented normal development. This first identification of a mutation in the AFP gene demonstrates for the first time that deficiency of AFP is compatible with human normal fetal development and further reproduction in males.

  2. Complete mitochondrial genome of the Freshwater Whipray Himantura dalyensis.

    PubMed

    Feutry, Pierre; Kyne, Peter M; Peng, Zaiqing; Pan, Lianghao; Chen, Xiao

    2016-05-01

    The complete mitochondrial genome of the Freshwater Whipray Himantura dalyensis is presented in this study. It is 17,693 bp in length and contains 37 genes in typical gene order and transcriptional orientation observed in vertebrates. There were a total of 86 bp short intergenic spacers and 22 bp overlaps in the genome. The overall base composition was 31.4% A, 25.5% C, 13.2% G and 29.9% T. Two start codons (GTG and ATG) and two stop codons (TAG and TAA/T) were found in 13 protein-coding genes. The length of 22 tRNA genes ranged from 68 (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1). The origin of L-strand replication (OL) was found between the tRNA-Asn and tRNA-Cys genes. The base composition of the control region (1940 bp) was similar to the whole mitogenome.

  3. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast.

    PubMed

    Jenks, M Harley; O'Rourke, Thomas W; Reines, Daniel

    2008-06-01

    The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.

  4. Inhibition of Exotoxin Production by Mobile Genetic Element SCCmec-Encoded psm-mec RNA Is Conserved in Staphylococcal Species

    PubMed Central

    Saito, Yuki; Mao, Han; Sekimizu, Kazuhisa; Kaito, Chikara

    2014-01-01

    Staphylococcal species acquire antibiotic resistance by incorporating the mobile-genetic element SCCmec. We previously found that SCCmec-encoded psm-mec RNA suppresses exotoxin production as a regulatory RNA, and the psm-mec translation product increases biofilm formation in Staphylococcus aureus. Here, we examined whether the regulatory role of psm-mec on host bacterial virulence properties is conserved among other staphylococcal species, S. epidermidis and S. haemolyticus, both of which are important causes of nosocomial infections. In S. epidermidis, introduction of psm-mec decreased the production of cytolytic toxins called phenol-soluble modulins (PSMs) and increased biofilm formation. Introduction of psm-mec with a stop-codon mutation that did not express PSM-mec protein but did express psm-mec RNA also decreased PSM production, but did not increase biofilm formation. Thus, the psm-mec RNA inhibits PSM production, whereas the PSM-mec protein increases biofilm formation in S. epidermidis. In S. haemolyticus, introduction of psm-mec decreased PSM production, but did not affect biofilm formation. The mutated psm-mec with a stop-codon also caused the same effect. Thus, the psm-mec RNA also inhibits PSM production in S. haemolyticus. These findings suggest that the inhibitory role of psm-mec RNA on exotoxin production is conserved among staphylococcal species, although the stimulating effect of the psm-mec gene on biofilm formation is not conserved. PMID:24926994

  5. Constructing high complexity synthetic libraries of long ORFs using in vitro selection

    NASA Technical Reports Server (NTRS)

    Cho, G.; Keefe, A. D.; Liu, R.; Wilson, D. S.; Szostak, J. W.

    2000-01-01

    We present a method that can significantly increase the complexity of protein libraries used for in vitro or in vivo protein selection experiments. Protein libraries are often encoded by chemically synthesized DNA, in which part of the open reading frame is randomized. There are, however, major obstacles associated with the chemical synthesis of long open reading frames, especially those containing random segments. Insertions and deletions that occur during chemical synthesis cause frameshifts, and stop codons in the random region will cause premature termination. These problems can together greatly reduce the number of full-length synthetic genes in the library. We describe a strategy in which smaller segments of the synthetic open reading frame are selected in vitro using mRNA display for the absence of frameshifts and stop codons. These smaller segments are then ligated together to form combinatorial libraries of long uninterrupted open reading frames. This process can increase the number of full-length open reading frames in libraries by up to two orders of magnitude, resulting in protein libraries with complexities of greater than 10(13). We have used this methodology to generate three types of displayed protein library: a completely random sequence library, a library of concatemerized oligopeptide cassettes with a propensity for forming amphipathic alpha-helical or beta-strand structures, and a library based on one of the most common enzymatic scaffolds, the alpha/beta (TIM) barrel. Copyright 2000 Academic Press.

  6. Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans

    PubMed Central

    Mitrovich, Quinn M.; Anderson, Philip

    2000-01-01

    Messenger RNA surveillance, the selective and rapid degradation of mRNAs containing premature stop codons, occurs in all eukaryotes tested. The biological role of this decay pathway, however, is not well understood. To identify natural substrates of mRNA surveillance, we used a cDNA-based representational difference analysis to identify mRNAs whose abundance increases in Caenorhabditis elegans smg(−) mutants, which are deficient for mRNA surveillance. Alternatively spliced mRNAs of genes encoding ribosomal proteins L3, L7a, L10a, and L12 are abundant natural targets of mRNA surveillance. Each of these genes expresses two distinct mRNAs. A productively spliced mRNA, whose abundance does not change in smg(−) mutants, encodes a normal, full-length, ribosomal protein. An unproductively spliced mRNA, whose abundance increases dramatically in smg(−) mutants, contains premature stop codons because of incomplete removal of an alternatively spliced intron. In transgenic animals expressing elevated quantities of RPL-12, a greater proportion of endogenous rpl-12 transcript is spliced unproductively. Thus, RPL-12 appears to autoregulate its own splicing, with unproductively spliced mRNAs being degraded by mRNA surveillance. We demonstrate further that alternative splicing of rpl introns is conserved among widely diverged nematodes. Our results suggest that one important role of mRNA surveillance is to eliminate unproductive by-products of gene regulation. PMID:10970881

  7. Readthrough of stop codons by use of aminoglycosides in cells from xeroderma pigmentosum group C patients.

    PubMed

    Kuschal, Christiane; Khan, Sikandar G; Enk, Benedikt; DiGiovanna, John J; Kraemer, Kenneth H

    2015-04-01

    Readthrough of premature termination (stop) codons (PTC) is a new approach to treatment of genetic diseases. We recently reported that readthrough of PTC in cells from some xeroderma pigmentosum complementation group C (XP-C) patients could be achieved with the aminoglycosides geneticin or gentamicin. We found that the response depended on several factors including the PTC sequence, its location within the gene and the aminoglycoside used. Here, we extended these studies to investigate the effects of other aminoglycosides that are already on the market. We reasoned that topical treatment could deliver much higher concentrations of drug to the skin, the therapeutic target, and thus increase the therapeutic effect while reducing renal or ototoxicity in comparison with systemic treatment. Our prior clinical studies indicated that only a few percent of normal XPC expression was associated with mild clinical disease. We found minimal cell toxicity in the XP-C cells with several aminoglycosides. We found increased XPC mRNA expression in PTC-containing XP-C cells with G418, paromomycin, neomycin and kanamycin and increased XPC protein expression with G418. We conclude that in selected patients with XP, topical PTC therapy can be investigated as a method of personalized medicine to alleviate their cutaneous symptoms. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Major histocompatibility complex variation in the endangered Przewalski's horse.

    PubMed Central

    Hedrick, P W; Parker, K M; Miller, E L; Miller, P S

    1999-01-01

    The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594

  9. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Cheng, Joyce; Springer, Mark S.

    2011-01-01

    Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation. PMID:20861053

  10. Confirmation of translatability and functionality certifies the dual endothelin1/VEGFsp receptor (DEspR) protein.

    PubMed

    Herrera, Victoria L M; Steffen, Martin; Moran, Ann Marie; Tan, Glaiza A; Pasion, Khristine A; Rivera, Keith; Pappin, Darryl J; Ruiz-Opazo, Nelson

    2016-06-14

    In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein's existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions. To dissect the nucleotide sequence discrepancy, we performed Maxam-Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR's existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects. Maxam-Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5 kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass spectrometry analysis of anti-DEspR mAb pull-down proteins do not detect DEspR, but detect DEspR-protein interactions with proteins implicated in intracellular trafficking and cancer. FACS analyses also detect DEspR-protein in different human cancer stem-like cells (CSCs). DEspR-inhibition studies identify DEspR-roles in CSC survival and growth. Live cell imaging detects fluorescently-labeled anti-DEspR mAb targeted-receptor internalization, concordant with the single internalization-recognition sequence also located beyond codon#14. Data confirm translatability of DEspR, the full-length DEspR protein beyond codon#14, and elucidate DEspR-specific functionality. Along with detection of the tryptophan [TGG]-codon#14 within an error-prone compression site, cumulative data demonstrating DEspR protein existence fulfill multiple UNIPROT criteria, thus refuting its pseudogene designation.

  11. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.

    PubMed

    Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X

    2012-10-01

    Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighton, J.K.; Joyner, J.; Zamarripa, J.

    Two different molecular weight forms of apoB are produced from a common initial transcript via editing of a Gln codon (CAA) to a stop codon (UAA), leading to a truncated translation product (apo BS) that consists of the amino terminal half of the larger form (apoBL). Previous studies have shown that fasting coordinately decreases lipogenesis and the secretion of very low density lipoprotein (VLDL) lipids and apoBS. Secretion of the apoBL is unaffected by fasting. We studied whether editing of apoB RNA is repressed by fasting, thus accounting for the selective decreased secretion of apoBS. Column chromatography of (35S)methionine-labeled lipoproteinsmore » secreted by hepatocytes from fed rats showed that essentially all of apoBL is secreted in the VLDL fraction, whereas a significant amount (15%) of apoBS is secreted associated as lipoproteins eluting in the HDL fractions. Fasting decreased the relative amount of apoBS that eluted in the VLDL fractions and increased the amount secreted in the HDL fractions. Consistent with previous results, hepatocytes from fasted rats show a selective twofold decrease in apoBS secretion. Fasting did not affect the relative abundance of apoB RNA, determined by slot blot hybridization assays using two different 32P-labeled cDNA probes coding either for both molecular weight forms or for only the large molecular weight form. However, quantitative of the editing of apoB RNA showed that fasting caused a 60% decrease in the amount of apoB RNA possessing the stop codon. These data show that the editing of apoB RNA is sensitive to metabolic state (i.e., fasting) resulting in a selective decrease in the secretion of apoBS. However, since the total secretion of apoB was decreased by fasting, while apoB mRNA levels remained constant, additional (post-transcriptional) mechanisms play a role in regulating apoB secretion.« less

  13. Role of the Integrin-Linked Kinase, ILK, in Mammary Carcinogensis

    DTIC Science & Technology

    2000-08-01

    have been implicated in environmental stress clonei 6-10 responses in yeasts, plants and mammals, as well as regulating abscisic acid signal transduction...phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl Acad. Sci. USA, 95, 975-980. Strovel,E.T., Wu,D. and Sussman,D.J...contain a 450bp open reading frame, coding for 149 amino acids and a poly A tail 245bp downstream of the stop codon, although no polyadenylation site

  14. Cloning of Russian sturgeon (Acipenser gueldenstaedtii) growth hormone and insulin-like growth factor I and their expression in male and female fish during the first period of growth.

    PubMed

    Yom Din, S; Hurvitz, A; Goldberg, D; Jackson, K; Levavi-Sivan, B; Degani, G

    2008-03-01

    In this study, the GH and IGF-I of the Russian sturgeon (rs), Acipenser gueldenstaedtii, were cloned and sequenced, and their mRNA gene expression determined. In addition, to improve our understanding of the GH function, the expression of this hormone was assessed in young males and females. Moreover, IGF-I expression was quantified in young males and compared to that in older ones. The nucleotide sequence of the rsGH cDNA was 980 bp long and had an open reading frame of 642 bp, beginning with the first ATG codon at position 39 and ending with the stop codon at position 683. A putative polyadenylation signal, AATAAA, was recognized 42 bp upstream of the poly (A) tail. The position of the signal- peptide cleavage site was predicted to be at position 111, yielding a signal peptide of 24 amino-acids (aa) and a mature peptide of 190 aa. When the rsGH aa sequence was compared with other species, the highest degree of identity was found to be with mammalians (66-70% identity), followed by anguilliformes and amphibia (61%) and other fish (39-47%). The level of rsGH mRNA was discovered to be similar in pituitaries of females and males of 5 age groups (1, 2, 3, 4, and 5- yr-old). In females and males, the levels did not change dramatically during the first 5 yr of growth. The partial nucleotide sequence of the rsIGF-I was 445 bp long and had an open reading frame of 396 bp, beginning with the ATG codon at position 50. The position of the signal-peptide cleavage site was predicted to be at position 187, yielding a signal peptide of 44 aa. The highest level of IGF-I mRNA expression was recorded in the kidney of adult sturgeons. The IGF-I mRNA expression levels in the intestine, pituitary gland, and liver were not significantly different. Low levels of expression were found in the brain, heart, and muscle. In most tissues, there was no significant difference between mRNA levels of one and 5-yr-old fish. In conclusion, based on the GH-sequence analysis, A. gueldenstaedtii is genetically distant from other teleosts. The expression of the GH mRNA was similar in males and females, and its level remained constant during the first 5 yr of growth. While the IGF-I mRNA expression differed amongst various tissues, the level in each tissue was similar in 1 and 5-yr-old fish.

  15. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli.

    PubMed

    Lalaouna, David; Morissette, Audrey; Carrier, Marie-Claude; Massé, Eric

    2015-10-01

    The 87 nucleotide long DsrA sRNA has been mostly studied for its translational activation of the transcriptional regulator RpoS. However, it also represses hns mRNA, which encodes H-NS, a major regulator that affects expression of nearly 5% of Escherichia coli genes. A speculative model previously suggested that DsrA would block hns mRNA translation by binding simultaneously to start and stop codon regions of hns mRNA (coaxial model). Here, we show that DsrA efficiently blocked translation of hns mRNA by base-pairing immediately downstream of the start codon. In addition, DsrA induced hns mRNA degradation by actively recruiting the RNA degradosome complex. Data presented here led to a model of DsrA action on hns mRNA, which supports a canonical mechanism of sRNA-induced mRNA degradation by binding to the translation initiation region. Furthermore, using MS2-affinity purification coupled with RNA sequencing technology (MAPS), we also demonstrated that DsrA targets rbsD mRNA, involved in ribose utilization. Surprisingly, DsrA base pairs far downstream of rbsD start codon and induces rapid degradation of the transcript. Thus, our study enables us to draw an extended DsrA targetome. © 2015 John Wiley & Sons Ltd.

  16. Translation regulation of mammalian selenoproteins.

    PubMed

    Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent

    2018-05-09

    Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.

  17. A novel two-nucleotide deletion in the ATP7A gene associated with delayed infantile onset of Menkes disease.

    PubMed

    Wada, Takahito; Haddad, Marie Reine; Yi, Ling; Murakami, Tomomi; Sasaki, Akiko; Shimbo, Hiroko; Kodama, Hiroko; Osaka, Hitoshi; Kaler, Stephen G

    2014-04-01

    Determining the relationship between clinical phenotype and genotype in genetic diseases is important in clinical practice. In general, frameshift mutations are expected to produce premature termination codons, leading to production of mutant transcripts destined for degradation by nonsense-mediated decay. In X-linked recessive diseases, male patients with frameshift mutations typically have a severe or even lethal phenotype. We report a case of a 17-month-old boy with Menkes disease (NIM #309400), an X-linked recessive copper metabolism disorder caused by mutations in the ATP7A copper transporter gene. He exhibited an unexpectedly late onset and experienced milder symptoms. His genomic DNA showed a de novo two-nucleotide deletion in exon 4 of ATP7A, predicting a translational frameshift and premature stop codon, and a classic severe phenotype. Characterization of his ATP7A mRNA showed no abnormal splicing. We speculate that translation reinitiation could occur downstream to the premature termination codon and produce a partially functional ATP7A protein. Study of the child's fibroblasts found no evidence of translation reinitiation; however, the possibility remains that this phenomenon occurred in neural tissues and influenced the clinical phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A transducer for microbial sensory rhodopsin that adopts GTG as a start codon is identified in Haloarcula marismortui.

    PubMed

    Fu, Hsu-Yuan; Lu, Yen-Hsu; Yi, Hsiu-Ping; Yang, Chii-Shen

    2013-04-05

    Microbial sensory rhodopsins are known to mediate phototaxis, and all of the known sensory rhodopsins execute this function with a specific cognate transducer that has two-transmembrane (2-TM) regions. In the genome of Haloarcula marismortui, a total of six rhodopsin genes were annotated, and we previously showed three of them to be the ion type and suggested the other three as sensory type, even though the candidate transducer gene, htr, for HmSRI was missing the 2-TM region that is found in all of the other known transducers. Here we showed this htr gene featured a preceding 2-TM region when the alternative start codon GTG located 291 nucleotides upstream of the original annotated open reading frame (ORF) was introduced and it is named as htrI in this study. Overexpression of HmHtrI exhibited it existed as a membrane protein and several biophysical assays confirmed it functionally interacted with HmSRI. Together with our previous reverse-transcriptase-PCR results and phototaxis measurements, the new ORF of original predicted soluble htr gene product was a membrane protein with a 2-TM region, HmHtrI; and it serves as the cognate transducer for HmSRI. HmHtrI therefore is the first transducer for the sensory rhodopsin adopted start codon other than ATG. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Selenium. Role of the Essential Metalloid in Health

    PubMed Central

    Kurokawa, Suguru; Berry, Marla J.

    2015-01-01

    Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102

  20. Evolution of Nucleotide Punctuation Marks: From Structural to Linear Signals.

    PubMed

    El Houmami, Nawal; Seligmann, Hervé

    2017-01-01

    We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication initiation fits this scenario. Some observations reported in the literature corroborate that several signals for nucleotide synthesis function in translation, and vice versa. (a) Polymerase-induced frameshift mutations occur preferentially at translational termination signals (nucleotide deletion is interpreted as termination of nucleotide polymerization, paralleling the role of stop codons in translation). (b) Stem-loop hairpin presence/absence modulates codon-amino acid assignments, showing that translational signals sometimes combine primary and secondary nucleotide structures (here codon and stem-loop). (c) Homopolymer nucleotide triplets (AAA, CCC, GGG, TTT) cause transcriptional and ribosomal frameshifts. Here we find in recently described human mitochondrial RNAs that systematically lack mono-, dinucleotides after each trinucleotide (delRNAs) that delRNA triplets include 2x more homopolymers than mitogenome regions not covered by delRNA. Further analyses of delRNAs show that the natural circular code X (a little-known group of 20 translational signals enabling ribosomal frame retrieval consisting of 20 codons {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} universally overrepresented in coding versus other frames of gene sequences), regulates frameshift in transcription and translation. This dual transcription and translation role confirms for X the hypothesis that translational signals were carried over from transcriptional signals.

  1. Natural Variant of Collagen-Like Protein A in Serotype M3 Group A Streptococcus Increases Adherence and Decreases Invasive Potential

    PubMed Central

    Jewell, Brittany E.; Versalovic, Erika M.; Olsen, Randall J.; Bachert, Beth A.; Lukomski, Slawomir; Musser, James M.

    2015-01-01

    Group A Streptococcus (GAS) predominantly exists as a colonizer of the human oropharynx that occasionally breaches epithelial barriers to cause invasive diseases. Despite the frequency of GAS carriage, few investigations into the contributory molecular mechanisms exist. To this end, we identified a naturally occurring polymorphism in the gene encoding the streptococcal collagen-like protein A (SclA) in GAS carrier strains. All previously sequenced invasive serotype M3 GAS possess a premature stop codon in the sclA gene truncating the protein. The carrier polymorphism is predicted to restore SclA function and was infrequently identified by targeted DNA sequencing in invasive strains of the same serotype. We demonstrate that a strain with the carrier sclA allele expressed a full-length SclA protein, while the strain with the invasive sclA allele expressed a truncated variant. An isoallelic mutant invasive strain with the carrier sclA allele exhibited decreased virulence in a mouse model of invasive disease and decreased multiplication in human blood. Further, the isoallelic invasive strain with the carrier sclA allele persisted in the mouse nasopharynx and had increased adherence to cultured epithelial cells. Repair of the premature stop codon in the invasive sclA allele restored the ability to bind the extracellular matrix proteins laminin and cellular fibronectin. These data demonstrate that a mutation in GAS carrier strains increases adherence and decreases virulence and suggest selection against increased adherence in GAS invasive isolates. PMID:25561712

  2. A novel homozygous stop-codon mutation in human HFE responsible for nonsense-mediated mRNA decay.

    PubMed

    Padula, Maria Carmela; Martelli, Giuseppe; Larocca, Marilena; Rossano, Rocco; Olivieri, Attilio

    2014-09-01

    HFE-hemochromatosis (HH) is an autosomal disease characterized by excessive iron absorption. Homozygotes for H63D variant, and still less H63D heterozygotes, generally do not express HH phenotype. The data collected in our previous study in the province of Matera (Basilicata, Italy) underlined that some H63D carriers showed altered iron metabolism, without additional factors. In this study, we selected a cohort of 10/22 H63D carriers with severe biochemical iron overload (BIO). Additional analysis was performed for studying HFE exons, exon-intron boundaries, and untranslated regions (UTRs) by performing DNA extraction, PCR amplification and sequencing. The results showed a novel substitution (NM_000410.3:c.847C>T) in a patient exon 4 (GenBankJQ478433); it introduces a premature stop-codon (PTC). RNA extraction and reverse-transcription were also performed. Quantitative real-time PCR was carried out for verifying if our aberrant mRNA is targeted for nonsense-mediated mRNA decay (NMD); we observed that patient HFE mRNA was expressed much less than calibrator, suggesting that the mutated HFE protein cannot play its role in iron metabolism regulation, resulting in proband BIO. Our finding is the first evidence of a variation responsible for a PTC in iron cycle genes. The genotype-phenotype correlation observed in our cases could be related to the additional mutation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cryptic tRNAs in chaetognath mitochondrial genomes.

    PubMed

    Barthélémy, Roxane-Marie; Seligmann, Hervé

    2016-06-01

    The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Single Base Pair Mutation Encoding a Premature Stop Codon in the MIS type II receptor is Responsible for Canine Persistent Müllerian Duct Syndrome

    PubMed Central

    Wu, Xiufeng; Wan, Shengqin; Pujar, Shashikant; Haskins, Mark E.; Schlafer, Donald H.; Lee, Mary M.; Meyers-Wallen, Vicki N.

    2008-01-01

    Müllerian Inhibiting Substance (MIS), a secreted glycoprotein in the Transforming Growth Factor-beta (TGF-beta) family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In Persistent Müllerian Duct Syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, Fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model may enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome. PMID:18723470

  5. WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon.

    PubMed

    Masingue, Marion; Perrot, Jimmy; Carlier, Robert-Yves; Piguet-Lacroix, Guenaelle; Latour, Philippe; Stojkovic, Tanya

    2018-05-01

    Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.

  6. A free VP3 C-terminus is essential for the replication of infectious bursal disease virus.

    PubMed

    Mosley, Yung-Yi C; Wu, Ching Ching; Lin, Tsang Long

    2017-03-15

    Green fluorescent protein (GFP) has been successfully incorporated into the viral-like particles of infectious bursal disease virus (IBDV) with a linker at the C-terminus of VP3 in a baculovirus system. However, when the same locus in segment A was used to express GFP by a reverse genetic (RG) system, no viable GFP-expressing IBDV was recovered. To elucidate the underlying mechanism, cDNA construct of segment A with only the linker sequence (9 amino acids) was applied to generate RG IBDV virus (rIBDV). Similarly, no rIBDV was recovered. Moreover, when the incubation after transfection was extended, wildtype rIBDV without the linker was recovered suggesting a free C-terminus of VP3 might be necessary for IBDV replication. On the other hand, rIBDV could be recovered when additional sequence (up to 40 nucleotides) were inserted at the 3' noncoding region (NCR) adjacent to the stop codon of VP3, suggesting that the burden of the linker sequence was not in the stretched genome size but the disruption of the VP3 function. Finally, when the stop codon of VP3 was deleted in segment A to extend the translation into the 3' NCR without introducing additional genomic sequence, no rIBDV was recovered. Our data suggest that a free VP3 C-terminus is essential for IBDV replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. New mutations of DAX-1 genes in two Japanese patients with X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanase, Toshihiko; Takayanagi, Ryoichi; Oba, Koichi

    Congenital adrenal hypoplasia, an X-linked disorder, is characterized by primary adrenal insufficiency and frequent association with hypogonadotropic hypogonadism. The X-chromosome gene DAX-1 has been most recently identified and shown to be responsible for this disorder. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism by using PCR amplification of genomic DNA and its complete exonic sequencing. In a family containing several affected individuals, the proband male patient had a stop codon (TGA) in place of tryptophan (TGG) at amino acid position 171. As expected, his mother was a heterozygous carrier for themore » mutation, whereas his father and unaffected brother did not carry this mutation. In another male patient with noncontributory family history, sequencing revealed a 1-bp (T) deletion at amino acid position 280, leading to a frame shift and, subsequently a premature stop codon at amino acid position 371. The presence of this mutation in the patients` genome was further confirmed by digestion of genomic PCR product with MspI created by this mutation. Family studies using MspI digestion of genomic PCR products revealed that neither parent of this individual carried the mutation. These results clearly indicate that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. 31 refs., 4 figs., 2 tabs.« less

  8. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  9. Novel Single-Base Deletional Mutation in Major Intrinsic Protein (MIP) in Autosomal Dominant Cataract

    PubMed Central

    Geyer, David D.; Spence, M. Anne; Johannes, Meriam; Flodman, Pamela; Clancy, Kevin P.; Berry, Rebecca; Sparkes, Robert S.; Jonsen, Matthew D.; Isenberg, Sherwin J.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To further elucidate the cataract phenotype, and identify the gene and mutation for autosomal dominant cataract (ADC) in an American family of European descent (ADC2) by sequencing the major intrinsic protein gene (MIP), a candidate based on linkage to chromosome 12q13. DESIGN Observational case series and laboratory experimental study. METHODS We examined two at-risk individuals in ADC2. We PCR-amplified and sequenced all four exons and all intron-exon boundaries of the MIP gene from genomic and cloned DNA in affected members to confirm one variant as the putative mutation. RESULTS We found a novel single deletion of nucleotide (nt) 3223 (within codon 235) in exon four, causing a frameshift that alters 41 of 45 subsequent amino acids and creates a premature stop codon. CONCLUSIONS We identified a novel single base pair deletion in the MIP gene and conclude that it is a pathogenic sequence alteration. PMID:16564824

  10. The complete mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae).

    PubMed

    Zhou, Xuming; Chen, Yu; Zhu, Shanliang; Xu, Haigen; Liu, Yan; Chen, Lian

    2016-01-01

    The mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae) is the first complete mtDNA sequence reported in the genus Pomacea. The total length of mtDNA is 15,707 bp, which containing 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a 359 bp non-coding region. The A + T content of the overall base composition of H-strand is 71.7% (T: 41%, C: 12.7%, A: 30.7%, G: 15.6%). ATP6, ATP8, CO1, CO2, ND1-3, ND5, ND6, ND4L and Cyt b genes begin with ATG as start codon, CO3 and ND4 begin with ATA. ATP8, CO2-3, ND4L, ND2-6 and Cyt b genes are terminated with TAA as stop codon, ATP6, ND1, and CO1 end with TAG. A long non-coding region is found and a 23 bp repeat unit repeat 11 times in this region.

