Trotta, Edoardo
2016-05-17
The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.
The Role of +4U as an Extended Translation Termination Signal in Bacteria
Wei, Yulong; Xia, Xuhua
2017-01-01
Termination efficiency of stop codons depends on the first 3′ flanking (+4) base in bacteria and eukaryotes. In both Escherichia coli and Saccharomyces cerevisiae, termination read-through is reduced in the presence of +4U; however, the molecular mechanism underlying +4U function is poorly understood. Here, we perform comparative genomics analysis on 25 bacterial species (covering Actinobacteria, Bacteriodetes, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Proteobacteria, and Spirochaetae) with bioinformatics approaches to examine the influence of +4U in bacterial translation termination by contrasting highly- and lowly-expressed genes (HEGs and LEGs, respectively). We estimated gene expression using the recently formulated Index of Translation Elongation, ITE, and identified stop codon near-cognate transfer RNAs (tRNAs) from well-annotated genomes. We show that +4U was consistently overrepresented in UAA-ending HEGs relative to LEGs. The result is consistent with the interpretation that +4U enhances termination mainly for UAA. Usage of +4U decreases in GC-rich species where most stop codons are UGA and UAG, with few UAA-ending genes, which is expected if UAA usage in HEGs drives up +4U usage. In HEGs, +4U usage increases significantly with abundance of UAA nc_tRNAs (near-cognate tRNAs that decode codons differing from UAA by a single nucleotide), particularly those with a mismatch at the first stop codon site. UAA is always the preferred stop codon in HEGs, and our results suggest that UAAU is the most efficient translation termination signal in bacteria. PMID:27903612
Complete mitochondrial genome of the Yellownose skate: Zearaja chilensis (Rajiformes, Rajidae).
Jeong, Dageum; Lee, Youn-Ho
2016-01-01
The complete sequence of mitochondrial DNA of a Yellownose skate, Zearaja chilensis was determined for the first time. It is 16,909 bp in length covering 2 rRNA, 22 tRNA and 13 protein coding genes with the identical gene order and structure as those of other Rajidae species. The nucleotide of L-strand is composed of low G (14.3%), and slightly high A + T (58.9%) nucleotides. The strong codon usage bias against the use of G (6.0%) is found at the third codon positions. Twelve of the 13 protein coding genes use ATG as the start codon while COX1 starts with GTG. As for the stop codon, only ND4 shows an incomplete stop codon TA. This is the first report of the mitogenome for a species in the genus Zearaja, providing a valuable source of genetic information on the evolution of the family Rajidae and the genus Zearaja as well as for establishment of a sustainble fishery management plan of the species.
Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.
Gan, Qinglei; Fan, Chenguang
2017-11-01
Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of synonymous codon usage patterns in the genus Rhizobium.
Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin
2013-11-01
The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu
2016-02-24
Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu
2016-01-01
Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064
Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang
2015-08-26
The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
Synonymous codon usage of genes in polymerase complex of Newcastle disease virus.
Kumar, Chandra Shekhar; Kumar, Sachin
2017-06-01
Newcastle disease virus (NDV) is pathogenic to both avian and non-avian species but extensively finds poultry as its primary host and causes heavy economic losses in the poultry industry. In this study, a total of 186 polymerase complex comprising of nucleoprotein (N), phosphoprotein (P), and large polymerase (L) genes of NDV was analyzed for synonymous codon usage. The relative synonymous codon usage and effective number of codons (ENC) values were used to estimate codon usage variation in each gene. Correspondence analysis (COA) was used to study the major trend in codon usage variation. Analyzing the ENC plot values against GC3s (at synonymous third codon position) we concluded that mutational pressure was the main factor determining codon usage bias than translational selection in NDV N, P, and L genes. Moreover, correlation analysis indicated, that aromaticity of N, P, and L genes also influenced the codon usage variation. The varied distribution of pathotypes for N, P, and L gene clearly suggests that change in codon usage for NDV is pathotype specific. The codon usage preference similarity in N, P, and L gene might be detrimental for polymerase complex functioning. The study represents a comprehensive analysis to date of N, P, and L genes codon usage pattern of NDV and provides a basic understanding of the mechanisms for codon usage bias. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of the porcine epidemic diarrhea virus codon usage bias.
Chen, Ye; Shi, Yuzhen; Deng, Hongjuan; Gu, Ting; Xu, Jian; Ou, Jinxin; Jiang, Zhiguo; Jiao, Yiren; Zou, Tan; Wang, Chong
2014-12-01
Porcine epidemic diarrhea virus (PEDV) has been responsible for several recent outbreaks of porcine epidemic diarrhea (PED) and has caused great economic loss in the swine-raising industry. Considering the significance of PEDV, a systemic analysis was performed to study its codon usage patterns. The relative synonymous codon usage value of each codon revealed that codon usage bias exists and that PEDV tends to use codons that end in T. The mean ENC value of 47.91 indicates that the codon usage bias is low. However, we still wanted to identify the cause of this codon usage bias. A correlation analysis between the codon compositions (A3s, T3s, G3s, C3s, and GC3s), the ENC values, and the nucleotide contents (A%, T%, G%, C%, and GC%) indicated that mutational bias plays role in shaping the PEDV codon usage bias. This was further confirmed by a principal component analysis between the codon compositions and the axis values. Using the Gravy, Aroma, and CAI values, a role of natural selection in the PEDV codon usage pattern was also identified. Neutral analysis indicated that natural selection pressure plays a more important role than mutational bias in codon usage bias. Natural selection also plays an increasingly significant role during PEDV evolution. Additionally, gene function and geographic distribution also influence the codon usage bias to a degree. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Yongzhong; Epstein, Richard J
2013-01-01
Methylation-prone CpG dinucleotides are strongly conserved in the germline, yet are also predisposed to somatic mutation. Here we quantify the relationship between germline codon mutability and somatic carcinogenesis by comparing usage of the nonsense-prone CGA (→TGA) codons in gene groups that differ in apoptotic function; to this end, suppressor genes were subclassified as either apoptotic (gatekeepers) or repair (caretakers). Mutations affecting CGA codons in sporadic tumors proved to be highly asymmetric. Moreover, nonsense mutations were 3-fold more likely to affect gatekeepers than caretakers. In addition, intragenic CGA clustering nonrandomly affected functionally critical regions of gatekeepers. We conclude that human gatekeeper suppressor genes are enriched for nonsense-prone codons, and submit that this germline vulnerability to tumors could reflect in utero selection for a methylation-dependent capability to short-circuit environmental insults that otherwise trigger apoptosis and fetal loss.
Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps.
Huang, Xing; Xu, Jing; Chen, Lin; Wang, Yu; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou
2017-04-20
Codon usage bias (CUB) is an important evolutionary feature in genomes that has been widely observed in many organisms. However, the synonymous codon usage pattern in the genome of T. multiceps remains to be clarified. In this study, we analyzed the codon usage of T. multiceps based on the transcriptome data to reveal the constraint factors and to gain an improved understanding of the mechanisms that shape synonymous CUB. Analysis of a total of 8,620 annotated mRNA sequences from T. multiceps indicated only a weak codon bias, with mean GC and GC3 content values of 49.29% and 51.43%, respectively. Our analysis indicated that nucleotide composition, mutational pressure, natural selection, gene expression level, amino acids with grand average of hydropathicity (GRAVY) and aromaticity (Aromo) and the effective selection of amino-acids all contributed to the codon usage in T. multiceps. Among these factors, natural selection was implicated as the major factor affecting the codon usage variation in T. multiceps. The codon usage of ribosome genes was affected mainly by mutations, while the essential genes were affected mainly by selection. In addition, 21codons were identified as "optimal codons". Overall, the optimal codons were GC-rich (GC:AU, 41:22), and ended with G or C (except CGU). Furthermore, different degrees of variation in codon usage were found between T. multiceps and Escherichia coli, yeast, Homo sapiens. However, little difference was found between T. multiceps and Taenia pisiformis. In this study, the codon usage pattern of T. multiceps was analyzed systematically and factors affected CUB were also identified. This is the first study of codon biology in T. multiceps. Understanding the codon usage pattern in T. multiceps can be helpful for the discovery of new genes, molecular genetic engineering and evolutionary studies.
Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species
2006-01-01
Background Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms. Results Codon usage similarity in Nematoda usually persists over the breadth of a genus but then rapidly diminishes even within each clade. Globodera, Meloidogyne, Pristionchus, and Strongyloides have the most highly derived patterns of codon usage. The major factor affecting differences in codon usage between species is the coding sequence GC content, which varies in nematodes from 32% to 51%. Coding GC content (measured as GC3) also explains much of the observed variation in the effective number of codons (R = 0.70), which is a measure of codon bias, and it even accounts for differences in amino acid frequency. Codon usage is also affected by neighboring nucleotides (N1 context). Coding GC content correlates strongly with estimated noncoding genomic GC content (R = 0.92). On examining abundant clusters in five species, candidate optimal codons were identified that may be preferred in highly expressed transcripts. Conclusion Evolutionary models indicate that total genomic GC content, probably the product of directional mutation pressure, drives codon usage rather than the converse, a conclusion that is supported by examination of nematode genomes. PMID:26271136
2012-01-01
Background Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed. Results We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process. Conclusions A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines. PMID:23134595
Genome-wide analysis of codon usage bias in Ebolavirus.
Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor
2015-01-22
Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. Copyright © 2014 Elsevier B.V. All rights reserved.
Stop Codon Reassignment in the Wild
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James
Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hostsmore » must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences« less
Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta
Whittle, C. A.; Sun, Y.; Johannesson, H.
2011-01-01
Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862
A detailed analysis of codon usage patterns and influencing factors in Zika virus.
Singh, Niraj K; Tyagi, Anuj
2017-07-01
Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.
Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts
Wang, Hongju; Liu, Siqing; Zhang, Bo
2016-01-01
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824
Nakamura, Masayuki; Sugiura, Masahiro
2007-01-01
Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.
Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil
2017-04-01
With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.
Karniychuk, Uladzimir U
2016-09-02
Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses
Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj
2016-01-01
Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730
Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.
Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi
2016-08-01
Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. © 2016 Fu et al.; Published by Cold Spring Harbor Laboratory Press.
Seligmann, Hervé
2018-05-01
Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.
Complex codon usage pattern and compositional features of retroviruses.
RoyChoudhury, Sourav; Mukherjee, Debaprasad
2013-01-01
Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.
Xu, Yi; Ju, Ho-Jong; DeBlasio, Stacy; Carino, Elizabeth J; Johnson, Richard; MacCoss, Michael J; Heck, Michelle; Miller, W Allen; Gray, Stewart M
2018-06-01
Translational readthrough of the stop codon of the capsid protein (CP) open reading frame (ORF) is used by members of the Luteoviridae to produce their minor capsid protein as a readthrough protein (RTP). The elements regulating RTP expression are not well understood, but they involve long-distance interactions between RNA domains. Using high-resolution mass spectrometry, glutamine and tyrosine were identified as the primary amino acids inserted at the stop codon of Potato leafroll virus (PLRV) CP ORF. We characterized the contributions of a cytidine-rich domain immediately downstream and a branched stem-loop structure 600 to 700 nucleotides downstream of the CP stop codon. Mutations predicted to disrupt and restore the base of the distal stem-loop structure prevented and restored stop codon readthrough. Motifs in the downstream readthrough element (DRTE) are predicted to base pair to a site within 27 nucleotides (nt) of the CP ORF stop codon. Consistent with a requirement for this base pairing, the DRTE of Cereal yellow dwarf virus was not compatible with the stop codon-proximal element of PLRV in facilitating readthrough. Moreover, deletion of the complementary tract of bases from the stop codon-proximal region or the DRTE of PLRV prevented readthrough. In contrast, the distance and sequence composition between the two domains was flexible. Mutants deficient in RTP translation moved long distances in plants, but fewer infection foci developed in systemically infected leaves. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing to determine the secondary structure of the mutant DRTEs revealed that the functional mutants were more likely to have bases accessible for long-distance base pairing than the nonfunctional mutants. This study reveals a heretofore unknown combination of RNA structure and sequence that reduces stop codon efficiency, allowing translation of a key viral protein. IMPORTANCE Programmed stop codon readthrough is used by many animal and plant viruses to produce key viral proteins. Moreover, such "leaky" stop codons are used in host mRNAs or can arise from mutations that cause genetic disease. Thus, it is important to understand the mechanism(s) of stop codon readthrough. Here, we shed light on the mechanism of readthrough of the stop codon of the coat protein ORFs of viruses in the Luteoviridae by identifying the amino acids inserted at the stop codon and RNA structures that facilitate this "leakiness" of the stop codon. Members of the Luteoviridae encode a C-terminal extension to the capsid protein known as the readthrough protein (RTP). We characterized two RNA domains in Potato leafroll virus (PLRV), located 600 to 700 nucleotides apart, that are essential for efficient RTP translation. We further determined that the PLRV readthrough process involves both local structures and long-range RNA-RNA interactions. Genetic manipulation of the RNA structure altered the ability of PLRV to translate RTP and systemically infect the plant. This demonstrates that plant virus RNA contains multiple layers of information beyond the primary sequence and extends our understanding of stop codon readthrough. Strategic targets that can be exploited to disrupt the virus life cycle and reduce its ability to move within and between plant hosts were revealed. Copyright © 2018 American Society for Microbiology.
GC-Content of Synonymous Codons Profoundly Influences Amino Acid Usage
Li, Jing; Zhou, Jun; Wu, Ying; Yang, Sihai; Tian, Dacheng
2015-01-01
Amino acids typically are encoded by multiple synonymous codons that are not used with the same frequency. Codon usage bias has drawn considerable attention, and several explanations have been offered, including variation in GC-content between species. Focusing on a simple parameter—combined GC proportion of all the synonymous codons for a particular amino acid, termed GCsyn—we try to deepen our understanding of the relationship between GC-content and amino acid/codon usage in more details. We analyzed 65 widely distributed representative species and found a close association between GCsyn, GC-content, and amino acids usage. The overall usages of the four amino acids with the greatest GCsyn and the five amino acids with the lowest GCsyn both vary with the regional GC-content, whereas the usage of the remaining 11 amino acids with intermediate GCsyn is less variable. More interesting, we discovered that codon usage frequencies are nearly constant in regions with similar GC-content. We further quantified the effects of regional GC-content variation (low to high) on amino acid usage and found that GC-content determines the usage variation of amino acids, especially those with extremely high GCsyn, which accounts for 76.7% of the changed GC-content for those regions. Our results suggest that GCsyn correlates with GC-content and has impact on codon/amino acid usage. These findings suggest a novel approach to understanding the role of codon and amino acid usage in shaping genomic architecture and evolutionary patterns of organisms. PMID:26248983
Sablok, Gaurav; Chen, Ting-Wen; Lee, Chi-Ching; Yang, Chi; Gan, Ruei-Chi; Wegrzyn, Jill L; Porta, Nicola L; Nayak, Kinshuk C; Huang, Po-Jung; Varotto, Claudio; Tang, Petrus
2017-06-01
Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Species Based Synonymous Codon Usage in Fusion Protein Gene of Newcastle Disease Virus
Kumar, Chandra Shekhar; Kumar, Sachin
2014-01-01
Newcastle disease is highly pathogenic to poultry and many other avian species. However, the Newcastle disease virus (NDV) has also been reported from many non-avian species. The NDV fusion protein (F) is a major determinant of its pathogenicity and virulence. The functionalities of F gene have been explored for the development of vaccine and diagnostics against NDV. Although the F protein is well studied but the codon usage and its nucleotide composition from NDV isolated from different species have not yet been explored. In present study, we have analyzed the factors responsible for the determination of codon usage in NDV isolated from four major avian host species. The F gene of NDV is analyzed for its base composition and its correlation with the bias in codon usage. Our result showed that random mutational pressure is responsible for codon usage bias in F protein of NDV isolates. Aromaticity, GC3s, and aliphatic index were not found responsible for species based synonymous codon usage bias in F gene of NDV. Moreover, the low amount of codon usage bias and expression level was further confirmed by a low CAI value. The phylogenetic analysis of isolates was found in corroboration with the relatedness of species based on codon usage bias. The relationship between the host species and the NDV isolates from the host does not represent a significant correlation in our study. The present study provides a basic understanding of the mechanism involved in codon usage among species. PMID:25479071
Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen
2016-08-24
Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.
Loughran, Gary; Jungreis, Irwin; Tzani, Ioanna; Power, Michael; Dmitriev, Ruslan I.; Ivanov, Ivaylo P.; Kellis, Manolis; Atkins, John F.
2018-01-01
Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid–long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor. PMID:29386352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colledge, Danielle; Soppe, Sally; Yuen, Lilly
Premature stop codons in the hepatitis B virus (HBV) surface protein can be associated with nucleos(t)ide analogue resistance due to overlap of the HBV surface and polymerase genes. The aim of this study was to determine the effect of the replication of three common surface stop codon variants on the hepatocyte. Cell lines were transfected with infectious HBV clones encoding surface stop codons rtM204I/sW196*, rtA181T/sW172*, rtV191I/sW182*, and a panel of substitutions in the surface proteins. HBsAg was measured by Western blotting. Proliferation and apoptosis were measured using flow cytometry. All three surface stop codon variants were defective in HBsAg secretion.more » Cells transfected with these variants were less proliferative and had higher levels of apoptosis than those transfected with variants that did not encode surface stop codons. The most cytopathic variant was rtM204I/sW196*. Replication of HBV encoding surface stop codons was toxic to the cell and promoted apoptosis, exacerbating disease progression. - Highlights: •Under normal circumstances, HBV replication is not cytopathic. •Premature stop codons in the HBV surface protein can be selected and enriched during nucleos(t)ide analogue therapy. •Replication of these variants can be cytopathic to the cell and promote apoptosis. •Inadequate antiviral therapy may actually promote disease progression.« less
Wald, Naama; Alroy, Maya; Botzman, Maya; Margalit, Hanah
2012-01-01
Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon–anticodon interaction, all consistent with more efficient translation. PMID:22581775
Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi
2017-08-21
Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Song, Jiangning; Wang, Minglei; Burrage, Kevin
2006-07-21
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.
Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.
Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K
2016-08-02
Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. Copyright © 2016 Elsevier B.V. All rights reserved.
Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes.
Chen, L; Yang, D Y; Liu, T F; Nong, X; Huang, X; Xie, Y; Fu, Y; Zheng, W P; Zhang, R H; Wu, X H; Gu, X B; Wang, S X; Peng, X R; Yang, G Y
2013-02-27
We analyzed synonymous codon usage patterns of the mitochondrial genomes of 43 parasitic platyhelminth species. The relative synonymous codon usage, the effective number of codons (NC) and the frequency of G+C at the third synonymously variable coding position were calculated. Correspondence analysis was used to determine the major variation trends shaping the codon usage patterns. Among the mitochondrial genomes of 19 trematode species, the GC content of third codon positions varied from 0.151 to 0.592, with a mean of 0.295 ± 0.116. In cestodes, the mean GC content of third codon positions was 0.254 ± 0.044. A comparison of the nucleotide composition at 4-fold synonymous sites revealed that, on average, there was a greater abundance of codons ending on U (51.9%) or A (22.7%) than on C (6.3%) or G (19.14%). Twenty-two codons, including UUU, UUA and UUG, were frequently used. In the NC-plot, most of points were distributed well below or around the expected NC curve. In addition to compositional constraints, the degree of hydrophobicity and the aromatic amino acids also influenced codon usage in the mitochondrial genomes of these 43 parasitic platyhelminth species.
Lal, Devi; Verma, Mansi; Behura, Susanta K; Lal, Rup
2016-10-01
Actinobacteria are Gram-positive bacteria commonly found in soil, freshwater and marine ecosystems. In this investigation, bias in codon usages of ninety actinobacterial genomes was analyzed by estimating different indices of codon bias such as Nc (effective number of codons), SCUO (synonymous codon usage order), RSCU (relative synonymous codon usage), as well as sequence patterns of codon contexts. The results revealed several characteristic features of codon usage in Actinobacteria, as follows: 1) C- or G-ending codons are used frequently in comparison with A- and U ending codons; 2) there is a direct relationship of GC content with use of specific amino acids such as alanine, proline and glycine; 3) there is an inverse relationship between GC content and Nc estimates, 4) there is low SCUO value (<0.5) for most genes; and 5) GCC-GCC, GCC-GGC, GCC-GAG and CUC-GAC are the frequent context sequences among codons. This study highlights the fact that: 1) in Actinobacteria, extreme GC content and codon bias are driven by mutation rather than natural selection; (2) traits like aerobicity are associated with effective natural selection and therefore low GC content and low codon bias, demonstrating the role of both mutational bias and translational selection in shaping the habitat and phenotype of actinobacterial species. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals.
Uddin, Arif; Choudhury, Monisha Nath; Chakraborty, Supriyo
2018-01-01
The mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) gene is a subunit of the respiratory chain complex I and involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). To understand the pattern of compositional properties, codon usage and expression level of mitochondrial ND1 genes in pisces, aves, and mammals, we used bioinformatic approaches as no work was reported earlier. In this study, a perl script was used for calculating nucleotide contents and different codon usage bias parameters. The codon usage bias of MT-ND1 was low but the expression level was high as revealed from high ENC and CAI value. Correspondence analysis (COA) suggests that the pattern of codon usage for MT-ND1 gene is not same across species and that compositional constraint played an important role in codon usage pattern of this gene among pisces, aves, and mammals. From the regression equation of GC12 on GC3, it can be inferred that the natural selection might have played a dominant role while mutation pressure played a minor role in influencing the codon usage patterns. Further, ND1 gene has a discrepancy with cytochrome B (CYB) gene in preference of codons as evident from COA. The codon usage bias was low. It is influenced by nucleotide composition, natural selection, mutation pressure, length (number) of amino acids, and relative dinucleotide composition. This study helps in understanding the molecular biology, genetics, evolution of MT-ND1 gene, and also for designing a synthetic gene.
Generate Optimized Genetic Rhythm for Enzyme Expression in Non-native systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-11-03
Most amino acids are represented by more than one codon, resulting in redundancy in the genetic code. Silent codon substitutions that do not alter the amino acid sequence still have an effect on protein expression. We have developed an algorithm, GoGREEN, to enhance the expression of foreign proteins in a host organism. GoGREEN selects codons according to frequency patterns seen in the gene of interest using the codon usage table from the host organism. GoGREEN is also designed to accommodate gaps in the sequence.This software takes for input (1) the aligned protein sequences for genes the user wishes to express,more » (2) the codon usage table for the host organism, (3) and the DNA sequence for the target protein found in the host organism. The program will select codons based on codon usage patterns for the target DNA sequence. The program will also select codons for “gaps” found in the aligned protein sequences using the codon usage table from the host organism.« less
Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro
2014-01-01
The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631
Di-codon Usage for Gene Classification
NASA Astrophysics Data System (ADS)
Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.
Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.
2007-01-01
Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis. PMID:17349061
Importance of codon usage for the temporal regulation of viral gene expression
Shin, Young C.; Bischof, Georg F.; Lauer, William A.; Desrosiers, Ronald C.
2015-01-01
The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products. PMID:26504241
Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.
Alkalaeva, Elena; Mikhailova, Tatiana
2017-03-01
The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.
Analysis of base and codon usage by rubella virus.
Zhou, Yumei; Chen, Xianfeng; Ushijima, Hiroshi; Frey, Teryl K
2012-05-01
Rubella virus (RUBV), a small, plus-strand RNA virus that is an important human pathogen, has the unique feature that the GC content of its genome (70%) is the highest (by 20%) among RNA viruses. To determine the effect of this GC content on genomic evolution, base and codon usage were analyzed across viruses from eight diverse genotypes of RUBV. Despite differences in frequency of codon use, the favored codons in the RUBV genome matched those in the human genome for 18 of the 20 amino acids, indicating adaptation to the host. Although usage patterns were conserved in corresponding genes in the diverse genotypes, within-genome comparison revealed that both base and codon usages varied regionally, particularly in the hypervariable region (HVR) of the P150 replicase gene. While directional mutation pressure was predominant in determining base and codon usage within most of the genome (with the strongest tendency being towards C's at third codon positions), natural selection was predominant in the HVR region. The GC content of this region was the highest in the genome (>80%), and it was not clear if selection at the nucleotide level accompanied selection at the amino acid level. Dinucleotide frequency analysis of the RUBV genome revealed that TpA usage was lower than expected, similar to mammalian genes; however, CpG usage was not suppressed, and TpG usage was not enhanced, as is the case in mammalian genes.
Billon, Pierre; Bryant, Eric E; Joseph, Sarah A; Nambiar, Tarun S; Hayward, Samuel B; Rothstein, Rodney; Ciccia, Alberto
2017-09-21
Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP. Copyright © 2017 Elsevier Inc. All rights reserved.
Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi
2017-12-02
The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Behura, Susanta K; Severson, David W
2013-02-01
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole-genome sequencing of numerous species, both prokaryotes and eukaryotes, genome-wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole-genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome-sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome-sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina
2016-06-01
Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.
Hart, Andrew; Cortés, María Paz; Latorre, Mauricio; Martinez, Servet
2018-01-01
The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.
Genome-wide analysis of codon usage bias in four sequenced cotton species.
Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen
2018-01-01
Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.
Global analysis of translation termination in E. coli.
Baggett, Natalie E; Zhang, Yan; Gross, Carol A
2017-03-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins.
Zhou, Hao; Yan, Bing; Chen, Shun; Wang, Mingshu; Jia, Renyong; Cheng, Anchun
2015-10-01
Tembusu virus (TMUV) is a single-stranded, positive-sense RNA virus. As reported, TMUV infection has resulted in significant poultry losses, and the virus may also pose a threat to public health. To characterize TMUV evolutionarily and to understand the factors accounting for codon usage properties, we performed, for the first time, a comprehensive analysis of codon usage bias for the genomes of 60 TMUV strains. The most recently published TMUV strains were found to be widely distributed in coastal cities of southeastern China. Codon preference among TMUV genomes exhibits a low bias (effective number of codons (ENC)=53.287) and is maintained at a stable level. ENC-GC3 plots and the high correlation between composition constraints and principal component factor analysis of codon usage demonstrated that mutation pressure dominates over natural selection pressure in shaping the TMUV coding sequence composition. The high correlation between the major components of the codon usage pattern and hydrophobicity (Gravy) or aromaticity (Aromo) was obvious, indicating that properties of viral proteins also account for the observed variation in TMUV codon usage. Principal component analysis (PCA) showed that CQW1 isolated from Chongqing may have evolved from GX2013H or GX2013G isolated from Guangxi, thus indicating that TMUV likely disseminated from southeastern China to the mainland. Moreover, the preferred codons encoding eight amino acids were consistent with the optimal codons for human cells, indicating that TMUV may pose a threat to public health due to possible cross-species transmission (birds to birds or birds to humans). The results of this study not only have theoretical value for uncovering the characteristics of synonymous codon usage patterns in TMUV genomes but also have significant meaning with regard to the molecular evolutionary tendencies of TMUV. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent evidence for evolution of the genetic code
NASA Technical Reports Server (NTRS)
Osawa, S.; Jukes, T. H.; Watanabe, K.; Muto, A.
1992-01-01
The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.
Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab
2018-02-01
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.
Dass, J Febin Prabhu; Sudandiradoss, C
2012-07-15
5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets. Copyright © 2012 Elsevier B.V. All rights reserved.
The Relation of Codon Bias to Tissue-Specific Gene Expression in Arabidopsis thaliana
Camiolo, Salvatore; Farina, Lorenzo; Porceddu, Andrea
2012-01-01
The codon composition of coding sequences plays an important role in the regulation of gene expression. Herein, we report systematic differences in the usage of synonymous codons among Arabidopsis thaliana genes that are expressed specifically in distinct tissues. Although we observed that both regionally and transcriptionally associated mutational biases were associated significantly with codon bias, they could not explain the observed differences fully. Similarly, given that transcript abundances did not account for the differences in codon usage, it is unlikely that selection for translational efficiency can account exclusively for the observed codon bias. Thus, we considered the possible evolution of codon bias as an adaptive response to the different abundances of tRNAs in different tissues. Our analysis demonstrated that in some cases, codon usage in genes that were expressed in a broad range of tissues was influenced primarily by the tissue in which the gene was expressed maximally. On the basis of this finding we propose that genes that are expressed in certain tissues might show a tissue-specific compositional signature in relation to codon usage. These findings might have implications for the design of transgenes in relation to optimizing their expression. PMID:22865738
Non-uniqueness of factors constraint on the codon usage in Bombyx mori.
Jia, Xian; Liu, Shuyu; Zheng, Hao; Li, Bo; Qi, Qi; Wei, Lei; Zhao, Taiyi; He, Jian; Sun, Jingchen
2015-05-06
The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori. A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans). The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the "optimal codons" of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.
Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T
2012-12-01
Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.
Position-dependent termination and widespread obligatory frameshifting in Euplotes translation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, Alexei V.; Heaphy, Stephen M.; Turanov, Anton A.
2016-11-21
The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared tomore » designate termination. Thus, a ‘stop codon’ is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.« less
Schuster, W; Brennicke, A
1991-01-01
An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921
Global analysis of translation termination in E. coli
Baggett, Natalie E.
2017-01-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. PMID:28301469
Seligmann, Hervé
2013-03-01
Usual DNA→RNA transcription exchanges T→U. Assuming different systematic symmetric nucleotide exchanges during translation, some GenBank RNAs match exactly human mitochondrial sequences (exchange rules listed in decreasing transcript frequencies): C↔U, A↔U, A↔U+C↔G (two nucleotide pairs exchanged), G↔U, A↔G, C↔G, none for A↔C, A↔G+C↔U, and A↔C+G↔U. Most unusual transcripts involve exchanging uracil. Independent measures of rates of rare replicational enzymatic DNA nucleotide misinsertions predict frequencies of RNA transcripts systematically exchanging the corresponding misinserted nucleotides. Exchange transcripts self-hybridize less than other gene regions, self-hybridization increases with length, suggesting endoribonuclease-limited elongation. Blast detects stop codon depleted putative protein coding overlapping genes within exchange-transcribed mitochondrial genes. These align with existing GenBank proteins (mainly metazoan origins, prokaryotic and viral origins underrepresented). These GenBank proteins frequently interact with RNA/DNA, are membrane transporters, or are typical of mitochondrial metabolism. Nucleotide exchange transcript frequencies increase with overlapping gene densities and stop densities, indicating finely tuned counterbalancing regulation of expression of systematic symmetric nucleotide exchange-encrypted proteins. Such expression necessitates combined activities of suppressor tRNAs matching stops, and nucleotide exchange transcription. Two independent properties confirm predicted exchanged overlap coding genes: discrepancy of third codon nucleotide contents from replicational deamination gradients, and codon usage according to circular code predictions. Predictions from both properties converge, especially for frequent nucleotide exchange types. Nucleotide exchanging transcription apparently increases coding densities of protein coding genes without lengthening genomes, revealing unsuspected functional DNA coding potential. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Charles, Hubert; Calevro, Federica; Vinuelas, José; Fayard, Jean-Michel; Rahbe, Yvan
2006-01-01
Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon-anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera.
Subramanian, Abhishek; Sarkar, Ram Rup
2015-10-01
Understanding the variations in gene organization and its effect on the phenotype across different Leishmania species, and to study differential clinical manifestations of parasite within the host, we performed large scale analysis of codon usage patterns between Leishmania and other known Trypanosomatid species. We present the causes and consequences of codon usage bias in Leishmania genomes with respect to mutational pressure, translational selection and amino acid composition bias. We establish GC bias at wobble position that governs codon usage bias across Leishmania species, rather than amino acid composition bias. We found that, within Leishmania, homogenous codon context coding for less frequent amino acid pairs and codons avoiding formation of folding structures in mRNA are essentially chosen. We predicted putative differences in global expression between genes belonging to specific pathways across Leishmania. This explains the role of evolution in shaping the otherwise conserved genome to demonstrate species-specific function-level differences for efficient survival. Copyright © 2015 Elsevier Inc. All rights reserved.
Das, Shibsankar; Roymondal, Uttam; Sahoo, Satyabrata
2009-08-15
Based on the hypothesis that highly expressed genes are often characterized by strong compositional bias in terms of codon usage, there are a number of measures currently in use that quantify codon usage bias in genes, and hence provide numerical indices to predict the expression levels of genes. With the recent advent of expression measure from the score of the relative codon usage bias (RCBS), we have explicitly tested the performance of this numerical measure to predict the gene expression level and illustrate this with an analysis of Yeast genomes. In contradiction with previous other studies, we observe a weak correlations between GC content and RCBS, but a selective pressure on the codon preferences in highly expressed genes. The assertion that the expression of a given gene depends on the score of relative codon usage bias (RCBS) is supported by the data. We further observe a strong correlation between RCBS and protein length indicating natural selection in favour of shorter genes to be expressed at higher level. We also attempt a statistical analysis to assess the strength of relative codon bias in genes as a guide to their likely expression level, suggesting a decrease of the informational entropy in the highly expressed genes.
Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency
Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi
2012-01-01
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199
Codon usage and amino acid usage influence genes expression level.
Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo
2018-02-01
Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.
Yatawara, Lalani; Wickramasinghe, Susiji; Rajapakse, R P V J; Agatsuma, Takeshi
2010-09-01
In the present study, we determined the complete mitochondrial (mt) genome sequence (13,839bp) of parasitic nematode Setaria digitata and its structure and organization compared with Onchocerca volvulus, Dirofilaria immitis and Brugia malayi. The mt genome of S. digitata is slightly larger than the mt genomes of other filarial nematodes. S. digitata mt genome contains 36 genes (12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs) that are typically found in metazoans. This genome contains a high A+T (75.1%) content and low G+C content (24.9%). The mt gene order for S. digitata is the same as those for O. volvulus, D. immitis and B. malayi but it is distinctly different from other nematodes compared. The start codons inferred in the mt genome of S. digitata are TTT, ATT, TTG, ATG, GTT and ATA. Interestingly, the initiation codon TTT is unique to S. digitata mt genome and four protein-coding genes use this codon as a translation initiation codon. Five protein-coding genes use TAG as a stop codon whereas three genes use TAA and four genes use T as a termination codon. Out of 64 possible codons, only 57 are used for mitochondrial protein-coding genes of S. digitata. T-rich codons such as TTT (18.9%), GTT (7.9%), TTG (7.8%), TAT (7%), ATT (5.7%), TCT (4.8%) and TTA (4.1%) are used more frequently. This pattern of codon usage reflects the strong bias for T in the mt genome of S. digitata. In conclusion, the present investigation provides new molecular data for future studies of the comparative mitochondrial genomics and systematic of parasitic nematodes of socio-economic importance. 2010 Elsevier B.V. All rights reserved.
Musto, H; Romero, H; Zavala, A; Jabbari, K; Bernardi, G
1999-07-01
We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection.
Romero, H; Zavala, A; Musto, H
2000-01-25
It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.
Analysis of amino acid and codon usage in Paramecium bursaria.
Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo
2015-10-07
The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In order to characterize the evolutionary adaptations of avian paramyxovirus 1 (APMV-1) genomes, we have compared codon usage and codon adaptation indexes among groups of Newcastle disease viruses that differ in biological, ecological, and genetic characteristics. We have used available GenBank com...
Charles, Hubert; Calevro, Federica; Vinuelas, José; Fayard, Jean-Michel; Rahbe, Yvan
2006-01-01
Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera has been overcome by the high mutational bias towards AT bases. However, several lines of evidence for codon usage selection are given here. A significant correlation was found between tRNA relative abundances and codon composition of Buchnera genes. A significant codon usage bias was found for the choice of rare codons in Buchnera: C-ending codons are preferred in highly expressed genes, whereas G-ending codons are avoided. This bias is not explained by GC skew in the bacteria and might correspond to a selection for perfect matching between codon–anticodon pairs for some essential amino acids in Buchnera proteins. Nutritional stress applied to the aphid host induced a significant overexpression of most of the tRNA isoacceptors in bacteria. Although, molecular regulation of the tRNA operons in Buchnera was not investigated, a correlation between relative expression levels and organization in transcription unit was found in the genome of Buchnera. PMID:16963497
SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage
Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent
2016-01-01
Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173
Mitochondrial genetic codes evolve to match amino acid requirements of proteins.
Swire, Jonathan; Judson, Olivia P; Burt, Austin
2005-01-01
Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.
Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath
2017-08-23
Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.
Quach, Tommy; Brooks, Daniel M; Miranda, Hector C
2016-01-01
The complete mitochondrial genome of the Palawan peacock-pheasant Polyplectron napoleonis is 16,710 bp and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control-region. All protein-coding genes use the standard ATG start codon, except for cox1 which has GTG start codon. Seven out of 13 PCGs have TAA stop codons, two have AGG (cox1 and nd6), and three PCGs (nd2, cox2 and nd4) have incomplete stop codon of just T- - nucleotide.
Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila.
Chao, Anna T; Dierick, Herman A; Addy, Tracie M; Bejsovec, Amy
2003-01-01
In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. PMID:14573473
Codon Usage Bias and Determining Forces in Taenia solium Genome.
Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng
2015-12-01
The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.
CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
Kuscu, Cem; Parlak, Mahmut; Tufan, Turan; Yang, Jiekun; Szlachta, Karol; Wei, Xiaolong; Mammadov, Rashad; Adli, Mazhar
2017-07-01
CRISPR-Cas9-induced DNA damage may have deleterious effects at high-copy-number genomic regions. Here, we use CRISPR base editors to knock out genes by changing single nucleotides to create stop codons. We show that the CRISPR-STOP method is an efficient and less deleterious alternative to wild-type Cas9 for gene-knockout studies. Early stop codons can be introduced in ∼17,000 human genes. CRISPR-STOP-mediated targeted screening demonstrates comparable efficiency to WT Cas9, which indicates the suitability of our approach for genome-wide functional screenings.
L-MPZ, a Novel Isoform of Myelin P0, Is Produced by Stop Codon Readthrough*
Yamaguchi, Yoshihide; Hayashi, Akiko; Campagnoni, Celia W.; Kimura, Akio; Inuzuka, Takashi; Baba, Hiroko
2012-01-01
Myelin protein zero (P0 or MPZ) is a major myelin protein (∼30 kDa) expressed in the peripheral nervous system (PNS) in terrestrial vertebrates. Several groups have detected a P0-related 36-kDa (or 35-kDa) protein that is expressed in the PNS as an antigen for the serum IgG of patients with neuropathy. The molecular structure and function of this 36-kDa protein are, however, still unknown. We hypothesized that the 36-kDa protein may be derived from P0 mRNA by stop codon readthrough. We found a highly conserved region after the regular stop codon in predicted sequences from the 3′-UTR of P0 in higher animals. MS of the 36-kDa protein revealed that both P0 peptides and peptides deduced from the P0 3′-UTR sequence were found among the tryptic fragments. In transfected cells and in an in vitro transcription/translation system, the 36-kDa molecule was also produced from the identical mRNA that produced P0. We designated this 36-kDa molecule as large myelin protein zero (L-MPZ), a novel isoform of P0 that contains an additional domain at the C terminus. In the PNS, L-MPZ was localized in compact myelin. In transfected cells, just like P0, L-MPZ was localized at cell-cell adhesion sites in the plasma membrane. These results suggest that L-MPZ produced by the stop codon readthrough mechanism is potentially involved in myelination. Since this is the first finding of stop codon readthrough in a common mammalian protein, detailed analysis of L-MPZ expression will help to understand the mechanism of stop codon readthrough in mammals. PMID:22457349
ERIC Educational Resources Information Center
Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.
2016-01-01
Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon…
Alnazawi, Mohamed; Altaher, Abdallah; Kandeel, Mahmoud
2017-01-01
Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.
Oliver, J L; Marín, A; Martínez-Zapater, J M
1990-01-01
During plant evolution, some plastid genes have been moved to the nuclear genome. These transferred genes are now correctly expressed in the nucleus, their products being transported into the chloroplast. We compared the base compositions, the distributions of some dinucleotides and codon usages of transferred, nuclear and chloroplast genes in two dicots and two monocots plant species. Our results indicate that transferred genes have adjusted to nuclear base composition and codon usage, being now more similar to the nuclear genes than to the chloroplast ones in every species analyzed. PMID:2308837
Chi, Xiaojuan; Wang, Song; Ma, Yanmei; Chen, Jilong
2017-01-01
The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV. PMID:28880881
Chen, Ye; Li, Xinxin; Chi, Xiaojuan; Wang, Song; Ma, Yanmei; Chen, Jilong
2017-01-01
The classical swine fever virus (CSFV), circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC) showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA) and translational selection-correlation analysis between the general average hydropathicity (Gravy) and aromaticity (Aroma), and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s). Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.
Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.
Bae, Young-An
2017-04-01
Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.
Codon usage analysis of photolyase encoding genes of cyanobacteria inhabiting diverse habitats.
Rajneesh; Pathak, Jainendra; Kannaujiya, Vinod K; Singh, Shailendra P; Sinha, Rajeshwar P
2017-07-01
Nucleotide and amino acid compositions were studied to determine the genomic and structural relationship of photolyase gene in freshwater, marine and hot spring cyanobacteria. Among three habitats, photolyase encoding genes from hot spring cyanobacteria were found to have highest GC content. The genomic GC content was found to influence the codon usage and amino acid variability in photolyases. The third position of codon was found to have more effect on amino acid variability in photolyases than the first and second positions of codon. The variation of amino acids Ala, Asp, Glu, Gly, His, Leu, Pro, Gln, Arg and Val in photolyases of three different habitats was found to be controlled by first position of codon (G1C1). However, second position (G2C2) of codon regulates variation of Ala, Cys, Gly, Pro, Arg, Ser, Thr and Tyr contents in photolyases. Third position (G3C3) of codon controls incorporation of amino acids such as Ala, Phe, Gly, Leu, Gln, Pro, Arg, Ser, Thr and Tyr in photolyases from three habitats. Photolyase encoding genes of hot spring cyanobacteria have 85% codons with G or C at third position, whereas marine and freshwater cyanobacteria showed 82 and 60% codons, respectively, with G or C at third position. Principal component analysis (PCA) showed that GC content has a profound effect in separating the genes along the first major axis according to their RSCU (relative synonymous codon usage) values, and neutrality analysis indicated that mutational pressure has resulted in codon bias in photolyase genes of cyanobacteria.
Floquet, Célia; Hatin, Isabelle; Rousset, Jean-Pierre; Bidou, Laure
2012-01-01
The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the −1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable. PMID:22479203
Villada, Juan C.; Brustolini, Otávio José Bernardes
2017-01-01
Abstract Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent–non-optimal cluster and enrichment at the 5′-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. PMID:28449100
Villada, Juan C; Brustolini, Otávio José Bernardes; Batista da Silveira, Wendel
2017-08-01
Gene codon optimization may be impaired by the misinterpretation of frequency and optimality of codons. Although recent studies have revealed the effects of codon usage bias (CUB) on protein biosynthesis, an integrated perspective of the biological role of individual codons remains unknown. Unlike other previous studies, we show, through an integrated framework that attributes of codons such as frequency, optimality and positional dependency should be combined to unveil individual codon contribution for protein biosynthesis. We designed a codon quantification method for assessing CUB as a function of position within genes with a novel constraint: the relativity of position-dependent codon usage shaped by coding sequence length. Thus, we propose a new way of identifying the enrichment, depletion and non-uniform positional distribution of codons in different regions of yeast genes. We clustered codons that shared attributes of frequency and optimality. The cluster of non-optimal codons with rare occurrence displayed two remarkable characteristics: higher codon decoding time than frequent-non-optimal cluster and enrichment at the 5'-end region, where optimal codons with the highest frequency are depleted. Interestingly, frequent codons with non-optimal adaptation to tRNAs are uniformly distributed in the Saccharomyces cerevisiae genes, suggesting their determinant role as a speed regulator in protein elongation. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Single nucleotide polymorphisms of Helicobacter pylori dupA that lead to premature stop codons.
Moura, Sílvia B; Costa, Rafaella F A; Anacleto, Charles; Rocha, Gifone A; Rocha, Andreia M C; Queiroz, Dulciene M M
2012-06-01
The detection of the putative disease-specific Helicobacter pylori marker duodenal ulcer promoting gene A (dupA) is currently based on PCR detection of jhp0917 and jhp0918 that form the gene. However, mutations that lead to premature stop codons that split off the dupA leading to truncated products cannot be evaluated by PCR. We directly sequence the complete dupA of 75 dupA-positive strains of H. pylori isolated from patients with gastritis (n = 26), duodenal ulcer (n = 29), and gastric carcinoma (n = 20), to search for frame-shifting mutations that lead to stop codon. Thirty-four strains had single nucleotide mutations in dupA that lead to premature stop codon creating smaller products than the predicted 1839 bp product and, for this reason, were considered as dupA-negative. Intact dupA was more frequently observed in strains isolated from duodenal ulcer patients (65.5%) than in patients with gastritis only (46.2%) or with gastric carcinoma (50%). In logistic analysis, the presence of the intact dupA independently associated with duodenal ulcer (OR = 5.06; 95% CI = 1.22-20.96, p = .02). We propose the primer walking methodology as a simple technique to sequence the gene. When we considered as dupA-positive only those strains that carry dupA gene without premature stop codons, the gene was associated with duodenal ulcer and, therefore, can be used as a marker for this disease in our population. © 2012 Blackwell Publishing Ltd.
Liu, Cunbao; Yang, Xu; Yao, Yufeng; Huang, Weiwei; Sun, Wenjia; Ma, Yanbing
2014-05-01
Two versions of an optimized gene that encodes human papilloma virus type 16 major protein L1 were designed according to the codon usage frequency of Pichia pastoris. Y16 was highly expressed in both P. pastoris and Hansenula polymorpha. M16 expression was as efficient as that of Y16 in P. pastoris, but merely detectable in H. polymorpha even though transcription levels of M16 and Y16 were similar. H. polymorpha had a unique codon usage frequency that contains many more rare codons than Saccharomyces cerevisiae or P. pastoris. These findings indicate that even codon-optimized genes that are expressed well in S. cerevisiae and P. pastoris may be inefficiently expressed in H. polymorpha; thus rare codons must be avoided when universal optimized gene versions are designed to facilitate expression in a variety of yeast expression systems, especially H. polymorpha is involved.
Romero, Héctor; Zavala, Alejandro; Musto, Héctor
2000-01-01
The patterns of synonymous codon choices of the completely sequenced genome of the bacterium Chlamydia trachomatis were analysed. We found that the most important source of variation among the genes results from whether the sequence is located on the leading or lagging strand of replication, resulting in an over representation of G or C, respectively. This can be explained by different mutational biases associated to the different enzymes that replicate each strand. Next we found that most highly expressed sequences are located on the leading strand of replication. From this result, replicational-transcriptional selection can be invoked. Then, when the genes located on the leading strand are studied separately, the correspondence analysis detects a principal trend which discriminates between lowly and highly expressed sequences, the latter displaying a different codon usage pattern than the former, suggesting selection for translation, which is reinforced by the fact that Ks values between orthologous sequences from C.trachomatis and Chlamydia pneumoniae are much smaller in highly expressed genes. Finally, synonymous codon choices appear to be influenced by the hydropathy of each encoded protein and by the degree of amino acid conservation. Therefore, synonymous codon usage in C.trachomatis seems to be the result of a very complex balance among different factors, which rises the problem of whether the forces driving codon usage patterns among microorganisms are rather more complex than generally accepted. PMID:10773076
Romero, H; Zavala, A; Musto, H
2000-05-15
The patterns of synonymous codon choices of the completely sequenced genome of the bacterium Chlamydia trachomatis were analysed. We found that the most important source of variation among the genes results from whether the sequence is located on the leading or lagging strand of replication, resulting in an over representation of G or C, respectively. This can be explained by different mutational biases associated to the different enzymes that replicate each strand. Next we found that most highly expressed sequences are located on the leading strand of replication. From this result, replicational-transcriptional selection can be invoked. Then, when the genes located on the leading strand are studied separately, the correspondence analysis detects a principal trend which discriminates between lowly and highly expressed sequences, the latter displaying a different codon usage pattern than the former, suggesting selection for translation, which is reinforced by the fact that Ks values between orthologous sequences from C. trachomatis and Chlamydia pneumoniae are much smaller in highly expressed genes. Finally, synonymous codon choices appear to be influenced by the hydropathy of each encoded protein and by the degree of amino acid conservation. Therefore, synonymous codon usage in C.trachomatis seems to be the result of a very complex balance among different factors, which rises the problem of whether the forces driving codon usage patterns among microorganisms are rather more complex than generally accepted.