  11. Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, M.; Osborn, M.; Maynard, J.

    Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detectedmore » in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.« less

  12. A novel mutation causing complete thyroxine-binding globulin deficiency (TBG-CD-Negev) among the Bedouins in southern Israel.

    PubMed

    Miura, Y; Hershkovitz, E; Inagaki, A; Parvari, R; Oiso, Y; Phillip, M

    2000-10-01

    T4-binding globulin (TBG) is the major thyroid hormone transport protein in human serum. Inherited TBG abnormalities do not usually alter the metabolic status and are transmitted in X-linked inheritance. A high prevalence of complete TBG deficiency (TBG-CD) has been reported among the Bedouin population in the Negev (southern Israel). In this study we report a novel single mutation causing complete TBG deficiency due to a deletion of the last base of codon 38 (exon 1), which led to a frame shift resulting in a premature stop at codon 51 and a presumed truncated peptide of 50 residues. This new variant of TBG (TBG-CD-Negev) was found among all of the patients studied. We conclude that a single mutation may account for TBG deficiency among the Bedouins in the Negev. This report is the first to describe a mutation in a population with an unusually high prevalence of TBG-CD.

  13. The complete mitochondrial genome of the Aluterus monoceros.

    PubMed

    Li, Wenshen; Zhang, Guoqing; Wen, Xin; Wang, Qian; Chen, Guohua

    2016-07-01

    The complete mitochondrial genome of Aluterus monoceros (A. monoceros) has been sequenced. The mitochondrial genome of A. monoceros is 16,429 bp in length, consisting of 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and a D-loop region (Gen Bank accession number KP637022). The base A + T of the mitochondrial genome is 63.25%, including 33.16% of A, 30.09% of T and 20.74% of C. Twelve protein-coding genes start with a standard ATG as the initiation codon, expect for the COXI, which begins with GTG. Some of the termination codons are incomplete T or TA, except for the ND1, COXI, ATP8, ND4L1, ND5 and ND6, which stop with TAA. Construction of phylogenetic trees based on the entire mitochondrial genome sequence of 14 Tetrodontiformes species constructed has suggested that A. monoceros has closer relationship with Acreichthys tomentosus and Monacanthus chinensis, and they constitute a sister group.

  14. Odilorhabdins, Antibacterial Agents that Cause Miscoding by Binding at a New Ribosomal Site.

    PubMed

    Pantel, Lucile; Florin, Tanja; Dobosz-Bartoszek, Malgorzata; Racine, Emilie; Sarciaux, Matthieu; Serri, Marine; Houard, Jessica; Campagne, Jean-Marc; de Figueiredo, Renata Marcia; Midrier, Camille; Gaudriault, Sophie; Givaudan, Alain; Lanois, Anne; Forst, Steve; Aumelas, André; Cotteaux-Lautard, Christelle; Bolla, Jean-Michel; Vingsbo Lundberg, Carina; Huseby, Douglas L; Hughes, Diarmaid; Villain-Guillot, Philippe; Mankin, Alexander S; Polikanov, Yury S; Gualtieri, Maxime

    2018-04-05

    Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi (Rajiformes: Rajidae).

    PubMed

    Li, Weidong; Chen, Xiao; Liu, Wenai; Sun, Renjie; Zhou, Haolang

    2016-07-01

    The complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi was determined in this study. It is 16,974 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one putative control region. The overall base composition is 30.5% A, 27.8% C, 14.0% G, and 27.8% T. There are 28 bp short intergenic spaces located in 12 gene junctions and 31 bp overlaps located in nine gene junctions in the whole mitogenome. Two start codons (ATG and GTG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The lengths of 22 tRNA genes range from 68 (tRNA-Ser2) to 75 (tRNA-Leu1) bp. The origin of L-strand replication (OL) sequence (37 bp) was identified between the tRNA-Asn and tRNA-Cys genes. The control region is 1311 bp in length with high A + T and poor G content.

  16. Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing

    PubMed Central

    Shen, Yingjia; Venu, R.C.; Nobuta, Kan; Wu, Xiaohui; Notibala, Varun; Demirci, Caghan; Meyers, Blake C.; Wang, Guo-Liang; Ji, Guoli; Li, Qingshun Q.

    2011-01-01

    Polyadenylation sites mark the ends of mRNA transcripts. Alternative polyadenylation (APA) may alter sequence elements and/or the coding capacity of transcripts, a mechanism that has been demonstrated to regulate gene expression and transcriptome diversity. To study the role of APA in transcriptome dynamics, we analyzed a large-scale data set of RNA “tags” that signify poly(A) sites and expression levels of mRNA. These tags were derived from a wide range of tissues and developmental stages that were mutated or exposed to environmental treatments, and generated using digital gene expression (DGE)–based protocols of the massively parallel signature sequencing (MPSS-DGE) and the Illumina sequencing-by-synthesis (SBS-DGE) sequencing platforms. The data offer a global view of APA and how it contributes to transcriptome dynamics. Upon analysis of these data, we found that ∼60% of Arabidopsis genes have multiple poly(A) sites. Likewise, ∼47% and 82% of rice genes use APA, supported by MPSS-DGE and SBS-DGE tags, respectively. In both species, ∼49%–66% of APA events were mapped upstream of annotated stop codons. Interestingly, 10% of the transcriptomes are made up of APA transcripts that are differentially distributed among developmental stages and in tissues responding to environmental stresses, providing an additional level of transcriptome dynamics. Examples of pollen-specific APA switching and salicylic acid treatment-specific APA clearly demonstrated such dynamics. The significance of these APAs is more evident in the 3034 genes that have conserved APA events between rice and Arabidopsis. PMID:21813626

  17. A homolog of the variola virus B22 membrane protein contributes to ectromelia virus pathogenicity in the mouse footpad model.

    PubMed

    Reynolds, Sara E; Earl, Patricia L; Minai, Mahnaz; Moore, Ian; Moss, Bernard

    2017-01-15

    Most poxviruses encode a homolog of a ~200,000-kDa membrane protein originally identified in variola virus. We investigated the importance of the ectromelia virus (ECTV) homolog C15 in a natural infection model. In cultured mouse cells, the replication of a mutant virus with stop codons near the N-terminus (ECTV-C15Stop) was indistinguishable from a control virus (ECTV-C15Rev). However, for a range of doses injected into the footpads of BALB/c mice there was less mortality with the mutant. Similar virus loads were present at the site of infection with mutant or control virus whereas there was less ECTV-C15Stop in popliteal and inguinal lymph nodes, spleen and liver indicating decreased virus spread and replication. The latter results were supported by immunohistochemical analyses. Decreased spread was evidently due to immune modulatory activity of C15, rather than to an intrinsic viral function, as the survival of infected mice depended on CD4+ and CD8+ T cells. Published by Elsevier Inc.

  18. Molecular detection and point-of-care testing in Ebola virus disease and other threats: a new global public health framework to stop outbreaks.

    PubMed

    Kost, Gerald J; Ferguson, William; Truong, Anh-Thu; Hoe, Jackie; Prom, Daisy; Banpavichit, Arirat; Kongpila, Surin

    2015-01-01

    Ultrahigh sensitivity and specificity assays that detect Ebola virus disease or other highly contagious and deadly diseases quickly and successfully upstream in Spatial Care Paths™ can stop outbreaks from escalating into devastating epidemics ravaging communities locally and countries globally. Even had the WHO and CDC responded more quickly and not misjudged the dissemination of Ebola in West Africa and other world regions, mobile rapid diagnostics were, and still are, not readily available for immediate and definitive diagnosis, a stunning strategic flaw that needs correcting worldwide. This article strategizes point-of-care testing for diagnosis, triage, monitoring, recovery and stopping outbreaks in the USA and other countries; reviews Ebola molecular diagnostics, summarizes USA FDA emergency use authorizations and documents why they should not be stop-gaps; and reduces community risk from internal and external infectious disease threats by enabling public health at points of need.

  19. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts

    PubMed Central

    Ahn, Jin-Ho; Hwang, Mi-Yeon; Lee, Kyung-Ho; Choi, Cha-Yong; Kim, Dong-Myung

    2007-01-01

    This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours. PMID:17185295

  20. Transcriptional mapping of the varicella-zoster virus regulatory genes encoding open reading frames 4 and 63.

    PubMed Central

    Kinchington, P R; Vergnes, J P; Defechereux, P; Piette, J; Turse, S E

    1994-01-01

    Four of the 68 varicella-zoster virus (VZV) unique open reading frames (ORFs), i.e., ORFs 4, 61, 62, and 63, encode proteins that influence viral transcription and are considered to be positional homologs of herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins. In order to identify the elements that regulate transcription of VZV ORFs 4 and 63, the encoded mRNAs were mapped in detail. For ORF 4, a major 1.8-kb and a minor 3.0-kb polyadenylated [poly(A)+] RNA were identified, whereas ORF 63-specific probes recognized 1.3- and 1.9-kb poly(A)+ RNAs. Probes specific for sequences adjacent to the ORFs and mapping of the RNA 3' ends indicated that the ORF 4 RNAs were 3' coterminal, whereas the RNAs for ORF 63 represented two different termination sites. S1 nuclease mapping and primer extension analyses indicated a single transcription initiation site for ORF 4 at 38 bp upstream of the ORF start codon. For ORF 63, multiple transcriptional start sites at 87 to 95, 151 to 153, and (tentatively) 238 to 243 bp upstream of the ORF start codon were identified. TATA box motifs at good positional locations were found upstream of all mapped transcription initiation sites. However, no sequences resembling the TAATGARAT motif, which confers IE regulation upon HSV-1 IE genes, were found. The finding of the absence of this motif was supported through analyses of the regulatory sequences of ORFs 4 and 63 in transient transfection assays alongside those of ORFs 61 and 62. Sequences representing the promoters for ORFs 4, 61, and 63 were all stimulated by VZV infection but failed to be stimulated by coexpression with the HSV-1 transactivator Vmw65. In contrast, the promoter for ORF 62, which contains TAATGARAT motifs, was activated by VZV infection and coexpression with Vmw65. These results extend the transcriptional knowledge for VZV and suggest that ORFs 4 and 63 contain regulatory signals different from those of the ORF 62 and HSV-1 IE genes. Images PMID:8189496

  1. Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency

    PubMed Central

    Reed, Aimee N.; Izume, Satoko; Dolan, Brian P.; LaPatra, Scott; Kent, Michael; Dong, Jing

    2014-01-01

    ABSTRACT Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM+ WBC. The presence of the CyHV-3 genome in IgM+ WBC was about 20-fold greater than in IgM− WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM+ WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM+ WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at −127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. PMID:24899202

  2. Identification of B cells as a major site for cyprinid herpesvirus 3 latency.

    PubMed

    Reed, Aimee N; Izume, Satoko; Dolan, Brian P; LaPatra, Scott; Kent, Michael; Dong, Jing; Jin, Ling

    2014-08-01

    Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Purification and DNA binding properties of the blaI gene product, repressor for the beta-lactamase gene, blaP, of Bacillus licheniformis.

    PubMed Central

    Grossman, M J; Lampen, J O

    1987-01-01

    The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148

  4. Novel SIL1 nonstop mutation in a Chinese consanguineous family with Marinesco-Sjögren syndrome and Dandy-Walker syndrome.

    PubMed

    Gai, Nan; Jiang, Chen; Zou, Yong-Yi; Zheng, Yu; Liang, De-Sheng; Wu, Ling-Qian

    2016-07-01

    Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive disorder, which is characterized by congenital cataracts, cerebellar ataxia, progressive muscle weakness, and delayed psychomotor development. SIL1, which is located at 5q31.2, is the only gene known to cause MSS. Dandy-Walker syndrome (DWS) is defined by hypoplasia, upward rotation of the cerebellar vermis, and cystic dilation of the fourth ventricle; however, its genetic pathogeny remains unclear. Here, we report a Chinese consanguineous family with MSS and DWS. Whole exome sequencing identified a novel nonstop mutation in SIL1. Sanger sequencing revealed that the mutation was segregated in this family according to a recessive mode of inheritance. We found that the mutation changed a stop codon (TGA) to an arginine codon (CGA), and no in-frame termination codon in the 3' untranslated region (UTR) of SIL1 could be found. The mRNA levels of SIL1 were decreased by 56.6% and 37.5% in immortalized lymphoblasts of the patients respectively; the protein levels of SIL1 were substantially decreased. This case study is the first report on Chinese MSS patients, MSS complicated by DWS, and a nonstop mutation in SIL1. Our findings imply the pathogenetic association between DWS and MSS. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ocular phenotypes associated with two mutations (R121W, C126X) in the Norrie disease gene.

    PubMed

    Kellner, U; Fuchs, S; Bornfeld, N; Foerster, M H; Gal, A

    1996-06-01

    To describe the ocular phenotypes associated with 2 mutations in the Norrie disease gene including a manifesting carrier. Ophthalmological examinations were performed in 2 affected males and one manifesting carrier. Genomic DNA was analyzed by direct sequencing of the Norrie disease gene. Family I: A 29-year-old male had the right eye enucleated at the age of 3 years. His left eye showed severe temporal dragging of the retina and central scars. Visual acuity was 20/300. DNA analysis revealed a C-to-T transition of the first nucleotide in codon 121 predicting the replacement of arginine-121 by tryptophan (R121W). Both the mother and maternal grandmother carry the same mutation in heterozygous form. Family 2: A 3-month-old boy presented with severe temporal dragging of the retina on both eyes and subsequently developed retinal detachment. Visual acuity was limited to light perception. His mother's left eye was amaurotic and phthitic. Her right eye showed severe retinal dragging, visual acuity was reduced to 20/60. DNA analysis revealed a T-to-A transversion of the third nucleotide in codon 126 creating a stop codon (C126X). The mother and maternal grandmother were carriers. Mutations in the Norrie disease gene can lead to retinal malformations of variable severity both in hemizygous males and manifesting carriers.

  6. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.

    PubMed

    Jiang, Wen; Feng, Songjie; Huang, Shisheng; Yu, Wenxia; Li, Guanglei; Yang, Guang; Liu, Yajing; Zhang, Yu; Zhang, Lei; Hou, Yu; Chen, Jia; Chen, Jieping; Huang, Xingxu

    2018-06-06

    Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.

  7. Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria.

    PubMed

    Cahoon, A Bruce; Qureshi, Ali A

    2018-06-01

    The mitochondrial genome of Chlamydomonas reinhardtii encodes eight protein coding genes transcribed on two polycistronic primary transcripts. The mRNAs are endonucleolytically cleaved from these transcripts directly upstream of their AUG start codons, creating leaderless mRNAs with 3' untranslated regions (UTR) comprised of most or all of their downstream intergenic regions. In this report, we provide evidence that these processed linear mRNAs are circularized, which places the 3' UTR upstream of the 5' start codon, creating a leader sequence ex post facto. The circular mRNAs were found to be ribosome associate by polysome profiling experiments suggesting they are translated. Sequencing of the 3'-5' junctions of the circularized mRNAs found the intra-molecular ligations occurred between fully processed 5' ends (the start AUG) and a variable 3' terminus. For five genes (cob, cox, nd2, nd4, and nd6), some of the 3' ends maintained an oligonucleotide addition during ligation, and for two of them, cob and nd6, these 3' termini were the most commonly recovered sequence. Previous reports have shown that after cleavage, three untemplated oligonucleotide additions may occur on the 3' termini of these mRNAs-adenylation, uridylylation, or cytidylation. These results suggest oligo(U) and oligo(C) additions may be part of the maturation process since they are maintained in the circular mRNAs. Circular RNAs occur in organisms across the biological spectrum, but their purpose in some systems, such as organelles (mitochondria and chloroplasts) is unclear. We hypothesize, that in C. reinhardtii mitochondria it may create a leader sequence to facilitate translation initiation, which may negate the need for an alternative translation initiation mechanism in this system, as previously speculated. In addition, circularization may play a protective role against exonucleases, and/or increase translational productivity.

  8. A Non-Canonical Initiation Site Is Required for Efficient Translation of the Dendritically Localized Shank1 mRNA

    PubMed Central

    Studtmann, Katrin; Ölschläger-Schütt, Janin; Buck, Friedrich; Richter, Dietmar; Sala, Carlo; Bockmann, Jürgen; Kindler, Stefan; Kreienkamp, Hans-Jürgen

    2014-01-01

    Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5′ region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG+1 and AUG+214), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5′UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG+1), directing translation initiation to the second in frame start codon (AUG+214). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG+1, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5′UTR. PMID:24533096

  9. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae).

    PubMed

    Kim, Seong Ryeol; Kim, Man Il; Hong, Mee Yeon; Kim, Kee Young; Kang, Pil Don; Hwang, Jae Sam; Han, Yeon Soo; Jin, Byung Rae; Kim, Iksoo

    2009-09-01

    The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA(Ile). No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNA(Ser)(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNA(Ser)(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.

  10. The complete mitochondrial genome of the pink stem borer, Sesamia inferens, in comparison with four other Noctuid moths.

    PubMed

    Chai, Huan-Na; Du, Yu-Zhou

    2012-01-01

    The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif "ATAGA" followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite "(AT)(7)", without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae.

  11. The Complete Mitochondrial Genome of the Pink Stem Borer, Sesamia inferens, in Comparison with Four Other Noctuid Moths

    PubMed Central

    Chai, Huan-Na; Du, Yu-Zhou

    2012-01-01

    The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif “ATAGA” followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite “(AT)7”, without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae. PMID:22949858

  12. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    PubMed

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC gene alter the protein expression and cell cycle regulation in diffuse type gastric adenocarcinoma.

  13. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry.

    PubMed

    Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.

  14. Maple Syrup Urine Disease in Cypriot Families: Identification of Three Novel Mutations and Biochemical Characterization of the p.Thr211Met Mutation in the E1α Subunit

    PubMed Central

    Georgiou, Theodoros; Chuang, Jacinta L.; Wynn, R. Max; Stylianidou, Goula; Korson, Mark; Chuang, David T.

    2009-01-01

    We report five mutations, three of them novel, responsible for maple syrup urine disease in four unrelated Cypriot families. The five children studied are the first cases of classic maple syrup urine disease to be reported among Cypriots. The first novel mutation identified is a single-base deletion in exon 6 of the Elα gene (c.718delG), which leads to a frameshift after Ala240 and to a stop codon 89 residues further downstream. The other two novel mutations identified are in the Elβ subunit: a two-base deletion in exon 6, c.662_663delCC, which leads to a frameshift after Ala221 and creates a stop codon 17 residues further downstream, as well as a splice mutation, IVS3[+3]delA, which results in the skipping of exon 3. The two known mutations identified are in the Elα gene: the G > C transversion at the 3′-splice acceptor site, (IVS5-1G > C), which results in the deletion of the entire exon 6, and the missense mutation in exon 5 (c.632C > T), which corresponds to a p.Thr211Met substitution. The p.Thr211Met substitution is located in a potassium-ion pocket in the E1 component required for stability of the bound cofactor thiamine diphosphate. The mutant E1 protein harboring the p.Thr211Met substitution was shown unable to bind thiamine diphosphate, leading to undetectable E1 activity. PMID:19715473

  15. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.

    PubMed

    Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A

    2013-04-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.

  16. Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita

    PubMed Central

    Ballew, Bari J.; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P.; Savage, Sharon A.

    2013-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC. PMID:23329068

  17. Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus.

    PubMed

    Koprivnjak, Tomaz; Mlakar, Vid; Swanson, Lindsey; Fournier, Benedicte; Peschel, Andreas; Weiss, Jerrold P

    2006-05-01

    Lipoteichoic and wall teichoic acids (TA) are highly anionic cell envelope-associated polymers containing repeating polyglycerol/ribitol phosphate moieties. Substitution of TA with D-alanine is important for modulation of many cell envelope-dependent processes, such as activity of autolytic enzymes, binding of divalent cations, and susceptibility to innate host defenses. D-Alanylation of TA is diminished when bacteria are grown in medium containing increased NaCl concentrations, but the effects of increased salt concentration on expression of the dlt operon encoding proteins mediating D-alanylation of TA are unknown. We demonstrate that Staphylococcus aureus transcriptionally represses dlt expression in response to high concentrations of Na(+) and moderate concentrations of Mg(2+) and Ca(2+) but not sucrose. Changes in dlt mRNA are induced within 15 min and sustained for several generations of growth. Mg(2+)-induced dlt repression depends on the ArlSR two-component system. Northern blotting, reverse transcription-PCR, and SMART-RACE analyses suggest that the dlt transcript begins 250 bp upstream of the dltA start codon and includes an open reading frame immediately upstream of dltA. Chloramphenicol transacetylase transcriptional fusions indicate that a region encompassing the 171 to 325 bp upstream of dltA is required for expression and Mg(2+)-induced repression of the dlt operon in S. aureus.

  18. Cation-Induced Transcriptional Regulation of the dlt Operon of Staphylococcus aureus

    PubMed Central

    Koprivnjak, Tomaz; Mlakar, Vid; Swanson, Lindsey; Fournier, Benedicte; Peschel, Andreas; Weiss, Jerrold P.

    2006-01-01

    Lipoteichoic and wall teichoic acids (TA) are highly anionic cell envelope-associated polymers containing repeating polyglycerol/ribitol phosphate moieties. Substitution of TA with d-alanine is important for modulation of many cell envelope-dependent processes, such as activity of autolytic enzymes, binding of divalent cations, and susceptibility to innate host defenses. d-Alanylation of TA is diminished when bacteria are grown in medium containing increased NaCl concentrations, but the effects of increased salt concentration on expression of the dlt operon encoding proteins mediating d-alanylation of TA are unknown. We demonstrate that Staphylococcus aureus transcriptionally represses dlt expression in response to high concentrations of Na+ and moderate concentrations of Mg2+ and Ca2+ but not sucrose. Changes in dlt mRNA are induced within 15 min and sustained for several generations of growth. Mg2+-induced dlt repression depends on the ArlSR two-component system. Northern blotting, reverse transcription-PCR, and SMART-RACE analyses suggest that the dlt transcript begins 250 bp upstream of the dltA start codon and includes an open reading frame immediately upstream of dltA. Chloramphenicol transacetylase transcriptional fusions indicate that a region encompassing the 171 to 325 bp upstream of dltA is required for expression and Mg2+-induced repression of the dlt operon in S. aureus. PMID:16672616

  19. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    PubMed

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null mutant makes an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium and Rhodotorula genera. The system will be a valuable tool for metabolic engineering and enzyme expression in these yeast hosts.

  20. Bioinformatic analysis suggests that the Orbivirus VP6 cistron encodes an overlapping gene

    PubMed Central

    Firth, Andrew E

    2008-01-01

    Background The genus Orbivirus includes several species that infect livestock – including Bluetongue virus (BTV) and African horse sickness virus (AHSV). These viruses have linear dsRNA genomes divided into ten segments, all of which have previously been assumed to be monocistronic. Results Bioinformatic evidence is presented for a short overlapping coding sequence (CDS) in the Orbivirus genome segment 9, overlapping the VP6 cistron in the +1 reading frame. In BTV, a 77–79 codon AUG-initiated open reading frame (hereafter ORFX) is present in all 48 segment 9 sequences analysed. The pattern of base variations across the 48-sequence alignment indicates that ORFX is subject to functional constraints at the amino acid level (even when the constraints due to coding in the overlapping VP6 reading frame are taken into account; MLOGD software). In fact the translated ORFX shows greater amino acid conservation than the overlapping region of VP6. The ORFX AUG codon has a strong Kozak context in all 48 sequences. Each has only one or two upstream AUG codons, always in the VP6 reading frame, and (with a single exception) always with weak or medium Kozak context. Thus, in BTV, ORFX may be translated via leaky scanning. A long (83–169 codon) ORF is present in a corresponding location and reading frame in all other Orbivirus species analysed except Saint Croix River virus (SCRV; the most divergent). Again, the pattern of base variations across sequence alignments indicates multiple coding in the VP6 and ORFX reading frames. Conclusion At ~9.5 kDa, the putative ORFX product in BTV is too small to appear on most published protein gels. Nonetheless, a review of past literature reveals a number of possible detections. We hope that presentation of this bioinformatic analysis will stimulate an attempt to experimentally verify the expression and functional role of ORFX, and hence lead to a greater understanding of the molecular biology of these important pathogens. PMID:18489030

  1. Global translational impacts of the loss of the tRNA modification t6A in yeast.

    PubMed

    Thiaville, Patrick C; Legendre, Rachel; Rojas-Benítez, Diego; Baudin-Baillieu, Agnès; Hatin, Isabelle; Chalancon, Guilhem; Glavic, Alvaro; Namy, Olivier; de Crécy-Lagard, Valérie

    2016-01-01

    The universal tRNA modification t 6 A is found at position 37 of nearly all tRNAs decoding ANN codons. The absence of t 6 A 37 leads to severe growth defects in baker's yeast, phenotypes similar to those caused by defects in mcm 5 s 2 U 34 synthesis. Mutants in mcm 5 s 2 U 34 can be suppressed by overexpression of tRNA Lys UUU , but we show t 6 A phenotypes could not be suppressed by expressing any individual ANN decoding tRNA, and t 6 A and mcm 5 s 2 U are not determinants for each other's formation. Our results suggest that t 6 A deficiency, like mcm 5 s 2 U deficiency, leads to protein folding defects, and show that the absence of t 6 A led to stress sensitivities (heat, ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally, L-homoserine suppressed the slow growth phenotype seen in t 6 A-deficient strains, and proteins aggregates and Advanced Glycation End-products (AGEs) were increased in the mutants. The global consequences on translation caused by t 6 A absence were examined by ribosome profiling. Interestingly, the absence of t 6 A did not lead to global translation defects, but did increase translation initiation at upstream non-AUG codons and increased frame-shifting in specific genes. Analysis of codon occupancy rates suggests that one of the major roles of t 6 A is to homogenize the process of elongation by slowing the elongation rate at codons decoded by high abundance tRNAs and I 34 :C 3 pairs while increasing the elongation rate of rare tRNAs and G 34 :U 3 pairs. This work reveals that the consequences of t 6 A absence are complex and multilayered and has set the stage to elucidate the molecular basis of the observed phenotypes.

  2. Trichomonas vaginalis Metronidazole Resistance Is Associated with Single Nucleotide Polymorphisms in the Nitroreductase Genes ntr4Tv and ntr6Tv

    PubMed Central

    Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.

    2014-01-01

    Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324

  3. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis.

    PubMed

    Legnini, Ivano; Di Timoteo, Gaia; Rossi, Francesca; Morlando, Mariangela; Briganti, Francesca; Sthandier, Olga; Fatica, Alessandro; Santini, Tiziana; Andronache, Adrian; Wade, Mark; Laneve, Pietro; Rajewsky, Nikolaus; Bozzoni, Irene

    2017-04-06

    Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    PubMed Central

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Chad A.; Smith, Harold C., E-mail: harold.smith@rochester.edu

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expressionmore » of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.« less

  6. Identification of a novel mutation in a patient with pseudohypoparathyroidism type Ia

    PubMed Central

    Lee, Ye Seung; Kim, Hui Kwon; Kim, Hye Rim; Lee, Jong Yoon; Choi, Joong Wan; Bae, Eun Ju; Oh, Phil Soo; Park, Won Il; Ki, Chang Seok

    2014-01-01

    Pseudohypoparathyroidism type Ia (PHP Ia) is a disorder characterized by multiform hormonal resistance including parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO). It is caused by heterozygous inactivating mutations within the Gs alpha-encoding GNAS exons. A 9-year-old boy presented with clinical and laboratory abnormalities including hypocalcemia, hyperphosphatemia, PTH resistance, multihormone resistance and AHO (round face, short stature, obesity, brachydactyly and osteoma cutis) which were typical of PHP Ia. He had a history of repeated convulsive episodes that started from the age of 2 months. A cranial computed tomography scan showed bilateral calcifications in the basal ganglia and his intelligence quotient testing indicated mild mental retardation. Family history revealed that the patient's maternal relatives, including his grandmother and 2 of his mother's siblings, had features suggestive of AHO. Sequencing of the GNAS gene of the patient identified a heterozygous nonsense mutation within exon 11 (c.637 C>T). The C>T transversion results in an amino acid substitution from Gln to stop codon at codon 213 (p.Gln213*). To our knowledge, this is a novel mutation in GNAS. PMID:25045367

  7. The complete genome sequence of freesia mosaic virus and its relationship to other potyviruses.

    PubMed

    Choi, H I; Lim, H R; Song, Y S; Kim, M J; Choi, S H; Song, Y S; Bae, S C; Ryu, K H

    2010-07-01

    We have completed the genomic sequence of a potyvirus, freesia mosaic virus (FreMV), and compared it to those of other known potyviruses. The full-length genome sequence of FreMV consists of 9,489 nucleotides. The large protein contains 3,077 amino acids, with an AUG start codon and UAA stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of FreMV-Kr gives rise to eleven proteins (P1, HC-pro, P3, PIPO, 6K1, CI, 6K2, VPg, NIa, NIb and CP), and putative cleavage sites of each protein were identified by sequence comparison to those of other known potyviruses. Phylogenetic analysis of the polyprotein revealed that FreMV-Kr was most closely related to PeMoV and was related to BtMV, BaRMV and PeLMV, which belong to the BCMV subgroup. This is the first information on the complete genome structure of FreMV, and the sequence information clearly supports the status of FreMV as a member of a distinct species in the genus Potyvirus.

  8. Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions

    PubMed Central

    Wagner-Schuman, Melissa; Neitz, Jay; Rha, Jungtae; Williams, David R.; Neitz, Maureen; Carroll, Joseph

    2010-01-01

    Our understanding of the etiology of red-green color vision defects is evolving. While missense mutations within the long- (L-) and middle-wavelength sensitive (M-) photopigments and gross rearrangements within the L/M-opsin gene array are commonly associated with red-green defects, recent work using adaptive optics retinal imaging has shown that different genotypes can have distinct consequences for the cone mosaic. Here we examined the cone mosaic in red-green color deficient individuals with multiple X-chromosome opsin genes that encode L opsin, as well as individuals with a single X-chromosome opsin gene that encodes L opsin and a single patient with a novel premature termination codon in his M-opsin gene and a normal L-opsin gene. We observed no difference in cone density between normal trichomats and multiple or single gene dichromats. In addition, we demonstrate different phenotypic effects of a nonsense mutation versus the previously described deleterious polymorphism, (LIAVA), both of which differ from multiple and single gene dichromats. Our results help refine the relationship between opsin genotype and cone photoreceptor mosaic phenotype. PMID:20854834

  9. The complete mitochondrial genome of Rondotia menciana (Lepidoptera: Bombycidae)

    PubMed Central

    Kong, Weiqing; Yang, Jinhong

    2015-01-01

    The mulberry white caterpillar, Rondotia menciana Moore (Lepidoptera: Bombycidae) is a species with closest relationship with Bombyx mori and Bombyx mandarina, and the genetic information of R. menciana is important for understanding the diversity of the Bombycidae. In this study, the mitochondrial genome (mitogenome) of R. menciana was amplified by polymerase chain reaction and sequenced. The mitogenome of R. menciana was determined to be 15,301 bp, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and an AT-rich region. The A+T content (78.87%) was lower than that observed for other Bombycidae insects. All PCGs were initiated by ATN codons and terminated with the canonical stop codons, except for coxII, which was terminated by a single T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The length of AT-rich region (360 bp) of R. menciana mitogenome is shorter than that of other Bombycidae species. Phylogenetic analysis showed that the R. menciana was clustered on one branch with B. mori and B. mandarina from Bombycidae. PMID:25888706

  10. Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): rearrangements in the IQM and ARNS1EF gene clusters.

    PubMed

    Doğan, Özgül; Korkmaz, E Mahir

    2017-10-01

    The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.

  11. Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus.

    PubMed Central

    Maurer, B; Bannert, H; Darai, G; Flügel, R M

    1988-01-01

    The nucleotide sequence of the human spumaretrovirus (HSRV) genome was determined. The 5' long terminal repeat region was analyzed by strong stop cDNA synthesis and S1 nuclease mapping. The length of the RU5 region was determined and found to be 346 nucleotides long. The 5' long terminal repeat is 1,123 base pairs long and is bound by an 18-base-pair primer-binding site complementary to the 3' end of mammalian lysine-1,2-specific tRNA. Open reading frames for gag and pol genes were identified. Surprisingly, the HSRV gag protein does not contain the cysteine motif of the nucleic acid-binding proteins found in and typical of all other retroviral gag proteins; instead the HSRV gag gene encodes a strongly basic protein reminiscent of those of hepatitis B virus and retrotransposons. The carboxy-terminal part of the HSRV gag gene products encodes a protease domain. The pol gene overlaps the gag gene and is postulated to be synthesized as a gag/pol precursor via translational frameshifting analogous to that of Rous sarcoma virus, with 7 nucleotides immediately upstream of the termination codons of gag conserved between the two viral genomes. The HSRV pol gene is 2,730 nucleotides long, and its deduced protein sequence is readily subdivided into three well-conserved domains, the reverse transcriptase, the RNase H, and the integrase. Although the degree of homology of the HSRV reverse transcriptase domain is highest to that of murine leukemia virus, the HSRV genomic organization is more similar to that of human and simian immunodeficiency viruses. The data justify classifying the spumaretroviruses as a third subfamily of Retroviridae. Images PMID:2451755

  12. Nonsense mutation in the phosphofructokinase muscle subunit gene associated with retention of intron 10 in one of the isolated transcripts in Ashkenazi Jewish patients with Tarui disease.

    PubMed Central

    Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G

    1995-01-01

    Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776

  13. Identification of a splicing enhancer in MLH1 using COMPARE a new assay for determination of relative RNA splicing efficiencies

    PubMed Central

    Xu, Dong-Qing; Mattox, William

    2006-01-01

    Exonic splicing enhancers (ESEs) are sequences that facilitate recognition of splice sites and prevent exon-skipping. Because ESEs are often embedded within proteincoding sequences, alterations in them can also often be interpreted as nonsense, missense or silent mutations. To correctly interpret exonic mutations and their roles in disease, it is important to develop strategies that identify ESE mutations. Potential ESEs can be found computationally in many exons but it has proven difficult to predict if a given mutation will have effects on splicing based on sequence alone. Here we describe a flexible in vitro method that can be used to functionally compare the effects of multiple sequence variants on ESE activity in a single in vitro splicing reaction. We have applied this method in parallel with conventional splicing assays to test for a splicing enhancer in exon 17 of the human MLH1 gene. Point mutations associated with hereditary nonpolyposis colorectal cancer (HNPCC) have previously been found to correlate with exon-skipping in both lymphocytes and tumors from patients. We show that sequences from this exon can replace an ESE from the mouse IgM gene to support RNA splicing in HeLa nuclear extracts. ESE activity was reduced by HNPCC point mutations in codon 659 indicating that their primary effect is on splicing. Surprisingly the strongest enhancer function mapped to a different region of the exon upstream of this codon. Together our results indicate that HNPCC point mutations in codon 659 affect an auxillary element that augments the enhancer function to ensure exon inclusion. PMID:16357104

  14. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  15. Molecular cloning and identification of the transcriptional regulatory domain of the goat neurokinin B gene TAC3.

    PubMed

    Suetomi, Yuta; Matsuda, Fuko; Uenoyama, Yoshihisa; Maeda, Kei-ichiro; Tsukamura, Hiroko; Ohkura, Satoshi

    2013-10-01

    Neurokinin B (NKB), encoded by TAC3, is thought to be an important accelerator of pulsatile gonadotropin-releasing hormone release. This study aimed to clarify the transcriptional regulatory mechanism of goat TAC3. First, we determined the full-length mRNA sequence of goat TAC3 from the hypothalamus to be 820 b, including a 381 b coding region, with the putative transcription start site located 143-b upstream of the start codon. The deduced amino acid sequence of NKB, which is produced from preproNKB, was completely conserved among goat, cattle, and human. Next, we cloned 5'-upstream region of goat TAC3 up to 3400 b from the translation initiation site, and this region was highly homologous with cattle TAC3 (89%). We used this goat TAC3 5'-upstream region to perform luciferase assays. We created a luciferase reporter vector containing DNA constructs from -2706, -1837, -834, -335, or -197 to +166 bp (the putative transcription start site was designated as +1) of goat TAC3 and these were transiently transfected into mouse hypothalamus-derived N7 cells and human neuroblastoma-derived SK-N-AS cells. The luciferase activity gradually increased with the deletion of the 5'-upstream region, suggesting that the transcriptional suppressive region is located between -2706 and -336 bp and that the core promoter exists downstream of -197 bp. Estradiol treatment did not lead to significant suppression of luciferase activity of any constructs, suggesting the existence of other factor(s) that regulate goat TAC3 transcription.

  16. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  17. The Trouble with MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex.

    PubMed

    Tay, Wee Tek; Elfekih, Samia; Court, Leon N; Gordon, Karl H J; Delatte, Hélène; De Barro, Paul J

    2017-10-01

    Molecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies. This problem is identified in the B. tabaci Africa/Middle East/Asia Minor clade which comprises the globally invasive Mediterranean (MED) and Middle East Asia Minor I (MEAM1) species, Middle East Asia Minor 2 (MEAM2), and the Indian Ocean (IO) species. Initially identified from the Indian Ocean island of Réunion, MEAM2 has since been reported from Japan, Peru, Turkey and Iraq. We identified MEAM2 individuals from a Peruvian population via Sanger sequencing of the mtDNA COI gene. In attempting to characterize the MEAM2 mitogenome, we instead characterized mitogenomes of MEAM1. We also report on the mitogenomes of MED, AUS, and IO thereby increasing genomic resources for members of this complex. Gene synteny (i.e., same gene composition and orientation) was observed with published B. tabaci cryptic species mitogenomes. Pseudogene fragments matching MEAM2 partial mtDNA COI gene exhibited low frequency single nucleotide polymorphisms that matched low copy number DNA fragments (<3%) of MEAM1 genomes, whereas presence of internal stop codons, loss of expected stop codons and poor primer annealing sites, all suggested MEAM2 as a pseudogene artifact and so not a real species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes

    PubMed Central

    Liu, Huiquan; Wang, Qinhu; He, Yi; Chen, Lingfeng; Hao, Chaofeng; Jiang, Cong; Li, Yang; Dai, Yafeng; Kang, Zhensheng; Xu, Jin-Rong

    2016-01-01

    Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1 (FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA1831GUA1834G, in its kinase domain were changed to UG1831GUG1834G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG1831GUG1834G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites in F. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69 PUK1-like pseudogenes with stop codons in ORFs. PUK1 orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides. Furthermore, F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing in F. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs. PMID:26934920

  19. Mutation in the 5' alternatively spliced region of the XNP/ATR-X gene causes Chudley-Lowry syndrome.

    PubMed

    Abidi, Fatima E; Cardoso, Carlos; Lossi, Anne-Marie; Lowry, Robert Brian; Depetris, Danielle; Mattéi, Marie-Geneviève; Lubs, Herbert A; Stevenson, Roger E; Fontes, Michel; Chudley, Albert E; Schwartz, Charles E

    2005-02-01

    The Chudley-Lowry syndrome (ChLS, MIM 309490) is an X-linked recessive condition characterized by moderate to severe mental retardation, short stature, mild obesity, hypogonadism, and distinctive facial features characterized by depressed nasal bridge, anteverted nares, inverted-V-shaped upper lip, and macrostomia. The original Chudley-Lowry family consists of three affected males in two generations. Linkage analysis had localized the gene to a large interval, Xp21-Xq26 and an obligate carrier was demonstrated to have highly skewed X inactivation. The combination of the clinical phenotype, consistent with that of the patients with ATR-X syndrome, the skewed X-inactivation pattern in a carrier female, as well as the mapping interval including band Xq13.3, prompted us to consider the XNP/ATR-X gene being involved in this syndrome. Using RT-PCR analysis, we screened the entire XNP/ATR-X gene and found a mutation in exon 2 (c.109C > T) giving rise to a stop codon at position 37 (p.R37X). Western blot and immunocytochemical analyses using a specific monoclonal antibody directed against XNP/ATR-X showed the protein to be present in lymphoblastoid cells from one affected male, despite the premature stop codon. To explain these discordant results, we further analyzed the 5' region of the XNP/ATR-X gene and found three alternative transcripts, which differ in the presence or absence of exon 2, and the length of exon 1. Our data suggest that ChLS is allelic to the ATR-X syndrome with its less severe phenotype being due to the presence of some XNP/ATR-X protein.

  20. Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain.

    PubMed

    Agarwal, S K; Cogburn, L A; Burnside, J

    1994-09-01

    The sex-linked dwarf (dwdw) chicken represents a valuable animal model for studying GH insensitivity and the consequence of mutations in the GH receptor (GHR) gene. We have recently reported undetectable hepatic GH-binding activity and an aberrantly sized transcript in a strain of dwdw chickens obtained from Arbor Acre Farms, Inc. (Glastonbury, CT, USA). Southern blot analysis of the chicken GHR (cGHR) gene revealed a restriction-fragment length polymorphism in HindIII and EcoRI digests of genomic DNA in this strain of dwdw chicken. In order to localize the molecular mutation, we analysed the gene structure and determined the complete sequence of the 3' untranslated region (3' UTR) of the normal cGHR. With the use of this information, we located a large deletion in the 3' end of the cGHR gene of the Connecticut (CT) strain of dwdw chicken. This deletion (1773 bp) contained 27 highly conserved amino acids of the 3' end of the coding region, the in-frame stop codon, a less frequently used poly(A) signal that is normally found 445 bp downstream of the stop codon, and a large portion of the 3' UTR. Because of this deletion, 27 novel amino acids were substituted and the open reading frame was extended for an additional 26 amino acids before reaching the transcriptional termination site. The predicted amino acid sequence of the novel carboxyl-terminus of the dwdw cGHR is largely hydrophobic with a polylysine tail, whereas the carboxyl-terminus of the wild-type (DwDw) cGHR is composed of hydrophilic amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012

    PubMed Central

    Nicholas, Frank W; Hobbs, Matthew

    2014-01-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556

  2. dupA polymorphisms and risk of Helicobacter pylori-associated diseases.

    PubMed

    Queiroz, Dulciene M M; Rocha, Gifone A; Rocha, Andreia M C; Moura, Sílvia B; Saraiva, Ivan E B; Gomes, Luciana I; Soares, Taciana F; Melo, Fabrício F; Cabral, Mônica M D A; Oliveira, Celso A

    2011-03-01

    The dupA of Helicobacter pylori has been suggested as a virulence marker associated with the development of duodenal ulcer disease. However, the studies performed in different geographical areas have shown that there are variations in the prevalence of dupA and its association with H. pylori clinical outcomes. Our group did not observe associations between the presence of dupA and H. pylori clinical outcomes in Brazil. On the other hand, we observed 2 mutations in the sequence of dupA that lead to stop codons: a deletion of an adenine at position 1311 and an insertion of an adenine at position 1426 of the gene. Our aim was to evaluate associations of the presence of dupA with duodenal ulcer and gastric cancer, considering dupA-positive only those H. pylori strains that do not have the mutations in the gene sequence. We also evaluated the effect of infection with a strain carrying an intact dupA on the gastric mucosa histology and IL-8 gastric levels. Colonization with strains that had the intact dupA was negatively associated with gastric carcinoma (p=0.001, OR=0.32, 95% CI=0.16-0.66). The presence of dupA was also associated with an increased degree of antral mucosa inflammation (p=0.01) and with decreased corpus atrophy (p<0.01) as well as with increased gastric mucosa IL-8 levels (p=0.04). In conclusion, the infection with a H. pylori strain containing the dupA without the stop codon polymorphisms is associated with a lower risk of development of gastric carcinoma in Brazilian subjects. Copyright © 2010 Elsevier GmbH. All rights reserved.

  3. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.

    PubMed

    Lise, Stefano; Clarkson, Yvonne; Perkins, Emma; Kwasniewska, Alexandra; Sadighi Akha, Elham; Schnekenberg, Ricardo Parolin; Suminaite, Daumante; Hope, Jilly; Baker, Ian; Gregory, Lorna; Green, Angie; Allan, Chris; Lamble, Sarah; Jayawant, Sandeep; Quaghebeur, Gerardine; Cader, M Zameel; Hughes, Sarah; Armstrong, Richard J E; Kanapin, Alexander; Rimmer, Andrew; Lunter, Gerton; Mathieson, Iain; Cazier, Jean-Baptiste; Buck, David; Taylor, Jenny C; Bentley, David; McVean, Gilean; Donnelly, Peter; Knight, Samantha J L; Jackson, Mandy; Ragoussis, Jiannis; Németh, Andrea H

    2012-01-01

    β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.

  4. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry

    PubMed Central

    Taylor, Ethan Will; Ruzicka, Jan A.; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818

  5. Differential regulation of hepatitis B virus core protein expression and genome replication by a small upstream open reading frame and naturally occurring mutations in the precore region.

    PubMed

    Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu

    2017-05-01

    Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Complete mitochondrial genome of Skylark, Alauda arvensis (Aves: Passeriformes): the first representative of the family Alaudidae with two extensive heteroplasmic control regions.

    PubMed

    Qian, Chaoju; Wang, Yuanxiu; Guo, Zhichun; Yang, Jianke; Kan, Xianzhao

    2013-06-01

    The circular mitochondrial genome of Alauda arvensis is 17,018 bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA (tRNA) genes, and 2 extensive heteroplasmic control regions. All of the genes encoded on the H-strand, with the exceptions of one PCG (nad6) and eight tRNA genes (tRNA(Gln), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr), tRNA(Ser(UCN)), tRNA(Pro), and tRNA(Glu)), as found in other birds' mitochondrial genomes. All of these PCGs are initiated with ATG, while stopped by six types of stop codons. All tRNA genes have the potential to fold into typical clover-leaf structure. Two extensive heteroplasmic control regions were found, and more interestingly, a minisatellite of 37 nucleotides (5'-TCAATCCCATTGATTTCATTATATTAGTATAAAGAAA-3') with 6 tandem repeats was detected at the end of CR2.

  7. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    PubMed Central

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  8. Treacher Collins syndrome with a de Novo 5-bp deletion in the TCOF1 gene.

    PubMed

    Su, Pen-Hua; Chen, Jia-Yu; Chen, Suh-Jen; Yu, Ju-Shan

    2006-06-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development with features including malar hypoplasia, micrognathia, microtia, downward slanting palpebral fissures, lower eyelid coloboma, conductive hearing loss, and cleft palate. TCS is caused by mutations in the TCOF1 gene, which encodes the nuclear phosphoprotein treacle. Here, we describe a 1-day-old male infant with classical TCS presentation. A 5-bp deletion in exon 22 of the TCOF1 gene (3469del ACTCT) was found to cause a premature stop codon. This is the first report of TCOF1 gene mutation in the Taiwanese population.

  9. Designer proteins: applications of genetic code expansion in cell biology.

    PubMed

    Davis, Lloyd; Chin, Jason W

    2012-02-15

    Designer amino acids, beyond the canonical 20 that are normally used by cells, can now be site-specifically encoded into proteins in cells and organisms. This is achieved using 'orthogonal' aminoacyl-tRNA synthetase-tRNA pairs that direct amino acid incorporation in response to an amber stop codon (UAG) placed in a gene of interest. Using this approach, it is now possible to study biology in vitro and in vivo with an increased level of molecular precision. This has allowed new biological insights into protein conformational changes, protein interactions, elementary processes in signal transduction and the role of post-translational modifications.

  10. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    PubMed

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  11. Complete plastid genome of Astragalus mongholicus var. nakaianus (Fabaceae).

    PubMed

    Choi, In-Su; Kim, Joo-Hwan; Choi, Byoung-Hee

    2016-07-01

    The first complete plastid genome (plastome) of the largest angiosperm genus, Astragalus, was sequenced for the Korean endangered endemic species A. mongholicus var. nakaianus. Its genome is relatively short (123,633 bp) because it lacks an Inverted Repeat (IR) region. It comprises 110 genes, including four unique rRNAs, 30 tRNAs, and 76 protein-coding genes. Similar to other closely related plastomes, rpl22 and rps16 are absent. The putative pseudogene with abnormal stop codons is atpE. This plastome has no additional inversions when compared with highly variable plastomes from IRLC tribes Fabeae and Trifolieae. Our phylogenetic analysis confirms the non-monophyly of Galegeae.

  12. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    PubMed Central

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  13. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway

    PubMed Central

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.

    2004-01-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201

  14. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway.

    PubMed

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A; Shinkai, Hiroshi; Hoyme, H Eugene; Pyeritz, Reed E; Byers, Peter H

    2004-05-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of pro alpha 2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement.

  15. 5’-Terminal AUGs in Escherichia coli mRNAs with Shine-Dalgarno Sequences: Identification and Analysis of Their Roles in Non-Canonical Translation Initiation

    PubMed Central

    Beck, Heather J.; Fleming, Ian M. C.

    2016-01-01

    Analysis of the Escherichia coli transcriptome identified a unique subset of messenger RNAs (mRNAs) that contain a conventional untranslated leader and Shine-Dalgarno (SD) sequence upstream of the gene’s start codon while also containing an AUG triplet at the mRNA’s 5’- terminus (5’-uAUG). Fusion of the coding sequence specified by the 5’-terminal putative AUG start codon to a lacZ reporter gene, as well as primer extension inhibition assays, reveal that the majority of the 5’-terminal upstream open reading frames (5’-uORFs) tested support some level of lacZ translation, indicating that these mRNAs can function both as leaderless and canonical SD-leadered mRNAs. Although some of the uORFs were expressed at low levels, others were expressed at levels close to that of the respective downstream genes and as high as the naturally leaderless cI mRNA of bacteriophage λ. These 5’-terminal uORFs potentially encode peptides of varying lengths, but their functions, if any, are unknown. In an effort to determine whether expression from the 5’-terminal uORFs impact expression of the immediately downstream cistron, we examined expression from the downstream coding sequence after mutations were introduced that inhibit efficient 5’-uORF translation. These mutations were found to affect expression from the downstream cistrons to varying degrees, suggesting that some 5’-uORFs may play roles in downstream regulation. Since the 5’-uAUGs found on these conventionally leadered mRNAs can function to bind ribosomes and initiate translation, this indicates that canonical mRNAs containing 5’-uAUGs should be examined for their potential to function also as leaderless mRNAs. PMID:27467758

  16. An Upstream Truncation of the furA-katG Operon Confers High-Level Isoniazid Resistance in a Mycobacterium tuberculosis Clinical Isolate with No Known Resistance-Associated Mutations

    PubMed Central

    Yam, Wing Cheong; Zhang, Ying; Kao, Richard Y. T.

    2014-01-01

    Although the major causes of isoniazid (INH) resistance in Mycobacterium tuberculosis are confined to structural mutations in katG and promoter mutations in the mabA-inhA operon, a significant proportion of INH-resistant strains have unknown resistance mechanisms. Recently, we identified a high-level INH-resistant M. tuberculosis clinical isolate, GB005, with no known resistance-associated mutations. A comprehensive study was performed to investigate the molecular basis of drug resistance in this strain. Although no mutations were found throughout the katG and furA-katG intergenic region, the katG expression and the catalase activity were greatly diminished compared to those in H37Rv (P < 0.01). Northern blotting revealed that the katG transcript from the isolate was smaller than that of H37Rv. Sequencing analysis of furA and upstream genes discovered a 7.2-kb truncation extended from the 96th base preceding the initiation codon of katG. Complementation of the M. tuberculosis Δ(furA-katG) strain with katG and different portions of the truncated region identified a 134-bp upstream fragment of furA that was essential for full catalase activity and INH susceptibility in M. tuberculosis. The promoter activity of this fragment was also shown to be stronger than that of the furA-katG intergenic region (P < 0.01). Collectively, these findings demonstrate that deletion of the 134-bp furA upstream fragment is responsible for the reduction in katG expression, resulting in INH resistance in GB005. To our knowledge, this is the first report showing that deletion of the upstream region preceding the furA-katG operon causes high-level INH resistance in a clinical isolate of M. tuberculosis. PMID:25092698

  17. Emerging genetic therapies to treat Duchenne muscular dystrophy

    PubMed Central

    Nelson, Stanley F.; Crosbie, Rachelle H.; Miceli, M. Carrie; Spencer, Melissa J.