Genomic adaptation of the ISA virus to Salmo salar codon usage
2013-01-01
Background The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Methods Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Results Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Conclusions Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon usage, avoiding the general behavior of host genes. This is probably due to its recent emergence among farmed Salmon populations. PMID:23829271
Genomic adaptation of the ISA virus to Salmo salar codon usage.
Tello, Mario; Vergara, Francisco; Spencer, Eugenio
2013-07-05
The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon usage, avoiding the general behavior of host genes. This is probably due to its recent emergence among farmed Salmon populations.
Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit
2016-08-01
Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index.
Castro-Chavez, Fernando
2011-01-01
My previous theoretical research shows that the rotating circular genetic code is a viable tool to make easier to distinguish the rules of variation applied to the amino acid exchange; it presents a precise and positional bio-mathematical balance of codons, according to the amino acids they codify. Here, I demonstrate that when using the conventional or classic circular genetic code, a clearer pattern for the human codon usage per amino acid and per genome emerges. The most used human codons per amino acid were the ones ending with the three hydrogen bond nucleotides: C for 12 amino acids and G for the remaining 8, plus one codon for arginine ending in A that was used approximately with the same frequency than the one ending in G for this same amino acid (plus *). The most used codons in man fall almost all the time at the rightmost position, clockwise, ending either in C or in G within the circular genetic code. The human codon usage per genome is compared to other organisms such as fruit flies (Drosophila melanogaster), squid (Loligo pealei), and many others. The biosemiotic codon usage of each genomic population or ‘Theme’ is equated to a ‘molecular language’. The C/U choice or difference, and the G/A difference in the third nucleotide of the most used codons per amino acid are illustrated by comparing the most used codons per genome in humans and squids. The human distribution in the third position of most used codons is a 12-8-2, C-G-A, nucleotide ending signature, while the squid distribution in the third position of most used codons was an odd, or uneven, distribution in the third position of its most used codons: 13-6-3, U-A-G, as its nucleotide ending signature. These findings may help to design computational tools to compare human genomes, to determine the exchangeability between compatible codons and amino acids, and for the early detection of incompatible changes leading to hereditary diseases. PMID:22997484
Optimizing doped libraries by using genetic algorithms
NASA Astrophysics Data System (ADS)
Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas
1997-01-01
The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore, the calculations probe the fitness landscape locally and allow apreliminary assessment of its structure.
Akhmaloka; Susilowati, Prima Endang; Subandi; Madayanti, Fida
2008-01-01
Termination translation in Saccharomyces cerevisiae is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. Two regions in human eRF1, position at 281-305 and position at 411-415, were proposed to be involved on the interaction to eRF3. In this study we have constructed and characterized yeast eRF1 mutant at position 410 (correspond to 415 human eRF1) from tyrosine to serine residue resulting eRF1(Y410S). The mutations did not affect the viability and temperature sensitivity of the cell. The stop codons suppression of the mutant was analyzed in vivo using PGK-stop codon-LACZ gene fusion and showed that the suppression of the mutant was significantly increased in all of codon terminations. The suppression on UAG codon was the highest increased among the stop codons by comparing the suppression of the wild type respectively. In vitro interaction between eRF1 (mutant and wild type) to eRF3 were carried out using eRF1-(His)6 and eRF1(Y410S)-(His)6 expressed in Escherichia coli and indigenous Saccharomyces cerevisiae eRF3. The results showed that the binding affinity of eRF1(Y410S) to eRF3 was decreased up to 20% of the wild type binding affinity. Computer modeling analysis using Swiss-Prot and Amber version 9.0 programs revealed that the overall structure of eRF1(Y410S) has no significant different with the wild type. However, substitution of tyrosine to serine triggered the structural change on the other motif of C-terminal domain of eRF1. The data suggested that increasing stop codon suppression and decreasing of the binding affinity of eRF1(Y410S) were probably due to the slight modification on the structure of the C-terminal domain. PMID:18463713
Termination and read-through proteins encoded by genome segment 9 of Colorado tick fever virus.
Mohd Jaafar, Fauziah; Attoui, Houssam; De Micco, Philippe; De Lamballerie, Xavier
2004-08-01
Genome segment 9 (Seg-9) of Colorado tick fever virus (CTFV) is 1884 bp long and contains a large open reading frame (ORF; 1845 nt in length overall), although a single in-frame stop codon (at nt 1052-1054) reduces the ORF coding capacity by approximately 40 %. However, analyses of highly conserved RNA sequences in the vicinity of the stop codon indicate that it belongs to a class of 'leaky terminators'. The third nucleotide positions in codons situated both before and after the stop codon, shows the highest variability, suggesting that both regions are translated during virus replication. This also suggests that the stop signal is functionally leaky, allowing read-through translation to occur. Indeed, both the truncated 'termination' protein and the full-length 'read-through' protein (VP9 and VP9', respectively) were detected in CTFV-infected cells, in cells transfected with a plasmid expressing only Seg-9 protein products, and in the in vitro translation products from undenatured Seg-9 ssRNA. The ratios of full-length and truncated proteins generated suggest that read-through may be down-regulated by other viral proteins. Western blot analysis of infected cells and purified CTFV showed that VP9 is a structural component of the virion, while VP9' is a non-structural protein.
NASA Astrophysics Data System (ADS)
Sharma, Ajeet K.; Ahmed, Nabeel; O'Brien, Edward P.
2018-02-01
Ribosome profiling experiments have found greater than 100-fold variation in ribosome density along mRNA transcripts, indicating that individual codon elongation rates can vary to a similar degree. This wide range of elongation times, coupled with differences in codon usage between transcripts, suggests that the average codon translation-rate per gene can vary widely. Yet, ribosome run-off experiments have found that the average codon translation rate for different groups of transcripts in mouse stem cells is constant at 5.6 AA/s. How these seemingly contradictory results can be reconciled is the focus of this study. Here, we combine knowledge of the molecular factors shown to influence translation speed with genomic information from Escherichia coli, Saccharomyces cerevisiae and Homo sapiens to simulate the synthesis of cytosolic proteins in these organisms. The model recapitulates a near constant average translation rate, which we demonstrate arises because the molecular determinants of translation speed are distributed nearly randomly amongst most of the transcripts. Consequently, codon translation rates are also randomly distributed and fast-translating segments of a transcript are likely to be offset by equally probable slow-translating segments, resulting in similar average elongation rates for most transcripts. We also show that the codon usage bias does not significantly affect the near random distribution of codon translation rates because only about 10 % of the total transcripts in an organism have high codon usage bias while the rest have little to no bias. Analysis of Ribo-Seq data and an in vivo fluorescent assay supports these conclusions.
Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?
Freire, Caio César de Melo
2018-01-01
Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host. PMID:29385205
Prevost, Luanna B.; Smith, Michelle K.; Knight, Jennifer K.
2016-01-01
Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students’ ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. PMID:27909016
Sun, Yu; Tamarit, Daniel
2017-01-01
Abstract The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites. PMID:27540085
Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter
2016-02-19
Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.
USDA-ARS?s Scientific Manuscript database
We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...
Analysis of codon usage in beta-tubulin sequences of helminths.
von Samson-Himmelstjerna, G; Harder, A; Failing, K; Pape, M; Schnieder, T
2003-07-01
Codon usage bias has been shown to be correlated with gene expression levels in many organisms, including the nematode Caenorhabditis elegans. Here, the codon usage (cu) characteristics for a set of currently available beta-tubulin coding sequences of helminths were assessed by calculating several indices, including the effective codon number (Nc), the intrinsic codon deviation index (ICDI), the P2 value and the mutational response index (MRI). The P2 value gives a measure of translational pressure, which has been shown to be correlated to high gene expression levels in some organisms, but it has not yet been analysed in that respect in helminths. For all but two of the C. elegans beta-tubulin coding sequences investigated, the P2 value was the only index that indicated the presence of codon usage bias. Therefore, we propose that in general the helminth beta-tubulin sequences investigated here are not expressed at high levels. Furthermore, we calculated the correlation coefficients for the cu patterns of the helminth beta-tubulin sequences compared with those of highly expressed genes in organisms such as Escherichia coli and C. elegans. It was found that beta-tubulin cu patterns for all sequences of members of the Strongylida were significantly correlated to those for highly expressed C. elegans genes. This approach provides a new measure for comparing the adaptation of cu of a particular coding sequence with that of highly expressed genes in possible expression systems.Finally, using the cu patterns of the sequences studied, a phylogenetic tree was constructed. The topology of this tree was very much in concordance with that of a phylogeny based on small subunit ribosomal DNA sequence alignments.
Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii.
Lee, Song F; Li, Yi-Jing; Halperin, Scott A
2009-11-01
One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.
Panicker, Indu S.; Browning, Glenn F.; Markham, Philip F.
2015-01-01
While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086
Development of a codon optimization strategy using the efor RED reporter gene as a test case
NASA Astrophysics Data System (ADS)
Yip, Chee-Hoo; Yarkoni, Orr; Ajioka, James; Wan, Kiew-Lian; Nathan, Sheila
2018-04-01
Synthetic biology is a platform that enables high-level synthesis of useful products such as pharmaceutically related drugs, bioplastics and green fuels from synthetic DNA constructs. Large-scale expression of these products can be achieved in an industrial compliant host such as Escherichia coli. To maximise the production of recombinant proteins in a heterologous host, the genes of interest are usually codon optimized based on the codon usage of the host. However, the bioinformatics freeware available for standard codon optimization might not be ideal in determining the best sequence for the synthesis of synthetic DNA. Synthesis of incorrect sequences can prove to be a costly error and to avoid this, a codon optimization strategy was developed based on the E. coli codon usage using the efor RED reporter gene as a test case. This strategy replaces codons encoding for serine, leucine, proline and threonine with the most frequently used codons in E. coli. Furthermore, codons encoding for valine and glycine are substituted with the second highly used codons in E. coli. Both the optimized and original efor RED genes were ligated to the pJS209 plasmid backbone using Gibson Assembly and the recombinant DNAs were transformed into E. coli E. cloni 10G strain. The fluorescence intensity per cell density of the optimized sequence was improved by 20% compared to the original sequence. Hence, the developed codon optimization strategy is proposed when designing an optimal sequence for heterologous protein production in E. coli.
Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.
Bohlin, Jon; Brynildsrud, Ola; Vesth, Tammi; Skjerve, Eystein; Ussery, David W
2013-01-01
Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study.
Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes
Bohlin, Jon; Brynildsrud, Ola; Vesth, Tammi; Skjerve, Eystein; Ussery, David W.
2013-01-01
Introduction Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. Results We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. Conclusion Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study. PMID:23922837
Origin of noncoding DNA sequences: molecular fossils of genome evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naora, H.; Miyahara, K.; Curnow, R.N.
The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. The authors propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approx. 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approx. 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stopmore » codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. They attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.« less
Salvatori, Francesca; Pappadà, Mariangela; Breveglieri, Giulia; D'Aversa, Elisabetta; Finotti, Alessia; Lampronti, Ilaria; Gambari, Roberto; Borgatti, Monica
2018-05-15
Nonsense mutations promote premature translational termination, introducing stop codons within the coding region of mRNAs and causing inherited diseases, including thalassemia. For instance, in β 0 39 thalassemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, ribosomal read-through molecules, such as aminoglycoside antibiotics, have been tested on mRNAs carrying premature stop codons. These findings have introduced new hopes for the development of a pharmacological approach to the β 0 39 thalassemia therapy. While several strategies, designed to enhance translational read-through, have been reported to inhibit NMD efficiency concomitantly, experimental tools for systematic analysis of mammalian NMD inhibition by translational read-through are lacking. We developed a human cellular model of the β 0 39 thalassemia mutation with UPF-1 suppressed and showing a partial NMD suppression. This novel cellular model could be used for the screening of molecules exhibiting preferential read-through activity allowing a great rescue of the mutated transcripts.
Relative codon adaptation: a generic codon bias index for prediction of gene expression.
Fox, Jesse M; Erill, Ivan
2010-06-01
The development of codon bias indices (CBIs) remains an active field of research due to their myriad applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as a novel CBI able to estimate codon bias without using a reference set. The results of this new index when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications to conclude that natural selection favours higher expression and enhanced codon usage optimization in short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful reference-set-based index that directly takes into account the genomic base composition. Finally, we show that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating on the CAI reference set and that this improvement is significantly larger when analysing genomes with high mutational bias.
Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast.
Beznosková, Petra; Gunišová, Stanislava; Valášek, Leoš Shivaya
2016-03-01
The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3. © 2016 Beznosková et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.
Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T
2017-11-14
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease. Copyright © 2017 Jones et al.
Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology
Jones, Jennifer E.; Long, Kristin M.; Whitmore, Alan C.; Sanders, Wes; Thurlow, Lance R.; Brown, Julia A.; Morrison, Clayton R.; Vincent, Heather; Browning, Christian; Moorman, Nathaniel; Lim, Jean K.
2017-01-01
ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. PMID:29138302
Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster
Dunn, Joshua G; Foo, Catherine K; Belletier, Nicolette G; Gavis, Elizabeth R; Weissman, Jonathan S
2013-01-01
Ribosomes can read through stop codons in a regulated manner, elongating rather than terminating the nascent peptide. Stop codon readthrough is essential to diverse viruses, and phylogenetically predicted to occur in a few hundred genes in Drosophila melanogaster, but the importance of regulated readthrough in eukaryotes remains largely unexplored. Here, we present a ribosome profiling assay (deep sequencing of ribosome-protected mRNA fragments) for Drosophila melanogaster, and provide the first genome-wide experimental analysis of readthrough. Readthrough is far more pervasive than expected: the vast majority of readthrough events evolved within D. melanogaster and were not predicted phylogenetically. The resulting C-terminal protein extensions show evidence of selection, contain functional subcellular localization signals, and their readthrough is regulated, arguing for their importance. We further demonstrate that readthrough occurs in yeast and humans. Readthrough thus provides general mechanisms both to regulate gene expression and function, and to add plasticity to the proteome during evolution. DOI: http://dx.doi.org/10.7554/eLife.01179.001 PMID:24302569
Garver, K.A.; Conway, C.M.; Kurath, G.
2006-01-01
A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.
Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure.
Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S
2011-03-01
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site. Copyright © 2010 Elsevier Inc. All rights reserved.
Self-organizing approach for meta-genomes.
Zhu, Jianfeng; Zheng, Wei-Mou
2014-12-01
We extend the self-organizing approach for annotation of a bacterial genome to analyze the raw sequencing data of the human gut metagenome without sequence assembling. The original approach divides the genomic sequence of a bacterium into non-overlapping segments of equal length and assigns to each segment one of seven 'phases', among which one is for the noncoding regions, three for the direct coding regions to indicate the three possible codon positions of the segment starting site, and three for the reverse coding regions. The noncoding phase and the six coding phases are described by two frequency tables of the 64 triplet types or 'codon usages'. A set of codon usages can be used to update the phase assignment and vice versa. An iteration after an initialization leads to a convergent phase assignment to give an annotation of the genome. In the extension of the approach to a metagenome, we consider a mixture model of a number of categories described by different codon usages. The Illumina Genome Analyzer sequencing data of the total DNA from faecal samples are then examined to understand the diversity of the human gut microbiome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nonneutral GC3 and retroelement codon mimicry in Phytophthora.
Jiang, Rays H Y; Govers, Francine
2006-10-01
Phytophthora is a genus entirely comprised of destructive plant pathogens. It belongs to the Stramenopila, a unique branch of eukaryotes, phylogenetically distinct from plants, animals, or fungi. Phytophthora genes show a strong preference for usage of codons ending with G or C (high GC3). The presence of high GC3 in genes can be utilized to differentiate coding regions from noncoding regions in the genome. We found that both selective pressure and mutation bias drive codon bias in Phytophthora. Indicative for selection pressure is the higher GC3 value of highly expressed genes in different Phytophthora species. Lineage specific GC increase of noncoding regions is reminiscent of whole-genome mutation bias, whereas the elevated Phytophthora GC3 is primarily a result of translation efficiency-driven selection. Heterogeneous retrotransposons exist in Phytophthora genomes and many of them vary in their GC content. Interestingly, the most widespread groups of retroelements in Phytophthora show high GC3 and a codon bias that is similar to host genes. Apparently, selection pressure has been exerted on the retroelement's codon usage, and such mimicry of host codon bias might be beneficial for the propagation of retrotransposons.
Methylation of class I translation termination factors: structural and functional aspects.
Graille, Marc; Figaro, Sabine; Kervestin, Stéphanie; Buckingham, Richard H; Liger, Dominique; Heurgué-Hamard, Valérie
2012-07-01
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
The complete mitochondrial genome of the Longnose skate: Raja rhina (Rajiformes, Rajidae).
Jeong, Dageum; Lee, Youn-Ho
2015-02-01
The complete sequence of mitochondrial DNA of a longnose skate, Raja rhina was determined for the first time. It is 16,910 bp in length containing 2 rRNA, 22 tRNA and 13 protein coding genes with the same gene order and structure as those of other Rajidae species. The nucleotide of L-strand is composed of 30.1% A, 27.2% C, 28.5% T and 14.2% G, showing a slight A + T bias. The G is the least used base and markedly lower at the third codon position (5.4%). Twelve of the 13 protein coding genes use ATG as their start codon while the COX1 starts with GTG. As for stop codon, only ND4 shows incomplete stop codon TA. This mitogenome is the first report for a species of the genus Raja, and providing a valuable resource of genetic information for understanding the phylogenetic relationship and the evolution of the genus Raja as well as the family, Rajidae.
Behura, Susanta K.; Severson, David W.
2014-01-01
The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953
Whittle, Carrie A.; Extavour, Cassandra G.
2016-01-01
Abstract Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model. PMID:27017527
Neves, Fabiana; Abrantes, Joana; Esteves, Pedro J
2016-07-01
The interactions between chemokines and their receptors are crucial for differentiation and activation of inflammatory cells. CC chemokine ligand 11 (CCL11) binds to CCR3 and to CCR5 that in leporids underwent gene conversion with CCR2. Here, we genetically characterized CCL11 in lagomorphs (leporids and pikas). All lagomorphs have a potentially functional CCL11, and the Pygmy rabbit has a mutation in the stop codon that leads to a longer protein. Other mammals also have mutations at the stop codon that result in proteins with different lengths. By employing maximum likelihood methods, we observed that, in mammals, CCL11 exhibits both signatures of purifying and positive selection. Signatures of purifying selection were detected in sites important for receptor binding and activation. Of the three sites detected as under positive selection, two were located close to the stop codon. Our results suggest that CCL11 is functional in all lagomorphs, and that the signatures of purifying and positive selection in mammalian CCL11 probably reflect the protein's biological roles. © The Author(s) 2016.
Khrustalev, Vladislav Victorovich
2009-01-01
Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).
Colagrossi, Luna; Hermans, Lucas E; Salpini, Romina; Di Carlo, Domenico; Pas, Suzan D; Alvarez, Marta; Ben-Ari, Ziv; Boland, Greet; Bruzzone, Bianca; Coppola, Nicola; Seguin-Devaux, Carole; Dyda, Tomasz; Garcia, Federico; Kaiser, Rolf; Köse, Sukran; Krarup, Henrik; Lazarevic, Ivana; Lunar, Maja M; Maylin, Sarah; Micheli, Valeria; Mor, Orna; Paraschiv, Simona; Paraskevis, Dimitros; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Simon, François; Stanojevic, Maja; Stene-Johansen, Kathrine; Tihic, Nijaz; Trimoulet, Pascale; Verheyen, Jens; Vince, Adriana; Lepej, Snjezana Zidovec; Weis, Nina; Yalcinkaya, Tülay; Boucher, Charles A B; Wensing, Annemarie M J; Perno, Carlo F; Svicher, Valentina
2018-06-01
HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe. This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-DNA and with an available HBsAg-sequence. The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D (resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined. Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence. At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend. By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape mutation (OR[95%CI]:2.20[1.32-3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by analysing drug-naïve patients (29.5% vs 21.2%, P = 0.032). Strong correlation was observed between sP120T and rtM204I/V (P < 0.001), and their co-presence determined an increased HBV-DNA. At least one NA-induced immune-escape mutation occurred in 28.6% of patients, and their selection correlated with genotype-A (OR[95%CI]:2.03[1.32-3.10],P = 0.001). Finally, stop-codons are present in 8.4% of patients also at HBsAg-positions 172 and 182, described to enhance viral oncogenic-properties. Immune-escape mutations and stop-codons develop in a large fraction of NA-exposed patients from Europe. This may represent a potential threat for horizontal and vertical HBV transmission also to vaccinated persons, and fuel drug-resistance emergence.
Gubbens, Jacob; Kim, Soo Jung; Yang, Zhongying; Johnson, Arthur E.; Skach, William R.
2010-01-01
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies. PMID:20581130
On Relevance of Codon Usage to Expression of Synthetic and Natural Genes in Escherichia coli
Supek, Fran; Šmuc, Tomislav
2010-01-01
A recent investigation concluded that codon bias did not affect expression of green fluorescent protein (GFP) variants in Escherichia coli, while stability of an mRNA secondary structure near the 5′ end played a dominant role. We demonstrate that combining the two variables using regression trees or support vector regression yields a biologically plausible model with better support in the GFP data set and in other experimental data: codon usage is relevant for protein levels if the 5′ mRNA structures are not strong. Natural E. coli genes had weaker 5′ mRNA structures than the examined set of GFP variants and did not exhibit a correlation between the folding free energy of 5′ mRNA structures and protein expression. PMID:20421604
The complete mitochondrial genome of the Korean skate: Hongeo koreana (Rajiformes, Rajidae).
Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Lee, Youn-Ho
2014-12-01
The complete mitochondrial genome of the Korean skate, Hongeo koreana, the sole member of its genus, is investigated for the first time. The genome consists of 16,906 bp in length including 2 rRNA, 22 tRNA and 13 protein coding genes with the same gene order and structure of the genome as those of other Rajidae species. The overall nucleotide composition of the L-strand is A = 29.8%, C = 27.9%, T = 27.9% and G = 14.3%, showing a high A + T bias. The anti-G bias (6.0%) is more significant in the third codon position. Twelve of the 13 protein-coding genes use ATG as their start codon while the COX1 gene starts with GTG. For stop codon, ND3 and ND4 genes show incomplete stop codon T. The mitogenome sequence of H. koreana will provide important information on the evolution and the phylogenetic relation of the genus Hongeo in relation to the other genera of the family Rajidae.
Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata
2009-01-01
We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380
Absence of classical heat shock response in the citrus pathogen Xylella fastidiosa.