    2010-01-01

    Purpose of review Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called `exon skipping' and `nonsense codon suppression'. Recent findings A drug, PTC124, was identified that suppresses nonsense codon translation termination. PTC124 can lead to restoration of some dystrophin expression in human Duchenne muscular dystrophy muscles with mutations resulting in premature stops. Two drugs developed for exon skipping, PRO051 and AVI-4658, result in the exclusion of exon 51 from mature mRNA. They can restore the translational reading frame to dystrophin transcripts from patients with a particular subset of dystrophin gene deletions and lead to some restoration of dystrophin expression in affected boys' muscle in vivo. Both approaches have concluded phase I trials with no serious adverse events. Summary These novel therapies that act to correct the primary genetic defect of dystrophin deficiency are among the first generation of therapies tailored to correct specific mutations in humans. Thus, they represent paradigm forming approaches to personalized medicine with the potential to lead to life changing treatment for those affected by Duchenne muscular dystrophy. PMID:19745732

  18. Three cases of Creutzfeldt-Jakob disease with prion protein gene codon180 mutation presenting with pathological laughing and crying.

    PubMed

    Iwasaki, Yasushi

    2012-08-15

    Although there are no reports of pathological laughing and crying being observed in patients with Creutzfeldt-Jakob disease (CJD), the author experienced three patients with CJD with prion protein gene codon180 mutation (V180I CJD) who showed this characteristic clinical finding. This finding was observed from the early disease stage in all 3 patients and continued for several months. Startle reaction was also remarkable in all patients, although myoclonus was generally mild. The dissociation between the startle reaction and myoclonus was suspected to be another feature of V180I CJD. The pathological laughing and crying co-occured with the startle reaction and stopped right before the onset of akinetic mutism, and the degree of both symptoms was almost parallel during this period. On the basis of MRI and autopsy findings, pathological laughing and crying was suspected of being induced by the widespread cerebral cortical involvement that is characteristic of V180I CJD. From the present observations, the author speculated that pathological laughing and crying may be a comparatively frequent observation in V180I CJD patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The mitochondrial genome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae).

    PubMed

    Xin, Tianrong; Li, Lei; Yao, Chengyi; Wang, Yayu; Zou, Zhiwen; Wang, Jing; Xia, Bin

    2016-07-01

    We present the complete mitogenome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae) in this article. The mitogenome was a circle molecular consisting of 15,286 nucleotides, 37 genes, and an A + T-rich region. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. The overall base composition of the genome is A (37.41%), T (42.80%), C (11.87%), and G (7.91%) with an A + T-rich hallmark as that of other invertebrate mitochondrial genomes. The start codon was mainly ATA in most of the mitochondrial protein-coding genes such as ND2, COI, ATP8, ND3, ND5, ND4, ND6, and ND1, but COII, ATP6, COIII, ND4L, and Cob genes employing ATG. The stop codon was TAA in all the protein-coding genes. The A + T region is located between 12S rRNA and tRNA(M)(et). The phylogenetic relationships of Lepidoptera species were constructed based on the nucleotides sequences of 13 PCGs of mitogenomes using the neighbor-joining method. The molecular-based phylogeny supported the traditional morphological classification on relationships within Lepidoptera species.

  20. Molecular Decay of the Tooth Gene Enamelin (ENAM) Mirrors the Loss of Enamel in the Fossil Record of Placental Mammals

    PubMed Central

    Meredith, Robert W.; Gatesy, John; Murphy, William J.; Ryder, Oliver A.; Springer, Mark S.

    2009-01-01

    Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory. PMID:19730686

  1. Complete mitochondrial genome of Taharana fasciana (Insecta, Hemiptera: Cicadellidae) and comparison with other Cicadellidae insects.

    PubMed

    Wang, Jiajia; Li, Hu; Dai, Renhuai

    2017-12-01

    Here, we describe the first complete mitochondrial genome (mitogenome) sequence of the leafhopper Taharana fasciana (Coelidiinae). The mitogenome sequence contains 15,161 bp with an A + T content of 77.9%. It includes 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding (A + T-rich) region; in addition, a repeat region is also present (GenBank accession no. KY886913). These genes/regions are in the same order as in the inferred insect ancestral mitogenome. All protein-coding genes have ATN as the start codon, and TAA or single T as the stop codons, except the gene ND3, which ends with TAG. Furthermore, we predicted the secondary structures of the rRNAs in T. fasciana. Six domains (domain III is absent in arthropods) and 41 helices were predicted for 16S rRNA, and 12S rRNA comprised three structural domains and 24 helices. Phylogenetic tree analysis confirmed that T. fasciana and other members of the Cicadellidae are clustered into a clade, and it identified the relationships among the subfamilies Deltocephalinae, Coelidiinae, Idiocerinae, Cicadellinae, and Typhlocybinae.

  2. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects.

    PubMed

    Hong, Mee Yeon; Lee, Eun Mee; Jo, Yong Hun; Park, Hae Chul; Kim, Seong Ryul; Hwang, Jae Sam; Jin, Byung Rae; Kang, Pil Don; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2008-04-30

    The 15,360-bp long complete mitogenome of Caligula boisduvalii possesses a gene arrangement and content identical to other completely sequenced lepidopteran mitogenomes, but different from the common arrangement found in most insect order, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA Ile. The 330-bp A+T-rich region is apparently capable of forming a stem-and-loop structure, which harbors the conserved flanking sequences at both ends. Dissimilar to what has been seen in other sequenced lepidopteran insects, the initiation codon for C. boisduvalii COI appears to be TTG, which is a rare, but apparently possible initiation codon. The ATP8, ATP6, ND4L, and ND6 genes, which neighbor another PCG at their 3' end, all harbored potential sequences for the formation of a hairpin structure. This is suggestive of the importance of such structures for the precise cleavage of the mRNA of mature PCGs. Phylogenetic analyses of available sequenced species of Bombycoidea, Pyraloidea, and Tortricidea supported the morphology-based current hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (Antheraea pernyi and C. boisduvalii) formed a reciprocal monophyletic group.

  3. SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes

    PubMed Central

    Mix, Heiko; Lobanov, Alexey V.; Gladyshev, Vadim N.

    2007-01-01

    Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3′-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins. PMID:17169995

  4. Identification of Bombyx mori bidensovirus VD1-ORF4 reveals a novel protein associated with viral structural component.

    PubMed

    Li, Guohui; Hu, Zhaoyang; Guo, Xuli; Li, Guangtian; Tang, Qi; Wang, Peng; Chen, Keping; Yao, Qin

    2013-06-01

    Bombyx mori bidensovirus (BmBDV) VD1-ORF4 (open reading frame 4, ORF4) consists of 3,318 nucleotides, which codes for a predicted 1,105-amino acid protein containing a conserved DNA polymerase motif. However, its functions in viral propagation remain unknown. In the current study, the transcription of VD1-ORF4 was examined from 6 to 96 h postinfection (p.i.) by RT-PCR, 5'-RACE revealed the transcription initiation site of BmBDV ORF4 to be -16 nucleotides upstream from the start codon, and 3'-RACE revealed the transcription termination site of VD1-ORF4 to be +7 nucleotides downstream from termination codon. Three different proteins were examined in the extracts of BmBDV-infected silkworms midguts by Western blot using raised antibodies against VD1-ORF4 deduced amino acid, and a specific protein band about 53 kDa was further detected in purified virions using the same antibodies. Taken together, BmBDV VD1-ORF4 codes for three or more proteins during the viral life cycle, one of which is a 53 kDa protein and confirmed to be a component of BmBDV virion.

  5. Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machlin, S.M.; Hanson, R.S.

    The nucleotide sequence of a cloned 2.5-kilobase-pair SmaI fragment containing the methanol dehydrogenase (MDH) structural gene from Methylobacterium organophilum XX was determined. A single open reading frame with a coding capacity of 626 amino acids (molecular weight, 66,000) was identified on one stand, and N-terminal sequencing of purified MDH revealed that 27 of these residues constituted a putative signal peptide. Primer extension mapping of in vivo transcripts indicated that the start of mRNA synthesis was 160 to 170 base pairs upstream of the ATG codon. Northern (RNA) blot analysis further demonstrated that the transcript was 2.1 kilobase pairs in lengthmore » and therefore appeared to encode only MDH.« less

  6. Genomic structure, promoter identification, and chromosomal mapping of a mouse nuclear orphan receptor expressed in embryos and adult testes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Wei, Li-Na; Copeland, N.G.

    We have isolated and characterized overlapping genomic clones containing the complete transcribed region of a newly isolated mouse cDNA encoding an orphan receptor expressed specifically in midgestation embryos and adult testis. This gene spans a distance of more than 50 kb and is organized into 13 exons. The transcription initiation site is located at the 158th nucleotide upstream from the translation initiation codon. All the exon/intron junction sequences follow the GT/AG rule. Based upon Northern blot analysis and the size of the transcribed region of the gene, its transcript was determined to be approximately 2.5 kb. Within approximately 500 hpmore » upstream from the transcription initiation site, several immune response regulatory elements were identified but no TATA box was located. This gene was mapped to the distal region of mouse chromosome 10 and its locus has been designated Tr2-11. Immunohistochemical studies show that the Tr2-11 protein is present mainly in advanced germ cell populations of mature testes and that Tr2-11 gene expression is dramatically decreased in vitamin A-depleted animals. 23 refs., 7 figs.« less

  7. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    PubMed Central

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome. PMID:20392818

  8. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing.

    PubMed

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-08-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome.

  9. Gene expression regulation by upstream open reading frames and human disease.

    PubMed

    Barbosa, Cristina; Peixeiro, Isabel; Romão, Luísa

    2013-01-01

    Upstream open reading frames (uORFs) are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.

  10. Genomic Structure of the Luciferase Gene from the Bioluminescent Beetle, Nyctophila cf. Caucasica

    PubMed Central

    Day, John C.; Chaichi, Mohammad J.; Najafil, Iraj; Whiteley, Andrew S.

    2006-01-01

    The gene coding for beetle luciferase, the enzyme responsible for bioluminescence in over two thousand coleopteran species has, to date, only been characterized from one Palearctic species of Lampyridae. Here we report the characterization of the luciferase gene from a female beetle of an Iranian lampyrid species, Nyctophila cf. caucasica (Coleoptera:Lampyridae). The luciferase gene was composed of seven exons, coding for 547 amino acids, separated by six introns spanning 1976 bp of genomic DNA. The deduced amino acid sequences of the luciferase gene of N. caucasica showed 98.9% homology to that of the Palearctic species Lampyris noctiluca. Analysis of the 810 bp upstream region of the luciferase gene revealed three TATA boxes and several other consensus transcriptional factor recognition sequences presenting evidence for a putative core promoter region conserved in Lampyrinae from -190 through to -155 upstream of the luciferase start codon. Along with the core promoter region the luciferase gene was compared with orthologous sequences from other lampyrid species and found to have greatest identity to Lampyris turkistanicus and Lampyris noctiluca. The significant sequence identity to the former is discussed in relation to taxonomic issues of Iranian lampyrids. PMID:20298115

  11. Mitochondrial genome and phylogenetic position of the tawny nurse shark (Nebrius ferrugineus).

    PubMed

    Wang, Junjie; Chen, Hao; Lin, Lingling; Ai, Weiming; Chen, Xiao

    2017-01-01

    The complete mitochondrial genome of the tawny nurse shark (Nebrius ferrugineus) was first presented in this study. It was 16 693 bp in length with the typical gene order in vertebrates. The overall base composition was 33.6% A, 25.6% C, 12.7% G and 28.1% T. Two start (ATG and GTG) and two stop (TAG and TAA/T--) codons were found in the protein-coding genes. The size of 22 tRNA genes ranged from 67 to 75 bp. The origin of L-strand replication could form a hairpin structure. All nodes strongly supported that N. ferrugineus was placed as sister to Rhincodon typus in the Bayesian tree.

  12. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    PubMed

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.

  13. The tmRNA website

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Corey M.; Williams, Kelly P.

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  14. Cryptic splice site in the complementary DNA of glucocerebrosidase causes inefficient expression.

    PubMed

    Bukovac, Scott W; Bagshaw, Richard D; Rigat, Brigitte A; Callahan, John W; Clarke, Joe T R; Mahuran, Don J

    2008-10-15

    The low levels of human lysosomal glucocerebrosidase activity expressed in transiently transfected Chinese hamster ovary (CHO) cells were investigated. Reverse transcription PCR (RT-PCR) demonstrated that a significant portion of the transcribed RNA was misspliced owing to the presence of a cryptic splice site in the complementary DNA (cDNA). Missplicing results in the deletion of 179 bp of coding sequence and a premature stop codon. A repaired cDNA was constructed abolishing the splice site without changing the amino acid sequence. The level of glucocerebrosidase expression was increased sixfold. These data demonstrate that for maximum expression of any cDNA construct, the transcription products should be examined.

  15. Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

    PubMed Central

    Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356

  16. Peeling skin syndrome: genetic defects in late terminal differentiation of the epidermis.

    PubMed

    Bowden, Paul E

    2011-03-01

    In this issue, Israeli and colleagues confirm that homozygous mutations in corneodesmosin (CDSN) cause type B peeling skin syndrome (PSS), an autosomal recessive skin disorder. The deletion mutation described resulted in a frameshift, producing a downstream premature stop codon and early truncation of the protein. The recently described CDSN nonsense mutation in another PSS family also resulted in protein truncation and nonsense-mediated mRNA decay. Type B generalized PSS can now be clearly distinguished from acral PSS, caused by mutations in transglutaminase 5. This directly affects cornified envelope cross-linking rather than corneodesmosome adherence. These observations provide new insight into the molecular defects underlying two closely related forms of PSS.

  17. The tmRNA website

    DOE PAGES

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  18. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg’s and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula

    PubMed Central

    Castro-Chavez, Fernando

    2012-01-01

    Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen in invertebrates and plants. The reverse engineering of chromosome I' into 2D rotating circles and squares was undertaken, yielding a 100% symmetrical 3D geometry which was coupled to a previously obtained genetic code tetrahedron in order to differentiate the start methionine from the methionine that is acting as a codifying non-start codon. PMID:23431415

  19. Macular corneal dystrophy in a Chinese family related with novel mutations of CHST6

    PubMed Central

    Dang, Xiuhong; Zhu, Qingguo; Wang, Li; Su, Hong; Lin, Hui; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shangzhi; Ren, Qiushi

    2009-01-01

    Purpose To identify mutations in the carbohydrate sulfotransferase gene (CHST6) for a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes in the affected cornea. Methods A corneal button of the proband was obtained by penetrating keratoplasty. The half button and ultrathin sections from the other half button were examined with special stains under a light microscope (LM) and an electron microscope (EM) separately. Genomic DNA was extracted from peripheral blood of 11 family members, and the coding region of CHST6 was amplified by the polymerase chain reaction (PCR) method. The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Results The positive reaction to colloidal iron stain (extracellular blue accumulations in the stroma) was detected under light microscopy. Transmission electron microscopy revealed the enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. The compound heterozygous mutations, c.892C>T and c.1072T>C, were identified in exon 3 of CHST6 in three patients. The two transversions resulted in the substitution of a stop codon for glutamine at codon 298 (p.Q298X) and a missense mutation at codon 358, tyrosine to histidine (p.Y358H). The six unaffected family individuals carried alternative heterozygous mutations. These two mutations were not detected in any of the 100 control subjects. Conclusions Those novel compound heterozygous mutations were thought to contribute to the loss of CHST6 function, which induced the abnormal metabolism of keratan sulfate (KS) that deposited in the corneal stroma. It could be proved by the observation of a positive stain reaction and the enlarged collagen fibers as well as hyperplastic fibroblasts under microscopes. PMID:19365571

  20. Identification of novel mutations of the CHST6 gene in Vietnamese families affected with macular corneal dystrophy in two generations.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi

    2003-08-01

    To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).

  1. Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primorac, D.; Stover, M.L.; McKinstry, M.B.

    Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or themore » donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.« less

  2. Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: Molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoeny, B.; Leimbacher, W.; Blau, N.

    1994-05-01

    A variant type of hyperphenylalaninemia is caused by a deficiency of tetrahydrobiopterin (BH[sub 4]), the obligatory cofactor for phenylalanine hydroxylase. The most frequent form of this cofactor deficiency is due to lack of 6-pyruvoyl-tetrahydropterin synthase (PTPS) activity, the second enzyme in the biosynthetic pathway for BH[sub 4]. The human liver cDNA for PTPS was previously isolated, and the recombinant protein was found to be active when expressed in Escherichia coli. The authors now have investigated two patients for their molecular nature of this autosomal recessive disorder. Both patients were diagnosed as PTPS deficient, one with the central and one withmore » the peripheral form, on the basis of an elevated serum phenylalanine concentration concomitant with lowered levels of urinary biopterin and PTPS activity in erythrocytes. Molecular analysis was performed on the patients' cultured primary skin fibroblasts. PTPS activities were found in vitro to be reduced to background activity. Direct cDNA sequence analysis using reverse transcriptase-PCR technology showed for the patient with the central form a homozygous G-to-A transition at codon 25, causing the replacement of an arginine by glutamine (R25Q). Expression of this mutant allele in E.coli revealed 14% activity when compared with the wild-type enzyme. The patient with the peripheral form exhibited compound heteroxygosity, having on one allele a C-to-T transition resulting in the substitution of arginine 16 for cysteine (R16C) in the enzyme and having on the second allele a 14-bp deletion ([Delta]14bp), leading to a frameshift at lysine 120 and a premature stop codon (K120[yields]Stop). Heterologous expression of the enzyme with the single-amino-acid exchange R16C revealed only 7% enzyme activity, whereas expression of the deletion allele [Delta]14bp exhibited no detectable activity. All three mutations result in reduced enzymatic activity when reconstituted in E. coli.« less

  3. Two recessive mutations in FGF5 are associated with the long-hair phenotype in donkeys.

    PubMed

    Legrand, Romain; Tiret, Laurent; Abitbol, Marie

    2014-09-25

    Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae. We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses. We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical β strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth. Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.

  4. Use of ade1 and ade2 mutations for development of a versatile red/white colour assay of amyloid-induced oxidative stress in saccharomyces cerevisiae.

    PubMed

    Bharathi, Vidhya; Girdhar, Amandeep; Prasad, Archana; Verma, Meenkshi; Taneja, Vibha; Patel, Basant K

    2016-12-01

    Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI + ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi - ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI + ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. [Possible role of genetic factors on reduced risk for gastric cancer among duodenal ulcer patients].

    PubMed

    Matsuda, Koichi; Tanikawa, Chizu; Nakamura, Yusuke

    2013-08-01

    Although H. pylori causes both gastric cancer and peptic ulcer, duodenal ulcer patients were known to have low risk for gastric cancer. Recently the association of PSCA and ABO with duodenal ulcer were identified by GWAS in the Japanese population. A T-allele of SNP rs2294008 in the PSCA promoter creates the upstream translational initiation codon and affects the protein localization from cytoplasm to cell surface. A T-allele of SNP rs2294008 increased gastric cancer risk but reduced duodenal ulcer risk. In addition, blood type O was shown to increase risk for duodenal ulcer, while blood type A was associated with gastric cancer risk in the Caucasian population. Our finding would partially explain low risk of gastric cancer among duodenal ulcer patients.

  6. Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product

    PubMed Central

    Ikushima, Shigehito; Zhao, Yu; Boeke, Jef D.

    2015-01-01

    Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor. PMID:26206350

  7. Complete mitochondrial genome of Bactrocera arecae (Insecta: Tephritidae) by next-generation sequencing and molecular phylogeny of Dacini tribe

    PubMed Central

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Chan, Kok-Gan; Chow, Wan-Loo; Eamsobhana, Praphathip

    2015-01-01

    The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general. PMID:26472633

  8. Tracking of Engineered Bacteria In Vivo Using Nonstandard Amino Acid Incorporation.

    PubMed

    Praveschotinunt, Pichet; Dorval Courchesne, Noémie-Manuelle; den Hartog, Ilona; Lu, Chaochen; Kim, Jessica J; Nguyen, Peter Q; Joshi, Neel S

    2018-06-15

    The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.

  9. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  10. Whole Genome Sequencing Reveals a De Novo SHANK3 Mutation in Familial Autism Spectrum Disorder

    PubMed Central

    Nemirovsky, Sergio I.; Córdoba, Marta; Zaiat, Jonathan J.; Completa, Sabrina P.; Vega, Patricia A.; González-Morón, Dolores; Medina, Nancy M.; Fabbro, Mónica; Romero, Soledad; Brun, Bianca; Revale, Santiago; Ogara, María Florencia; Pecci, Adali; Marti, Marcelo; Vazquez, Martin; Turjanski, Adrián; Kauffman, Marcelo A.

    2015-01-01

    Introduction Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. Methods We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Results Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). Conclusions We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder. PMID:25646853

  11. Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder.

    PubMed

    Nemirovsky, Sergio I; Córdoba, Marta; Zaiat, Jonathan J; Completa, Sabrina P; Vega, Patricia A; González-Morón, Dolores; Medina, Nancy M; Fabbro, Mónica; Romero, Soledad; Brun, Bianca; Revale, Santiago; Ogara, María Florencia; Pecci, Adali; Marti, Marcelo; Vazquez, Martin; Turjanski, Adrián; Kauffman, Marcelo A

    2015-01-01

    Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.

  12. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    PubMed

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  13. The effector gene xopAE of Xanthomonas euvesicatoria 85-10 is part of an operon and encodes an E3 ubiquitin ligase.

    PubMed

    Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido

    2018-05-21

    The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas species and elucidate evolution of the Xanthomonas euvesicatoria xopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multi-domains gene into two ORFs that conserved the original domain function. Analysis of xopAE 85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE 85-10 is an XL-box E3 ubiquitin ligase and provide insights into structure and function of this effector family. Copyright © 2018 American Society for Microbiology.

  14. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  15. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    PubMed Central

    Rehm, Charlotte; Wurmthaler, Lena A.; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S.

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1–5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6–9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria. PMID:26695179

  16. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing ofmore » an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.« less

  17. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    PubMed Central

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  18. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.

    2001-01-01

    Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.

  19. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes.

    PubMed

    Kim, Min-Sik; Hahn, Mi-Young; Cho, Yoobok; Cho, Sang-Nae; Roe, Jung-Hye

    2009-09-01

    Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.

  20. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  1. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses.

    PubMed

    Komatsu, Ken; Hirata, Hisae; Fukagawa, Takako; Yamaji, Yasuyuki; Okano, Yukari; Ishikawa, Kazuya; Adachi, Tatsushi; Maejima, Kensaku; Hashimoto, Masayoshi; Namba, Shigetou

    2012-07-01

    The first open-reading frame (ORF) of apple stem grooving virus (ASGV), of the genus Capillovirus, encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP). However, our previous study revealed that ASGV mutants with distinct and discontinuous Rep- and CP-coding regions successfully infect plants, indicating that CP expressed via a subgenomic RNA (sgRNA) is sufficient for viability of the virus. Here we identified a transcription start site of the CP sgRNA and revealed that CP translated from the sgRNA is essential for ASGV infection. We mapped the transcription start sites of both the CP and the movement protein (MP) sgRNAs of ASGV and found a hexanucleotide motif, UUAGGU, conserved upstream from both sgRNA transcription start sites. Mutational analysis of the putative CP initiation codon and of the UUAGGU sequence upstream from the transcription start site of CP sgRNA demonstrated their importance for ASGV accumulation. Our results also demonstrated that potato virus T (PVT), an unassigned species closely related to ASGV, produces two sgRNAs putatively deployed for the CP and MP expression and that the same hexanucleotide motif as found in ASGV is located upstream from the transcription start sites of both sgRNAs. This motif, which constituted putative core elements of the sgRNA promoter, is broadly conserved among viruses in the families Alphaflexiviridae and Betaflexiviridae, suggesting that the gene expression strategy of the viruses in both families has been conserved throughout evolution. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    DOE PAGES

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less

  3. Novel mutation of OCRL1 in Lowe syndrome.

    PubMed

    Liu, Ting; Yue, Zhihui; Wang, Haiyan; Tong, Huajuan; Sun, Liangzhong

    2015-01-01

    Lowe syndrome is a rare, X-linked recessive genetic disease with multi-organ involvement. The pathogenic gene is OCRL1. The authors analyzed the OCRL1 mutation and summarized the clinical features of a Chinese child with Lowe syndrome. The patient is a 3 year 7 mo-old boy. He presented with hypotonia at birth and gradually presented with bilateral congenital cataracts, psychomotor retardation, hypophosphatemic rickets and renal tubular function disorder. Sequence analysis of OCRL1 revealed a novel insertion mutation, c.2367insA (p. Ala813X), in exon 22. This mutation was suspected to cause a premature stop codon of OCRL1 and truncation of the OCRL1 protein. His mother, who carried a heterozygous mutation, had no sign of abnormality.

  4. Compound heterozygous HAX1 mutations in a Swedish patient with severe congenital neutropenia and no neurodevelopmental abnormalities.

    PubMed

    Carlsson, Göran; Elinder, Göran; Malmgren, Helena; Trebinska, Alicja; Grzybowska, Ewa; Dahl, Niklas; Nordenskjöld, Magnus; Fadeel, Bengt

    2009-12-01

    Kostmann disease or severe congenital neutropenia (SCN) is an autosomal recessive disorder of neutrophil production. Homozygous HAX1 mutations were recently identified in SCN patients belonging to the original family in northern Sweden described by Kostmann. Moreover, recent studies have suggested an association between neurological dysfunction and HAX1 deficiency. Here we describe a patient with a compound heterozygous HAX1 mutation consisting of a nonsense mutation (c.568C > T, p.Glu190X) and a frame-shift mutation (c.91delG, p.Glu31LysfsX54) resulting in a premature stop codon. The patient has a history of neutropenia and a propensity for infections, but has shown no signs of neurodevelopmental abnormalities.