Martins-de-Souza, Daniel; Martins, Daniel; Astua-Monge, Gustavo; Coletta-Filho, Helvécio Della; Winck, Flavia Vischi; Baldasso, Paulo Aparecido; de Oliveira, Bruno Menezes; Marangoni, Sérgio; Machado, Marcos Antônio; Novello, José Camillo; Smolka, Marcus Bustamante
2007-02-01
The fastidious bacterium Xylella fastidiosa is associated with important crop diseases worldwide. We have recently shown that X. fastidiosa is a peculiar organism having unusually low values of gene codon bias throughout its genome and, unexpectedly, in the group of the most abundant proteins. Here, we hypothesized that the lack of codon usage optimization in X. fastidiosa would incapacitate this organism to undergo quick and massive changes in protein expression as occurs in a classical stress response. Proteomic analysis of the response to heat stress in X. fastidiosa revealed that no changes in protein expression can be detected. Moreover, stress-inducible proteins identified in the closely related citrus pathogen Xanthomonas axonopodis pv citri were found to be constitutively expressed in X. fastidiosa. These proteins have extremely high codon bias values in the X. citri and other well-studied organisms, but low values in X. fastidiosa. Because biased codon usage is well known to correlate to the rate of protein synthesis, we speculate that the peculiar codon bias distribution in X. fastidiosa is related to the absence of a classical stress response, and, probably, alternative strategies for survival of X. fastidiosa under stressfull conditions.
Somatic mutations in cancer: Stochastic versus predictable.
Gold, Barry
2017-02-01
The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes. Copyright © 2017. Published by Elsevier B.V.
A common periodic table of codons and amino acids.
Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z
2003-06-27
A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.
Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function
Bali, Vedrana; Bebok, Zsuzsanna
2015-01-01
Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479
O’Donoghue, Patrick; Prat, Laure; Heinemann, Ilka U.; Ling, Jiqiang; Odoi, Keturah; Liu, Wenshe R.; Söll, Dieter
2012-01-01
Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to ‘statistical protein’ that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNAPyl orthogonal pair cannot completely outcompete contamination by natural amino acids. PMID:23036644
Ge, Zhiyun; Quek, Bao Lin; Beemon, Karen L; Hogg, J Robert
2016-01-01
The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI: http://dx.doi.org/10.7554/eLife.11155.001 PMID:26744779
Structural insights into eRF3 and stop codon recognition by eRF1
Cheng, Zhihong; Saito, Kazuki; Pisarev, Andrey V.; Wada, Miki; Pisareva, Vera P.; Pestova, Tatyana V.; Gajda, Michal; Round, Adam; Kong, Chunguang; Lim, Mengkiat; Nakamura, Yoshikazu; Svergun, Dmitri I.; Ito, Koichi; Song, Haiwei
2009-01-01
Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1. PMID:19417105
Hofhuis, Julia; Schueren, Fabian; Nötzel, Christopher; Lingner, Thomas; Gärtner, Jutta; Jahn, Olaf
2016-01-01
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases. PMID:27881739
Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards "GC" Rich Codons.
Williams, Ernest; Place, Allen; Bachvaroff, Tsvetan
2017-04-27
Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen "core" dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression.
Saini, Jasmine; Hershberg, Uri
2015-01-01
The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire towards the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased towards focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased towards using only highly skewed V genes at all stages of their response. PMID:25660968
Saini, Jasmine; Hershberg, Uri
2015-05-01
The exceptional ability of B cells to diversify through somatic mutation and improve affinity of the repertoire toward the antigens is the cornerstone of adaptive immunity. Somatic mutation is not evenly distributed and exhibits certain micro-sequence specificities. We show here that the combination of somatic mutation targeting and the codon usage in human B cell receptor (BCR) Variable (V) genes create expected patterns of mutation and post mutation changes that are focused on their complementarity determining regions (CDR). T cell V genes are also skewed in targeting mutations but to a lesser extent and are lacking the codon usage bias observed in BCRs. This suggests that the observed skew in T cell receptors is due to their amino acid usage, which is similar to that of BCRs. The mutation targeting and the codon bias allow B cell CDRs to diversify by specifically accumulating nonconservative changes. We counted the distribution of mutations to CDR in 4 different human datasets. In all four cases we found that the number of actual mutations in the CDR correlated significantly with the V gene mutation biases to the CDR predicted by our models. Finally, it appears that the mutation bias in V genes indeed relates to their long-term survival in actual human repertoires. We observed that resting repertoires of B cells overexpressed V genes that were especially biased toward focused mutation and change in the CDR. This bias in V gene usage was somewhat relaxed at the height of the immune response to a vaccine, presumably because of the need for a wider diversity in a primary response. However, older patients did not retain this flexibility and were biased toward using only highly skewed V genes at all stages of their response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selenocysteine incorporation: A trump card in the game of mRNA decay
Shetty, Sumangala P.; Copeland, Paul R.
2015-01-01
The incorporation of the 21st amino acid, selenocysteine (Sec), occurs on mRNAs that harbor in-frame stop codons because the Sec-tRNASec recognizes a UGA codon. This sets up an intriguing interplay between translation elongation, translation termination and the complex machinery that marks mRNAs that contain premature termination codons for degradation, leading to nonsense mediated mRNA decay (NMD). In this review we discuss the intricate and complex relationship between this key quality control mechanism and the process of Sec incorporation in mammals. PMID:25622574
Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli.
Kulmala, Antti; Huovinen, Tuomas; Lamminmäki, Urpo
2017-06-19
Codon usage is one of the factors influencing recombinant protein expression. We were interested in the codon usage of an antibody Fab fragment gene exhibiting extreme toxicity in the E. coli host. The toxic synthetic human Fab gene contained domains optimized by the "one amino acid-one codon" method. We redesigned five segments of the Fab gene with a "codon harmonization" method described by Angov et al. and studied the effects of these changes on cell viability, Fab yield and display on filamentous phage using different vectors and bacterial strains. The harmonization considerably reduced toxicity, increased Fab expression from negligible levels to 10 mg/l, and restored the display on phage. Testing the impact of the individual redesigned segments revealed that the most significant effects were conferred by changes in the constant domain of the light chain. For some of the Fab gene variants, we also observed striking differences in protein yields when cloned from a chloramphenicol resistant vector into an identical vector, except with ampicillin resistance. In conclusion, our results show that the expression of a heterodimeric secretory protein can be improved by harmonizing selected DNA segments by synonymous codons and reveal additional complexity involved in heterologous protein expression.
Sequence similarity is more relevant than species specificity in probabilistic backtranslation.
Ferro, Alfredo; Giugno, Rosalba; Pigola, Giuseppe; Pulvirenti, Alfredo; Di Pietro, Cinzia; Purrello, Michele; Ragusa, Marco
2007-02-21
Backtranslation is the process of decoding a sequence of amino acids into the corresponding codons. All synthetic gene design systems include a backtranslation module. The degeneracy of the genetic code makes backtranslation potentially ambiguous since most amino acids are encoded by multiple codons. The common approach to overcome this difficulty is based on imitation of codon usage within the target species. This paper describes EasyBack, a new parameter-free, fully-automated software for backtranslation using Hidden Markov Models. EasyBack is not based on imitation of codon usage within the target species, but instead uses a sequence-similarity criterion. The model is trained with a set of proteins with known cDNA coding sequences, constructed from the input protein by querying the NCBI databases with BLAST. Unlike existing software, the proposed method allows the quality of prediction to be estimated. When tested on a group of proteins that show different degrees of sequence conservation, EasyBack outperforms other published methods in terms of precision. The prediction quality of a protein backtranslation methis markedly increased by replacing the criterion of most used codon in the same species with a Hidden Markov Model trained with a set of most similar sequences from all species. Moreover, the proposed method allows the quality of prediction to be estimated probabilistically.
Maksiutov, R A; Shchelkunov, S N
2011-01-01
Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.
Vidal, Ruben; Révész, Tamas; Rostagno, Agueda; Kim, Eugene; Holton, Janice L.; Bek, Toke; Bojsen-Møller, Marie; Braendgaard, Hans; Plant, Gordon; Ghiso, Jorge; Frangione, Blas
2000-01-01
Familial Danish dementia (FDD), also known as heredopathia ophthalmo-oto-encephalica, is an autosomal dominant disorder characterized by cataracts, deafness, progressive ataxia, and dementia. Neuropathological findings include severe widespread cerebral amyloid angiopathy, hippocampal plaques, and neurofibrillary tangles, similar to Alzheimer's disease. N-terminal sequence analysis of isolated leptomeningeal amyloid fibrils revealed homology to ABri, the peptide originated by a point mutation at the stop codon of gene BRI in familial British dementia. Molecular genetic analysis of the BRI gene in the Danish kindred showed a different defect, namely the presence of a 10-nt duplication (795–796insTTTAATTTGT) between codons 265 and 266, one codon before the normal stop codon 267. The decamer duplication mutation produces a frame-shift in the BRI sequence generating a larger-than-normal precursor protein, of which the amyloid subunit (designated ADan) comprises the last 34 C-terminal amino acids. This de novo-created amyloidogenic peptide, associated with a genetic defect in the Danish kindred, stresses the importance of amyloid formation as a causative factor in neurodegeneration and dementia. PMID:10781099
Ribosomes slide on lysine-encoding homopolymeric A stretches
Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel
2015-01-01
Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637
Qian, Chaoju; Yan, Xia; Guo, Zhichun; Wang, Yuanxiu; Li, Xixi; Yang, Jianke; Kan, Xianzhao
2013-08-01
The complete Grey-backed Shrike mitochondrial genome has been sequenced to be 16,820 bp in length, consisting of 37 encode genes: 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. In addition, a single control region was also observed. Compared with other reported Passeriformes mtgenome sequences, three bases CAA were detected at the end of Lanius tephronotus cox2 gene with the downstream adjacent base T. The first base of CAA probably occurred C to U transcript editing event resulting in a normal stop codon UAA.
Sequence Polishing Library (SPL) v10.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberortner, Ernst
The Sequence Polishing Library (SPL) is a suite of software tools in order to automate "Design for Synthesis and Assembly" workflows. Specifically: The SPL "Converter" tool converts files among the following sequence data exchange formats: CSV, FASTA, GenBank, and Synthetic Biology Open Language (SBOL); The SPL "Juggler" tool optimizes the codon usages of DNA coding sequences according to an optimization strategy, a user-specific codon usage table and genetic code. In addition, the SPL "Juggler" can translate amino acid sequences into DNA sequences.:The SPL "Polisher" verifies NA sequences against DNA synthesis constraints, such as GC content, repeating k-mers, and restriction sites.more » In case of violations, the "Polisher" reports the violations in a comprehensive manner. The "Polisher" tool can also modify the violating regions according to an optimization strategy, a user-specific codon usage table and genetic code;The SPL "Partitioner" decomposes large DNA sequences into smaller building blocks with partial overlaps that enable an efficient assembly. The "Partitioner" enables the user to configure the characteristics of the overlaps, which are mostly determined by the utilized assembly protocol, such as length, GC content, or melting temperature.« less
Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger.
Li, Kangxin; Yang, Fang; Abdullahi, A Y; Song, Meiran; Shi, Xianli; Wang, Minwei; Fu, Yeqi; Pan, Weida; Shan, Fang; Chen, Wu; Li, Guoqing
2016-12-01
Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina . This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.
Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards “GC” Rich Codons
Williams, Ernest; Place, Allen; Bachvaroff, Tsvetan
2017-01-01
Although dinoflagellates are a potential source of pharmaceuticals and natural products, the mechanisms for regulating and producing these compounds are largely unknown because of extensive post-transcriptional control of gene expression. One well-documented mechanism for controlling gene expression during translation is codon bias, whereby specific codons slow or even terminate protein synthesis. Approximately 10,000 annotatable genes from fifteen “core” dinoflagellate transcriptomes along a range of overall guanine and cytosine (GC) content were used for codonW analysis to determine the relative synonymous codon usage (RSCU) and the GC content at each codon position. GC bias in the analyzed dataset and at the third codon position varied from 51% and 54% to 66% and 88%, respectively. Codons poor in GC were observed to be universally absent, but bias was most pronounced for codons ending in uracil followed by adenine (UA). GC bias at the third codon position was able to explain low abundance codons as well as the low effective number of codons. Thus, we propose that a bias towards codons rich in GC bases is a universal feature of core dinoflagellates, possibly relating to their unique chromosome structure, and not likely a major mechanism for controlling gene expression. PMID:28448468
Prevost, Luanna B; Smith, Michelle K; Knight, Jennifer K
2016-01-01
Previous work has shown that students have persistent difficulties in understanding how central dogma processes can be affected by a stop codon mutation. To explore these difficulties, we modified two multiple-choice questions from the Genetics Concept Assessment into three open-ended questions that asked students to write about how a stop codon mutation potentially impacts replication, transcription, and translation. We then used computer-assisted lexical analysis combined with human scoring to categorize student responses. The lexical analysis models showed high agreement with human scoring, demonstrating that this approach can be successfully used to analyze large numbers of student written responses. The results of this analysis show that students' ideas about one process in the central dogma can affect their thinking about subsequent and previous processes, leading to mixed models of conceptual understanding. © 2016 L. B. Prevost et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon
Jacinto-Loeza, Eva; Vivanco-Domínguez, Serafín; Guarneros, Gabriel; Hernández-Sánchez, Javier
2008-01-01
Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3–8 codon minigenes containing AGAAGA codons before the stop codon. β-Galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, β-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 μg/μl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of β-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNAArg4. These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA. PMID:18583364
Gornik, S. G.; Waller, R. F.
2012-01-01
The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA. PMID:22113794
Jackson, C J; Gornik, S G; Waller, R F
2012-01-01
The sister phyla dinoflagellates and apicomplexans inherited a drastically reduced mitochondrial genome (mitochondrial DNA, mtDNA) containing only three protein-coding (cob, cox1, and cox3) genes and two ribosomal RNA (rRNA) genes. In apicomplexans, single copies of these genes are encoded on the smallest known mtDNA chromosome (6 kb). In dinoflagellates, however, the genome has undergone further substantial modifications, including massive genome amplification and recombination resulting in multiple copies of each gene and gene fragments linked in numerous combinations. Furthermore, protein-encoding genes have lost standard stop codons, trans-splicing of messenger RNAs (mRNAs) is required to generate complete cox3 transcripts, and extensive RNA editing recodes most genes. From taxa investigated to date, it is unclear when many of these unusual dinoflagellate mtDNA characters evolved. To address this question, we investigated the mitochondrial genome and transcriptome character states of the deep branching dinoflagellate Hematodinium sp. Genomic data show that like later-branching dinoflagellates Hematodinium sp. also contains an inflated, heavily recombined genome of multicopy genes and gene fragments. Although stop codons are also lacking for cox1 and cob, cox3 still encodes a conventional stop codon. Extensive editing of mRNAs also occurs in Hematodinium sp. The mtDNA of basal dinoflagellate Hematodinium sp. indicates that much of the mtDNA modification in dinoflagellates occurred early in this lineage, including genome amplification and recombination, and decreased use of standard stop codons. Trans-splicing, on the other hand, occurred after Hematodinium sp. diverged. Only RNA editing presents a nonlinear pattern of evolution in dinoflagellates as this process occurs in Hematodinium sp. but is absent in some later-branching taxa indicating that this process was either lost in some lineages or developed more than once during the evolution of the highly unusual dinoflagellate mtDNA.
Barik, Sailen
2017-12-01
A significant number of proteins in all living species contains amino acid repeats (AARs) of various lengths and compositions, many of which play important roles in protein structure and function. Here, I have surveyed select homopolymeric single [(A)n] and double [(AB)n] AARs in the human proteome. A close examination of their codon pattern and analysis of RNA structure propensity led to the following set of empirical rules: (1) One class of amino acid repeats (Class I) uses a mixture of synonymous codons, some of which approximate the codon bias ratio in the overall human proteome; (2) The second class (Class II) disregards the codon bias ratio, and appears to have originated by simple repetition of the same codon (or just a few codons); and finally, (3) In all AARs (including Class I, Class II, and the in-betweens), the codons are chosen in a manner that precludes the formation of RNA secondary structure. It appears that the AAR genes have evolved by orchestrating a balance between codon usage and mRNA secondary structure. The insights gained here should provide a better understanding of AAR evolution and may assist in designing synthetic genes.
Cladel, Nancy M.; Budgeon, Lynn R.; Hu, Jiafen; Balogh, Karla K.; Christensen, Neil D.
2013-01-01
Papillomaviruses use rare codons with respect to the host. The reasons for this are incompletely understood but among the hypotheses is the concept that rare codons result in low protein production and this allows the virus to escape immune surveillance. We changed rare codons in the oncogenes E6 and E7 of the cottontail rabbit papillomavirus to make them more mammalian-like and tested the mutant genomes in our in vivo animal model. While the amino acid sequences of the proteins remained unchanged, the oncogenic potential of some of the altered genomes increased dramatically. In addition, increased immunogenicity, as measured by spontaneous regression, was observed as the numbers of codon changes increased. This work suggests that codon usage may modify protein production in ways that influence disease outcome and that evaluation of synonymous codons should be included in the analysis of genetic variants of infectious agents and their association with disease. PMID:23433866
Lunina, Natalia A; Agafonova, Elena V; Chekanovskaya, Lyudmila A; Dvortsov, Igor A; Berezina, Oksana V; Shedova, Ekaterina N; Kostrov, Sergey V; Velikodvorskaya, Galina A
2007-07-01
A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.
Divergence and codon usage bias of Betanodavirus, a neurotropic pathogen in fish.
He, Mei; Teng, Chun-Bo
2015-02-01
Betanodavirus is a small bipartite RNA virus of global economical significance that can cause severe neurological disorders to an increasing number of marine fish species. Herein, to further the understanding of the evolution of betanodavirus, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of their RNA polymerase and coat protein genes. Similar moderate nucleotide substitution rates were then estimated for the two genes. According to age calculations, the divergence of the two genes into the four genotypes initiated nearly simultaneously at ∼700 years ago, despite the different scenarios, whereas the seven analyzed chimeric isolates might be the outcomes of a single genetic reassortment event taking place in the early 1980s in Southern Europe. Furthermore, codon usage bias analyses indicated that each gene had influences in addition to mutational bias and codon choice of betanodavirus was not completely complied with that of fish host. Copyright © 2014 Elsevier Inc. All rights reserved.
Vertebrate codon bias indicates a highly GC-rich ancestral genome.
Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei
2013-04-25
Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences. Copyright © 2013 Elsevier B.V. All rights reserved.
How the Sequence of a Gene Specifies Structural Symmetry in Proteins
Shen, Xiaojuan; Huang, Tongcheng; Wang, Guanyu; Li, Guanglin
2015-01-01
Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules. PMID:26641668
Evolutionary and genetic analysis of the VP2 gene of canine parvovirus.
Li, Gairu; Ji, Senlin; Zhai, Xiaofeng; Zhang, Yuxiang; Liu, Jie; Zhu, Mengyan; Zhou, Jiyong; Su, Shuo
2017-07-17
Canine parvovirus (CPV) type 2 emerged in 1978 in the USA and quickly spread among dog populations all over the world with high morbidity. Although CPV is a DNA virus, its genomic substitution rate is similar to some RNA viruses. Therefore, it is important to trace the evolution of CPV to monitor the appearance of mutations that might affect vaccine effectiveness. Our analysis shows that the VP2 genes of CPV isolated from 1979 to 2016 are divided into six groups: GI, GII, GIII, GIV, GV, and GVI. Amino acid mutation analysis revealed several undiscovered important mutation sites: F267Y, Y324I, and T440A. Of note, the evolutionary rate of the CPV VP2 gene from Asia and Europe decreased. Codon usage analysis showed that the VP2 gene of CPV exhibits high bias with an ENC ranging from 34.93 to 36.7. Furthermore, we demonstrate that natural selection plays a major role compared to mutation pressure driving CPV evolution. There are few studies on the codon usage of CPV. Here, we comprehensively studied the genetic evolution, codon usage pattern, and evolutionary characterization of the VP2 gene of CPV. The novel findings revealing the evolutionary process of CPV will greatly serve future CPV research.
Vanlalruati, Catherine; Mandal, Surajit De; Gurusubramanian, Guruswami; Senthil Kumar, Nachimuthu
2016-07-01
The complete mitochondrial genome of Junonia iphita was determined to be 15,433 bp in length, including 37 typical mitochondrial genes and an AT-rich region. All the protein coding genes (PCGs) are initiated by typical ATN codons, except cox1 gene that is by CGA codon. Eight genes use complete termination codon (TAA), whereas the cox1, cox2 and nad5 genes end with single T; nad4 and nad1 ends with stop codon TA. All the tRNA show secondary cloverleaf structures except trnS1 (AGN). The A + T rich region is 546 bp in length containing ATAGA motif followed by a 18 bp poly-T stretch, two microsatellite-like (TA)9 elements and 8 bp poly-A stretch immediately upstream of trnM gene.
Benyo, B; Biro, J C; Benyo, Z
2004-01-01
The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.
Omeire, Destiny; Abdin, Shaunte; Brooks, Daniel M; Miranda, Hector C
2015-04-01
The Germain's Peacock-Pheasant Polyplectron germaini (Aves, Galliformes, Phasianidae) is classified as Near Threatened on the IUCN Red List. The complete mitochondrial genome of P. germaini is 16,699 bp, consisting of 13 protein-coding genes, 2 rRNA, 22 tRNA genes and 1 control region. All of the 13 protein-coding genes have ATG as start codon. Eight of the 13 protein-coding genes have TAA as stop codon.
Codon adaptation and synonymous substitution rate in diatom plastid genes.
Morton, Brian R; Sorhannus, Ulf; Fox, Martin
2002-07-01
Diatom plastid genes are examined with respect to codon adaptation and rates of silent substitution (Ks). It is shown that diatom genes follow the same pattern of codon usage as other plastid genes studied previously. Highly expressed diatom genes display codon adaptation, or a bias toward specific major codons, and these major codons are the same as those in red algae, green algae, and land plants. It is also found that there is a strong correlation between Ks and variation in codon adaptation across diatom genes, providing the first evidence for such a relationship in the algae. It is argued that this finding supports the notion that the correlation arises from selective constraints, not from variation in mutation rate among genes. Finally, the diatom genes are examined with respect to variation in Ks among different synonymous groups. Diatom genes with strong codon adaptation do not show the same variation in synonymous substitution rate among codon groups as the flowering plant psbA gene which, previous studies have shown, has strong codon adaptation but unusually high rates of silent change in certain synonymous groups. The lack of a similar finding in diatoms supports the suggestion that the feature is unique to the flowering plant psbA due to recent relaxations in selective pressure in that lineage.
Analyses of frameshifting at UUU-pyrimidine sites.
Schwartz, R; Curran, J F
1997-05-15
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.
Analyses of frameshifting at UUU-pyrimidine sites.
Schwartz, R; Curran, J F
1997-01-01
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage. PMID:9115369
NASA Technical Reports Server (NTRS)
Holmquist, R.; Pearl, D.
1980-01-01
Theoretical equations are derived for molecular divergence with respect to gene and protein structure in the presence of genetic events with unequal probabilities: amino acid and base compositions, the frequencies of nucleotide replacements, the usage of degenerate codons, the distribution of fixed base replacements within codons and the distribution of fixed base replacements among codons. Results are presented in the form of tables relating the probabilities of given numbers of codon base changes with respect to the original codon for the alpha hemoglobin, beta hemoglobin, myoglobin, cytochrome c and parvalbumin group gene families. Application of the calculations to the rabbit alpha and beta hemoglobin mRNAs and proteins indicates that the genes are separated by about 425 fixed based replacements distributed over 114 codon sites, which is a factor of two greater than previous estimates. The theoretical results also suggest that many more base replacements are required to effect a given gene or protein structural change than previously believed.
Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun
2017-12-20
Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.