  5. Does RecA have a role in Borrelia recurrentis?

    PubMed

    Cutler, S J; Rinky, I J; Bonilla, E M

    2011-02-01

    Genomic sequencing of two relapsing fever spirochaetes showed truncation of recA in Borrelia recurrentis, but not in Borrelia duttonii. RecA has an important role among bacteria; we investigated whether this characteristic was representative of B. recurrentis, or an artefact following in vitro cultivation. We sequenced recA directly from samples of patient with louse-borne relapsing fever (B. recurrentis) or tick-borne relapsing fever (B. duttonii). We confirmed the premature stop codon in seven louse-borne relapsing fever samples, and its absence from three tick-borne relapsing fever samples. Furthermore, specific signature polymorphisms were found that could differentiate between these highly similar spirochaetes. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  6. A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis

    PubMed Central

    Fayez, Alaaeldin; Aglan, Mona; Esmaiel, Nora; El Zanaty, Taher; Abdel Kader, Mohamed; El Ruby, Mona

    2015-01-01

    Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation. PMID:25984533

  7. Molecular Epidemiology of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae in Serbia from 2013 to 2016

    PubMed Central

    Novović, Katarina; Trudić, Anika; Brkić, Snežana; Vasiljević, Zorica; Kojić, Milan; Medić, Deana; Ćirković, Ivana

    2017-01-01

    ABSTRACT Twenty-seven colistin-resistant, carbapenemase-producing Klebsiella pneumoniae isolates were identified from hospitals in Serbia. All isolates were blaCTX-M-15 positive; ST101, ST888, ST437, ST336, and ST307 were blaOXA-48 positive; and ST340 was blaNDM-1 positive. ST307 had an insertion, and ST336 had a premature stop codon in the mgrB gene. Amino acid substitutions were detected in PmrAB of isolates ST101, ST888, ST336, and ST307. The mcr-1 and mcr-2 were not detected. An increase in phoP, phoQ, and pmrK gene transcription was detected for all sequence types. PMID:28242665

  8. The first report of prion-related protein gene (PRNT) polymorphisms in goat.

    PubMed

    Kim, Yong-Chan; Jeong, Byung-Hoon

    2017-06-01

    Prion protein is encoded by the prion protein gene (PRNP). Polymorphisms of several members of the prion gene family have shown association with prion diseases in several species. Recent studies on a novel member of the prion gene family in rams have shown that prion-related protein gene (PRNT) has a linkage with codon 26 of prion-like protein (PRND). In a previous study, codon 26 polymorphism of PRND has shown connection with PRNP haplotype which is strongly associated with scrapie vulnerability. In addition, the genotype of a single nucleotide polymorphism (SNP) at codon 26 of PRND is related to fertilisation capacity. These findings necessitate studies on the SNP of PRNT gene which is connected with PRND. In goat, several polymorphism studies have been performed for PRNP, PRND, and shadow of prion protein gene (SPRN). However, polymorphism on PRNT has not been reported. Hence, the objective of this study was to determine the genotype and allelic distribution of SNPs of PRNT in 238 Korean native goats and compare PRNT DNA sequences between Korean native goats and several ruminant species. A total of five SNPs, including PRNT c.-114G > T, PRNT c.-58A > G in the upstream of PRNT gene, PRNT c.71C > T (p.Ala24Val) and PRNT c.102G > A in the open reading frame (ORF) and c.321C > T in the downstream of PRNT gene, were found in this study. All five SNPs of caprine PRNT gene in Korean native goat are in complete linkage disequilibrium (LD) with a D' value of 1.0. Interestingly, comparative sequence analysis of the PRNT gene revealed five mismatches between DNA sequences of Korean native goats and those of goats deposited in the GenBank. Korean native black goats also showed 5 mismatches in PRNT ORF with cattle. To the best of our knowledge, this is the first genetic research of the PRNT gene in goat.

  9. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae)

    PubMed Central

    Liao, Fang; Wang, Lin; Wu, Song; Li, Yu-Ping; Zhao, Lei; Huang, Guo-Ming; Niu, Chun-Jing; Liu, Yan-Qun; Li, Ming-Gang

    2010-01-01

    The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other lepidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs have a typical clover-leaf structure of mitochondrial tRNAs, except for tRNASer(AGN), the DHU arm of which could not form a stable stem-loop structure. The intergenic spacer sequence between tRNASer(AGN) and ND1 also contains the ATACTAA motif, which is conserved across the Lepidoptera order. The H. cunea A+T-rich region of 357 bp is comprised of non-repetitive sequences, but harbors several features common to the Lepidoptera insects, including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 element preceded by the ATTTA motif, an 11 bp poly-A present immediately upstream tRNAMet. The phylogenetic analyses support the view that the H. cunea is closerly related to the Lymantria dispar than Ochrogaster lunifer, and support the hypothesis that Noctuoidea (H. cunea, L. dispar, and O. lunifer) and Geometroidea (Phthonandria atrilineata) are monophyletic. However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran superfamilies, Papillonoidea (Artogeia melete, Acraea issoria, and Coreana raphaelis) joined basally within the monophyly of Lepidoptera, which is different to the traditional classification. PMID:20376208

  10. Analysis of synonymous codon usage patterns in the genus Rhizobium.

    PubMed

    Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin

    2013-11-01

    The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.

  11. Ribosomal Binding Site Switching: An Effective Strategy for High-Throughput Cloning Constructions

    PubMed Central

    Li, Yunlong; Zhang, Yong; Lu, Pei; Rayner, Simon; Chen, Shiyun

    2012-01-01

    Direct cloning of PCR fragments by TA cloning or blunt end ligation are two simple methods which would greatly benefit high-throughput (HTP) cloning constructions if the efficiency can be improved. In this study, we have developed a ribosomal binding site (RBS) switching strategy for direct cloning of PCR fragments. RBS is an A/G rich region upstream of the translational start codon and is essential for gene expression. Change from A/G to T/C in the RBS blocks its activity and thereby abolishes gene expression. Based on this property, we introduced an inactive RBS upstream of a selectable marker gene, and designed a fragment insertion site within this inactive RBS. Forward and reverse insertions of specifically tailed fragments will respectively form an active and inactive RBS, thus all background from vector self-ligation and fragment reverse insertions will be eliminated due to the non-expression of the marker gene. The effectiveness of our strategy for TA cloning and blunt end ligation are confirmed. Application of this strategy to gene over-expression, a bacterial two-hybrid system, a bacterial one-hybrid system, and promoter bank construction are also verified. The advantages of this simple procedure, together with its low cost and high efficiency, makes our strategy extremely useful in HTP cloning constructions. PMID:23185557

  12. Compound heterozygous deletions in pseudoautosomal region 1 in an infant with mild manifestations of langer mesomelic dysplasia.

    PubMed

    Tsuchiya, Takayoshi; Shibata, Minoru; Numabe, Hironao; Jinno, Tomoko; Nakabayashi, Kazuhiko; Nishimura, Gen; Nagai, Toshiro; Ogata, Tsutomu; Fukami, Maki

    2014-02-01

    Haploinsufficiency of SHOX on the short arm pseudoautosomal region (PAR1) leads to Leri-Weill dyschondrosteosis (LWD), and nullizygosity of SHOX results in Langer mesomelic dysplasia (LMD). Molecular defects of LWD/LMD include various microdeletions in PAR1 that involve exons and/or the putative upstream or downstream enhancer regions of SHOX, as well as several intragenic mutations. Here, we report on a Japanese male infant with mild manifestations of LMD and hitherto unreported microdeletions in PAR1. Clinical analysis revealed mesomelic short stature with various radiological findings indicative of LMD. Molecular analyses identified compound heterozygous deletions, that is, a maternally inherited ∼46 kb deletion involving the upstream region and exons 1-5 of SHOX, and a paternally inherited ∼500 kb deletion started from a position ∼300 kb downstream from SHOX. In silico analysis revealed that the downstream deletion did not affect the known putative enhancer regions of SHOX, although it encompassed several non-coding elements which were well conserved among various species with SHOX orthologs. These results provide the possibility of the presence of a novel enhancer for SHOX in the genomic region ∼300 to ∼800 kb downstream of the start codon. © 2013 Wiley Periodicals, Inc.

  13. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.

    PubMed

    Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo

    2013-07-01

    The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    NASA Astrophysics Data System (ADS)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  15. The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression

    PubMed Central

    Klein, Peter; Seidel, Thorsten; Stöcker, Benedikt; Dietz, Karl-Josef

    2012-01-01

    The stromal ascorbate peroxidase (sAPX) functions as central element of the chloroplast antioxidant defense system. Its expression is under retrograde control of chloroplast signals including redox- and reactive oxygen species-linked cues. The sAPX promoter of Arabidopsis thaliana was dissected in transient reporter assays using mesophyll protoplasts. The study revealed regulatory elements up to –1868 upstream of the start codon. By yeast-one-hybrid screening, the transcription factor ANAC089 was identified to bind to the promoter fragment 2 (–1262 to –1646 bp upstream of translational initiation). Upon mutation of the cis-acting element CACG, binding of ANAC089 was abolished. Expression of a fused fluorescent protein version and comparison with known endomembrane markers localized ANAC089 to the trans-Golgi network and the ER. The transcription factor was released upon treatment with reducing agents and targeted to the nucleus. Transactivation assays using wild type and mutated versions of the promoter showed a partial suppression of reporter expression. The data indicate that ANAC089 functions in a negative retrograde loop, lowering sAPX expression if the cell encounters a highly reducing condition. This conclusion was supported by reciprocal transcript accumulation of ANAC089 and sAPX during acclimation to low, normal, and high light conditions. PMID:23162559

  16. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Codon usage bias in prokaryotic pyrimidine-ending codons is associated with the degeneracy of the encoded amino acids

    PubMed Central

    Wald, Naama; Alroy, Maya; Botzman, Maya; Margalit, Hanah

    2012-01-01

    Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon–anticodon interaction, all consistent with more efficient translation. PMID:22581775

  18. Identification of a novel exonic mutation at -13 from 5' splice site causing exon skipping in a girl with mitochondrial acetoacetyl-coenzyme A thiolase deficiency.

    PubMed Central

    Fukao, T; Yamaguchi, S; Wakazono, A; Orii, T; Hoganson, G; Hashimoto, T

    1994-01-01

    We identified a novel exonic mutation which causes exon skipping in the mitochondrial acetoacetyl-CoA thiolase (T2) gene from a girl with T2 deficiency (GK07). GK07 is a compound heterozygote; the maternal allele has a novel G to T transversion at position 1136 causing Gly379 to Val substitution (G379V) of the T2 precursor. In case of in vivo expression analysis, cells transfected with this mutant cDNA showed no evidence of restored T2 activity. The paternal allele was associated with exon 8 skipping at the cDNA level. At the gene level, a C to T transition causing Gln272 to termination codon (Q272STOP) was identified within exon 8, 13 bp from the 5' splice site of intron 8 in the paternal allele. The mRNA with Q272STOP could not be detected in GK07 fibroblasts, presumably because pre-mRNA with Q272STOP was unstable because of the premature termination. In vivo splicing experiments revealed that the exonic mutation caused partial skipping of exon 8. This substitution was thought to alter the secondary structure of T2 pre-mRNA around exon 8 and thus impede normal splicing. The role of exon sequences in the splicing mechanism is indicated by the exon skipping which occurred with an exonic mutation. Images PMID:7907600

  19. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design

    PubMed Central

    Villada, Juan C.; Brustolini, Otávio José Bernardes

    2017-01-01

    Abstract Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent–non-optimal cluster and enrichment at the 5′-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. PMID:28449100

  20. Integrated analysis of individual codon contribution to protein biosynthesis reveals a new approach to improving the basis of rational gene design.

    PubMed

    Villada, Juan C; Brustolini, Otávio José Bernardes; Batista da Silveira, Wendel

    2017-08-01

    Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent-non-optimal cluster and enrichment at the 5'-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.).

    PubMed

    Wang, He; Fan, Mingxia; Wang, Guohong; Zhang, Chunyu; Shi, Lei; Wei, Zhengyi; Ma, Wenjuan; Chang, Jing; Huang, Senxin; Lin, Feng

    2017-06-01

    ZmSTK2_USP, located on the long arm of chromosome 4, belongs to the serine/threonine kinase gene in maize. The sequence analysis of 2100 bp upstream from the start codon ATG has shown that it contains cis-element motifs and two types of anther/pollen-specific promoter elements (GTGA and AGAAA), suggesting that it is the pollen-specific promoter. To investigate the function of ZmSTK2_USP promoter, the GUS gene fusion system was employed. In proZmSTK2_USP-GUS genetically modified plants, GUS activity was detected in mature pollen grains and pollen tubes but not found in other floral and vegetative tissues. These results show that proZmSTK2_USP is the pollen-specific promoter and drives pollen-specific activity during the middle stage of pollen development until pollen maturation.

  2. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    PubMed

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  3. Partial attenuation of Marek's disease virus by manipulation of Di-codon bias

    USDA-ARS?s Scientific Manuscript database

    All species studied to date demonstrate a preference for certain codons over other synonymous codons (codon bias), a preference which is also observed for pairs of codons (di-codon bias). Previous studies using poliovirus and influenza virus as models have demonstrated the ability to cause attenuat...

  4. Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards "GC" Rich Codons.

    PubMed

    Williams, Ernest; Place, Allen; Bachvaroff, Tsvetan

    2017-04-27

    Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen "core" dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression.

  5. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    PubMed

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  6. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome.

    PubMed

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-02-24

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.

  7. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  8. Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts.

    PubMed

    Nakamura, Masayuki; Sugiura, Masahiro

    2007-01-01

    Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.

  9. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    PubMed Central

    Detanico, Thiago; Phillips, Matthew; Wysocki, Lawrence J.

    2016-01-01

    In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been driven by their exceptional functional versatility, despite potential autoreactive consequences. PMID:27920779

  10. Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability.

    PubMed

    Morton, B R

    1993-09-01

    Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.

  11. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution.

    PubMed

    Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang

    2015-08-26

    The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.

  12. Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards “GC” Rich Codons

    PubMed Central

    Williams, Ernest; Place, Allen; Bachvaroff, Tsvetan

    2017-01-01

    Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen “core” dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression. PMID:28448468

  13. Site-specific creation of uridine from cytidine in apolipoprotein B mRNA editing.

    PubMed Central

    Hodges, P E; Navaratnam, N; Greeve, J C; Scott, J

    1991-01-01

    Human apolipoprotein (apo) B mRNA is edited in a tissue specific reaction, to convert glutamine codon 2153 (CAA) to a stop translation codon. The RNA editing product templates and hybridises as uridine, but the chemical nature of this reaction and the physical identity of the product are unknown. After editing in vitro of [32P] labelled RNA, we are able to demonstrate the production of uridine from cytidine; [alpha 32P] cytidine triphosphate incorporated into RNA gave rise to [32P] uridine monophosphate after editing in vitro, hydrolysis with nuclease P1 and thin layer chromatography using two separation systems. By cleaving the RNA into ribonuclease T1 fragments, we show that uridine is produced only at the authentic editing site and is produced in quantities that parallel an independent primer extension assay for editing. We conclude that apo B mRNA editing specifically creates a uridine from a cytidine. These observations are inconsistent with the incorporation of a uridine nucleotide by any polymerase, which would replace the alpha-phosphate and so rule out a model of endonucleolytic excision and repair as the mechanism for the production of uridine. Although transamination and transglycosylation remain to be formally excluded as reaction mechanisms our results argue strongly in favour of the apo B mRNA editing enzyme as a site-specific cytidine deaminase. Images PMID:2030940

  14. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases.

    PubMed

    Kulkarni, N; Lakshmikumaran, M; Rao, M

    1999-10-05

    A 1.0 kilobase gene fragment from the genomic DNA of an alkaliphilic thermophilic Bacillus was found to code for a functional xylanase (XynII). The complete nucleotide sequence including the structural gene and the 5' and 3' flanking sequences of the xylanase gene have been determined. An open reading frame starting from ATG initiator codon comprising 402 nucleotides gave a preprotein of 133 amino acids of calculated molecular mass 14.090 kDa. The occurrence of three potential N-glycosylation sites in XynII gene is a unique feature for a gene of bacterial origin. The stop codon was followed by hairpin loop structures indicating the presence of transcription termination signals. The secondary structure analysis of XynII predicted that the polypeptide was primarily formed of beta-sheets. XynII appeared to be a member of family G/11 of xylanases based on its molecular weight and basic pI (8.0). However, sequence homology revealed similar identity with families 10 and 11 of xylanases. The conserved triad (Val-Val-Xaa, where Xaa is Asn or Asp) was identified only in the xylanases from alkaliphilic organisms. Our results implicate for the first time the concept of convergent evolution for XynII and provide a basis for research in evolutionary relationship among the xylanases from alkaliphilic and neutrophilic organisms. Copyright 1999 Academic Press.

  15. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing.

    PubMed

    Hong, Nan; Chen, Yan-hua; Xie, Chen; Xu, Bai-sheng; Huang, Hui; Li, Xin; Yang, Yue-qing; Huang, Ying-ping; Deng, Jian-lian; Qi, Ming; Gu, Yang-shun

    2014-08-01

    Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis.

  16. A novel variant in the SLC12A1 gene in two families with antenatal Bartter syndrome.

    PubMed

    Breinbjerg, Anders; Siggaard Rittig, Charlotte; Gregersen, Niels; Rittig, Søren; Hvarregaard Christensen, Jane

    2017-01-01

    Bartter syndrome is an autosomal-recessive inherited disease in which patients present with hypokalaemia and metabolic alkalosis. We present two apparently nonrelated cases with antenatal Bartter syndrome type I, due to a novel variant in the SLC12A1 gene encoding the bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2 in the thick ascending limb of the loop of Henle. Blood samples were received from the two cases and 19 of their relatives, and deoxyribonucleic acid was extracted. The coding regions of the SLC12A1 gene were amplified using polymerase chain reaction, followed by bidirectional direct deoxyribonucleic acid sequencing. Each affected child in the two families was homozygous for a novel inherited variant in the SLC12A1gene, c.1614T>A. The variant predicts a change from a tyrosine codon to a stop codon (p.Tyr538Ter). The two cases presented antenatally and at six months of age, respectively. The two cases were homozygous for the same variant in the SLC12A1 gene, but presented clinically at different ages. This could eventually be explained by the presence of other gene variants or environmental factors modifying the phenotypes. The phenotypes of the patients were similar to other patients with antenatal Bartter syndrome. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  17. Molecular diagnosis of analbuminemia: a new case caused by a nonsense mutation in the albumin gene.

    PubMed

    Dagnino, Monica; Caridi, Gianluca; Haenni, Ueli; Duss, Adrian; Aregger, Fabienne; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2011-01-01

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23-c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.

  18. Successful COG8 and PDF overlap is mediated by alterations in splicing and polyadenylation signals.

    PubMed

    Pereira-Castro, Isabel; Quental, Rita; da Costa, Luís T; Amorim, António; Azevedo, Luisa

    2012-02-01

    Although gene-free areas compose the great majority of eukaryotic genomes, a significant fraction of genes overlaps, i.e., unique nucleotide sequences are part of more than one transcription unit. In this work, the evolutionary history and origin of a same-strand gene overlap is dissected through the analysis of COG8 (component of oligomeric Golgi complex 8) and PDF (peptide deformylase). Comparative genomic surveys reveal that the relative locations of these two genes have been changing over the last 445 million years from distinct chromosomal locations in fish to overlapping in rodents and primates, indicating that the overlap between these genes precedes their divergence. The overlap between the two genes was initiated by the gain of a novel splice donor site between the COG8 stop codon and PDF initiation codon. Splicing is accomplished by the use of the PDF acceptor, leading COG8 to share the 3'end with PDF. In primates, loss of the ancestral polyadenylation signal for COG8 makes the overlap between COG8 and PDF mandatory, while in mouse and rat concurrent overlapping and non-overlapping Cog8 transcripts exist. Altogether, we demonstrate that the origin, evolution and preservation of the COG8/PDF same-strand overlap follow similar mechanistic steps as those documented for antisense overlaps where gain and/or loss of splice sites and polyadenylation signals seems to drive the process.

  19. Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.

    PubMed

    Taylor, Louis J; Strebel, Klaus

    2017-01-07

    Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.

  20. A novel germline inactivating mutation in the CASR gene in an Italian kindred affected by familial hypocalciuric hypercalcemia.

    PubMed

    Falchetti, Alberto; Gozzini, Alessia; Terranegra, Annalisa; Soldati, Laura; Vezzoli, Giuseppe; Leoncini, Gigliola; Giusti, Francesca; Franceschelli, Francesco; Masi, Laura; Tanini, Annalisa; Cavalli, Loredana; Brandi, Maria Luisa

    2012-05-01

    Familial hypocalciuric hypercalcemia (FHH) syndrome is a rare benign condition, inherited as an autosomal dominant trait, in which inactivating mutations of the calcium-sensing receptor (CASR) gene affects the body's ability to regulate calcium homeostasis. Its outcome is featured by increased levels of serum calcium, moderate hypophosphatemia, and inadequately normal or elevated circulating parathyroid hormone levels. Affected patients are mostly asymptomatic and do not benefit from surgical resection of their mildly enlarged parathyroids. We evaluated for hypercalcemia an Italian family that was identified via a young adult male proband referred to our center for parathyroidectomy. The patients and the family members were evaluated both biochemically and genetically as suspected FHH subjects. An in vitro functional study was performed by site-directed mutagenesis, and CASR activity was monitored by measuring intracellular calcium ([Ca(2)(+)](i)). The patient had a novel germline heterozygous CASR mutation (c.361_364GATT; p.D121del/fsX122). The mutation caused a premature stop codon at codon 122, exiting a truncated protein. The biochemical phenotype of all family members carrying the heterozygous deletion was concordant with classic FHH syndrome. Our findings confirm the role of CASR gene mutational analysis to offer a valuable addition for the recognition of FHH in hypercalcemic patients not yet characterized for a positive familial history of hypercalcemia, the only condition that identifies CASR gene mutations in hypercalcemia.

  1. A novel loss-of-function mutation in Npr2 clarifies primary role in female reproduction and reveals a potential therapy for acromesomelic dysplasia, Maroteaux type.

    PubMed

    Geister, Krista A; Brinkmeier, Michelle L; Hsieh, Minnie; Faust, Susan M; Karolyi, I Jill; Perosky, Joseph E; Kozloff, Kenneth M; Conti, Marco; Camper, Sally A

    2013-01-15

    We discovered a new spontaneous mutant allele of Npr2 named peewee (pwe) that exhibits severe disproportionate dwarfism and female infertility. The pwe phenotype is caused by a four base-pair deletion in exon 3 that generates a premature stop codon at codon 313 (L313X). The Npr2(pwe/pwe) mouse is a model for the human skeletal dysplasia acromesomelic dysplasia, Maroteaux type (AMDM). We conducted a thorough analysis of the female reproductive tract and report that the primary cause of Npr2(pwe/pwe) female infertility is premature oocyte meiotic resumption, while the pituitary and uterus appear to be normal. Npr2 is expressed in chondrocytes and osteoblasts. We determined that the loss of Npr2 causes a reduction in the hypertrophic and proliferative zones of the growth plate, but mineralization of skeletal elements is normal. Mutant tibiae have increased levels of the activated form of ERK1/2, consistent with the idea that natriuretic peptide receptor type 2 (NPR2) signaling inhibits the activation of the MEK/ERK mitogen activated protein kinase pathway. Treatment of fetal tibiae explants with mitogen activated protein kinase 1 and 2 inhibitors U0126 and PD325901 rescues the Npr2(pwe/pwe) growth defect, providing a promising foundation for skeletal dysplasia therapeutics.

  2. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed

    von Schnakenburg, C; Rumsby, G

    1997-06-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.

  3. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed Central

    von Schnakenburg, C; Rumsby, G

    1997-01-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270

  4. The Complete Mitochondrial Genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae) and Its Phylogenetic Implication

    PubMed Central

    Hao, Jiasheng; Sun, Qianqian; Zhao, Huabin; Sun, Xiaoyan; Gai, Yonghua; Yang, Qun

    2012-01-01

    We here report the first complete mitochondrial (mt) genome of a skipper, Ctenoptilum vasava Moore, 1865 (Lepidoptera: Hesperiidae: Pyrginae). The mt genome of the skipper is a circular molecule of 15,468 bp, containing 2 ribosomal RNA genes, 24 putative transfer RNA (tRNA), genes including an extra copy of trnS (AGN) and a tRNA-like insertion trnL (UUR), 13 protein-coding genes and an AT-rich region. All protein-coding genes (PCGs) are initiated by ATN codons and terminated by the typical stop codon TAA or TAG, except for COII which ends with a single T. The intergenic spacer sequence between trnS (AGN) and ND1 genes also contains the ATACTAA motif. The AT-rich region of 429 bp is comprised of nonrepetitive sequences, including the motif ATAGA followed by an 19 bp poly-T stretch, a microsatellite-like (AT)3 (TA)9 element next to the ATTTA motif, an 11 bp poly-A adjacent to tRNAs. Phylogenetic analyses (ML and BI methods) showed that Papilionoidea is not a natural group, and Hesperioidea is placed within the Papilionoidea as a sister to ((Pieridae + Lycaenidae) + Nymphalidae) while Papilionoidae is paraphyletic to Hesperioidea. This result is remarkably different from the traditional view where Papilionoidea and Hesperioidea are considered as two distinct superfamilies. PMID:22577351

  5. A novel loss-of-function mutation in Npr2 clarifies primary role in female reproduction and reveals a potential therapy for acromesomelic dysplasia, Maroteaux type

    PubMed Central

    Geister, Krista A.; Brinkmeier, Michelle L.; Hsieh, Minnie; Faust, Susan M.; Karolyi, I. Jill; Perosky, Joseph E.; Kozloff, Kenneth M.; Conti, Marco; Camper, Sally A.

    2013-01-01

    We discovered a new spontaneous mutant allele of Npr2 named peewee (pwe) that exhibits severe disproportionate dwarfism and female infertility. The pwe phenotype is caused by a four base-pair deletion in exon 3 that generates a premature stop codon at codon 313 (L313X). The Npr2pwe/pwe mouse is a model for the human skeletal dysplasia acromesomelic dysplasia, Maroteaux type (AMDM). We conducted a thorough analysis of the female reproductive tract and report that the primary cause of Npr2pwe/pwe female infertility is premature oocyte meiotic resumption, while the pituitary and uterus appear to be normal. Npr2 is expressed in chondrocytes and osteoblasts. We determined that the loss of Npr2 causes a reduction in the hypertrophic and proliferative zones of the growth plate, but mineralization of skeletal elements is normal. Mutant tibiae have increased levels of the activated form of ERK1/2, consistent with the idea that natriuretic peptide receptor type 2 (NPR2) signaling inhibits the activation of the MEK/ERK mitogen activated protein kinase pathway. Treatment of fetal tibiae explants with mitogen activated protein kinase 1 and 2 inhibitors U0126 and PD325901 rescues the Npr2pwe/pwe growth defect, providing a promising foundation for skeletal dysplasia therapeutics. PMID:23065701

  6. Improved Dual-Luciferase Reporter Assays for Nuclear Receptors

    PubMed Central

    Paguio, Aileen; Stecha, Pete; Wood, Keith V; Fan, Frank

    2010-01-01

    Nuclear receptors play important roles in many cellular functions through control of gene transcription. It is also a large target class for drug discovery. Luciferase reporter assays are frequently used to study nuclear receptor function because of their wide dynamic range, low endogenous activity, and ease of use. Recent improvements of luciferase genes and vectors have further enhanced their utilities. Here we applied these improvements to two reporter formats for studying nuclear receptors. The first assay contains a Murine Mammary Tumor Virus promoter upstream of a destabilized luciferase. The presence of response elements for nuclear hormone receptor in this promoter allows the studies of endogenous and/or exogenous full length receptors. The second assay contains a ligand binding domain (LBD) of a nuclear receptor fused to the GAL4 DNA binding domain (DBD) on one vector and multiple Gal4 Upstream Activator Sequences (UAS) upstream of luciferase reporter on another vector. We showed that codon optimization of luciferase reporter genes increased expression levels in conjunction with the incorporation of protein destabilizing sequences into luciferase led to a larger assay dynamic range in both formats. The optimum number of UAS to generate the best response was determined. The expression vector for nuclear receptor LBD/GAL4 DBD fusion also constitutively expresses a Renilla luciferase-neoR fusion protein, which provides selection capability (G418 resistance, neoR) as well as an internal control (Renilla luciferase). This dual-luciferase format allowed detecting compound cytotoxicity or off-target change in expression during drug screening, therefore improved data quality. These luciferase reporter assays provided better research and drug discovery tools for studying the functions of full length nuclear receptors and ligand binding domains. PMID:21687560

  7. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    PubMed

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  8. Elements in the murine c-mos messenger RNA 5'-untranslated region repress translation of downstream coding sequences.

    PubMed

    Steel, L F; Telly, D L; Leonard, J; Rice, B A; Monks, B; Sawicki, J A

    1996-10-01

    Murine c-mos transcripts isolated from testes have 5'-untranslated regions (5'UTRs) of approximately 300 nucleotides with a series of four overlapping open reading frames (ORFs) upstream of the AUG codon that initiates the Mos ORF. Ovarian c-mos transcripts have shorter 5'UTRs (70-80 nucleotides) and contain only 1-2 of the upstream ORFs (uORFs). To test whether these 5'UTRs affect translational efficiency, we have constructed plasmids for the expression of chimeric transcripts with a mos-derived 5'UTR fused to the Escherichia coli beta-galactosidase coding region. Translational efficiency has been evaluated by measuring beta-galactosidase activity NIH3T3 cells transiently transfected with these plasmids and with plasmids where various mutations have been introduced into the 5'UTR. We show that the 5'UTR characteristic of testis-specific c-mos mRNA strongly represses translation relative to the translation of transcripts that contain a 5'UTR derived from beta-globin mRNA, and this is mainly due to the four uORFs. Each of the four upstream AUG triplets can be recognized as a start site for translation, and no single uAUG dominates the repressive effect. The uORFs repress translation by a mechanism that is not affected by the amino acid sequence in the COOH-terminal region of the uORF-encoded peptides. The very short uORF (AUGUGA) present in ovary-specific transcripts does not repress translation. Staining of testis sections from transgenic mice carrying chimeric beta-galactosidase transgene constructs, which contain a mos 5'UTR with or without the uATGs, suggests that the uORFs can dramatically change the pattern of expression in spermatogenic cells.

  9. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    PubMed

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  10. A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.

    PubMed

    Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora

    2012-12-01

    Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.

  11. Characterization of the porcine epidemic diarrhea virus codon usage bias.

    PubMed

    Chen, Ye; Shi, Yuzhen; Deng, Hongjuan; Gu, Ting; Xu, Jian; Ou, Jinxin; Jiang, Zhiguo; Jiao, Yiren; Zou, Tan; Wang, Chong

    2014-12-01

    Porcine epidemic diarrhea virus (PEDV) has been responsible for several recent outbreaks of porcine epidemic diarrhea (PED) and has caused great economic loss in the swine-raising industry. Considering the significance of PEDV, a systemic analysis was performed to study its codon usage patterns. The relative synonymous codon usage value of each codon revealed that codon usage bias exists and that PEDV tends to use codons that end in T. The mean ENC value of 47.91 indicates that the codon usage bias is low. However, we still wanted to identify the cause of this codon usage bias. A correlation analysis between the codon compositions (A3s, T3s, G3s, C3s, and GC3s), the ENC values, and the nucleotide contents (A%, T%, G%, C%, and GC%) indicated that mutational bias plays role in shaping the PEDV codon usage bias. This was further confirmed by a principal component analysis between the codon compositions and the axis values. Using the Gravy, Aroma, and CAI values, a role of natural selection in the PEDV codon usage pattern was also identified. Neutral analysis indicated that natural selection pressure plays a more important role than mutational bias in codon usage bias. Natural selection also plays an increasingly significant role during PEDV evolution. Additionally, gene function and geographic distribution also influence the codon usage bias to a degree. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cloning and sequencing of the pheP gene, which encodes the phenylalanine-specific transport system of Escherichia coli.

    PubMed Central

    Pi, J; Wookey, P J; Pittard, A J

    1991-01-01

    The phenylalanine-specific permease gene (pheP) of Escherichia coli has been cloned and sequenced. The gene was isolated on a 6-kb Sau3AI fragment from a chromosomal library, and its presence was verified by complementation of a mutant lacking the functional phenylalanine-specific permease. Subcloning from this fragment localized the pheP gene on a 2.7-kb HindIII-HindII fragment. The nucleotide sequence of this 2.7-kb region was determined. An open reading frame was identified which extends from a putative start point of translation (GTG at position 636) to a termination signal (TAA at position 2010). The assignment of the GTG as the initiation codon was verified by site-directed mutagenesis of the initiation codon and by introducing a chain termination mutation into the pheP-lacZ fusion construct. A single initiation site of transcription 30 bp upstream of the start point of translation was identified by the primer extension analysis. The pheP structural gene consists of 1,374 nucleotides specifying a protein of 458 amino acid residues. The PheP protein is very hydrophobic (71% nonpolar residues). A topological model predicted from the sequence analysis defines 12 transmembrane segments. This protein is highly homologous with the AroP (general aromatic transport) system of E. coli (59.6% identity) and to a lesser extent with the yeast permeases CAN1 (arginine), PUT4 (proline), and HIP1 (histidine) of Saccharomyces cerevisiae. Images PMID:1711024

  13. Genome-wide analysis of codon usage bias in Ebolavirus.

    PubMed

    Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor

    2015-01-22

    Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Examination of food chain-derived Listeria monocytogenes strains of different serotypes reveals considerable diversity in inlA genotypes, mutability, and adaptation to cold temperatures.

    PubMed

    Kovacevic, Jovana; Arguedas-Villa, Carolina; Wozniak, Anna; Tasara, Taurai; Allen, Kevin J

    2013-03-01

    Listeria monocytogenes strains belonging to serotypes 1/2a and 4b are frequently linked to listeriosis. While inlA mutations leading to premature stop codons (PMSCs) and attenuated virulence are common in 1/2a, they are rare in serotype 4b. We observed PMSCs in 35% of L. monocytogenes isolates (n = 54) recovered from the British Columbia food supply, including serotypes 1/2a (30%), 1/2c (100%), and 3a (100%), and a 3-codon deletion (amino acid positions 738 to 740) seen in 57% of 4b isolates from fish-processing facilities. Caco-2 invasion assays showed that two isolates with the deletion were significantly more invasive than EGD-SmR (P < 0.0001) and were either as (FF19-1) or more (FE13-1) invasive than a clinical control strain (08-5578) (P = 0.006). To examine whether serotype 1/2a was more likely to acquire mutations than other serotypes, strains were plated on agar with rifampin, revealing 4b isolates to be significantly more mutable than 1/2a, 1/2c, and 3a serotypes (P = 0.0002). We also examined the ability of 33 strains to adapt to cold temperature following a downshift from 37°C to 4°C. Overall, three distinct cold-adapting groups (CAG) were observed: 46% were fast (<70 h), 39% were intermediate (70 to 200 h), and 15% were slow (>200 h) adaptors. Intermediate CAG strains (70%) more frequently possessed inlA PMSCs than did fast (20%) and slow (10%) CAGs; in contrast, 87% of fast adaptors lacked inlA PMSCs. In conclusion, we report food chain-derived 1/2a and 4b serotypes with a 3-codon deletion possessing invasive behavior and the novel association of inlA genotypes encoding a full-length InlA with fast cold-adaptation phenotypes.

  15. Dural ectasia and FBN1 mutation screening of 40 patients with Marfan syndrome and related disorders: role of dural ectasia for the diagnosis.

    PubMed

    Attanasio, Monica; Pratelli, Elisa; Porciani, Maria Cristina; Evangelisti, Lucia; Torricelli, Elena; Pellicanò, Giannantonio; Abbate, Rosanna; Gensini, Gian Franco; Pepe, Guglielmina

    2013-07-01

    Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in the gene encoding fibrillin-1 (FBN1), a matrix component of microfibrils. Dural ectasia, i.e. enlargement of the neural canal mainly located in the lower lumbar and sacral region, frequently occurs in Marfan patients. The aim of our study was to investigate the role of dural ectasia in raising the diagnosis of Marfan syndrome and its association with FBN1 mutations. We studied 40 unrelated patients suspected for MFS, who underwent magnetic resonance imaging searching for dural ectasia. In all of them FBN1 gene analysis was also performed. Thirty-seven patients resulted affected by Marfan syndrome according to the '96 Ghent criteria; in 30 of them the diagnosis was confirmed when revaluated by the recently revised criteria (2010). Thirty-six patients resulted positive for dural ectasia. The degree of dural ectasia was grade 1 in 19 patients, grade 2 in 11 patients, and grade 3 in 6 patients. In 7 (24%) patients, the presence of dural ectasia allowed to reach a positive score for systemic feature criterion. Twenty-four patients carried an FBN1 mutation, that were represented by 13 missense (54%), and 11 (46%) mutations generating a premature termination codon (PTC, frameshifts and stop codons). No mutation was detected in the remaining 16 (6 patients with MFS and 10 with related disorders according to revised Ghent criteria). The prevalence of severe (grade 2 and grade 3) involvement of dura mater was higher in patients harbouring premature termination codon (PTC) mutations than those carrying missense-mutations (8/11 vs 2/13, P = 0.0111). Our data emphasizes the importance of dural ectasia screening to reach the diagnosis of Marfan syndrome especially when it is uncertain and indicates an association between PTC mutations and severe dural ectasia in Marfan patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Characterization of mitochondrial genome of sea cucumber Stichopus horrens: a novel gene arrangement in Holothuroidea.

    PubMed

    Fan, SiGang; Hu, ChaoQun; Wen, Jing; Zhang, LvPing

    2011-05-01

    The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA ( Ser(UCN) ), tRNA ( Gln ), tRNA ( Ala ), tRNA ( Val ), tRNA ( Asp )) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=-0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.

  17. Synonymous codon usage of genes in polymerase complex of Newcastle disease virus.

    PubMed

    Kumar, Chandra Shekhar; Kumar, Sachin

    2017-06-01

    Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta

    PubMed Central

    Whittle, C. A.; Sun, Y.; Johannesson, H.

    2011-01-01

    Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862

  19. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.

    PubMed

    Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup

    2016-10-01

    Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (<0.5) for most genes; and 5) GCC-GCC, GCC-GGC, GCC-GAG and CUC-GAC are the frequent context sequences among codons. This study highlights the fact that: 1) in Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps.

    PubMed

    Huang, Xing; Xu, Jing; Chen, Lin; Wang, Yu; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2017-04-20

    Codon usage bias (CUB) is an important evolutionary feature in genomes that has been widely observed in many organisms. However, the synonymous codon usage pattern in the genome of T. multiceps remains to be clarified. In this study, we analyzed the codon usage of T. multiceps based on the transcriptome data to reveal the constraint factors and to gain an improved understanding of the mechanisms that shape synonymous CUB. Analysis of a total of 8,620 annotated mRNA sequences from T. multiceps indicated only a weak codon bias, with mean GC and GC3 content values of 49.29% and 51.43%, respectively. Our analysis indicated that nucleotide composition, mutational pressure, natural selection, gene expression level, amino acids with grand average of hydropathicity (GRAVY) and aromaticity (Aromo) and the effective selection of amino-acids all contributed to the codon usage in T. multiceps. Among these factors, natural selection was implicated as the major factor affecting the codon usage variation in T. multiceps. The codon usage of ribosome genes was affected mainly by mutations, while the essential genes were affected mainly by selection. In addition, 21codons were identified as "optimal codons". Overall, the optimal codons were GC-rich (GC:AU, 41:22), and ended with G or C (except CGU). Furthermore, different degrees of variation in codon usage were found between T. multiceps and Escherichia coli, yeast, Homo sapiens. However, little difference was found between T. multiceps and Taenia pisiformis. In this study, the codon usage pattern of T. multiceps was analyzed systematically and factors affected CUB were also identified. This is the first study of codon biology in T. multiceps. Understanding the codon usage pattern in T. multiceps can be helpful for the discovery of new genes, molecular genetic engineering and evolutionary studies.

  1. Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species

    PubMed Central

    2006-01-01

    Background Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms. Results Codon usage similarity in Nematoda usually persists over the breadth of a genus but then rapidly diminishes even within each clade. Globodera, Meloidogyne, Pristionchus, and Strongyloides have the most highly derived patterns of codon usage. The major factor affecting differences in codon usage between species is the coding sequence GC content, which varies in nematodes from 32% to 51%. Coding GC content (measured as GC3) also explains much of the observed variation in the effective number of codons (R = 0.70), which is a measure of codon bias, and it even accounts for differences in amino acid frequency. Codon usage is also affected by neighboring nucleotides (N1 context). Coding GC content correlates strongly with estimated noncoding genomic GC content (R = 0.92). On examining abundant clusters in five species, candidate optimal codons were identified that may be preferred in highly expressed transcripts. Conclusion Evolutionary models indicate that total genomic GC content, probably the product of directional mutation pressure, drives codon usage rather than the converse, a conclusion that is supported by examination of nematode genomes. PMID:26271136

  2. A detailed analysis of codon usage patterns and influencing factors in Zika virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj

    2017-07-01

    Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.

  3. Switches in Genomic GC Content Drive Shifts of Optimal Codons under Sustained Selection on Synonymous Sites

    PubMed Central

    Sun, Yu; Tamarit, Daniel

    2017-01-01

    Abstract The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites. PMID:27540085

  4. CodonLogo: a sequence logo-based viewer for codon patterns.

    PubMed

    Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V

    2012-07-15

    Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.

  5. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  6. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid.

    PubMed

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation.

  7. A survey of liver pathology in needle biopsies from HBsAg and anti-HBe positive individuals.

    PubMed

    ter Borg, F; ten Kate, F J; Cuypers, H T; Leentvaar-Kuijpers, A; Oosting, J; Wertheim-van Dillen, P M; Honkoop, P; Rasch, M C; de Man, R A; van Hattum, J; Chamuleau, R A; Tytgat, G N; Jones, E A

    2000-07-01

    To use laboratory data and liver biopsies, prospectively obtained from hepatitis B surface antigen (HBsAg) and anti hepatitis B e antigen (anti-HBe) positive patients, for the assessment of: (1) the relation between biopsy length/number of portal tracts and sampling error; (2) the relation between the severity of piecemeal necrosis and the new grading terminology (minimal, mild, moderate, and severe chronic hepatitis); and (3) liver pathology, which has not been studied in patients with this specific serological profile. The study group (n = 174) included 104 patients with normal aminotransferase concentrations and no cases with clinically apparent cirrhosis. The specimen length and number of portal tracts were measured at light microscopy examination. Sampling error analysis was related to the discrepancies between aminotransferase concentrations versus histological grade. Detailed histological scorings were undertaken by the reference pathologist and compared with laboratory and hepatitis B virus (HBV) DNA precore sequence data. Sampling error seemed to be a constant feature, even for biopsies > or = 20 mm, but increased dramatically in biopsies < 5 mm long and/or containing less than four portal tracts. Between 25% and 30% of biopsies, graded as "mild" or "moderate" activity showed features of moderate and severe piecemeal necrosis, respectively. Ten per cent of the patients with normal aminotransferase values had stage III-IV hepatic fibrosis, and 20% had piecemeal necrosis. Only cytoplasmic, not nuclear, core antigen expression was a strong predictor of high hepatitis B viraemia. There was no association between precore stop codon mutations, grade/stage of liver disease, and hepatitis B core antigen (HBcAg) expression. The specimen available for light microscopical examination should be > 5 mm long and should contain more than four portal tracts. In addition, the new grading terminology might give the clinician an inappropriately mild impression of the severity of piecemeal necrosis. Furthermore, even in the presence of normal aminotransferase concentrations, considerable liver pathology can be found in 10-20% of HBsAg and anti-HBe positive individuals; such pathology is not associated with the occurrence of precore stop codon mutations.

  8. Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.).

    PubMed

    Xie, Zhenze; Wang, Congyan; Wang, Ke; Wang, Shunli; Li, Xiaohui; Zhang, Zhao; Ma, Wujun; Yan, Yueming

    2010-11-01

    Nineteen novel full-ORF α-gliadin genes and 32 pseudogenes containing at least one stop codon were cloned and sequenced from three Aegilops tauschii accessions (T15, T43 and T26) and two bread wheat cultivars (Gaocheng 8901 and Zhongyou 9507). Analysis of three typical α-gliadin genes (Gli-At4, Gli-G1 and Gli-Z4) revealed some InDels and a considerable number of SNPs among them. Most of the pseudogenes were resulted from C to T change, leading to the generation of TAG or TAA in-frame stop codon. The putative proteins of both Gli-At3 and Gli-Z7 genes contained an extra cysteine residue in the unique domain II. Analysis of toxic epitodes among 19 deduced α-gliadins demonstrated that 14 of these contained 1-5 T cell stimulatory toxic epitopes while the other 5 did not contain any toxic epitopes. The glutamine residues in two specific ployglutamine domains ranged from 7 to 27, indicating a high variation in length. According to the numbers of 4 T cell stimulatory toxic epitopes and glutamine residues in the two ployglutamine domains among the 19 α-gliadin genes, 2 were assigned to chromosome 6A, 5 to chromosome 6B and 12 to chromosome 6D. These results were consistent with those from wheat cv. Chinese Spring nulli-tetrasomic and phylogenetic analysis. Secondary structure prediction showed that all α-gliadins had high content of β-strands and most of the α-helixes and β-strands were present in two unique domains. Phylogenetic analysis demonstrated that α-gliadin genes had a high homology with γ-gliadin, B-hordein, and LMW-GS genes and they diverged at approximate 39 MYA. Finally, the five α-gliadin genes were successfully expressed in E. coli, and their expression amount reached to the maximum after 4 h induced by IPTG, indicating that the α-gliadin genes can express in a high level under the control of T(7) promoter.

  9. Molecular basis and consequences of a deletion in the amelogenin gene, analyzed by capture PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerstroem-Fermer, M.; Pettersson, U.; Landegren, U.

    1993-07-01

    A mutation that disrupts the gene for one of the major proteins in tooth enamel has been investigated. The mutation is located in the amelogenin gene and causes X-linked amelogenesis imperfecta, characterized by defective mineralization of tooth enamel. The authors have isolated the breakpoints of a 5-kb deletion in the amelogenin gene on the basis of nucleotide sequence information located upstream of the lesion, using a technique termed capture PCR. The deletion removes five of the seven exons, spanning from the second intron to the last exon. Only the first two codons for the mature protein remain, consistent with themore » relatively severe phenotype of affected individuals in the present family. The mutation appears to have arisen as an illegitimate recombination event since of 11 nucleotide positions immediately surrounding the two breakpoints, 9 are identical. 17 refs., 3 figs., 1 tab.« less

  10. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    PubMed Central

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.

    2015-01-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  11. Genome-wide analysis of codon usage bias in four sequenced cotton species.

    PubMed

    Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2018-01-01

    Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.

  12. Codon 219 polymorphism of PRNP in healthy caucasians and Creutzfeldt-Jakob disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petraroli, R.; Pocchiari, M.

    1996-04-01

    A number of point and insert mutations of the PrP gene (PRNP) have been linked to familial Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker disease (GSS). Moreover, the methionine/valine homozygosity at the polymorphic codon 129 of PRNP may cause a predisposition to sporadic and iatrogenic CJD or may control the age at onset of familial cases carrying either the 144-bp insertion or codon 178, codon 198, and codon 210 pathogenic mutations in PRNP. In addition, the association of methionine or valine at codon 129 and the point mutation at codon 178 on the same allele seem to play an important role inmore » determining either fatal familial insomnia or CJD. However, it is noteworthy that a relationship between codon 129 polymorphism and accelerated pathogenesis (early age at onset or shorter duration of the disease) has not been seen in familial CJD patients with codon 200 mutation or in GSS patients with codon 102 mutation, arguing that other, as yet unidentified, gene products or environmental factors, or both, may influence the clinical expression of these diseases. 17 refs.« less

  13. Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor

    PubMed Central

    Nair, Ramesh V.; Green, Edward M.; Watson, David E.; Bennett, George N.; Papoutsakis, Eleftherios T.

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871–885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain. PMID:9864345

  14. Polymorphisms upstream of the melanocortin-1 receptor coding region are associated with human pigmentation variation in a Brazilian population.

    PubMed

    Neitzke-Montinelli, Vanessa; Urmenyi, Turan P; Rondinelli, Edson; Cabello, Pedro Hernan; Silva, Rosane; Moura-Neto, Rodrigo S

    2012-01-01

    We describe an association of two SNPs, rs3212345:C>T and rs3212346:G>A, located approximately 2.5 kb upstream of the melanocortin-1 receptor (MC1R) translation initiation codon, with pigmentation phenotype variation in a Southeast Brazilian miscegenated population. One hundred thirty-eight genetically unrelated subjects, with multicolor phenotype, were selected from the southeast region of Brazil. Skin, hair and eye color, and tanning ability were rated. Genotypes for each SNP (rs3212345:C>T and rs3212346:G>A) were determined. A logistic regression analysis was performed with the additive model to determine which of the polymorphisms contributed to a specific phenotype. We found that the rs3212345:C>T is associated with light skin, red hair, and poor tanning ability, while the rs3212346:G>A is associated with dark skin, black hair, and strong tanning ability. The presence of rs3212345-C and rs3212346-A alleles in human, chimpanzee, gorilla, orangutan, and marmoset genomes suggests that they are the ancestral alleles. These data suggest that the rs3212345-T and rs3212346-G alleles may have contributed to lighter pigmentation phenotypes in modern humans. Genotyping for these SNPs may prove useful to the fields of molecular anthropology and forensic genetics. Copyright © 2012 Wiley Periodicals, Inc.

  15. DifA, a methyl-accepting chemoreceptor protein-like sensory protein, uses a novel signaling mechanism to regulate exopolysaccharide production in Myxococcus xanthus.

    PubMed

    Xu, Qian; Black, Wesley P; Nascimi, Heidi M; Yang, Zhaomin

    2011-02-01

    DifA is a methyl-accepting chemotaxis protein (MCP)-like sensory transducer that regulates exopolysaccharide (EPS) production in Myxococcus xanthus. Here mutational analysis and molecular biology were used to probe the signaling mechanisms of DifA in EPS regulation. We first identified the start codon of DifA experimentally; this identification extended the N terminus of DifA for 45 amino acids (aa) from the previous bioinformatics prediction. This extension helped to address the outstanding question of how DifA receives input signals from type 4 pili without a prominent periplasmic domain. The results suggest that DifA uses its N-terminus extension to sense an upstream signal in EPS regulation. We suggest that the perception of the input signal by DifA is mediated by protein-protein interactions with upstream components. Subsequent signal transmission likely involves transmembrane signaling instead of direct intramolecular interactions between the input and the output modules in the cytoplasm. The basic functional unit of DifA for signal transduction is likely dimeric as mutational alteration of the predicted dimeric interface of DifA significantly affected EPS production. Deletions of 14-aa segments in the C terminus suggest that the newly defined flexible bundle subdomain in MCPs is likely critical for DifA function because shortening of this bundle can lead to constitutively active mutations.

  16. The Role of Tim50 in Chemoresistance and Oncogenesis of Breast Cancer

    DTIC Science & Technology

    2011-02-01

    digested with Hind III and Kpn I and ligated into the pGL3 vector (Promega, Madison WI) upstream of the luciferase reporter gene. This construct was...expressing vector (HC5) or mutant p53-R273H (3 x 106) were cross-linked with 1% formaldehyde for 15 min and the reaction stopped by addition of glycine to...10 mg/ml) and treated with proteinase K (20 mg/ml). Proteins were removed by phenol – chloroform extraction and the DNA isolated by ethanol

  17. Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli

    PubMed Central

    Napolitano, Michael G.; Landon, Matthieu; Gregg, Christopher J.; Lajoie, Marc J.; Govindarajan, Lakshmi; Mosberg, Joshua A.; Kuznetsov, Gleb; Goodman, Daniel B.; Vargas-Rodriguez, Oscar; Isaacs, Farren J.; Söll, Dieter; Church, George M.

    2016-01-01

    The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes. PMID:27601680

  18. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli.

    PubMed

    Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup

    2015-01-01

    Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum

    PubMed Central

    Panicker, Indu S.; Browning, Glenn F.; Markham, Philip F.

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086

  20. Generate Optimized Genetic Rhythm for Enzyme Expression in Non-native systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-11-03

    Most amino acids are represented by more than one codon, resulting in redundancy in the genetic code. Silent codon substitutions that do not alter the amino acid sequence still have an effect on protein expression. We have developed an algorithm, GoGREEN, to enhance the expression of foreign proteins in a host organism. GoGREEN selects codons according to frequency patterns seen in the gene of interest using the codon usage table from the host organism. GoGREEN is also designed to accommodate gaps in the sequence.This software takes for input (1) the aligned protein sequences for genes the user wishes to express,more » (2) the codon usage table for the host organism, (3) and the DNA sequence for the target protein found in the host organism. The program will select codons based on codon usage patterns for the target DNA sequence. The program will also select codons for “gaps” found in the aligned protein sequences using the codon usage table from the host organism.« less

  1. A Turkish family with Nance-Horan Syndrome due to a novel mutation.

    PubMed

    Tug, Esra; Dilek, Nihal F; Javadiyan, Shahrbanou; Burdon, Kathryn P; Percin, Ferda E

    2013-08-01

    Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype-phenotype correlation according to relevant literature. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A unique TBX5 microdeletion with microinsertion detected in patient with Holt-Oram syndrome.

    PubMed

    Morine, Mikio; Kohmoto, Tomohiro; Masuda, Kiyoshi; Inagaki, Hidehito; Watanabe, Miki; Naruto, Takuya; Kurahashi, Hiroki; Maeda, Kazuhisa; Imoto, Issei

    2015-12-01

    Holt-Oram syndrome (HOS) is an autosomal dominant condition characterized by upper limb and congenital heart defects and caused by numerous germline mutations of TBX5 producing preterminal stop codons. Here, we report on a novel and unusual heterozygous TBX5 microdeletion with microinsertion (microindel) mutation (c.627delinsGTGACTCAGGAAACGCTTTCCTGA), which is predicted to synthesize a truncated TBX5 protein, detected in a sporadic patient with clinical features of HOS prenatally diagnosed by ultrasonography. This uncommon and relatively large inserted sequence contains sequences derived from nearby but not adjacent templates on both sense and antisense strands, suggesting two possible models, which require no repeat sequences, causing this complex microindel through the bypass of large DNA adducts via an error-prone DNA polymerase-mediated translesion synthesis. © 2015 Wiley Periodicals, Inc.