Chen, Siyu; Li, Ke; Cao, Wenqing; Wang, Jia; Zhao, Tong; Huan, Qing; Yang, Yu-Fei; Wu, Shaohuan; Qian, Wenfeng
2017-01-01
Abstract Codon usage bias (CUB) refers to the observation that synonymous codons are not used equally frequently in a genome. CUB is stronger in more highly expressed genes, a phenomenon commonly explained by stronger natural selection on translational accuracy and/or efficiency among these genes. Nevertheless, this phenomenon could also occur if CUB regulates gene expression at the mRNA level, a hypothesis that has not been tested until recently. Here, we attempt to quantify the impact of synonymous mutations on mRNA level in yeast using 3,556 synonymous variants of a heterologous gene encoding green fluorescent protein (GFP) and 523 synonymous variants of an endogenous gene TDH3. We found that mRNA level was positively correlated with CUB among these synonymous variants, demonstrating a direct role of CUB in regulating transcript concentration, likely via regulating mRNA degradation rate, as our additional experiments suggested. More importantly, we quantified the effects of individual synonymous mutations on mRNA level and found them dependent on 1) CUB and 2) mRNA secondary structure, both in proximal sequence contexts. Our study reveals the pleiotropic effects of synonymous codon usage and provides an additional explanation for the well-known correlation between CUB and gene expression level. PMID:28961875
Johnston, Christopher D; Bannantine, John P; Govender, Rodney; Endersen, Lorraine; Pletzer, Daniel; Weingart, Helge; Coffey, Aidan; O'Mahony, Jim; Sleator, Roy D
2014-01-01
It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants were preserved in synthetic MMP proteins as shown by monoclonal antibody mediated ELISA. Moreover, MMP is a membrane protein in MAP, which is also targeted to the cellular surface of recombinant L. salivarius at levels comparable to MAP. Additionally, we previously engineered MAP3733c (encoding MptD) and show herein that MptD displays the tendency to associate with the cytoplasmic membrane boundary under confocal microscopy and the intracellularly accumulated protein selectively adheres to the MptD-specific bacteriophage fMptD. This work demonstrates there is potential for L. salivarius as a viable antigen delivery vehicle for MAP, which may provide an effective mucosal vaccine against Johne's disease.
Lim, Chee Kent; Tan, Joanne Tsui Ming; Khoo, Jason Boo Siang; Ravichandran, Aarthi; Low, Hsin Mei; Chan, Yin Chyi; Ton, So Har
2006-01-01
This study was carried out to determine the effects of hepatitis B virus genotypes, core promoter mutations (A1762G1764→T1762A1764) as well as precore stop codon mutations (TGG→TAG) on HBeAg expression and HBeAg/ anti-HBe status. Study was also performed on the effects of codon 15 variants (C1858/ T1858) on the predisposition of precore stop codon mutations (TGG→TAG). A total of 77 sera samples were analyzed. Fifty one samples were successfully genotyped of which the predominant genotype was genotype B (29/ 51, 56.9 %), followed by genotype C (16/ 51, 31.4 %). Co-infections by genotypes B and C were observed in four samples (7.8 %). To a lesser degree, genotypes D and E (2.0 % each) were also observed. For core promoter mutations, the prevalence was 68.8 % (53/ 77) for A1762G1764 wild-type and 14.3 % (11/ 77) for T1762A1764 mutant while 9.1 % (7/ 77) was co-infected by both strains. The prevalence of codon 15 variants was found to be 42.9 % (33/ 77) for T1858 variant and 16.9 % (13/ 77) for C1858 variant. No TAG mutation was found. In our study, no associations were found between genotypes (B and C) and core promoter mutations as well as codon 15 variants. Also no correlation was observed between HBeAg/ anti-HBe status with genotypes (B and C) and core promoter mutations. PMID:16421626
Control of total GFP expression by alterations to the 3′ region nucleotide sequence
2013-01-01
Background Previously, we distinguished the Escherichia coli type II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for unfolded and folded soluble target proteins. The translocation of folded protein to the periplasm for soluble expression via the Tat pathway was controlled by an N-terminal hydrophilic leader sequence. In this study, we investigated the effect of the hydrophilic C-terminal end and its nucleotide sequence on total and soluble protein expression. Results The native hydrophilic C-terminal end of GFP was obtained by deleting the C-terminal peptide LeuGlu-6×His, derived from pET22b(+). The corresponding clones induced total and soluble GFP expression that was either slightly increased or dramatically reduced, apparently through reconstruction of the nucleotide sequence around the stop codon in the 3′ region. In the expression-induced clones, the hydrophilic C-terminus showed increased Tat pathway specificity for soluble expression. However, in the expression-reduced clone, after analyzing the role of the 5′ poly(A) coding sequence with a substituted synonymous codon, we proved that the longer 5′ poly(A) coding sequence interacted with the reconstructed 3′ region nucleotide sequence to create a new mRNA tertiary structure between the 5′ and 3′ regions, which resulted in reduced total GFP expression. Further, to recover the reduced expression by changing the 3′ nucleotide sequence, after replacing selected C-terminal 5′ codons and the stop codon in the ORF with synonymous codons, total GFP expression in most of the clones was recovered to the undeleted control level. The insertion of trinucleotides after the stop codon in the 3′-UTR recovered or reduced total GFP expression. RT-PCR revealed that the level of total protein expression was controlled by changes in translational or transcriptional regulation, which were induced or reduced by the substitution or insertion of 3′ region nucleotides. Conclusions We found that the hydrophilic C-terminal end of GFP increased Tat pathway specificity and that the 3′ nucleotide sequence played an important role in total protein expression through translational and transcriptional regulation. These findings may be useful for efficiently producing recombinant proteins as well as for potentially controlling the expression level of specific genes in the body for therapeutic purposes. PMID:23834827
The Complete Mitochondrial Genome of the Rice Moth, Corcyra cephalonica
Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong
2012-01-01
The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)3. The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)9, (AT)8 elements. PMID:23413968
The complete mitochondrial genome of the rice moth, Corcyra cephalonica.
Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong
2012-01-01
The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.
Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J
2016-10-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley
2016-01-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827
Proteome Adaptation to High Temperatures in the Ectothermic Hydrothermal Vent Pompeii Worm
Jollivet, Didier; Mary, Jean; Gagnière, Nicolas; Tanguy, Arnaud; Fontanillas, Eric; Boutet, Isabelle; Hourdez, Stéphane; Segurens, Béatrice; Weissenbach, Jean; Poch, Olivier; Lecompte, Odile
2012-01-01
Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular ‘adaptive’ strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively ‘high’ temperatures and thus a novelty in thermophilic metazoans. PMID:22348046
Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.
Jollivet, Didier; Mary, Jean; Gagnière, Nicolas; Tanguy, Arnaud; Fontanillas, Eric; Boutet, Isabelle; Hourdez, Stéphane; Segurens, Béatrice; Weissenbach, Jean; Poch, Olivier; Lecompte, Odile
2012-01-01
Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.
Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup
2015-01-01
Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.
The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.
Kim, K S; Lee, S E; Jeong, H W; Ha, J H
1998-10-01
The complete nucleotide sequence of the mitochondrial genome of the domestic dog, Canis familiaris, was determined. The length of the sequence was 16,728 bp; however, the length was not absolute due to the variation (heteroplasmy) caused by differing numbers of the repetitive motif, 5'-GTACACGT(A/G)C-3', in the control region. The genome organization, gene contents, and codon usage conformed to those of other mammalian mitochondrial genomes. Although its features were unknown, the "CTAGA" duplication event which followed the translational stop codon of the COII gene was not observed in other mammalian mitochondrial genomes. In order to determine the possible differences between mtDNAs in carnivores, two rRNA and 13 protein-coding genes from the cat, dog, and seal were compared. The combined molecular differences, in two rRNA genes as well as in the inferred amino acid sequences of the mitochondrial 13 protein-coding genes, suggested that there is a closer relationship between the dog and the seal than there is between either of these species and the cat. Based on the molecular differences of the mtDNA, the evolutionary divergence between the cat, the dog, and the seal was dated to approximately 50 +/- 4 million years ago. The degree of difference between carnivore mtDNAs varied according to the individual protein-coding gene applied, showing that the evolutionary relationships of distantly related species should be presented in an extended study based on ample sequence data like complete mtDNA molecules. Copyright 1998 Academic Press.
Molecular Genetic Analysis and Evolution of Segment 7 in Rice Black-Streaked Dwarf Virus in China
Chen, Yanping; Wu, Jirong; Meng, Qingchang; Han, Xiaohua; Hao, Zhuanfang; Li, Mingshun; Yong, Hongjun; Zhang, Degui; Zhang, Shihuang; Li, Xinhai
2015-01-01
Rice black-streaked dwarf virus (RBSDV) causes maize rough dwarf disease or rice black-streaked dwarf disease and can lead to severe yield losses in maize and rice. To analyse RBSDV evolution, codon usage bias and genetic structure were investigated in 111 maize and rice RBSDV isolates from eight geographic locations in 2013 and 2014. The linear dsRNA S7 is A+U rich, with overall codon usage biased toward codons ending with A (A3s, S7-1: 32.64%, S7-2: 29.95%) or U (U3s, S7-1: 44.18%, S7-2: 46.06%). Effective number of codons (Nc) values of 45.63 in S7-1 (the first open reading frame of S7) and 39.96 in S7-2 (the second open reading frame of S7) indicate low degrees of RBSDV-S7 codon usage bias, likely driven by mutational bias regardless of year, host, or geographical origin. Twelve optimal codons were detected in S7. The nucleotide diversity (π) of S7 sequences in 2013 isolates (0.0307) was significantly higher than in 2014 isolates (0.0244, P = 0.0226). The nucleotide diversity (π) of S7 sequences in isolates from Jinan (0.0391) was higher than that from the other seven locations (P < 0.01). Only one S7 recombinant was detected in Baoding. RBSDV isolates could be phylogenetically classified into two groups according to S7 sequences, and further classified into two subgroups. S7-1 and S7-2 were under negative and purifying selection, with respective Ka/Ks ratios of 0.0179 and 0.0537. These RBSDV populations were expanding (P < 0.01) as indicated by negative values for Tajima's D, Fu and Li's D, and Fu and Li's F. Genetic differentiation was detected in six RBSDV subpopulations (P < 0.05). Absolute Fst (0.0790) and Nm (65.12) between 2013 and 2014, absolute Fst (0.1720) and Nm (38.49) between maize and rice, and absolute Fst values of 0.0085-0.3069 and Nm values of 0.56-29.61 among these eight geographic locations revealed frequent gene flow between subpopulations. Gene flow between 2013 and 2014 was the most frequent. PMID:26121638
Marchi, Rita; Brennan, Stephen; Meyer, Michael; Rojas, Héctor; Kanzler, Daniela; De Agrela, Marisela; Ruiz-Saez, Arlette
2013-03-01
Routine coagulation tests on a 14year-old male with frequent epistaxis showed a prolonged thrombin time together with diminished functional (162mg/dl) and gravimetric (122mg/dl) fibrinogen concentrations. His father showed similar aberrant results and sequencing of the three fibrinogen genes revealed a novel heterozygous nonsense mutation in the FGB gene c.1105C>T, which converts the codon for residue Bβ 339Q to stop, causing deletion of Bβ chain residues 339-461. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and RP-HPLC (reverse-phase high-pressure liquid chromatography) of purified fibrinogen showed only normal Aα, Bβ, and γ chains, indicating that molecules with the truncated 37,990Da β chain were not secreted into plasma. Functional analysis showed impaired fibrin polymerization, fibrin porosity, and elasticity compared to controls. By laser scanning confocal microscopy the patient's fibers were slightly thinner than normal. Electrospray ionization mass spectrometry (ESI MS) presented normal sialylation of the oligosaccharide chains, and liver function tests showed no evidence of liver dysfunction that might explain the functional abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.
Three stages in the evolution of the genetic code
NASA Technical Reports Server (NTRS)
Baumann, U.; Oro, J.
1993-01-01
A diversification of the genetic code based on the number of codons available for the proteinous amino acids is established. Three groups of amino acids during evolution of the code are distinguished. On the basis of their chemical complexity those amino acids emerging later in a translation process are derived. Codon number and chemical complexity indicate that His, Phe, Tyr, Cys and either Lys or Asn were introduced in the second stage, whereas the number of codons alone gives evidence that Trp and Met were introduced in the third stage. The amino acids of stage 1 use purine-rich codons, while all the amino acids introduced in the second stage, in contrast, use pyrimidines in the third position of their codons. A low abundance of pyrimidines during early translation is derived. This assumption is supported by experiments on non-enzymatic replication and interactions of hairpin loops with a complementary strand. A back extrapolation concludes a high purine content of the first nucleic acids, which gradually decreased during their evolution. Amino acids independently available from prebiotic synthesis were thus correlated to purine-rich codons. Implications on the prebiotic replication are discussed also in the light of recent codon usage data.
Representation mutations from standard genetic codes
NASA Astrophysics Data System (ADS)
Aisah, I.; Suyudi, M.; Carnia, E.; Suhendi; Supriatna, A. K.
2018-03-01
Graph is widely used in everyday life especially to describe model problem and describe it concretely and clearly. In addition graph is also used to facilitate solve various kinds of problems that are difficult to be solved by calculation. In Biology, graph can be used to describe the process of protein synthesis in DNA. Protein has an important role for DNA (deoxyribonucleic acid) or RNA (ribonucleic acid). Proteins are composed of amino acids. In this study, amino acids are related to genetics, especially the genetic code. The genetic code is also known as the triplet or codon code which is a three-letter arrangement of DNA nitrogen base. The bases are adenine (A), thymine (T), guanine (G) and cytosine (C). While on RNA thymine (T) is replaced with Urasil (U). The set of all Nitrogen bases in RNA is denoted by N = {C U, A, G}. This codon works at the time of protein synthesis inside the cell. This codon also encodes the stop signal as a sign of the stop of protein synthesis process. This paper will examine the process of protein synthesis through mathematical studies and present it in three-dimensional space or graph. The study begins by analysing the set of all codons denoted by NNN such that to obtain geometric representations. At this stage there is a matching between the sets of all nitrogen bases N with Z 2 × Z 2; C=(\\overline{0},\\overline{0}),{{U}}=(\\overline{0},\\overline{1}),{{A}}=(\\overline{1},\\overline{0}),{{G}}=(\\overline{1},\\overline{1}). By matching the algebraic structure will be obtained such as group, group Klein-4,Quotien group etc. With the help of Geogebra software, the set of all codons denoted by NNN can be presented in a three-dimensional space as a multicube NNN and also can be represented as a graph, so that can easily see relationship between the codon.
Three stages during the evolution of the genetic code. [Abstract only
NASA Technical Reports Server (NTRS)
Baumann, U.; Oro, J.
1994-01-01
A diversification of the genetic code based on the number of codons available for the proteinous amino acids is established. Three groups of amino acids during evolution of the code are distinguished. On the basis of their chemical complexity and a small codon number those amino acids emerging later in a translation process are derived. Both criteria indicate that His, Phe, Tyr, Cys and either Lys or Asn were introduced in the second stage, whereas the number of codons alone gives evidence that Trp and Met were introduced in the third stage. The amino acids of stage one use purines rich codons, thus purines have been retained in their third codon position. All the amino acids introduced in the second stage, in contrast, use pyrimidines in this codon position. A low abundance of pyrimidines during early translation is derived. This assumption is supported by experiments on non enzymatic replication and interactions of DNA hairpin loops with a complementary strand. A back extrapolation concludes a high purine content of the first nucleic acids which gradually decreased during their evolution. Amino acids independently available form prebiotic synthesis were thus correlated to purine rich codons. Conclusions on prebiotic replication are discussed also in the light of recent codon usage data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonaventure, J.; Lasselin, C.; Toutain, A.
1994-09-01
The Stickler syndrome is an arthro-ophthalmopathy which associates progressive myopia with vitreal degeneration and retinal detachment. Cleft palate, cranio-facial abnormalities, deafness and osteoarthritis are often associated symptoms. Genetic heterogeneity of this autosomal dominant disease was consistent with its large clinical variability. Linkage studies have provided evidence for cosegregation of the disease with COL2A1, the gene coding for type II collagen, in about 50% of the families. Four additional families are reported here. Linkage analyses by using a VNTR located in the 3{prime} region of the gene were achieved. In three families, positive lod scores were obtained with a cumulative maximalmore » value of 3.5 at a recombination fraction of 0. In one of these families, single strand conformation analysis of 25 exons disclosed a new mutation in exon 42. Codon for glutamic acid at position a1-803 was converted into a stop codon. The mutation was detected in DNA samples from all the affected members of the family but not in the unaffected. This result confirms that most of the Stickler syndromes linked to COL2A1 are due to premature stop codons. In a second family, an abnormal SSCP pattern of exon 34 was detected in all the affected individuals. The mutation is likely to correspond to a splicing defect in the acceptor site of intron 33. In one family the disease did not segregate with the COL2A1 locus. Further linkage studies with intragenic dimorphic sites in the COL10A1 gene and highly polymorphic markers close to the COL9A1 locus indicated that this disorder did not result from defects in these two genes.« less
Transformation of NIH3T3 Cells with Synthetic c‐Ha‐ras Genes
Kamiya, Hiroyuki; Miura, Kazunobu; Ohtomo, Noriko; Koda, Toshiaki; Kakinuma, Mitsuaki; Nishimura, Susumu
1989-01-01
Synthetic human c‐Ha‐ras genes in which amino acid codons were altered to those which are frequently used in highly expressed Escherichia coli genes were ligated to the 3′‐end of Rous sarcoma virus long terminal repeat. When NIH3T3 cells were transfected with the plasmids having those genes with valine at codon 12, leucine at codon 61 or arginine at codon 61, transformants were efficiently produced. These results indicated that the synthetic c‐Ha‐ras genes are expressed in a mammalian system even though their codon usage is altered to correspond with that of E. colt. This expression vector system should he useful for studies on the structure‐function relationships of c‐Ha‐ras, since the synthetic gene can be easily modified to have multiple base alterations, and can also be used simultaneously for the production of large amounts of p21 in E. coli for biochemical and biophysical studies. PMID:2542206
Lorenz, Felix K. M.; Wilde, Susanne; Voigt, Katrin; Kieback, Elisa; Mosetter, Barbara; Schendel, Dolores J.; Uckert, Wolfgang
2015-01-01
Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine. PMID:25799237
Françoso, Elaine; Gomes, Fernando; Arias, Maria Cristina
2016-07-01
Nuclear mitochondrial DNA insertions (NUMTs) are mitochondrial DNA sequences that have been transferred into the nucleus and are recognized by the presence of indels and stop codons. Although NUMTs have been identified in a diverse range of species, their discovery was frequently accidental. Here, our initial goal was to develop and standardize a simple method for isolating NUMTs from the nuclear genome of a single bee. Subsequently, we tested our new protocol by determining whether the indels and stop codons of the cytochrome c oxidase subunit I (COI) sequence of Melipona flavolineata are of nuclear origin. The new protocol successfully demonstrated the presence of a COI NUMT. In addition to NUMT investigations, the protocol described here will also be very useful for studying mitochondrial mutations related to diseases and for sequencing complete mitochondrial genomes with high read coverage by Next-Generation technology.
Gamo, F J; Lafuente, M J; Casamayor, A; Ariño, J; Aldea, M; Casas, C; Herrero, E; Gancedo, C
1996-06-15
We report the sequence of a 15.5 kb DNA segment located near the left telomere of chromosome XV of Saccharomyces cerevisiae. The sequence contains nine open reading frames (ORFs) longer than 300 bp. Three of them are internal to other ones. One corresponds to the gene LGT3 that encodes a putative sugar transporter. Three adjacent ORFs were separated by two stop codons in frame. These ORFs presented homology with the gene CPS1 that encodes carboxypeptidase S. The stop codons were not found in the same sequence derived from another yeast strain. Two other ORFs without significant homology in databases were also found. One of them, O0420, is very rich in serine and threonine and presents a series of repeated or similar amino acid stretches along the sequence.
Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals
Schueren, Fabian; Lingner, Thomas; George, Rosemol; Hofhuis, Julia; Dickel, Corinna; Gärtner, Jutta; Thoms, Sven
2014-01-01
Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI: http://dx.doi.org/10.7554/eLife.03640.001 PMID:25247702
Ladygin, V G; Butanaev, A M
2002-09-01
To transform Chlamydomonas reinhardtii Dang. Cells, plasmid pCTVHyg was constructed with the use of the Escherichia coli hygromycin phosphotransferase gene (hpt) controlled by the SV40 early promoter. Cells of the CW-15 mutant strain were transformed by electroporation, with the yield reaching 10(3) hygromycin-resistant (HygR) clones per 10(6) recipient cells. The exogenous DNA integrated in the Ch. reinhardtii nuclear genome showed stable transmission for approximately 350 cell generations, while hygromycin resistance was expressed as an unstable character. Codon usage was compared for the hpt gene and Ch. reinhardtii nuclear genes. The results testified that codon usage bias, which is characteristic of Ch. reinhardtii, is not the major factor affecting foreign gene expression. The advantages of the selective system for studying Ch. reinhardtii transformation with heterologous genes are discussed.
Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations.
Matsumoto, Tomotaka; John, Anoop; Baeza-Centurion, Pablo; Li, Boyang; Akashi, Hiroshi
2016-06-01
A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.
Biddle, Wil; Schmitt, Margaret A; Fisk, John D
2015-12-22
Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate identification and improvement of the combinations of sense codons and orthogonal pairs that display efficient reassignment.
Lozier, Jay N; Kloos, Mark T; Merricks, Elizabeth P; Lemoine, Nathaly; Whitford, Margaret H; Raymer, Robin A; Bellinger, Dwight A; Nichols, Timothy C
2016-01-01
Animals with hemophilia are models for gene therapy, factor replacement, and inhibitor development in humans. We have actively sought dogs with severe hemophilia A that have novel factor VIII mutations unlike the previously described factor VIII intron 22 inversion. A male Old English Sheepdog with recurrent soft-tissue hemorrhage and hemarthrosis was diagnosed with severe hemophilia A (factor VIII activity less than 1% of normal). We purified genomic DNA from this dog and ruled out the common intron 22 inversion; we then sequenced all 26 exons. Comparing the results with the normal canine factor VIII sequence revealed a C→T transition in exon 12 of the factor VIII gene that created a premature stop codon at amino acid 577 in the A2 domain of the protein. In addition, 2 previously described polymorphisms that do not cause hemophilia were present at amino acids 909 and 1184. The hemophilia mutation creates a new TaqI site that facilitates rapid genotyping of affected offspring by PCR and restriction endonuclease analyses. This mutation is analogous to the previously described human factor VIII mutation at Arg583, which likewise is a CpG dinucleotide transition causing a premature stop codon in exon 12. Thus far, despite extensive treatment with factor VIII, this dog has not developed neutralizing antibodies (‘inhibitors’) to the protein. This novel mutation in a dog gives rise to severe hemophilia A analogous to a mutation seen in humans. This model will be useful for studies of the treatment of hemophilia. PMID:27780008
The Quantum Workings of the Rotating 64-Grid Genetic Code
Castro-Chavez, Fernando
2011-01-01
In this article, the pattern learned from the classic or conventional rotating circular genetic code is transferred to a 64-grid model. In this non-static representation, the codons for the same amino acid within each quadrant could be exchanged, wobbling or rotating in a quantic way similar to the electrons within an atomic orbit. Represented in this 64-grid format are the three rules of variation encompassing 4, 2, or 1 quadrant, respectively: 1) same position in four quadrants for the essential hydrophobic amino acids that have U at the center, 2) same or contiguous position for the same or related amino acids in two quadrants, and 3) equivalent amino acids within one quadrant. Also represented is the mathematical balance of the odd and even codons, and the most used codons per amino acid in humans compared to one diametrically opposed organism: the plant Arabidopsis thaliana, a comparison that depicts the difference in third nucleotide preferences: a C/U exchange for 11 amino acids, a G/A and a G/U exchange for 2 amino acids, respectively, and a C/A exchange for one amino acid; by studying these codon usage preferences per amino acid we present our two hypotheses: 1) A slower translation in vertebrates and 2) a faster translation in invertebrates, possibly due to the aqueous environments where they live. These codon usage preferences may also be able to determine genomic compatibility by comparing individual mRNAs and their functional third dimensional structure, transport and translation within cells and organisms. These observations are aimed to the design of bioinformatics computational tools to compare human genomes and to determine the exchange between compatible codons and amino acids, to preserve and/or to bring back extinct biodiversity, and for the early detection of incompatible changes that lead to genetic diseases. PMID:22308074
Gene Composer: database software for protein construct design, codon engineering, and gene synthesis
Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance
2009-01-01
Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies. PMID:19383142
Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance
2009-04-21
To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies.
Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN
Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice
2016-01-01
Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E.; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D.; David, Michael
2013-01-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway1. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination. PMID:23000900
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael
2012-11-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.
Codon influence on protein expression in E. coli correlates with mRNA levels
Boël, Grégory; Wong, Kam-Ho; Su, Min; Luff, Jon; Valecha, Mayank; Everett, John K.; Acton, Thomas B.; Xiao, Rong; Montelione, Gaetano T.; Aalberts, Daniel P.; Hunt, John F.
2016-01-01
Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyze the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206
A Major Controversy in Codon-Anticodon Adaptation Resolved by a New Codon Usage Index
Xia, Xuhua
2015-01-01
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery. PMID:25480780
2013-01-01
Background Segment 6 of the ISA virus codes for hemoagglutinin-esterase (HE). This segment is highly variable, with more than 26 variants identified. The major variation is observed in what is called the high polymorphism region (HPR). The role of the different HPR zones in the viral cycle or evolution remains unknown. However viruses that present the HPR0 are avirulent, while viruses with important deletions in this region have been responsible for outbreaks with high mortality rates. In this work, using bioinformatic tools, we examined the influence of different HPRs on the adaptation of HE genes to the host translational machinery and the relationship to observed virulence. Methods Translational efficiency of HE genes and their HPR were estimated analyzing codon-pair bias (CPB), adaptation to host codon use (codon adaptation index - CAI) and the adaptation to available tRNAs (tAI). These values were correlated with reported mortality for the respective ISA virus and the ΔG of RNA folding. tRNA abundance was inferred from tRNA gene numbers identified in the Salmo salar genome using tRNAScan-SE. Statistical correlation between data was performed using a non-parametric test. Results We found that HPR0 contains zones with codon pairs of low frequency and low availability of tRNA with respect to salmon codon-pair usage, suggesting that HPR modifies HE translational efficiency. Although calculating tAI was impossible because one third of tRNAs (~60.000) were tRNA-ala, translational efficiency measured by CPB shows that as HPR size increases, the CPB value of the HE gene decreases (P = 2x10-7, ρ = −0.675, n = 63) and that these values correlate positively with the mortality rates caused by the virus (ρ = 0.829, P = 2x10-7, n = 11). The mortality associated with different virus isolates or their corresponding HPR sizes were not related with the ΔG of HPR RNA folding, suggesting that the secondary structure of HPR RNA does not modify virulence. Conclusions Our results suggest that HPR size affects the efficiency of gene translation, which modulates the virulence of the virus by a mechanism similar to that observed in production of live attenuated vaccines through deoptimization of codon-pair usage. PMID:23742749
Mandlik, Vineetha; Shinde, Sonali; Singh, Shailza
2014-06-21
Selection pressure governs the relative mutability and the conservedness of a protein across the protein family. Biomolecules (DNA, RNA and proteins) continuously evolve under the effect of evolutionary pressure that arises as a consequence of the host parasite interaction. IPCS (Inositol phosphorylceramide synthase), SPL (Sphingosine-1-P lyase) and SPT (Serine palmitoyl transferase) represent three important enzymes involved in the sphingolipid metabolism of Leishmania. These enzymes are responsible for maintaining the viability and infectivity of the parasite and have been classified as druggable targets in the parasite metabolome. The present work relates to the role of selection pressure deciding functional conservedness and divergence of the drug targets. IPCS and SPL protein families appear to diverge from the SPT family. The three protein families were largely under the influence of purifying selection and were moderately conserved baring two residues in the IPCS protein which were under the influence of positive selection. To further explore the selection pressure at the codon level, codon usage bias indices were calculated to analyze genes for their synonymous codon usage pattern. IPCS gene exhibited slightly lower codon bias as compared to SPL and SPT protein families. Evolutionary tracing of the proposed drug targets has been done with a viewpoint that the amino-acids lining the drug binding pocket should have a lower evolvability. Sites under positive selection (HIS20 and CYS30 of IPCS) should be avoided during devising strategies for inhibitor design.
Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng
2012-04-10
Filamentous fungi are widely exploited in food industry due to their abilities to secrete large amounts of enzymes and metabolites. The recent availability of fungal genome sequences has provided an opportunity to explore the genomic characteristics of these food-related filamentous fungi. In this paper, we selected 12 representative filamentous fungi in the areas of food processing and safety, which were Aspergillus clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, A. terreus, Monascus ruber, Neurospora crassa, Penicillium chrysogenum, Rhizopus oryzae and Trichoderma reesei, and did the comparative studies of their genomic characteristics of tRNA gene distribution, codon usage pattern and amino acid composition. The results showed that the copy numbers greatly differed among isoaccepting tRNA genes and the distribution seemed to be related with translation process. The results also revealed that genome compositional variation probably constrained the base choice at the third codon, and affected the overall amino acid composition but seemed to have little effect on the integrated physicochemical characteristics of overall amino acids. The further analysis suggested that the wobble pairing and base modification were the important mechanisms in codon-anticodon interaction. In the scope of authors' knowledge, it is the first report about the genomic characteristics analysis of food-related filamentous fungi, which would be informative for the analysis of filamentous fungal genome evolution and their practical application in food industry. Copyright © 2012 Elsevier B.V. All rights reserved.
Liang, Bo; Ngwuta, Joan O.; Surman, Sonja; Kabatova, Barbora; Liu, Xiang; Lingemann, Matthias; Liu, Xueqiao; Yang, Lijuan; Herbert, Richard; Swerczek, Joanna; Chen, Man; Moin, Syed M.; Kumar, Azad; McLellan, Jason S.; Kwong, Peter D.; Graham, Barney S.; Collins, Peter L.
2017-01-01
ABSTRACT Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation. IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge. PMID:28539444
Dong, Jia-Jia; Guan, De-Long; Xu, Sheng-Quan
2016-09-01
The complete mitogenome of Oxya intricate (Stål.) has been reconstructed from whole-genome Illumina sequencing data with an average coverage of 294×. The circular genome is 15,466 bp in length, and consists of 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs) and 1 D-loop region. All PCGs are initiated with ATN codons, and are terminated with TAR codons except for ND5 with the incomplete stop codon T. The nucleotide composition is asymmetric (42.5%A, 14.6%C, 10.6%G, 32.3%T) with an overall GC content of 25.2%. These data would contribute to the design of novel molecular markers for population and evolutionary studies of this and related orthopteran species.
Family acholeplasmataceae (including phytoplasmas)
USDA-ARS?s Scientific Manuscript database
The family Acholeplasmataceae was originally established to accommodate the genus Acholeplasma, comprising the mollicutes that could be cultivated without the supplement of cholesterol and that use UGA as a stop codon instead of coding for tryptophan. It was later shown that the phytoplasmas, a larg...
Montealegre, Maria Camila; La Rosa, Sabina Leanti; Roh, Jung Hyeob; Harvey, Barrett R.
2015-01-01
ABSTRACT The endocarditis and biofilm-associated pili (Ebp) are important in Enterococcus faecalis pathogenesis, and the pilus tip, EbpA, has been shown to play a major role in pilus biogenesis, biofilm formation, and experimental infections. Based on in silico analyses, we previously predicted that ATT is the EbpA translational start codon, not the ATG codon, 120 bp downstream of ATT, which is annotated as the translational start. ATT is rarely used to initiate protein synthesis, leading to our hypothesis that this codon participates in translational regulation of Ebp production. To investigate this possibility, site-directed mutagenesis was used to introduce consecutive stop codons in place of two lysines at positions 5 and 6 from the ATT, to replace the ATT codon in situ with ATG, and then to revert this ATG to ATT; translational fusions of ebpA to lacZ were also constructed to investigate the effect of these start codons on translation. Our results showed that the annotated ATG does not start translation of EbpA, implicating ATT as the start codon; moreover, the presence of ATT, compared to the engineered ATG, resulted in significantly decreased EbpA surface display, attenuated biofilm, and reduced adherence to fibrinogen. Corroborating these findings, the translational fusion with the native ATT as the initiation codon showed significantly decreased expression of β-galactosidase compared to the construct with ATG in place of ATT. Thus, these results demonstrate that the rare initiation codon of EbpA negatively regulates EbpA surface display and negatively affects Ebp-associated functions, including biofilm and adherence to fibrinogen. PMID:26015496
Seligmann, Hervé
2013-05-07
GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel mutations responsible for α-thalassemia in Iranian families.
Bayat, Nooshin; Farashi, Samaneh; Hafezi-Nejad, Nima; Faramarzi, Negin; Ashki, Mehri; Vakili, Shadi; Imanian, Hashem; Khosravi, Mohsen; Azar-Keivan, Azita; Najmabadi, Hossein
2013-01-01
α-Thalassemia (α-thal) is usually caused by deletions on the α-globin gene cluster and the role of point mutations is less well investigated. In the present study, a total of 1048 individuals with hypochromic microcytic anemia, who did not present the most common α-thal deletions, were referred for α-globin gene DNA sequencing. The nucleotide changes were studied and a total of five new mutations was identified, of which three were located on the α2 gene [codon7 (Lys→Stop), codon 34 (Leu→Pro) and codon 83 (Leu→Arg)] and two on the α1 gene [IVS-I-116 (A>G) and codon 44 (+C)]. These novel mutations not only explain new findings by molecular analysis of the α-globin gene but also have clinical importance due to their changes in α-globin production in means of decreased hemoglobin (Hb) related values. Moreover, considerations of its role in combination with other mutations, and the possibility of causing Hb H (β4) are yet to be studied.
Butanaev, A M
1994-01-01
The hygromycin phosphotransferase gene (hpt) from E. coli under the control of the SV40 early promoter was used as a dominant selectable marker for transformation of Chlamydomonas reinhardtii. Cells were transformed by electroporation (pulse length, 2 ms, field strength, 1 kV/cm). The culture growth phase was a crucial parameter for transformation (optimal density approximately 10(6) cells/ml). It was possible to obtain approximately 10(3) Hyg-resistant colonies under these conditions. Foreign DNA integrated into the Chlamydomonas genome was maintained for at least 8 months but the Hyg-resistant phenotype of the transformed clones was unstable. The frequency of codon usage in the hpt gene was compared with the one in Chlamydomonas nuclear genes. It is supposed that highly biased codon usage in Chlamydomonas does not preclude expression. Advantages of this selection system for studying Chlamydomonas transformation by heterologous genes are discussed.
Inoue, Takahiko; Yuo, Takahisa; Ohta, Takeshi; Hitomi, Eriko; Ichitani, Katsuyuki; Kawase, Makoto; Taketa, Shin; Fukunaga, Kenji
2015-08-01
Foxtail millet shows variation in positive phenol color reaction (Phr) and negative Phr in grains, but predominant accessions of this crop are negative reaction type, and the molecular genetic basis of the Phr reaction remains unresolved. In this article, we isolated polyphenol oxidase (PPO) gene responsible for Phr using genome sequence information and investigated molecular genetic basis of negative Phr and crop evolution of foxtail millet. First of all, we searched for PPO gene homologs in a foxtail millet genome database using a rice PPO gene as a query and successfully found three copies of the PPO gene. One of the PPO gene homologs on chromosome 7 showed the highest similarity with PPO genes expressed in hulls (grains) of other cereal species including rice, wheat, and barley and was designated as Si7PPO. Phr phenotypes and Si7PPO genotypes completely co-segregated in a segregating population. We also analyzed the genetic variation conferring negative Phr reaction. Of 480 accessions of the landraces investigated, 87 (18.1 %) showed positive Phr and 393 (81.9 %) showed negative Phr. In the 393 Phr negative accessions, three types of loss-of-function Si7PPO gene were predominant and independently found in various locations. One of them has an SNP in exon 1 resulting in a premature stop codon and was designated as stop codon type, another has an insertion of a transposon (Si7PPO-TE1) in intron 2 and was designated as TE1-insertion type, and the other has a 6-bp duplication in exon 3 resulting in the duplication of 2 amino acids and was designated as 6-bp duplication type. As a rare variant of the stop codon type, one accession additionally has an insertion of a transposon, Si7PPO-TE2, in intron 2 and was designated as "stop codon +TE2 insertion type". The geographical distribution of accessions with positive Phr and those with three major types of negative Phr was also investigated. Accessions with positive Phr were found in subtropical and tropical regions at frequencies of ca. 25-67 % and those with negative Phr were broadly found in Europe and Asia. The stop codon type was found in 285 accessions and was broadly distributed in Europe and Asia, whereas the TE-1 insertion type was found in 99 accessions from Europe and Asia but was not found in India. The 6-bp duplication type was found in only 8 accessions from Nansei Islands (Okinawa Prefecture) of Japan. We also analyzed Phr in the wild ancestor and concluded that the negative Phr type was likely to have originated after domestication of foxtail millet. It was also implied that negative Phr of foxtail millet arose by multiple independent loss of function of PPO gene through dispersal because of some advantages under some environmental conditions and human selection as in rice and barley.
Hiwasa-Tanase, Kyoko; Nyarubona, Mpanja; Hirai, Tadayoshi; Kato, Kazuhisa; Ichikawa, Takanari; Ezura, Hiroshi
2011-01-01
In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.
Tran, Tuan-Anh; Vo, Nam Tri; Nguyen, Hoang Duc; Pham, Bao The
2015-12-01
Recombinant proteins play an important role in many aspects of life and have generated a huge income, notably in the industrial enzyme business. A gene is introduced into a vector and expressed in a host organism-for example, E. coli-to obtain a high productivity of target protein. However, transferred genes from particular organisms are not usually compatible with the host's expression system because of various reasons, for example, codon usage bias, GC content, repetitive sequences, and secondary structure. The solution is developing programs to optimize for designing a nucleotide sequence whose origin is from peptide sequences using properties of highly expressed genes (HEGs) of the host organism. Existing data of HEGs determined by practical and computer-based methods do not satisfy for qualifying and quantifying. Therefore, the demand for developing a new HEG prediction method is critical. We proposed a new method for predicting HEGs and criteria to evaluate gene optimization. Codon usage bias was weighted by amplifying the difference between HEGs and non-highly expressed genes (non-HEGs). The number of predicted HEGs is 5% of the genome. In comparison with Puigbò's method, the result is twice as good as Puigbò's one, in kernel ratio and kernel sensitivity. Concerning transcription/translation factor proteins (TF), the proposed method gives low TF sensitivity, while Puigbò's method gives moderate one. In summary, the results indicated that the proposed method can be a good optional applying method to predict optimized genes for particular organisms, and we generated an HEG database for further researches in gene design.
Aris-Brosou, Stéphane; Bielawski, Joseph P
2006-08-15
A popular approach to examine the roles of mutation and selection in the evolution of genomes has been to consider the relationship between codon bias and synonymous rates of molecular evolution. A significant relationship between these two quantities is taken to indicate the action of weak selection on substitutions among synonymous codons. The neutral theory predicts that the rate of evolution is inversely related to the level of functional constraint. Therefore, selection against the use of non-preferred codons among those coding for the same amino acid should result in lower rates of synonymous substitution as compared with sites not subject to such selection pressures. However, reliably measuring the extent of such a relationship is problematic, as estimates of synonymous rates are sensitive to our assumptions about the process of molecular evolution. Previous studies showed the importance of accounting for unequal codon frequencies, in particular when synonymous codon usage is highly biased. Yet, unequal codon frequencies can be modeled in different ways, making different assumptions about the mutation process. Here we conduct a simulation study to evaluate two different ways of modeling uneven codon frequencies and show that both model parameterizations can have a dramatic impact on rate estimates and affect biological conclusions about genome evolution. We reanalyze three large data sets to demonstrate the relevance of our results to empirical data analysis.
Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele
2017-09-01
Based on virus dependence from host cell machinery, their codon usage is expected to show a strong relation with the host one. Even if this association has been stated, especially for bacteria viruses, the linkage is considered to be less consistent for more complex organisms and a codon bias adaptation after host jump has never been proven. Canine parvovirus type 2 (CPV-2) was selected as a model because it represents a well characterized case of host jump, originating from Feline panleukopenia virus (FPV). The current study demonstrates that the adaptation to specific tissue and host codon bias affected CPV-2 evolution. Remarkably, FPV and CPV-2 showed a higher closeness toward the codon bias of the tissues they display the higher tropism for. Moreover, after the host jump, a clear and significant trend was evidenced toward a reduction in the distance between CPV-2 and the dog codon bias over time. This evidence was not confirmed for FPV, suggesting that an equilibrium has been reached during the prolonged virus-host co-evolution. Additionally, the presence of an intermediate pattern displayed by some strains infecting wild species suggests that these could have facilitated the host switch also by acting on codon bias. Copyright © 2017 Elsevier Inc. All rights reserved.
Hara, A; Ueda, M; Misawa, S; Matsui, T; Furuhashi, K; Tanaka, A
2000-03-01
Development of a transformation system in the n-alkane-assimilating diploid yeast Candida tropicalis requires an antibiotic resistance gene in order to establish a selectable marker. The resistance gene for hygromycin B has often been used as a selectable marker in yeast transformation. However, C. tropicalis harboring the hygromycin resistance gene (HYG) was as sensitive to hygromycin B as the wild-type strain. Nine CTG codons were found in the ORF of the HYG gene. This codon has been reported to be translated as serine rather than leucine in Candida species. Analysis of the tRNA gene in C. tropicalis with the anticodon CAG [tRNA(CAG) gene], which is complementary to the codon CTG, showed that the sequence was highly similar to that of the C. maltosa tRNA(CAG) gene. In C. maltosa, the codon CTG is read as serine and not leucine. These results suggested that the HYG gene was not functional due to the nonuniversal usage of the CTG codon. Each of the nine CTG codons in the ORF of the HYG gene was changed to a CTC codon, which is read as leucine, by site-directed mutagenesis. When a plasmid containing the mutated HYG gene (HYG#) was constructed and introduced into C. tropicalis, hygromycin-resistant transformants were successfully obtained. This mutated hygromycin resistance gene may be useful for direct selection of C. tropicalis transformants.
Non-AUG translation: a new start for protein synthesis in eukaryotes
Kearse, Michael G.; Wilusz, Jeremy E.
2017-01-01
Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states. PMID:28982758
Zhang, Yulong; Shao, Dandan; Cai, Miao; Yin, Hong; Zhang, Daochuan
2016-01-01
The complete mitochondrial genome of Gryllotalpa unispina was 15,513 bp in length and contained 70.9% AT. All G. unispina protein-coding sequences except for the nad2 started with a typical ATN codon. The usual termination codons (TAA) and incomplete stop codons (T) were found from 13 protein-coding genes. All tRNA genes were folded into the typical cloverleaf secondary structure, except trnS(AGN) lacking the dihydrouridine arm. The sizes of the large and small ribosomal RNA genes were 1245 and 725 bp, respectively. The A + T-rich region was 917 bp in length with 76.8%. The orientation and gene order of the G. unispina mitogenome were identical to the G. orientalis and G. pluvialis, there was no phenomenon of "DK rearrangement" which has been widely reported in Caelifera.
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).
Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai
2014-12-01
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.
Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura
Boore, Jeffrey L
2004-01-01
Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases. PMID:15369601
Large-scale, multi-genome analysis of alternate open reading frames in bacteria and archaea.
Veloso, Felipe; Riadi, Gonzalo; Aliaga, Daniela; Lieph, Ryan; Holmes, David S
2005-01-01
Analysis of over 300,000 annotated genes in 105 bacterial and archaeal genomes reveals an unexpectedly high frequency of large (>300 nucleotides) alternate open reading frames (ORFs). Especially notable is the very high frequency of alternate ORFs in frames +3 and -1 (where the annotated gene is defined as frame +1). The occurrence of alternate ORFs is correlated with genomic G+C content and is strongly influenced by synonymous codon usage bias. The frequency of alternate ORFs in frame -1 is also influenced by the occurrence of codons encoding leucine and serine in frame +1. Although some alternate ORFs have been shown to encode proteins, many others are probably not expressed because they lack appropriate signals for transcription and translation. These latter can be mis-annotated by automatic gene finding programs leading to errors in public databases. Especially prone to mis-annotation is frame -1, because it exhibits a potential codon usage and theoretical capacity to encode proteins with an amino acid composition most similar to real genes. Some alternate ORFs are conserved across bacterial or archaeal species, and can give rise to misannotated "conserved hypothetical" genes, while others are unique to a genome and are misidentified as "hypothetical orphan" genes, contributing significantly to the orphan gene paradox.
Kim, Julie J; Yu, Jaeju; Bag, Jnanankur; Bakovic, Marica; Cant, John P
2015-01-01
The rate of secretion of αs2-casein into bovine milk is approximately 25% of that of β-casein, yet mammary expression of their respective mRNA transcripts (csn1s2 and csn2) is not different. Our objective was to identify molecular mechanisms that explain the difference in translation efficiency between csn1s2 and csn2. Cell-free translational efficiency of csn2 was 5 times that of csn1s2. Transcripts of csn1s2 distributed into heavier polysomes than csn2 transcripts, indicating an attenuation of elongation and/or termination. Stimulatory and inhibitory effects of the 5′ and 3′ UTRs on translational efficiency were different with luciferase and casein sequences in the coding regions. Substituting the 5′ and 3′ UTRs from csn2 into csn1s2 did not improve csn1s2 translation, implicating the coding region itself in the translation difference. Deletion of a 28-codon fragment from the 3′ terminus of the csn1s2 coding region, which displays codons with low correlations to cell fitness, increased translation to a par with csn2. We conclude that the usage of the last 28 codons of csn1s2 is the main regulatory element that attenuates its expression and is responsible for the differential translational expression of csn1s2 and csn2. PMID:25826667
Jackson, Christopher J; Norman, John E; Schnare, Murray N; Gray, Michael W; Keeling, Patrick J; Waller, Ross F
2007-01-01
Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs) within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements within the genome, RNA editing, loss of stop codons, and use of trans-splicing. PMID:17897476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, J.; Roizman, B.; Kern, E.R.
1990-11-30
The gene designated {gamma}{sub 1}34.5 maps in the inverted repeats flanking the long unique sequence of herpes simplex virus-1 (HSV-1) DNA, and therefore it is present in two copies per genome. This gene is not essential for viral growth in cell culture. Four recombinant viruses were genetically engineered to test the function of this gene. These were (i) a virus from which both copies of the gene were deleted, (ii) a virus containing a stop codon in both copies of the gene, (iii) a virus containing after the first codon an insert encoding a 16-amino acid epitope known to reactmore » with a specific monoclonal antibody, and (iv) a virus in which the deleted sequences were restored. The viruses from which the gene was deleted or which carried stop codons were avirulent on intracerebral inoculation of mice. The virus with the gene tagged by the sequence encoding the epitope was moderately virulent, whereas the restored virus reacquired the phenotype of the parent virus. Significant amounts of virus were recovered only from brains of animals inoculated with virulent viruses. Inasmuch as the product of the {gamma}{sub 1}34.5 gene extended the host range of the virus by enabling it to replicate and destroy brain cells, it is a viral neurovirulence factor.« less
Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto
2013-01-01
In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011
Leroch, Michaela; Mernke, Dennis; Koppenhoefer, Dieter; Schneider, Prisca; Mosbach, Andreas; Doehlemann, Gunther; Hahn, Matthias
2011-05-01
The green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungus Botrytis cinerea because of low fluorescence intensity. The codon usage of B. cinerea genes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of the B. cinerea enhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression in B. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfp was used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfp fusions for quantitative evaluation of various toxic compounds as inducers of the atrB gene encoding an ABC-type drug efflux transporter of B. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence in B. cinerea.