  3. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease.

    PubMed

    Syrris, P; Carter, N D; Patton, M A

    1999-11-05

    Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA-->TGA, Arg-->STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg(253)-->STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Copyright 1999 Wiley-Liss, Inc.

  4. Fibrinogen Lincoln: a new truncated alpha chain variant with delayed clotting.

    PubMed

    Ridgway, H J; Brennan, S O; Gibbons, S; George, P M

    1996-04-01

    A patient referred for preoperative investigation of prolonged bleeding and easy bruising was found to have increased thrombin and reptilase times; however, the thrombin catalysed release of fibrinopeptides A and B was normal. Analysis of five other family members, spanning three generations, indicated that three had a similar defect and suggested autosomal dominant inheritance. Non-reducing SDS-PAGE of purified fibrinogen from affected individuals showed that the 340 kD form of their fibrinogen ran as a doublet. SSCP (single-stranded conformational polymorphism) analysis of exon 5 of the A alpha gene, which encodes the C-terminal half of the chain, confirmed the presence of a mutation. Cycle sequencing of PCR amplified DNA revealed a 13 base pair deletion (nt 4758-4770), resulting in a frame-shift at Ala 475, which translates as four new amino acids before terminating at a new stop codon (-476His-Cys-Leu-Ala-Stop). The presence of a circulating truncated A alpha chain was confirmed when SDS-PAGE gels were probed with an alpha chain specific antisera; which showed that the variant A alpha chain comigrated with gamma chains. The truncation results in a variant A alpha chain with a deletion of 131 amino acids (480-610), and four new amino acids at the C-terminal.

  5. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  6. Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias.

    PubMed

    Barik, Sailen

    2017-12-01

    A significant number of proteins in all living species contains amino acid repeats (AARs) of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(A)n] and double [(AB)n] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1) One class of amino acid repeats (Class I) uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2) The second class (Class II) disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons); and finally, (3) In all AARs (including Class I, Class II, and the in-betweens), the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.

  7. Complex codon usage pattern and compositional features of retroviruses.

    PubMed

    RoyChoudhury, Sourav; Mukherjee, Debaprasad

    2013-01-01

    Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.

  8. Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes.

    PubMed

    Chen, L; Yang, D Y; Liu, T F; Nong, X; Huang, X; Xie, Y; Fu, Y; Zheng, W P; Zhang, R H; Wu, X H; Gu, X B; Wang, S X; Peng, X R; Yang, G Y

    2013-02-27

    We analyzed synonymous codon usage patterns of the mitochondrial genomes of 43 parasitic platyhelminth species. The relative synonymous codon usage, the effective number of codons (NC) and the frequency of G+C at the third synonymously variable coding position were calculated. Correspondence analysis was used to determine the major variation trends shaping the codon usage patterns. Among the mitochondrial genomes of 19 trematode species, the GC content of third codon positions varied from 0.151 to 0.592, with a mean of 0.295 ± 0.116. In cestodes, the mean GC content of third codon positions was 0.254 ± 0.044. A comparison of the nucleotide composition at 4-fold synonymous sites revealed that, on average, there was a greater abundance of codons ending on U (51.9%) or A (22.7%) than on C (6.3%) or G (19.14%). Twenty-two codons, including UUU, UUA and UUG, were frequently used. In the NC-plot, most of points were distributed well below or around the expected NC curve. In addition to compositional constraints, the degree of hydrophobicity and the aromatic amino acids also influenced codon usage in the mitochondrial genomes of these 43 parasitic platyhelminth species.

  9. An RNA Element That Facilitates Programmed Ribosomal Readthrough in Turnip Crinkle Virus Adopts Multiple Conformations

    PubMed Central

    Kuhlmann, Micki M.; Chattopadhyay, Maitreyi; Stupina, Vera A.; Gao, Feng

    2016-01-01

    ABSTRACT Ribosome recoding is used by RNA viruses for translational readthrough or frameshifting past termination codons for the synthesis of extension products. Recoding sites, along with downstream recoding stimulatory elements (RSEs), have long been studied in reporter constructs, because these fragments alone mediate customary levels of recoding and are thus assumed to contain complete instructions for establishment of the proper ratio of termination to recoding. RSEs from the Tombusviridae and Luteoviridae are thought to be exceptions, since they contain a long-distance RNA-RNA connection with the 3′ end. This interaction has been suggested to substitute for pseudoknots, thought to be missing in tombusvirid RSEs. We provide evidence that the phylogenetically conserved RSE of the carmovirus Turnip crinkle virus (TCV) adopts an alternative, smaller structure that extends an upstream conserved hairpin and that this alternative structure is the predominant form of the RSE within nascent viral RNA in plant cells and when RNA is synthesized in vitro. The TCV RSE also contains an internal pseudoknot along with the long-distance interaction, and the pseudoknot is not compatible with the phylogenetically conserved structure. Conserved residues just past the recoding site are important for recoding, and these residues are also conserved in the RSEs of gammaretroviruses. Our data demonstrate the dynamic nature of the TCV RSE and suggest that studies using reporter constructs may not be effectively recapitulating RSE-mediated recoding within viral genomes. IMPORTANCE Ribosome recoding is used by RNA viruses to enable ribosomes to extend translation past termination codons for the synthesis of longer products. Recoding sites and a downstream recoding stimulatory element (RSE) mediate expected levels of recoding when excised and placed in reporter constructs and thus are assumed to contain complete instructions for the establishment of the proper ratio of termination to recoding. We provide evidence that most of the TCV RSE adopts an alternative structure that extends an upstream conserved hairpin and that this alternative structure, and not the phylogenetically conserved structure, is the predominant form of the RSE in RNA synthesized in vitro and in plant cells. The TCV RSE also contains an internal pseudoknot that is not compatible with the phylogenetically conserved structure and an RNA bridge to the 3′ end. These data suggest that the TCV RSE is structurally dynamic and that multiple conformations are likely required to regulate ribosomal readthrough. PMID:27440887

  10. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase

    PubMed Central

    Hawkins, Vivian N; Auliff, Alyson; Prajapati, Surendra Kumar; Rungsihirunrat, Kanchana; Hapuarachchi, Hapuarachchige C; Maestre, Amanda; O'Neil, Michael T; Cheng, Qin; Joshi, Hema; Na-Bangchang, Kesara; Sibley, Carol Hopkins

    2008-01-01

    Background In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr) have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. Methods The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Results Synonymous and non-synonymous single nucleotide polymorphisms (SNPs) within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel). SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N) dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T) and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T) mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. Conclusion It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts sharply with the selective sweep of rare antifolate resistant alleles observed in the P. falciparum populations in Asia and Africa. The finding of multiple origins of resistance-conferring mutations has important implications for drug policy. PMID:18442404

  11. Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase.

    PubMed

    Hawkins, Vivian N; Auliff, Alyson; Prajapati, Surendra Kumar; Rungsihirunrat, Kanchana; Hapuarachchi, Hapuarachchige C; Maestre, Amanda; O'Neil, Michael T; Cheng, Qin; Joshi, Hema; Na-Bangchang, Kesara; Sibley, Carol Hopkins

    2008-04-28

    In order to maximize the useful therapeutic life of antimalarial drugs, it is crucial to understand the mechanisms by which parasites resistant to antimalarial drugs are selected and spread in natural populations. Recent work has demonstrated that pyrimethamine-resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase (dhfr) have arisen rarely de novo, but spread widely in Asia and Africa. The origin and spread of mutations in Plasmodium vivax dhfr were assessed by constructing haplotypes based on sequencing dhfr and its flanking regions. The P. vivax dhfr coding region, 792 bp upstream and 683 bp downstream were amplified and sequenced from 137 contemporary patient isolates from Colombia, India, Indonesia, Papua New Guinea, Sri Lanka, Thailand, and Vanuatu. A repeat motif located 2.6 kb upstream of dhfr was also sequenced from 75 of 137 patient isolates, and mutational relationships among the haplotypes were visualized using the programme Network. Synonymous and non-synonymous single nucleotide polymorphisms (SNPs) within the dhfr coding region were identified, as was the well-documented in-frame insertion/deletion (indel). SNPs were also identified upstream and downstream of dhfr, with an indel and a highly polymorphic repeat region identified upstream of dhfr. The regions flanking dhfr were highly variable. The double mutant (58R/117N) dhfr allele has evolved from several origins, because the 58R is encoded by at least 3 different codons. The triple (58R/61M/117T) and quadruple (57L/61M/117T/173F, 57I/58R/61M/117T and 57L/58R/61M/117T) mutant alleles had at least three independent origins in Thailand, Indonesia, and Papua New Guinea/Vanuatu. It was found that the P. vivax dhfr coding region and its flanking intergenic regions are highly polymorphic and that mutations in P. vivax dhfr that confer antifolate resistance have arisen several times in the Asian region. This contrasts sharply with the selective sweep of rare antifolate resistant alleles observed in the P. falciparum populations in Asia and Africa. The finding of multiple origins of resistance-conferring mutations has important implications for drug policy.

  12. Characterization of 5' end of human thromboxane receptor gene. Organizational analysis and mapping of protein kinase C--responsive elements regulating expression in platelets.

    PubMed

    D'Angelo, D D; Davis, M G; Houser, W A; Eubank, J J; Ritchie, M E; Dorn, G W

    1995-09-01

    Platelet thromboxane receptors are acutely and reversibly upregulated after acute myocardial infarction. To determine if platelet thromboxane receptors are under transcriptional control, we isolated and characterized human genomic DNA clones containing the 5' flanking region of the thromboxane receptor gene. The exon-intron structure of the 5' portion of the thromboxane receptor gene was determined initially by comparing the nucleotide sequence of the 5' flanking genomic clone with that of a novel human uterine thromboxane receptor cDNA that extended the mRNA 141 bp further upstream than the previously identified human placental cDNA. A major transcription initiation site was located in three human tissues approximately 560 bp upstream from the translation initiation codon and 380 bp upstream from any previously identified transcription initiation site. The thromboxane receptor gene has neither a TATA nor a CAAT consensus site. Promoter function of the 5' flanking region of the thromboxane receptor gene was evaluated by transfection of thromboxane receptor gene promoter/chloramphenicol acetyltransferase (CAT) chimera plasmids into platelet-like K562 cells. Thromboxane receptor promoter activity, as assessed by CAT expression, was relatively weak but was significantly enhanced by phorbol ester treatment. Functional analysis of 5' deletion constructs in transfected K562 cells and gel mobility shift localized the major phorbol ester-responsive motifs in the thromboxane receptor gene promoter to a cluster of activator protein-2 (AP-2) binding consensus sites located approximately 1.8 kb 5' from the transcription initiation site. These studies are the first to determine the structure and organization of the 5' end of the thromboxane receptor gene and demonstrate that thromboxane receptor gene expression can be regulated by activation of protein kinase C via induction of an AP-2-like nuclear factor binding to upstream promoter elements. These findings strongly suggest that the mechanism for previously described upregulation of platelet thromboxane receptors after acute myocardial infarction is increased thromboxane receptor gene transcription in platelet-progenitor cells.

  13. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes.

    PubMed

    Behura, Susanta K; Severson, David W

    2013-02-01

    Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  14. Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development

    PubMed Central

    2012-01-01

    Background Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed. Results We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process. Conclusions A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines. PMID:23134595

  15. Inherited human complement C5 deficiency: Nonsense mutations in exons 1 (Gln{sup 1} to Stop) and 36 (Arg{sup 1458} to Stop) and compound heterozygosity in three African-American families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Fleischer, D.T.; Whitehead, W.T.

    1995-05-15

    Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) inmore » the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.« less

  16. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    PubMed Central

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  17. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. © 2016 Fu et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Discovery of Clinically Approved Agents That Promote Suppression of Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations.

    PubMed

    Mutyam, Venkateshwar; Du, Ming; Xue, Xiaojiao; Keeling, Kim M; White, E Lucile; Bostwick, J Robert; Rasmussen, Lynn; Liu, Bo; Mazur, Marina; Hong, Jeong S; Falk Libby, Emily; Liang, Feng; Shang, Haibo; Mense, Martin; Suto, Mark J; Bedwell, David M; Rowe, Steven M

    2016-11-01

    Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.

  19. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing*

    PubMed Central

    Hong, Nan; Chen, Yan-hua; Xie, Chen; Xu, Bai-sheng; Huang, Hui; Li, Xin; Yang, Yue-qing; Huang, Ying-ping; Deng, Jian-lian; Qi, Ming; Gu, Yang-shun

    2014-01-01

    Objective: Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital nuclear cataracts, dental anomalies, and craniofacial dysmorphisms. Mental retardation was present in about 30% of the reported cases. The purpose of this study was to investigate the genetic and clinical features of NHS in a Chinese family. Methods: Whole exome sequencing analysis was performed on DNA from an affected male to scan for candidate mutations on the X-chromosome. Sanger sequencing was used to verify these candidate mutations in the whole family. Clinical and ophthalmological examinations were performed on all members of the family. Results: A combination of exome sequencing and Sanger sequencing revealed a nonsense mutation c.322G>T (E108X) in exon 1 of NHS gene, co-segregating with the disease in the family. The nonsense mutation led to the conversion of glutamic acid to a stop codon (E108X), resulting in truncation of the NHS protein. Multiple sequence alignments showed that codon 108, where the mutation (c.322G>T) occurred, was located within a phylogenetically conserved region. The clinical features in all affected males and female carriers are described in detail. Conclusions: We report a nonsense mutation c.322G>T (E108X) in a Chinese family with NHS. Our findings broaden the spectrum of NHS mutations and provide molecular insight into future NHS clinical genetic diagnosis. PMID:25091991

  20. Molecular Diagnosis of Analbuminemia: A New Case Caused by a Nonsense Mutation in the Albumin Gene

    PubMed Central

    Dagnino, Monica; Caridi, Gianluca; Haenni, Ueli; Duss, Adrian; Aregger, Fabienne; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo

    2011-01-01

    Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23–c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis. PMID:22174600

  1. Analysis of the cbhE' plasmid gene from acute disease-causing isolates of Coxiella burnetii.

    PubMed

    Minnick, M F; Small, C L; Frazier, M E; Mallavia, L P

    1991-07-15

    A gene termed cbhE' was cloned from the QpH1 plasmid of Coxiella burnetii. Expression of recombinants containing cbhE' in vitro and in Escherichia coli maxicells, produced an insert-encoded polypeptide of approx. 42 kDa. The CbhE protein was not cleaved when intact maxicells were treated with trypsin. Hybridizations of total DNA isolated from the six strains of C. burnetii indicate that this gene is unique to C. burnetii strains associated with acute disease, i.e., Hamilton[I], Vacca[II], and Rasche[III]. The cbhE' gene was not detected in strains associated with chronic disease (Biotzere[IV] and Corazon[V]) or the Dod[VI] strain. The cbhE' open reading frame (ORF) is 1022 bp in length and is preceded by a predicted promoter/Shine-Dalgarno (SD) region of TCAACT(-35)-N16-TAAAAT(-10)-N14-AGAAGGA (SD) located 10 nucleotides (nt) before the presumed AUG start codon. The ORF ends with a single UAA stop codon and has no apparent Rho-factor-independent terminator following it. The cbhE' gene codes for the CbhE protein of 341 amino acid (aa) residues with a deduced Mr of 39,442. CbhE is predominantly hydrophilic with a predicted pI of 4.43. The function of CbhE is unknown. No nt or aa sequences with homology to cbhE' or CbhE, respectively, were found in searches of a number of data bases.

  2. The complete mitochondrial genome of the styloperlid stonefly species Styloperla spinicercia Wu (Insecta: Plecoptera) with family-level phylogenetic analyses of the Pteronarcyoidea.

    PubMed

    Wang, Ying; Cao, Jinjun; Li, Weihai

    2017-03-13

    We present the complete mitochondrial (mt) genome sequence of the stonefly, Styloperla spinicercia Wu, 1935 (Plecoptera: Styloperlidae), the type species of the genus Styloperla and the first complete mt genome for the family Styloperlidae. The genome is circular, 16,129 base pairs long, has an A+T content of 70.7%, and contains 37 genes including the large and small ribosomal RNA (rRNA) subunits, 13 protein coding genes (PCGs), 22 tRNA genes and a large non-coding region (CR). All of the PCGs use the standard initiation codon ATN except ND1 and ND5, which start with TTG and GTG. Twelve of the PCGs stop with conventional terminal codons TAA and TAG, except ND5 which shows an incomplete terminator signal T. All tRNAs have the classic clover-leaf structures with the dihydrouridine (DHU) arm of tRNASer(AGN) forming a simple loop. Secondary structures of the two ribosomal RNAs are presented with reference to previous models. The structural elements and the variable numbers of tandem repeats are described within the control region. Phylogenetic analyses using both Bayesian (BI) and Maximum Likelihood (ML) methods support the previous hypotheses regarding family level relationships within the Pteronarcyoidea. The genetic distance calculated based on 13 PCGs and two rRNAs between Styloperla sp. and S. spinicercia is provided and interspecific divergence is discussed.

  3. Turbidostat Culture of Saccharomyces cerevisiae W303-1A under Selective Pressure Elicited by Ethanol Selects for Mutations in SSD1 and UTH1

    PubMed Central

    Avrahami-Moyal, Liat; Engelberg, David; Wenger, Jared. W.; Sherlock, Gavin; Braun, Sergei

    2012-01-01

    We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 h-1 to 0.32 h-1. Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within six days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within two days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of 6 clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 out of 19 tolerant clones the stop-codon in ssd1-d was replaced with an aminoacid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol. PMID:22443114

  4. Rooted tRNAomes and evolution of the genetic code

    PubMed Central

    Pak, Daewoo; Du, Nan; Kim, Yunsoo; Sun, Yanni

    2018-01-01

    ABSTRACT We advocate for a tRNA- rather than an mRNA-centric model for evolution of the genetic code. The mechanism for evolution of cloverleaf tRNA provides a root sequence for radiation of tRNAs and suggests a simplified understanding of code evolution. To analyze code sectoring, rooted tRNAomes were compared for several archaeal and one bacterial species. Rooting of tRNAome trees reveals conserved structures, indicating how the code was shaped during evolution and suggesting a model for evolution of a LUCA tRNAome tree. We propose the polyglycine hypothesis that the initial product of the genetic code may have been short chain polyglycine to stabilize protocells. In order to describe how anticodons were allotted in evolution, the sectoring-degeneracy hypothesis is proposed. Based on sectoring, a simple stepwise model is developed, in which the code sectors from a 1→4→8→∼16 letter code. At initial stages of code evolution, we posit strong positive selection for wobble base ambiguity, supporting convergence to 4-codon sectors and ∼16 letters. In a later stage, ∼5–6 letters, including stops, were added through innovating at the anticodon wobble position. In archaea and bacteria, tRNA wobble adenine is negatively selected, shrinking the maximum size of the primordial genetic code to 48 anticodons. Because 64 codons are recognized in mRNA, tRNA-mRNA coevolution requires tRNA wobble position ambiguity leading to degeneracy of the code. PMID:29372672

  5. A CGMMV genome-replicon vector with partial sequences of coat protein gene efficiently expresses GFP in Nicotiana benthamiana.

    PubMed

    Jailani, A Abdul Kader; Solanki, Vikas; Roy, Anirban; Sivasudha, T; Mandal, Bikash

    2017-04-02

    A highly infectious clone of Cucumber green mottle mosaic virus (CGMMV), a cucurbit-infecting tobamovirus was utilized for designing of gene expression vectors. Two versions of vector were examined for their efficacy in expressing the green fluorescent protein (GFP) in Nicotiana benthamiana. When the GFP gene was inserted at the stop codon of coat protein (CP) gene of the CGMMV genome without any read-through codon, systemic expression of GFP, as well as virion formation and systemic symptoms expression were obtained in N. benthamiana. The qRT-PCR analysis showed 23 fold increase of GFP over actin at 10days post inoculation (dpi), which increased to 45 fold at 14dpi and thereafter the GFP expression was significantly declined. Further, we show that when the most of the CP sequence is deleted retaining only the first 105 nucleotides, the shortened vector containing GFP in frame of original CP open reading frame (ORF) resulted in 234 fold increase of GFP expression over actin at 5dpi in N. benthamiana without the formation of virions and disease symptoms. Our study demonstrated that a simple manipulation of CP gene in the CGMMV genome while preserving the translational frame of CP resulted in developing a virus-free, rapid and efficient foreign protein expression system in the plant. The CGMMV based vectors developed in this study may be potentially useful for the production of edible vaccines in cucurbits. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Waardenburg syndrome type II in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene.

    PubMed

    Ma, Jing; Zhang, Tie-Song; Lin, Ken; Sun, Hao; Jiang, Hong-Chao; Yang, Yan-Li; Low, Fan; Gao, Ying-Qin; Ruan, Biao

    2016-06-01

    Waardenburg syndrome is a congenital genetic disorder. It is the most common type of syndromic hearing impairment with highly genetic heterogeneity and proved to be related by 6 genes as follows: PAX3, MITF, SNAI2, EDN3, EDNRB and SOX10. This article aims to identify the genetic causes of a Chinese WS child patient. A Chinese WS child was collected for clinical data collection by questionnaire survey. DNA samples of proband and his parents were extracted from peripheral blood samples. Six candidate genes were sequenced by the Trusight One sequencing panel on the illumina NextSeq 500 platform. A novel nonsense heterozygous mutation was found in the coding region of exon 2 in the SOX10 gene of proband. The novel nonsense heterozygous mutation could cause the replacement of the 55th lysine codon by stop codon (484T > C, C142R) and further more possibly cause terminating the protein translation in advance. However, both proband's parents had no mutation of genes above mentioned. The gene mutation of SOX10 [NM_006941.3 c.163A > T] is a novel nonsense mutation. No record of this mutation has been found in dbSNP, HGMD, 1000 Genomes Project, ClinVar and ESP6500 databases. It meets the condition of PS2 of strong evidence in 2015 ACMG Standards and Guidelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.

    PubMed

    Kim, K S; Lee, S E; Jeong, H W; Ha, J H

    1998-10-01

    The complete nucleotide sequence of the mitochondrial genome of the domestic dog, Canis familiaris, was determined. The length of the sequence was 16,728 bp; however, the length was not absolute due to the variation (heteroplasmy) caused by differing numbers of the repetitive motif, 5'-GTACACGT(A/G)C-3', in the control region. The genome organization, gene contents, and codon usage conformed to those of other mammalian mitochondrial genomes. Although its features were unknown, the "CTAGA" duplication event which followed the translational stop codon of the COII gene was not observed in other mammalian mitochondrial genomes. In order to determine the possible differences between mtDNAs in carnivores, two rRNA and 13 protein-coding genes from the cat, dog, and seal were compared. The combined molecular differences, in two rRNA genes as well as in the inferred amino acid sequences of the mitochondrial 13 protein-coding genes, suggested that there is a closer relationship between the dog and the seal than there is between either of these species and the cat. Based on the molecular differences of the mtDNA, the evolutionary divergence between the cat, the dog, and the seal was dated to approximately 50 +/- 4 million years ago. The degree of difference between carnivore mtDNAs varied according to the individual protein-coding gene applied, showing that the evolutionary relationships of distantly related species should be presented in an extended study based on ample sequence data like complete mtDNA molecules. Copyright 1998 Academic Press.

  8. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted. PMID:24885062

  9. Codon adaptation and synonymous substitution rate in diatom plastid genes.

    PubMed

    Morton, Brian R; Sorhannus, Ulf; Fox, Martin

    2002-07-01

    Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.

  10. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes.

    PubMed

    Seligmann, Hervé; Warthi, Ganesh

    2017-01-01

    A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').

  11. Molecular identification and transcriptional regulation of porcine IFIT2 gene.

    PubMed

    Yang, Xiuqin; Jing, Xiaoyan; Song, Yanfang; Zhang, Caixia; Liu, Di

    2018-04-06

    IFN-induced protein with tetratricopeptide repeats 2 (IFIT2) plays important roles in host defense against viral infection as revealed by studies in humans and mice. However, little is known on porcine IFIT2 (pIFIT2). Here, we performed molecular cloning, expression profile, and transcriptional regulation analysis of pIFIT2. pIFIT2 gene, located on chromosome 14, is composed of two exons and have a complete coding sequence of 1407 bp. The encoded polypeptide, 468 aa in length, has three tetratricopeptide repeat motifs. pIFIT2 gene was unevenly distributed in all eleven tissues studied with the most abundance in spleen. Poly(I:C) treatment notably strongly upregulated the mRNA level and promoter activity of pIFIT2 gene. Upstream sequence of 1759 bp from the start codon which was assigned +1 here has promoter activity, and deltaEF1 acts as transcription repressor through binding to sequences at position - 1774 to - 1764. Minimal promoter region exists within nucleotide position - 162 and - 126. Two adjacent interferon-stimulated response elements (ISREs) and two nuclear factor (NF)-κB binding sites were identified within position - 310 and - 126. The ISRE elements act alone and in synergy with the one closer to start codon having more strength, so do the NF-κB binding sites. Synergistic effect was also found between the ISRE and NF-κB binding sites. Additionally, a third ISRE element was identified within position - 1661 to - 1579. These findings will contribute to clarifying the antiviral effect and underlying mechanisms of pIFIT2.

  12. Development of a codon optimization strategy using the efor RED reporter gene as a test case

    NASA Astrophysics Data System (ADS)

    Yip, Chee-Hoo; Yarkoni, Orr; Ajioka, James; Wan, Kiew-Lian; Nathan, Sheila

    2018-04-01

    Synthetic biology is a platform that enables high-level synthesis of useful products such as pharmaceutically related drugs, bioplastics and green fuels from synthetic DNA constructs. Large-scale expression of these products can be achieved in an industrial compliant host such as Escherichia coli. To maximise the production of recombinant proteins in a heterologous host, the genes of interest are usually codon optimized based on the codon usage of the host. However, the bioinformatics freeware available for standard codon optimization might not be ideal in determining the best sequence for the synthesis of synthetic DNA. Synthesis of incorrect sequences can prove to be a costly error and to avoid this, a codon optimization strategy was developed based on the E. coli codon usage using the efor RED reporter gene as a test case. This strategy replaces codons encoding for serine, leucine, proline and threonine with the most frequently used codons in E. coli. Furthermore, codons encoding for valine and glycine are substituted with the second highly used codons in E. coli. Both the optimized and original efor RED genes were ligated to the pJS209 plasmid backbone using Gibson Assembly and the recombinant DNAs were transformed into E. coli E. cloni 10G strain. The fluorescence intensity per cell density of the optimized sequence was improved by 20% compared to the original sequence. Hence, the developed codon optimization strategy is proposed when designing an optimal sequence for heterologous protein production in E. coli.