2014-01-01
Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000
Garver, Kyle A.; Conway, Carla M.; Kurath, Gael
2006-01-01
A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine.
Andersson, Jan O; Sjögren, Åsa M; Horner, David S; Murphy, Colleen A; Dyal, Patricia L; Svärd, Staffan G; Logsdon, John M; Ragan, Mark A; Hirt, Robert P; Roger, Andrew J
2007-01-01
Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution. PMID:17298675
Mathew, Suneeth F; Crowe-McAuliffe, Caillan; Graves, Ryan; Cardno, Tony S; McKinney, Cushla; Poole, Elizabeth S; Tate, Warren P
2015-01-01
HIV-1 utilises -1 programmed ribosomal frameshifting to translate structural and enzymatic domains in a defined proportion required for replication. A slippery sequence, U UUU UUA, and a stem-loop are well-defined RNA features modulating -1 frameshifting in HIV-1. The GGG glycine codon immediately following the slippery sequence (the 'intercodon') contributes structurally to the start of the stem-loop but has no defined role in current models of the frameshift mechanism, as slippage is inferred to occur before the intercodon has reached the ribosomal decoding site. This GGG codon is highly conserved in natural isolates of HIV. When the natural intercodon was replaced with a stop codon two different decoding molecules-eRF1 protein or a cognate suppressor tRNA-were able to access and decode the intercodon prior to -1 frameshifting. This implies significant slippage occurs when the intercodon is in the (perhaps distorted) ribosomal A site. We accommodate the influence of the intercodon in a model of frame maintenance versus frameshifting in HIV-1.
The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae).
Pan, Hong-Chun; Qian, Xiao-Cheng; Li, Ping; Li, Xiao-Fei; Wang, An-Tai
2014-02-01
The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae) is a linear molecule of 16,189 bp in length, containing 13 protein-coding genes, small and large subunit ribosomal RNAs, methionine and tryptophan transfer RNAs, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mitochondrial DNA. The A + T content of the overall base composition of H-strand is 77.2% (T: 41.7%; C: 10.9%; A: 35.5%; and G: 11.9%). COI and ND1 genes begin with GTG as start codon, while other 11 protein-coding genes start with a typical ATG initiation codon. COII, ATP8, ATP6, COIII, ND5, ND6, ND3, ND1, ND4 and COI genes are terminated with TAA as stop codon, ND4L ends with TAG, ND2 ends with TA and Cyt b ends with T.
Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons
Cruz-Vera, Luis Rogelio; Magos-Castro, Marco Antonio; Zamora-Romo, Efraín; Guarneros, Gabriel
2004-01-01
Minigenes encoding the peptide Met–Arg–Arg have been used to study the mechanism of toxicity of AGA codons proximal to the start codon or prior to the termination codon in bacteria. The codon sequences of the ‘mini-ORFs’ employed were initiator, combinations of AGA and CGA, and terminator. Both, AGA and CGA are low-usage Arg codons in ORFs of Escherichia coli but, whilst AGA is translated by the scarce tRNAArg4, CGA is recognized by the abundant tRNAArg2. Overexpression of minigenes harbouring AGA in the third position, next to a termination codon, was deleterious to the cell and led to the accumulation of peptidyl-tRNAArg4 and of the peptidyl-tRNA cognate to the preceding CGA or AGA Arg triplet. The minigenes carrying CGA in the third position were not toxic. Minigene-mediated toxicity and peptidyl-tRNA accumulation were suppressed by overproduction of tRNAArg4 but not by overproduction of peptidyl-tRNA hydrolase, an enzyme that is only active on substrates that have been released from the ribosome. Consistent with these findings, peptidyl-tRNAArg4 was identified to be mainly associated with ribosomes in a stand-by complex. These and previous results support the hypothesis that the primary mechanism of inhibition of protein synthesis by AGA triplets in pth+ cells involves sequestration of tRNAs as peptidyl-tRNA on the stalled ribosome. PMID:15317870
Identification of Conflicting Selective Effects on Highly Expressed Genes
Higgs, Paul G.; Hao, Weilong; Golding, G. Brian
2007-01-01
Many different selective effects on DNA and proteins influence the frequency of codons and amino acids in coding sequences. Selection is often stronger on highly expressed genes. Hence, by comparing high- and low-expression genes it is possible to distinguish the factors that are selected by evolution. It has been proposed that highly expressed genes should (i) preferentially use codons matching abundant tRNAs (translational efficiency), (ii) preferentially use amino acids with low cost of synthesis, (iii) be under stronger selection to maintain the required amino acid content, and (iv) be selected for translational robustness. These effects act simultaneously and can be contradictory. We develop a model that combines these factors, and use Akaike’s Information Criterion for model selection. We consider pairs of paralogues that arose by whole-genome duplication in Saccharmyces cerevisiae. A codon-based model is used that includes asymmetric effects due to selection on highly expressed genes. The largest effect is translational efficiency, which is found to strongly influence synonymous, but not non-synonymous rates. Minimization of the cost of amino acid synthesis is implicated. However, when a more general measure of selection for amino acid usage is used, the cost minimization effect becomes redundant. Small effects that we attribute to selection for translational robustness can be identified as an improvement in the model fit on top of the effects of translational efficiency and amino acid usage. PMID:19430600
USDA-ARS?s Scientific Manuscript database
Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...
Jiang, Fan; Pan, Xubin; Li, Xuankun; Yu, Yanxue; Zhang, Junhua; Jiang, Hongshan; Dou, Liduo; Zhu, Shuifang
2016-01-01
The genus Dacus is one of the most economically important tephritid fruit flies. The first complete mitochondrial genome (mitogenome) of Dacus species – D. longicornis was sequenced by next-generation sequencing in order to develop the mitogenome data for this genus. The circular 16,253 bp mitogenome is the typical set and arrangement of 37 genes present in the ancestral insect. The mitogenome data of D. longicornis was compared to all the published homologous sequences of other tephritid species. We discovered the subgenera Bactrocera, Daculus and Tetradacus differed from the subgenus Zeugodacus, the genera Dacus, Ceratitis and Procecidochares in the possession of TA instead of TAA stop codon for COI gene. There is a possibility that the TA stop codon in COI is the synapomorphy in Bactrocera group in the genus Bactrocera comparing with other Tephritidae species. Phylogenetic analyses based on the mitogenome data from Tephritidae were inferred by Bayesian and Maximum-likelihood methods, strongly supported the sister relationship between Zeugodacus and Dacus. PMID:27812024
Unusual AIP mutation and phenocopy in the family of a young patient with acromegalic gigantism.
Imran, Syed Ali; Aldahmani, Khaled A; Penney, Lynette; Croul, Sidney E; Clarke, David B; Collier, David M; Iacovazzo, Donato; Korbonits, Márta
2018-01-01
Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein ( AIP ) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy. Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions.Unusual, previously not described AIP variant with loss of the stop codon.Phenocopy may occur in families with a disease-causing germline mutation.
Unusual AIP mutation and phenocopy in the family of a young patient with acromegalic gigantism
Aldahmani, Khaled A; Penney, Lynette; Croul, Sidney E; Clarke, David B; Collier, David M; Iacovazzo, Donato; Korbonits, Márta
2018-01-01
Summary Early-onset acromegaly causing gigantism is often associated with aryl-hydrocarbon-interacting receptor protein (AIP) mutation, especially if there is a positive family history. A15y male presented with tiredness and visual problems. He was 201 cm tall with a span of 217 cm. He had typical facial features of acromegaly, elevated IGF-1, secondary hypogonadism and a large macroadenoma. His paternal aunt had a history of acromegaly presenting at the age of 35 years. Following transsphenoidal surgery, his IGF-1 normalized and clinical symptoms improved. He was found to have a novel AIP mutation destroying the stop codon c.991T>C; p.*331R. Unexpectedly, his father and paternal aunt were negative for this mutation while his mother and older sister were unaffected carriers, suggesting that his aunt represents a phenocopy. Learning points: Typical presentation for a patient with AIP mutation with excess growth and eunuchoid proportions. Unusual, previously not described AIP variant with loss of the stop codon. Phenocopy may occur in families with a disease-causing germline mutation. PMID:29472986
Anwar, Munir A; Kralj, Slavko; Piqué, Anna Villar; Leemhuis, Hans; van der Maarel, Marc J E C; Dijkhuizen, Lubbert
2010-04-01
Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. Here, we report an evaluation of fructan synthesis in three Lactobacillus gasseri strains, identification of the fructansucrase-encoding genes and characterization of the recombinant proteins and fructan (oligosaccharide) products. High-performance anion-exchange chromatography and nuclear magnetic resonance analysis of the fructo-oligosaccharides (FOS) and polymers produced by the L. gasseri strains and the recombinant enzymes revealed that, in situ, L. gasseri strains DSM 20604 and 20077 synthesize inulin (and oligosaccharides) and levan products, respectively. L. gasseri DSM 20604 is only the second Lactobacillus strain shown to produce inulin polymer and FOS in situ, and is unique in its distribution of FOS synthesized, ranging from DP2 to DP13. The probiotic bacterium L. gasseri DSM 20243 did not produce any fructan, although we identified a fructansucrase-encoding gene in its genome sequence. Further studies showed that this L. gasseri DSM 20243 gene was prematurely terminated by a stop codon. Exchanging the stop codon for a glutamine codon resulted in a recombinant enzyme producing inulin and FOS. The three recombinant fructansucrase enzymes characterized from three different L. gasseri strains have very similar primary protein structures, yet synthesize different fructan products. An interesting feature of the L. gasseri strains is that they were unable to ferment raffinose, whereas their respective recombinant enzymes converted raffinose into fructan and FOS.
Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi
2010-10-01
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A.; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M.
2015-01-01
Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications. PMID:25611746
Rivera-Hoyos, Claudia M; Morales-Álvarez, Edwin David; Poveda-Cuevas, Sergio Alejandro; Reyes-Guzmán, Edwin Alfredo; Poutou-Piñales, Raúl A; Reyes-Montaño, Edgar Antonio; Pedroza-Rodríguez, Aura Marina; Rodríguez-Vázquez, Refugio; Cardozo-Bernal, Ángela M
2015-01-01
Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.
Beyond the Triplet Code: Context Cues Transform Translation.
Brar, Gloria A
2016-12-15
The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity. Copyright © 2016 Elsevier Inc. All rights reserved.
Texting at the light and other forms of device distraction behind the wheel.
Bernstein, James J; Bernstein, Joseph
2015-09-26
Cell phones are a well-known source of distraction for drivers, and owing to the proliferation of text messaging services, web browsers and interactive apps, modern devices provide ever-increasing temptation for drivers to take their eyes off the road. Although it is probably obvious that drivers' manual engagement of a device while their vehicles are in motion is potentially dangerous, it may not be clear that such engagement when the vehicle is at rest (an activity broadly labeled "texting at the light") can also impose risks. For one thing, a distracted driver at rest may fail to respond quickly to sudden changes in road conditions, such as an ambulance passing through. In addition, texting at the light may decrease so-called "situational awareness" and lead to driving errors even after the device is put down. To our knowledge, the direct comparison of the rate of device usage by drivers at rest with the rate of device usage by drivers in motion has not been reported. We collected information on 2000 passenger vehicles by roadside observation. For the first group of 1000 passenger vehicles stopped at a traffic light, device usage ("texting", "talking", "none"), gender of the driver, vehicle type, seatbelt usage and presence of front seat passengers were recorded. For a second set of 1000 vehicles in motion, device usage alone was noted. Statistical significance for differences in rates was assessed with the chi-square test. We found that 3 % of drivers in motion were texting and 5 % were talking. Among the stopped drivers, 14.5 % were texting and 6.3 % were talking. In the stopped-vehicle set, gender and vehicle type were not associated with significant differences in device usage, but having a front seat passenger and using seatbelts were. Device usage is markedly higher among drivers temporarily at rest compared with those in motion, and the presence of a front seat passenger, who may help alleviate boredom or reprimand bad behavior, is associated with lower device usage rates among vehicles stopped at a light. These observations may help identify suitable steps to decrease distracted driving and thereby minimize traffic trauma.
Sarrazin, Sandrine; Starck, Joëlle; Gonnet, Colette; Doubeikovski, Alexandre; Melet, Fabrice; Morle, François
2000-01-01
The proto-oncogene Fli-1 encodes a transcription factor of the ets family whose overexpression is associated with multiple virally induced leukemias in mouse, inhibits murine and avian erythroid cell differentiation, and induces drastic perturbations of early development in Xenopus. This study demonstrates the surprisingly sophisticated regulation of Fli-1 mRNA translation. We establish that two FLI-1 protein isoforms (of 51 and 48 kDa) detected by Western blotting in vivo are synthesized by alternative translation initiation through the use of two highly conserved in-frame initiation codons, AUG +1 and AUG +100. Furthermore, we show that the synthesis of these two FLI-1 isoforms is regulated by two short overlapping 5′ upstream open reading frames (uORF) beginning at two highly conserved upstream initiation codons, AUG −41 and GUG −37, and terminating at two highly conserved stop codons, UGA +35 and UAA +15. The mutational analysis of these two 5′ uORF revealed that each of them negatively regulates FLI-1 protein synthesis by precluding cap-dependent scanning to the 48- and 51-kDa AUG codons. Simultaneously, the translation termination of the two 5′ uORF appears to enhance 48-kDa protein synthesis, by allowing downstream reinitiation at the 48-kDa AUG codon, and 51-kDa protein synthesis, by allowing scanning ribosomes to pile up and consequently allowing upstream initiation at the 51-kDa AUG codon. To our knowledge, this is the first example of a cellular mRNA displaying overlapping 5′ uORF whose translation termination appears to be involved in the positive control of translation initiation at both downstream and upstream initiation codons. PMID:10757781
Identification of genomic islands in six plant pathogens.
Chen, Ling-Ling
2006-06-07
Genomic islands (GIs) play important roles in microbial evolution, which are acquired by horizontal gene transfer. In this paper, the GIs of six completely sequenced plant pathogens are identified using a windowless method based on Z curve representation of DNA sequences. Consequently, four, eight, four, one, two and four GIs are recognized with the length greater than 20-Kb in plant pathogens Agrobacterium tumefaciens str. C58, Rolstonia solanacearum GMI1000, Xanthomonas axonopodis pv. citri str. 306 (Xac), Xanthomonas campestris pv. campestris str. ATCC33913 (Xcc), Xylella fastidiosa 9a5c and Pseudomonas syringae pv. tomato str. DC3000, respectively. Most of these regions share a set of conserved features of GIs, including an abrupt change in GC content compared with that of the rest of the genome, the existence of integrase genes at the junction, the use of tRNA as the integration sites, the presence of genetic mobility genes, the difference of codon usage, codon preference and amino acid usage, etc. The identification of these GIs will benefit the research for the six important phytopathogens.
Rensing, Stefan A; Fritzowsky, Dana; Lang, Daniel; Reski, Ralf
2005-01-01
Background The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. Results We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. Conclusion Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in comparison with the seed plant Arabidopsis. Putative retained genes exhibit possible functions that might explain the peculiar physiological properties of mosses. Both the transcriptome representation (including a BLAST and retrieval service) and splice site prediction have been made available on , setting the basis for assembly and annotation of the Physcomitrella genome, of which draft shotgun sequences will become available in 2005. PMID:15784153
Diene, Seydina M; Merhej, Vicky; Henry, Mireille; El Filali, Adil; Roux, Véronique; Robert, Catherine; Azza, Saïd; Gavory, Frederick; Barbe, Valérie; La Scola, Bernard; Raoult, Didier; Rolain, Jean-Marc
2013-02-01
Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired "en bloc" from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance. E. aerogenes has a large RNA population comprising 8 rRNA operons and 87 cognate tRNAs that have the ability to translate transferred genes that use different codons, as exemplified by the significantly different codon usage between genes from the core genome and the "mobilome." On the basis of our findings, the evolution of this bacterium to become a "killer bug" with new genomic repertoires was from three criteria that are "opportunity, power, and usage" to indicate a sympatric lifestyle: "opportunity" to meet other bacteria and exchange foreign sequences since this bacteria was similar to sympatric bacteria; "power" to integrate these foreign sequences such as the acquisition of several mobile genetic elements (plasmids, integrative conjugative element, prophages, transposons, flagellar assembly system, etc.) found in his genome; and "usage" to have the ability to translate these sequences including those from rare codons to serve as a translator of foreign languages.
Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf
2013-02-01
Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.
Okumiya, T; Takenaka, T; Ishii, S; Kase, R; Kamei, S; Sakuraba, H
1996-09-01
Four alpha-galactosidase gene mutations were identified in Japanese male patients with Fabry disease who had no detectable alpha-galactosidase activity. Two of them were novel mutations, an 11-bp deletion in exon 2 and a g-1 to t substitution at the 3' end of the splice acceptor site in intron 1. The former caused a frameshift and led to the creation of a new stop codon at codon 118. The latter was predicted to provoke aberrant mRNA splicing followed by accelerated degradation of the mRNA. A nonsense mutation, R301X, and a 2-bp deletion starting at nucleotide position 718, which were reported previously, were also identified in unrelated patients.
alpha-Tubulin of Histriculus cavicola (Ciliophora; Hypotrichea).
Pérez-Romero, P; Villalobo, E; Díaz-Ramos, C; Calvo, P; Santos-Rosa, F; Torres, A
1997-03-01
An alpha-tubulin gene fragment amplified by PCR from the hypotrichous ciliate Histriculus cavicola has been sequenced. This fragment, 1,182 bp long, contains an in-frame "stop" codon (UAA), which in other hypotrichous species codes for a glutamine residue. The comparison of the alpha-tubulin genes from several ciliates classes have revealed amino acid positions which could serve to distinguish these taxonomic groups.
Ancient nature of alternative splicing and functions of introns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Kemin; Salamov, Asaf; Kuo, Alan
Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but intronsmore » retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.« less
Rapid Y degeneration and dosage compensation in plant sex chromosomes
Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.
2015-01-01
The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872
Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.
Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca
2012-10-01
The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.
Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.
Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J
2017-01-24
Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.
OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China.
Fang, Zhi-Li; Zhang, Li-Yan; Huang, Ying-Min; Qing, Yun; Cao, Kai-Yuan; Tian, Guo-Bao; Huang, Xi
2014-01-01
To investigate the mechanisms involved in imipenem resistance of Pseudomonas aeruginosa in southern China, 61 imipenem-resistant P. aeruginosa clinical isolates were collected from 4 hospitals between October 2011 and June 2012. All isolates were resistant to imipenem, whereas 21.3% were susceptible or intermediate to meropenem. Variable degrees of resistance to other β-lactam and non-β-lactam antimicrobials were observed. PFGE revealed high-level of clonal diversity. Among the 61 isolates, 50 isolates had OprD loss by disrupted oprD mutations, including 43 with frameshift mutations of oprD and 7 with a premature stop codon by single point mutation. Six isolates were oprD-negative by PCR, suggestive of a major disruption of oprD genes. Five isolates had intact oprD but had reduced expression of oprD genes. In addition, only one isolate with disrupted oprD mutation by a premature stop codon was confirmed to be a metallo-β-lactamase producer (IMP-9). Our results show that the loss of OprD, as well as reduced expression of oprD and MBL production, were the predominant mechanisms of imipenem resistance in P. aeruginosa in southern China. Copyright © 2013 Elsevier B.V. All rights reserved.
Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel
2007-01-01
Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403
tRNAs as Biomarkers and Regulators for Breast Cancer
2009-08-01
codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific...CONTRACTING ORGANIZATION : The University of Chicago Chicago, IL 60637 REPORT...Geslain, Q. Dai. 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
Dean, Kimberly M; Grayhack, Elizabeth J
2012-12-01
We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi
1996-05-01
We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resultedmore » in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.« less
Sun, Yu; Chen, Chen; Gao, Jin; Abbas, Muhammad Nadeem; Kausar, Saima; Qian, Cen; Wang, Lei; Wei, Guoqing; Zhu, Bao-Jian
2017-01-01
In the present study, the complete sequence of the mitochondrial genome (mitogenome) of Daphnis nerii (Lepidoptera: Sphingidae) is described. The mitogenome (15,247 bp) of D.nerii encodes13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an adenine (A) + thymine (T)-rich region. Its gene complement and order is similar to that of other sequenced lepidopterans. The 12 PCGs initiated by ATN codons except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon as documented in other insect mitogenomes. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. This mitogenome has six major intergenic spacers, with the exception of A+T-rich region, spanning at least 10 bp. The A+T-rich region is 351 bp long, and contains some conserved regions, including ‘ATAGA’ motif followed by a 17 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element. Phylogenetic analyses based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that D. nerii resides in the Sphingidae family. PMID:28598968
Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms
Telford, Maximilian J.; Herniou, Elisabeth A.; Russell, Robert B.; Littlewood, D. Timothy J.
2000-01-01
Shared molecular genetic characteristics other than DNA and protein sequences can provide excellent sources of phylogenetic information, particularly if they are complex and rare and are consequently unlikely to have arisen by chance convergence. We have used two such characters, arising from changes in mitochondrial genetic code, to define a clade within the Platyhelminthes (flatworms), the Rhabditophora. We have sampled 10 distinct classes within the Rhabditophora and find that all have the codon AAA coding for the amino acid Asn rather than the usual Lys and AUA for Ile rather than the usual Met. We find no evidence to support claims that the codon UAA codes for Tyr in the Platyhelminthes rather than the standard stop codon. The Rhabditophora are a very diverse group comprising the majority of the free-living turbellarian taxa and the parasitic Neodermata. In contrast, three other classes of turbellarian flatworm, the Acoela, Nemertodermatida, and Catenulida, have the standard invertebrate assignments for these codons and so are convincingly excluded from the rhabditophoran clade. We have developed a rapid computerized method for analyzing genetic codes and demonstrate the wide phylogenetic distribution of the standard invertebrate code as well as confirming already known metazoan deviations from it (ascidian, vertebrate, echinoderm/hemichordate). PMID:11027335
Energy efficiency trade-offs drive nucleotide usage in transcribed regions
Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J.
2016-01-01
Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites. PMID:27098217
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Ahn, Insung; Son, Hyeon S
2007-07-01
To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.
DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.
Eernisse, D J
1992-04-01
DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.
USDA-ARS?s Scientific Manuscript database
The latency-related (LR)-RNA encoded by bovine herpes virus 1 (BoHV-1) is abundantly expressed in latently infected sensory neurons. Although the LR gene encodes several products, ORF2 appears to play a dominant role during the latency-reactivation cycle because a mutant virus containing stop codons...
Shariati, Gholamreza; Hamid, Mohammad; Saberi, Alihossein; Andashti, Behnaz; Galehdari, Hamid
2015-02-01
Megalencephalic leukoencephalopathy (MLC) is a rare neurological disorder with an autosomal recessive pattern. Clinical diagnosis was based on macrocephaly, recurrent seizure, and magnetic resonance imaging (MRI). Here we report first finding of a novel homozygous single base deletion in the MLC1 gene in an affected Iranian child causing a premature stop codon (p.L150fs.160X).
USDA-ARS?s Scientific Manuscript database
Avian leukosis virus (ALV) is an oncogenic virus causing a variety of neoplasms in chickens. The group of avian leukosis virus in chickens contains six closely related subgroups, A to E and J. The prevalence of ALVs in hosts may have imposed strong selection pressure toward resistance to ALV infecti...
Unit-length line-1 transcripts in human teratocarcinoma cells.