  13. Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts

    PubMed Central

    Wang, Hongju; Liu, Siqing; Zhang, Bo

    2016-01-01

    Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824

  14. Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN

    PubMed Central

    Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice

    2016-01-01

    Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114

  15. Problem-Solving Test: The Effect of Synonymous Codons on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: the genetic code, codon, degenerate codons, protein synthesis, aminoacyl-tRNA, anticodon, antiparallel orientation, wobble, unambiguous codons, ribosomes, initiation, elongation and termination of translation, peptidyl transferase, translocation, degenerate oligonucleotides, green…

  16. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    PubMed

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum: compositional constraints and translational selection.

    PubMed

    Musto, H; Romero, H; Zavala, A; Jabbari, K; Bernardi, G

    1999-07-01

    We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection.

  18. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production

    PubMed Central

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human. PMID:26047354

  19. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.

    PubMed

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human.

  20. The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis.

    PubMed

    Kuraguchi, M; Yang, K; Wong, E; Avdievich, E; Fan, K; Kolodner, R D; Lipkin, M; Brown, A M; Kucherlapati, R; Edelmann, W

    2001-11-01

    In mammalian cells, mismatch recognition has been attributed to two partially redundant heterodimeric protein complexes of MutS homologues, MSH2-MSH3 and MSH2-MSH6. We have conducted a comparative analysis of Msh3 and Msh6 deficiency in mouse intestinal tumorigenesis by generating Apc1638N mice deficient in Msh3, Msh6 or both. We have found that Apc1638N mice defective in Msh6 show reduced survival and a 6-7-fold increase in intestinal tumor multiplicity. In contrast, Msh3-deficient Apc1638N mice showed no difference in survival and intestinal tumor multiplicity as compared with Apc1638N mice. However, when Msh3 deficiency is combined with Msh6 deficiency (Msh3(-/-)Msh6(-/-)Apc1638N), the survival rate of the mice was further reduced compared to Msh6(-/-)Apc(1638N) mice because of a high multiplicity of intestinal tumors at a younger age. Almost 90% of the intestinal tumors from both Msh6(-/-)Apc1638N and Msh3(-/-)Msh6(-/-)Apc1638N mice contained truncation mutations in the wild-type Apc allele. Apc mutations in Msh6(-/-)Apc1638N mice consisted predominantly of base substitutions (93%) creating stop codons, consistent with a major role for Msh6 in the repair of base-base mismatches. However, in Msh3(-/-)Msh6(-/-)Apc1638N tumors, we observed a mixture of base substitutions (46%) and frameshifts (54%), indicating that in Msh6(-/-)Apc1638N mice frameshift mutations in the Apc gene were suppressed by Msh3. Interestingly, all except one of the Apc mutations detected in mismatch repair-deficient intestinal tumors were located upstream of the third 20-amino acid beta-catenin binding repeat and before all of the Ser-Ala-Met-Pro repeats, suggesting that there is selection for loss of multiple domains involved in beta-catenin regulation. Our analysis therefore has revealed distinct mutational spectra and clarified the roles of Msh3 and Msh6 in DNA repair and intestinal tumorigenesis.

  1. Cotranslational Coat Protein-Mediated Inhibition of Potyviral RNA Translation

    PubMed Central

    Besong-Ndika, Jane; Ivanov, Konstantin I.; Hafrèn, Anders; Michon, Thierry

    2015-01-01

    ABSTRACT Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production. PMID:25631087

  2. Whole exome sequencing in recurrent early pregnancy loss.

    PubMed

    Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C K; Stephenson, Mary D; Rajcan-Separovic, Evica

    2016-05-01

    Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in 'complement and coagulation cascades pathway', and 'ciliary motility disorders'. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Whole exome sequencing in recurrent early pregnancy loss

    PubMed Central

    Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C.K.; Stephenson, Mary D.; Rajcan-Separovic, Evica

    2016-01-01

    STUDY HYPOTHESIS Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). STUDY FINDING We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. WHAT IS KNOWN ALREADY Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. MAIN RESULTS AND THE ROLE OF CHANCE Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in ‘complement and coagulation cascades pathway’, and ‘ciliary motility disorders’. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. LIMITATIONS, REASONS FOR CAUTION The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. STUDY FUNDING AND COMPETING INTEREST(S) The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. PMID:26826164

  4. Most Used Codons per Amino Acid and per Genome in the Code of Man Compared to Other Organisms According to the Rotating Circular Genetic Code

    PubMed Central

    Castro-Chavez, Fernando

    2011-01-01

    My previous theoretical research shows that the rotating circular genetic code is a viable tool to make easier to distinguish the rules of variation applied to the amino acid exchange; it presents a precise and positional bio-mathematical balance of codons, according to the amino acids they codify. Here, I demonstrate that when using the conventional or classic circular genetic code, a clearer pattern for the human codon usage per amino acid and per genome emerges. The most used human codons per amino acid were the ones ending with the three hydrogen bond nucleotides: C for 12 amino acids and G for the remaining 8, plus one codon for arginine ending in A that was used approximately with the same frequency than the one ending in G for this same amino acid (plus *). The most used codons in man fall almost all the time at the rightmost position, clockwise, ending either in C or in G within the circular genetic code. The human codon usage per genome is compared to other organisms such as fruit flies (Drosophila melanogaster), squid (Loligo pealei), and many others. The biosemiotic codon usage of each genomic population or ‘Theme’ is equated to a ‘molecular language’. The C/U choice or difference, and the G/A difference in the third nucleotide of the most used codons per amino acid are illustrated by comparing the most used codons per genome in humans and squids. The human distribution in the third position of most used codons is a 12-8-2, C-G-A, nucleotide ending signature, while the squid distribution in the third position of most used codons was an odd, or uneven, distribution in the third position of its most used codons: 13-6-3, U-A-G, as its nucleotide ending signature. These findings may help to design computational tools to compare human genomes, to determine the exchangeability between compatible codons and amino acids, and for the early detection of incompatible changes leading to hereditary diseases. PMID:22997484

  5. Vertebrate codon bias indicates a highly GC-rich ancestral genome.

    PubMed

    Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei

    2013-04-25

    Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana

    PubMed Central

    Camiolo, Salvatore; Farina, Lorenzo; Porceddu, Andrea

    2012-01-01

    The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression. PMID:22865738

  7. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.

    PubMed

    Karniychuk, Uladzimir U

    2016-09-02

    Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Differences in codon bias cannot explain differences in translational power among microbes.

    PubMed

    Dethlefsen, Les; Schmidt, Thomas M

    2005-01-06

    Translational power is the cellular rate of protein synthesis normalized to the biomass invested in translational machinery. Published data suggest a previously unrecognized pattern: translational power is higher among rapidly growing microbes, and lower among slowly growing microbes. One factor known to affect translational power is biased use of synonymous codons. The correlation within an organism between expression level and degree of codon bias among genes of Escherichia coli and other bacteria capable of rapid growth is commonly attributed to selection for high translational power. Conversely, the absence of such a correlation in some slowly growing microbes has been interpreted as the absence of selection for translational power. Because codon bias caused by translational selection varies between rapidly growing and slowly growing microbes, we investigated whether observed differences in translational power among microbes could be explained entirely by differences in the degree of codon bias. Although the data are not available to estimate the effect of codon bias in other species, we developed an empirically-based mathematical model to compare the translation rate of E. coli to the translation rate of a hypothetical strain which differs from E. coli only by lacking codon bias. Our reanalysis of data from the scientific literature suggests that translational power can differ by a factor of 5 or more between E. coli and slowly growing microbial species. Using empirical codon-specific in vivo translation rates for 29 codons, and several scenarios for extrapolating from these data to estimates over all codons, we find that codon bias cannot account for more than a doubling of the translation rate in E. coli, even with unrealistic simplifying assumptions that exaggerate the effect of codon bias. With more realistic assumptions, our best estimate is that codon bias accelerates translation in E. coli by no more than 60% in comparison to microbes with very little codon bias. While codon bias confers a substantial benefit of faster translation and hence greater translational power, the magnitude of this effect is insufficient to explain observed differences in translational power among bacterial and archaeal species, particularly the differences between slowly growing and rapidly growing species. Hence, large differences in translational power suggest that the translational apparatus itself differs among microbes in ways that influence translational performance.

  9. TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants.

    PubMed Central

    Leskiw, B K; Lawlor, E J; Fernandez-Abalos, J M; Chater, K F

    1991-01-01

    In Streptomyces coelicolor A3(2) and the related species Streptomyces lividans 66, aerial mycelium formation and antibiotic production are blocked by mutations in bldA, which specifies a tRNA(Leu)-like gene product which would recognize the UUA codon. Here we show that phenotypic expression of three disparate genes (carB, lacZ, and ampC) containing TTA codons depends strongly on bldA. Site-directed mutagenesis of carB, changing its two TTA codons to CTC (leucine) codons, resulted in bldA-independent expression; hence the bldA product is the principal tRNA for the UUA codon. Two other genes (hyg and aad) containing TTA codons show a medium-dependent reduction in phenotypic expression (hygromycin resistance and spectinomycin resistance, respectively) in bldA mutants. For hyg, evidence is presented that the UUA codon is probably being translated by a tRNA with an imperfectly matched anticodon, giving very low levels of gene product but relatively high resistance to hygromycin. It is proposed that TTA codons may be generally absent from genes expressed during vegetative growth and from the structural genes for differentiation and antibiotic production but present in some regulatory and resistance genes associated with the latter processes. The codon may therefore play a role in developmental regulation. Images PMID:1826053

  10. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  11. Codon usage analysis of photolyase encoding genes of cyanobacteria inhabiting diverse habitats.

    PubMed

    Rajneesh; Pathak, Jainendra; Kannaujiya, Vinod K; Singh, Shailendra P; Sinha, Rajeshwar P

    2017-07-01

    Nucleotide and amino acid compositions were studied to determine the genomic and structural relationship of photolyase gene in freshwater, marine and hot spring cyanobacteria. Among three habitats, photolyase encoding genes from hot spring cyanobacteria were found to have highest GC content. The genomic GC content was found to influence the codon usage and amino acid variability in photolyases. The third position of codon was found to have more effect on amino acid variability in photolyases than the first and second positions of codon. The variation of amino acids Ala, Asp, Glu, Gly, His, Leu, Pro, Gln, Arg and Val in photolyases of three different habitats was found to be controlled by first position of codon (G1C1). However, second position (G2C2) of codon regulates variation of Ala, Cys, Gly, Pro, Arg, Ser, Thr and Tyr contents in photolyases. Third position (G3C3) of codon controls incorporation of amino acids such as Ala, Phe, Gly, Leu, Gln, Pro, Arg, Ser, Thr and Tyr in photolyases from three habitats. Photolyase encoding genes of hot spring cyanobacteria have 85% codons with G or C at third position, whereas marine and freshwater cyanobacteria showed 82 and 60% codons, respectively, with G or C at third position. Principal component analysis (PCA) showed that GC content has a profound effect in separating the genes along the first major axis according to their RSCU (relative synonymous codon usage) values, and neutrality analysis indicated that mutational pressure has resulted in codon bias in photolyase genes of cyanobacteria.

  12. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    PubMed

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  13. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system.

    PubMed

    Schena, Elisa; Nedialkova, Lubov; Borroni, Emanuele; Battaglia, Simone; Cabibbe, Andrea Maurizio; Niemann, Stefan; Utpatel, Christian; Merker, Matthias; Trovato, Alberto; Hofmann-Thiel, Sabine; Hoffmann, Harald; Cirillo, Daniela Maria

    2016-06-01

    The objective of this study was to develop standardized protocols for rapid delamanid drug susceptibility testing (DST) using the colorimetric resazurin microtitre assay (REMA) and semi-automated BACTEC™ MGIT™ 960 system (MGIT) by establishing breakpoints that accurately discriminate between susceptibility and resistance of Mycobacterium tuberculosis to delamanid. MICs of delamanid were determined by the MGIT, the REMA and the solid agar method for 19 pre-characterized strains. The MIC distribution of delamanid was then established for a panel of clinical strains never exposed to the drug and characterized by different geographical origins and susceptibility patterns. WGS was used to investigate genetic polymorphisms in five genes (ddn, fgd1, fbiA, fbiB and fbiC) involved in intracellular delamanid activation. We demonstrated that the REMA and MGIT can both be used for the rapid and accurate determination of delamanid MIC, showing excellent concordance with the solid agar reference method, as well as high reproducibility and repeatability. We propose the tentative breakpoint of 0.125 mg/L for the REMA and MGIT, allowing reliable discrimination between M. tuberculosis susceptible and resistant to delamanid. Stop codon mutations in ddn (Trp-88 → STOP) and fbiA (Lys-250 → STOP) have only been observed in strains resistant to delamanid. We established protocols for DST of delamanid in the MGIT and REMA, confirming their feasibility in routine TB diagnostics, utilizing the same discriminative concentration for both methods. Moreover, taking advantage of WGS analysis, we identified polymorphisms potentially associated with resistance in two genes involved in delamanid activation. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    PubMed

    Liu, Wei; Shin, Dongwon; Ng, Martin; Sanbonmatsu, Karissa Y; Tor, Yitzhak; Cooperman, Barry S

    2017-08-29

    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.

  15. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency

    PubMed Central

    Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi

    2012-01-01

    Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199

  16. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    PubMed

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  17. Codon usage and amino acid usage influence genes expression level.

    PubMed

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  18. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae).

    PubMed

    Hwang, Dae-Sik; Suga, Koushirou; Sakakura, Yoshitaka; Park, Heum Gi; Hagiwara, Atsushi; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-02-01

    The complete mitochondrial genome was obtained from the assembled genome data sequenced by next generation sequencing (NGS) technology from the monogonont rotifer Brachionus koreanus. The mitochondrial genome of B. koreanus was composed of two circular chromosomes designated as mtDNA-I (10,421 bp) and mtDNA-II (11,923 bp). The gene contents of B. koreanus were identical with previously reported B. plicatilis mitochondrial genomes. However, gene orders of B. koreanus showed one rearrangement between the two species. Of 12 protein-coding genes (PCGs), 3 genes (ATP6, ND1, and ND3) had an incomplete stop codon. The A + T base composition of B. koreanus mitochondrial genome was high (68.81%). They also showed anti-G bias (12.03% and 10.97%) on the second and third position of PCGs as well as slight anti-C bias (15.96% and 14.31%) on the first and third position of PCGs.

  19. Confirmation of RAX gene involvement in human anophthalmia

    PubMed Central

    Lequeux, L.; Rio, Marlène; Vigouroux, Armelle; Titeux, Matthias; Etchevers, Heather; Malecaze, François; Chassaing, Nicolas; Calvas, Patrick

    2008-01-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia and left microphthalmia and sclerocornea. Here, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909 C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia. PMID:18783408

  20. Confirmation of RAX gene involvement in human anophthalmia.

    PubMed

    Lequeux, L; Rio, M; Vigouroux, A; Titeux, M; Etchevers, H; Malecaze, F; Chassaing, N; Calvas, P

    2008-10-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia, left microphthalmia and sclerocornea. In this study, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia.

  1. Genome-Wide Identification and Mapping of NBS-Encoding Resistance Genes in Solanum tuberosum Group Phureja

    PubMed Central

    Lozano, Roberto; Ponce, Olga; Ramirez, Manuel; Mostajo, Nelly; Orjeda, Gisella

    2012-01-01

    The majority of disease resistance (R) genes identified to date in plants encode a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain containing protein. Additional domains such as coiled-coil (CC) and TOLL/interleukin-1 receptor (TIR) domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∼41% (179) of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes. PMID:22493716

  2. An Overview of Recent Therapeutics Advances for Duchenne Muscular Dystrophy.

    PubMed

    Mah, Jean K

    2018-01-01

    Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. Mutations of the DMD gene destabilize the dystrophin associated glycoprotein complex in the sarcolemma. Ongoing mechanical stress leads to unregulated influx of calcium ions into the sarcoplasm, with activation of proteases, release of proinflammatory cytokines, and mitochondrial dysfunction. Cumulative damage and reparative failure leads to progressive muscle necrosis, fibrosis, and fatty replacement. Although there is presently no cure for DMD, scientific advances have led to many potential disease-modifying treatments, including dystrophin replacement therapies, upregulation of compensatory proteins, anti-inflammatory agents, and other cellular targets. Recently approved therapies include ataluren for stop codon read-through and eteplirsen for exon 51 skipping of eligible individuals. The purpose of this chapter is to summarize the clinical features of DMD, to describe current outcome measures used in clinical studies, and to highlight new emerging therapies for affected individuals.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrighton, Kelly C.; Thomas, Brian C.; Sharon, I.

    BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like type II and III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO2 fixation, a pathway previously not described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-typemore » hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.« less

  4. A novel c.240_241insGG mutation in NDP gene in a family with Norrie disease.

    PubMed

    Andarva, Monavvar; Jamshidi, Javad; Ghaedi, Hamid; Daftarian, Narsis; Emamalizadeh, Babak; Alehabib, Elham; Taghavi, Shaghyegh; Pouriran, Ramin; Darvish, Hossein

    2018-03-01

    Norrie disease (ND) is a rare, X-linked recessive disorder with the main characteristic of early childhood blindness. The aim of the present study was to identify the genetic cause of the disease and the phenotypic characteristics of the patients in an Iranian family with four affected males with ND. Norrie disease pseudoglioma (NDP) gene was sequenced and clinical examination was performed on patients. A GG dinucleotide insertion in exon 3 (c.240_241insGG) of NDP was detected in all patients. The mutation caused a frameshift and an early stop codon (p.Phe81Glyfs*23). A novel mutation was found in the NDP gene in the affected males of the family. As the mutation was absent in the normal male members of the family, it should be the genetic cause of the disease. © 2017 Optometry Australia.

  5. Hearing loss in a patient with the myopathic form of mitochondrial DNA depletion syndrome and a novel mutation in the TK2 gene.

    PubMed

    Martí, Ramon; Nascimento, Andrés; Colomer, Jaume; Lara, Mari C; López-Gallardo, Ester; Ruiz-Pesini, Eduardo; Montoya, Julio; Andreu, Antoni L; Briones, Paz; Pineda, Mercè

    2010-08-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a devastating disorder of infancy caused by a significant reduction of the number of copies of mitochondrial DNA in one or more tissues. We report a Spanish patient with the myopathic form of MDS, harboring two mutations in the thymidine kinase 2 gene (TK2): a previously reported deletion (p.K244del) and a novel nucleotide duplication in the exon 2, generating a frameshift and premature stop codon. Sensorineural hearing loss was a predominant symptom in the patient and a novel feature of MDS due to TK2 mutations. The patient survived up to the age of 8.5 y, which confirms that survival above the age of 5 y is not infrequent in patients with MDS due to TK2 deficiency.

  6. The SNP g.1311T>C associated with the absence of β-casein in goat milk influences CSN2 promoter activity.

    PubMed

    Cosenza, G; Iannaccone, M; Pico, B A; Ramunno, L; Capparelli, R

    2016-10-01

    Quantitative individual differences in the amount of β-casein in goat milk are determined by at least nine alleles. In particular, two alleles (CSN2(0) and CSN2(01) ) are associated with an undetectable amount of this protein in milk. The CSN2(01) allele is characterized by a single nucleotide substitution at position 373 of the seventh exon (AJ011018:g.8915C>T), responsible for the formation of a premature stop codon at the 182 position. Herein, we report the contribution of the SNP g.1311T>C, which demonstrates a linkage with the SNP AJ011018:g.8915C>T, to the promoter transcriptional activity. Particularly, we indicate that the nucleotide C at position 1311 negatively affects the promoter activity of the CSN2 gene. © 2016 Stichting International Foundation for Animal Genetics.

  7. A novel Werner Syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies

    PubMed Central

    Agrelo, Ruben; Sutz, Miguel Arocena; Setien, Fernando; Aldunate, Fabian; Esteller, Manel; Da Costa, Valeria; Achenbach, Ricardo

    2015-01-01

    Werner Syndrome (WS) is a rare inherited disease characterized by premature aging and increased propensity for cancer. Mutations in the WRN gene can be of several types, including nonsense mutations, leading to a truncated protein form. WRN is a RecQ family member with both helicase and exonuclease activities, and it participates in several cell metabolic pathways, including DNA replication, DNA repair, and telomere maintenance. Here, we reported a novel homozygous WS mutation (c.3767 C > G) in 2 Argentinian brothers, which resulted in a stop codon and a truncated protein (p.S1256X). We also observed increased WRN promoter methylation in the cells of patients and decreased messenger WRN RNA (WRN mRNA) expression. Finally, we showed that the read-through of nonsense mutation pharmacologic treatment with both aminoglycosides (AGs) and ataluren (PTC-124) in these cells restores full-length protein expression and WRN functionality. PMID:25830902

  8. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics.

    PubMed

    James, Katherine; Cockell, Simon J; Zenkin, Nikolay

    2017-05-01

    The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cloning and sequence analysis of complementary DNA encoding an aberrantly rearranged human T-cell gamma chain.

    PubMed Central

    Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L

    1986-01-01

    Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221

  10. Year to year change in FEV1 in patients with cystic fibrosis and different mutation classes.

    PubMed

    De Boeck, K; Zolin, A

    2017-03-01

    In patients with cystic fibrosis, most treatments addressing the underlying basic defect are mutation or mutation class specific. These treatments are disease modifying if they lower the year to year change in lung function. We therefore calculated the current loss of lung function, measured by year to year change in forced expired volume in 1s in 11,417 patients included in the European Cystic Fibrosis Society Patient Registry. Whereas patients with at least one mutation of class IV or V have on average a lower year to year change, we did not find a difference between patients with a stop codon mutation, homozygous for F508del or at least one class III mutation. These data are useful background information to discuss the impact of different disease modifying treatments. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  11. Telomere interactions may condition the programming of antigen expression in Trypanosoma brucei.

    PubMed Central

    Van der Werf, A; Van Assel, S; Aerts, D; Steinert, M; Pays, E

    1990-01-01

    The AnTat 1.1 antigen type typically occurs late in a chronic infection by the EATRO 1125 stock of Trypanosoma brucei. The AnTat 1.1 gene, which is located 24 kb from a chromosome end, seems exclusively expressed by acting as a donor in gene conversion events targeted to the telomeric expression site. We report that this gene is sufficiently provided with the homology blocks required for recombination with the expression site, and is not interrupted by stop codons up to the 3' block of homology. A possible reason for its low probability of activation is an inverse orientation with respect to the proximal chromosome end, since, if correctly positioned, it is readily expressed at an early stage of infection, following gene conversion. This suggests that interactions between chromosome ends may precede and favour the rearrangements leading to antigenic variation. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:2323332

  12. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: Genotype/phenotype correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Superti-Furga, A.; Steinmann, B.; Gitzelmann, R.

    1996-05-03

    Achondrogenesis type 1B (ACG-1B), atelosteogenesis type 2 (AO-2), and diastrophic dysplasia (DTD) are recessively inherited chondrodysplasia of decreasing severity caused by mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene on chromosome 5. In these conditions, sulfate transport across the cell membrane is impaired which results in insufficient sulfation of cartilage proteoglycans and thus in an abnormally low sulfate content of cartilage. The severity of the phenotype correlates well with the predicted effect of the underlying DTDST mutations: homozygosity or compound heterozygosity for stop codons or transmembrane domain substitutions mostly result in achondrogenesis type 1B, while other structural or regulatorymore » mutations usually result in one of the less severe phenotypes. The chondrodysplasia arising at the DTDST locus constitute a bone dysplasia family with recessive inheritance. 28 refs., 2 tabs.« less

  13. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  14. Balancing Selection of a Frame-Shift Mutation in the MRC2 Gene Accounts for the Outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle

    PubMed Central

    Li, Wanbo; Dive, Marc; Tamma, Nico; Michaux, Charles; Druet, Tom; Huijbers, Ivo J.; Isacke, Clare M.; Coppieters, Wouter; Georges, Michel; Charlier, Carole

    2009-01-01

    We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed. PMID:19779552

  15. A critical examination of Escherichia coli esterase activity.

    PubMed

    Antonczak, Alicja K; Simova, Zuzana; Tippmann, Eric M

    2009-10-16

    The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances.

  16. A Critical Examination of Escherichia coli Esterase Activity*

    PubMed Central

    Antonczak, Alicja K.; Simova, Zuzana; Tippmann, Eric M.

    2009-01-01

    The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances. PMID:19666472

  17. The complete mitochondrial genome of Cricetulus kamensis (Rodentia: Cricetidae).

    PubMed

    Kang, Chunlan; Yue, Hao; Liu, Mengyao; Huang, Ting; Liu, Yang; Zhang, Xiuyue; Yue, Bisong; Zeng, Tao; Liu, Shaoying

    2016-01-01

    The Cricetulus kamensis is endemic to China and is popular as pet. In the present study, the complete mitogenome of C. kamensis was first determined. It was 16,270 bp in length and the composition and arrangement of its genes are analogous to most other mammals. The overall base composition of heavy strand is 33.2% A, 26.8% T, 27.2% C and 12.7% G. The sequence is highly G-C poor (∼40%) and A is the most numerous nucleotide followed by T >C >G, which is similar to other mammalian mitochondrial genomes. It is notable that three extra bases "CAT" were inserted in cytb at the 3' end position and no stop codon was found for this coding region. The mitogenome sequence of C. kamensis could contribute to a better solution of its phylogenetic position and phylogenetic relationship within Cricetinae in the future.

  18. Ribosome rearrangements at the onset of translational bypassing

    PubMed Central

    Agirrezabala, Xabier; Samatova, Ekaterina; Klimova, Mariia; Zamora, Miguel; Gil-Carton, David; Rodnina, Marina V.; Valle, Mikel

    2017-01-01

    Bypassing is a recoding event that leads to the translation of two distal open reading frames into a single polypeptide chain. We present the structure of a translating ribosome stalled at the bypassing take-off site of gene 60 of bacteriophage T4. The nascent peptide in the exit tunnel anchors the P-site peptidyl-tRNAGly to the ribosome and locks an inactive conformation of the peptidyl transferase center (PTC). The mRNA forms a short dynamic hairpin in the decoding site. The ribosomal subunits adopt a rolling conformation in which the rotation of the small subunit around its long axis causes the opening of the A-site region. Together, PTC conformation and mRNA structure safeguard against premature termination and read-through of the stop codon and reconfigure the ribosome to a state poised for take-off and sliding along the noncoding mRNA gap. PMID:28630923

  19. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence

    PubMed Central

    Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro

    2014-01-01

    The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631

  20. Di-codon Usage for Gene Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.

    Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.

Top