Skowronski, J; Fanning, T G; Singer, M F
1988-01-01
We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389
Das Bhowmik, Aneek; Gupta, Neerja; Dalal, Ashwin; Kabra, Madhulika
In the present study we report on genetic analysis in a patient with developmental delay, truncal obesity and vision problem, to find the causative mutation. Whole exome sequencing was performed on genomic DNA extracted from whole blood of the patient which revealed a homozygous nonsense variant (c.2816T>A) in exon 8 of ALMS1 gene that results in a stop codon and premature truncation at codon 939 (p.L939Ter) of the protein. The mutation was confirmed by Sanger sequencing. Exome sequencing was helpful in establishing diagnosis of Alstrom syndrome in this patient. This case highlights the utility of exome sequencing in clinical practice. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2016-01-01
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine–pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism. PMID:26791911
Truncated variants of apolipoprotein B cause hypobetalipoproteinaemia.
Collins, D R; Knott, T J; Pease, R J; Powell, L M; Wallis, S C; Robertson, S; Pullinger, C R; Milne, R W; Marcel, Y L; Humphries, S E
1988-01-01
Familial hypobetalipoproteinaemia is a rare autosomal dominant disorder in which levels of apo-B-containing plasma lipoproteins are approximately half-normal in heterozygotes and virtually absent in homozygotes. Here we describe mutations of the apo-B gene that cause two different truncated variants of apo-B in unrelated individuals with hypobetalipoproteinaemia. One variant, apo-B(His1795----Met-Trp-Leu-Val-Thr-Term) is predicted to be 1799 amino acids long and arises from deletion of a single nucleotide (G) from leucine codon 1794. This protein was found at low levels in very low density and low density lipoprotein fractions in the blood. The second, shorter variant, apo-B(Arg1306----Term), is caused by mutation of a CpG dinucleotide in arginine codon 1306 converting it to a stop codon and predicting a protein of 1305 residues. The product of this allele could not be detected in the circulation. The differences in size and behaviour of these two variants compared to apo-B100 or apo-B48 point to domains that may be important for the assembly, secretion or stability of apo-B-containing lipoproteins. Images PMID:2843815
Niu, Fang-Fang; Zhu, Liang; Wang, Su; Wei, Shu-Jun
2016-07-01
Here, we report the mitochondrial genome sequence of the multicolored Asian lady beetle Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) (GenBank accession No. KR108208). This is the first species with sequenced mitochondrial genome from the genus Harmonia. The current length with partitial A + T-rich region of this mitochondrial genome is 16,387 bp. All the typical genes were sequenced except the trnI and trnQ. As in most other sequenced mitochondrial genomes of Coleoptera, there is no re-arrangement in the sequenced region compared with the pupative ancestral arrangement of insects. All protein-coding genes start with ATN codons. Five, five and three protein-coding genes stop with termination codon TAA, TA and T, respectively. Phylogenetic analysis using Bayesian method based on the first and second codon positions of the protein-coding genes supported that the Scirtidae is a basal lineage of Polyphaga. The Harmonia and the Coccinella form a sister lineage. The monophyly of Staphyliniformia, Scarabaeiformia and Cucujiformia was supported. The Buprestidae was found to be a sister group to the Bostrichiformia.
Ko, Jae-hyeong; Llopis, Paula Montero; Heinritz, Jennifer; Jacobs-Wagner, Christine; Söll, Dieter
2013-01-01
While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair. PMID:24386240
Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2016-01-21
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm(5)s(2)U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.
NASA Astrophysics Data System (ADS)
Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2016-01-01
Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.
Lee, Yee-Ki; Lau, Yee-Man; Cai, Zhu-Jun; Lai, Wing-Hon; Wong, Lai-Yung; Tse, Hung-Fat; Ng, Kwong-Man; Siu, Chung-Wah
2017-07-28
Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the LMNA gene are of nonsense mutation. PTC124 induces translational read-through over the premature stop codon and restores production of the full-length proteins from the affected genes. In this study we generated human induced pluripotent stem cells-derived cardiomyocytes from patients who harbored different LMNA mutations (nonsense and frameshift) to evaluate the potential therapeutic effects of PTC124 in LMNA -related cardiomyopathy. We generated human induced pluripotent stem cells lines from 3 patients who carried distinctive mutations (R225X, Q354X, and T518fs) in the LMNA gene. The cardiomyocytes derived from these human induced pluripotent stem cells lines reproduced the pathophysiological hallmarks of LMNA -related cardiomyopathy. Interestingly, PTC124 treatment increased the production of full-length LMNA proteins in only the R225X mutant, not in other mutations. Functional evaluation experiments on the R225X mutant further demonstrated that PTC124 treatment not only reduced nuclear blebbing and electrical stress-induced apoptosis but also improved the excitation-contraction coupling of the affected cardiomyocytes. Using cardiomyocytes derived from human induced pluripotent stem cells carrying different LMNA mutations, we demonstrated that the effect of PTC124 is codon selective. A premature stop codon UGA appeared to be most responsive to PTC124 treatment. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
USDA-ARS?s Scientific Manuscript database
Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for the...
Characterisation of a type 1 Avian Paramyxovirus belonging to a divergent group.
Briand, François-Xavier; Massin, Pascale; Jestin, Véronique
2014-01-10
Newcastle disease, induced by a type 1 Avian Paramyxovirus (APMV-1), is one of the most serious poultry diseases. APMV-1 are divided into two classes based on genetic analysis: class II strains have been recovered from wild or domestic birds and include virulent and avirulent isolates whereas class I strains have been mainly isolated from wild birds and are avirulent. Within class I, a new proposed genotype has recently been reported. The only full genome strain of this group is presently characterised from the point of view of codon usage with reference to class I and class II specificities. Class-specific residues were identified on HN and F proteins that are the two major proteins involved in cell attachment and pathogenicity. Comparison of protein patterns and codon usage for this newly identified APMV-1 strain indicates it is similar to class I viruses but contains a few characteristics close to the viruses of class II. Transmission of viruses from this recently identified divergent group from wild birds to domestic birds could have a major impact on the domestic poultry industry. Copyright © 2013 Elsevier B.V. All rights reserved.
Félez-Sánchez, Marta; Trösemeier, Jan-Hendrik; Bedhomme, Stéphanie; González-Bravo, Maria Isabel; Kamp, Christel; Bravo, Ignacio G.
2015-01-01
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response. PMID:26139833
Comparison of laccase production levels in Pichia pastoris and Cryptococcus sp. S-2.
Nishibori, Nahoko; Masaki, Kazuo; Tsuchioka, Hiroaki; Fujii, Tsutomu; Iefuji, Haruyuki
2013-04-01
The heterologous expression of the laccase gene from Trametes versicolor and Gaeumannomyces graminis was evaluated in the yeasts Pichia pastoris and Cryptococcus sp. S-2. The expression levels of both laccase genes in Cryptococcus sp. S-2 were considerably higher than those in P. pastoris. The codon usage of Cryptococcus sp. S-2 as well as the GC content were similar to those of T. versicolor and G. graminis. These results suggest that using a host with a similar codon usage for the expressed gene may improve protein expression. The use of Cryptococcus sp. S-2 as a host may be advantageous for the heterologous expression of genes with high GC content. Moreover, this yeast provides the same advantages as P. pastoris for the production of recombinant proteins, such as growth on minimal medium, capacity for high-density growth during fermentation, and capability for post-translational modifications. Therefore, we propose that Cryptococcus sp. S-2 be used as an expression host to improve enzyme production levels when other hosts have not yielded good results. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Jacobo, Sarah Melissa P; Deangelis, Margaret M; Kim, Ivana K; Kazlauskas, Andrius
2013-05-01
Synonymous single nucleotide polymorphisms (SNPs) within a transcript's coding region produce no change in the amino acid sequence of the protein product and are therefore intuitively assumed to have a neutral effect on protein function. We report that two common variants of high-temperature requirement A1 (HTRA1) that increase the inherited risk of neovascular age-related macular degeneration (NvAMD) harbor synonymous SNPs within exon 1 of HTRA1 that convert common codons for Ala34 and Gly36 to less frequently used codons. The frequent-to-rare codon conversion reduced the mRNA translation rate and appeared to compromise HtrA1's conformation and function. The protein product generated from the SNP-containing cDNA displayed enhanced susceptibility to proteolysis and a reduced affinity for an anti-HtrA1 antibody. The NvAMD-associated synonymous polymorphisms lie within HtrA1's putative insulin-like growth factor 1 (IGF-1) binding domain. They reduced HtrA1's abilities to associate with IGF-1 and to ameliorate IGF-1-stimulated signaling events and cellular responses. These observations highlight the relevance of synonymous codon usage to protein function and implicate homeostatic protein quality control mechanisms that may go awry in NvAMD.
Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis
Li, Zhi-Zhong; Saina, Josphat K.; Gichira, Andrew W.; Kyalo, Cornelius M.; Wang, Qing-Feng
2018-01-01
The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales. PMID:29360746
Stachyra, Anna; Redkiewicz, Patrycja; Kosson, Piotr; Protasiuk, Anna; Góra-Sochacka, Anna; Kudla, Grzegorz; Sirko, Agnieszka
2016-08-26
Highly pathogenic avian influenza viruses are a serious threat to domestic poultry and can be a source of new human pandemic and annual influenza strains. Vaccination is the main strategy of protection against influenza, thus new generation vaccines, including DNA vaccines, are needed. One promising approach for enhancing the immunogenicity of a DNA vaccine is to maximize its expression in the immunized host. The immunogenicity of three variants of a DNA vaccine encoding hemagglutinin (HA) from the avian influenza virus A/swan/Poland/305-135V08/2006 (H5N1) was compared in two animal models, mice (BALB/c) and chickens (broilers and layers). One variant encoded the wild type HA while the other two encoded HA without proteolytic site between HA1 and HA2 subunits and differed in usage of synonymous codons. One of them was enriched for codons preferentially used in chicken genes, while in the other modified variant the third position of codons was occupied in almost 100 % by G or C nucleotides. The variant of the DNA vaccine containing almost 100 % of the GC content in the third position of codons stimulated strongest immune response in two animal models, mice and chickens. These results indicate that such modification can improve not only gene expression but also immunogenicity of DNA vaccine. Enhancement of the GC content in the third position of the codon might be a good strategy for development of a variant of a DNA vaccine against influenza that could be highly effective in distant hosts, such as birds and mammals, including humans.
Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches.
Fairclough, Rebecca J; Wood, Matthew J; Davies, Kay E
2013-06-01
Duchenne muscular dystrophy (DMD) is a devastating progressive disease for which there is currently no effective treatment except palliative therapy. There are several promising genetic approaches, including viral delivery of the missing dystrophin gene, read-through of translation stop codons, exon skipping to restore the reading frame and increased expression of the compensatory utrophin gene. The lessons learned from these approaches will be applicable to many other disorders.
Multiple conversion between the genes encoding bacterial class-I release factors
Ishikawa, Sohta A.; Kamikawa, Ryoma; Inagaki, Yuji
2015-01-01
Bacteria require two class-I release factors, RF1 and RF2, that recognize stop codons and promote peptide release from the ribosome. RF1 and RF2 were most likely established through gene duplication followed by altering their stop codon specificities in the common ancestor of extant bacteria. This scenario expects that the two RF gene families have taken independent evolutionary trajectories after the ancestral gene duplication event. However, we here report two independent cases of conversion between RF1 and RF2 genes (RF1-RF2 gene conversion), which were severely examined by procedures incorporating the maximum-likelihood phylogenetic method. In both cases, RF1-RF2 gene conversion was predicted to occur in the region encoding nearly entire domain 3, of which functions are common between RF paralogues. Nevertheless, the ‘direction’ of gene conversion appeared to be opposite from one another—from RF2 gene to RF1 gene in one case, while from RF1 gene to RF2 gene in the other. The two cases of RF1-RF2 gene conversion prompt us to propose two novel aspects in the evolution of bacterial class-I release factors: (i) domain 3 is interchangeable between RF paralogues, and (ii) RF1-RF2 gene conversion have occurred frequently in bacterial genome evolution. PMID:26257102
Datta, Sibnarayan; Banerjee, Arup; Chandra, Partha K; Chakraborty, Subhasis; Basu, Subir Kumar; Chakravarty, Runu
2007-11-01
In blood donors, HBV infection is detected by the presence of serum hepatitis B surface antigen (HBsAg). However, some mutations in the surface gene region may result in altered or truncated HBsAg that can escape from immunoassay-based diagnosis. Such diagnostic escape mutants pose a potential risk for blood transfusion services. In the present study, we report a blood donor seronegative for HBsAg and antiHBc, but positive for antiHBs who was HBV DNA positive by PCR. Sequencing of the HBsAg gene revealed presence of a point mutation (T-A) at 207th nucleotide of the HBsAg ORF, which resulted in a premature stop codon at position 69. This results in a truncated HBsAg gene lacking the entire 'a' determinant region. However, follow-up of the donor after 2 years revealed clearance of HBV DNA from the serum. The case illustrates an unusual mutation, which causes HBsAg negativity. The finding emphasizes the importance of molecular assays in reducing the possibility of HBV transmission through blood transfusion. However, developing more sensitive serological assays, capable of detecting HBV mutants, is an alternative to expensive and complex amplification-based assays for developing countries.
Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans
Sokolowski, Mark; Chynces, May; deHaro, Dawn; Christian, Claiborne M.
2017-01-01
Abstract Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events. PMID:28431148
The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.
Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R
1982-01-01
The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791
Massive programmed translational jumping in mitochondria
Lang, B. Franz; Jakubkova, Michaela; Hegedusova, Eva; Daoud, Rachid; Forget, Lise; Brejova, Brona; Vinar, Tomas; Kosa, Peter; Fricova, Dominika; Nebohacova, Martina; Griac, Peter; Tomaska, Lubomir; Burger, Gertraud; Nosek, Jozef
2014-01-01
Programmed translational bypassing is a process whereby ribosomes “ignore” a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a “takeoff codon” immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching “landing triplet” 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions. PMID:24711422
[Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].
Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi
2010-02-01
The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.
Drosophila Melanogaster Mitochondrial DNA: Gene Organization and Evolutionary Considerations
Garesse, R.
1988-01-01
The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G+C on both strands. The predominant type of transition is strand specific. PMID:3130291
tRNAs as Biomarkers and Regulators for Breast Cancer
2010-08-01
Biol., 158, 573–597. 28. Kanaya,S., Yamada,Y., Kudo,Y. and Ikemura,T. (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and...CONTRACTING ORGANIZATION : University of Chicago Chicago, IL 60637 REPORT DATE...6. AUTHOR(S) 5d. PROJECT NUMBER Tao Pan * 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES
The complete mitochondrial genome of the stomatopod crustacean Squilla mantis
Cook, Charles E
2005-01-01
Background Animal mitochondrial genomes are physically separate from the much larger nuclear genomes and have proven useful both for phylogenetic studies and for understanding genome evolution. Within the phylum Arthropoda the subphylum Crustacea includes over 50,000 named species with immense variation in body plans and habitats, yet only 23 complete mitochondrial genomes are available from this subphylum. Results I describe here the complete mitochondrial genome of the crustacean Squilla mantis (Crustacea: Malacostraca: Stomatopoda). This 15994-nucleotide genome, the first described from a hoplocarid, contains the standard complement of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a non-coding AT-rich region that is found in most other metazoans. The gene order is identical to that considered ancestral for hexapods and crustaceans. The 70% AT base composition is within the range described for other arthropods. A single unusual feature of the genome is a 230 nucleotide non-coding region between a serine transfer RNA and the nad1 gene, which has no apparent function. I also compare gene order, nucleotide composition, and codon usage of the S. mantis genome and eight other malacostracan crustaceans. A translocation of the histidine transfer RNA gene is shared by three taxa in the order Decapoda, infraorder Brachyura; Callinectes sapidus, Portunus trituberculatus and Pseudocarcinus gigas. This translocation may be diagnostic for the Brachyura. For all nine taxa nucleotide composition is biased towards AT-richness, as expected for arthropods, and is within the range reported for other arthropods. Codon usage is biased, and much of this bias is probably due to the skew in nucleotide composition towards AT-richness. Conclusion The mitochondrial genome of Squilla mantis contains one unusual feature, a 230 base pair non-coding region has so far not been described in any other malacostracan. Comparisons with other Malacostraca show that all nine genomes, like most other mitochondrial genomes, share a bias toward AT-richness and a related bias in codon usage. The nine malacostracans included in this analysis are not representative of the diversity of the class Malacostraca, and additional malacostracan sequences would surely reveal other unusual genomic features that could be useful in understanding mitochondrial evolution in this taxon. PMID:16091132
Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J
1996-04-30
A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.
Thiamine-responsive megaloblastic anemia: early diagnosis may be effective in preventing deafness.
Onal, Hasan; Bariş, Safa; Ozdil, Mine; Yeşil, Gözde; Altun, Gürkan; Ozyilmaz, Isa; Aydin, Ahmet; Celkan, Tiraje
2009-01-01
Thiamine-responsive megaloblastic anemia syndrome is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anemia and sensorineural hearing loss. Mutations in the SLC19A2 gene, encoding a high-affinity thiamine transporter protein, THTR-1, are responsible for the clinical features associated with thiamine-responsive megaloblastic anemia syndrome in which treatment with pharmacological doses of thiamine correct the megaloblastic anemia and diabetes mellitus. The anemia can recur when thiamine is withdrawn. Thiamine may be effective in preventing deafness if started before two months. Our patient was found homozygous for a mutation, 242insA, in the nucleic acid sequence of exon B, with insertion of an adenine introducing a stop codon at codon 52 in the high-affinity thiamine transporter gene, SLC19A2, on chromosome 1q23.3.
Al-Babili, Salim; Hoa, Tran Thi Cuc; Schaub, Patrick
2006-01-01
To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.
Comparative Mitogenomic Analysis of Species Representing Six Subfamilies in the Family Tenebrionidae
Zhang, Hong-Li; Liu, Bing-Bing; Wang, Xiao-Yang; Han, Zhi-Ping; Zhang, Dong-Xu; Su, Cai-Na
2016-01-01
To better understand the architecture and evolution of the mitochondrial genome (mitogenome), mitogenomes of ten specimens representing six subfamilies in Tenebrionidae were selected, and comparative analysis of these mitogenomes was carried out in this study. Ten mitogenomes in this family share a similar gene composition, gene order, nucleotide composition, and codon usage. In addition, our results show that nucleotide bias was strongly influenced by the preference of codon usage for A/T rich codons which significantly correlated with the G + C content of protein coding genes (PCGs). Evolutionary rate analyses reveal that all PCGs have been subjected to a purifying selection, whereas 13 PCGs displayed different evolution rates, among which ATPase subunit 8 (ATP8) showed the highest evolutionary rate. We inferred the secondary structure for all RNA genes of Tenebrio molitor (Te2) and used this as the basis for comparison with the same genes from other Tenebrionidae mitogenomes. Some conserved helices (stems) and loops of RNA structures were found in different domains of ribosomal RNAs (rRNAs) and the cloverleaf structure of transfer RNAs (tRNAs). With regard to the AT-rich region, we analyzed tandem repeat sequences located in this region and identified some essential elements including T stretches, the consensus motif at the flanking regions of T stretch, and the secondary structure formed by the motif at the 3′ end of T stretch in major strand, which are highly conserved in these species. Furthermore, phylogenetic analyses using mitogenomic data strongly support the relationships among six subfamilies: ((Tenebrionidae incertae sedis + (Diaperinae + Tenebrioninae)) + (Pimeliinae + Lagriinae)), which is consistent with phylogenetic results based on morphological traits. PMID:27258256
Does the Genetic Code Have A Eukaryotic Origin?
Zhang, Zhang; Yu, Jun
2013-01-01
In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core “house-keeping” functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables—GC and purine contents—of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern—the symmetric pattern—where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes. PMID:23402863
The scanning model for translation: an update
1989-01-01
The small (40S) subunit of eukaryotic ribosomes is believed to bind initially at the capped 5'-end of messenger RNA and then migrate, stopping at the first AUG codon in a favorable context for initiating translation. The first-AUG rule is not absolute, but there are rules for breaking the rule. Some anomalous observations that seemed to contradict the scanning mechanism now appear to be artifacts. A few genuine anomalies remain unexplained. PMID:2645293
tRNAs as Therapeutic Agents of Breast Cancer
2013-07-01
their anticodon sequence. Wild-type tRNA reads codon for serine, Suppressor (Sup) tRNA for amber stop, and killer tRNA for isoleucine . Figure 6...endoplasmic reticulum (ER) is a eukaryotic organelle that performs the major functions of synthesizing and packaging pro- teins. Overloading of...anticodons tested in HeLa, tRNASer with the AAU anticodon (tRNASer(AAU)) leads to the substitution of isoleucine with serine within the proteome and
Takai, Kazuyuki
2017-01-21
Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented. Copyright © 2016. Published by Elsevier Ltd.
Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, J.Y.; Lei, K.J.; Shelly, L.L.
1994-09-01
Glycogen storage disease (GSD) type la (von Gierke disease) is caused by the deficiency of glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. The disease presents with clinical manifestations of severe hypoglycemia, hepatomegaly, growth retardation, lactic acidemia, hyperlipidemia, and hyperuricemia. We have succeeded in isolating a murine G6Pase cDNA from a normal mouse liver cDNA library by differentially screening method. We then isolated the human G6Pase cDNA and gene. To date, we have characterized the G6Pase genes of twelve GSD type la patients and uncovered a total of six different mutations. The mutations are comprised of R83C (an Arg atmore » codon 83 to a Cys), Q347X (a Gly at codon 347 to a stop codon), 459insTA (a two basepair insertion at nucleotide 459 yielding a truncated G6Pase of 129 residues), R295C (an Arg at codon 295 to a Cys), G222R (a Gly at codon 222 to an Arg) and {delta}F327 (a codon deletion for Phe-327 at nucleotides 1058 to 1060). The relative incidences of these mutations are 37.5% (R83C), 33.3% (Q347X), 16.6% (459insTA), 4.2% (G222R), 4.2% (R295C) and 4.2% ({delta}F327). Site-directed mutagenesis and transient expression assays demonstrated that the R83C, Q347X, R295C, and {delta}F327 mutations abolished whereas the G222R mutation greatly reduced G6Pase activity. We further characterized the structure-function requirements of amino acids 83, 222, and 295 in G6Pase catalysis. The identification of mutations in GSD type la patients has unequivocally established the molecular basis of the type la disorder. Knowledge of the mutations may be applied to prenatal diagnosis and opens the way for developing and evaluating new therapeutic approaches.« less
López-Wilchis, Ricardo; Del Río-Portilla, Miguel Ángel; Guevara-Chumacero, Luis Manuel
2017-02-01
We described the complete mitochondrial genome (mitogenome) of the Wagner's mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.
Song, Sheng-Nan; Chen, Peng-Yan; Wei, Shu-Jun; Chen, Xue-Xin
2016-07-01
The mitochondrial genome sequence of Polistes jokahamae (Radoszkowski, 1887) (Hymenoptera: Vespidae) (GenBank accession no. KR052468) was sequenced. The current length with partial A + T-rich region of this mitochondrial genome is 16,616 bp. All the typical mitochondrial genes were sequenced except for three tRNAs (trnI, trnQ, and trnY) located between the A + T-rich region and nad2. At least three rearrangement events occurred in the sequenced region compared with the pupative ancestral arrangement of insects, corresponding to the shuffling of trnK and trnD, translocation or remote inversion of tnnY and translocation of trnL1. All protein-coding genes start with ATN codons. Eleven, one, and another one protein-coding genes stop with termination codon TAA, TA, and T, respectively. Phylogenetic analysis using the Bayesian method based on all codon positions of the 13 protein-coding genes supports the monophyly of Vespidae and Formicidae. Within the Formicidae, the Myrmicinae and Formicinae form a sister lineage and then sister to the Dolichoderinae, while within the Vespidae, the Eumeninae is sister to the lineage of Vespinae + Polistinae.
1996-01-01
An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204
Lakshmanan, Lakshmi Narayanan; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto
2015-01-01
Non D-loop direct repeats (DRs) in mitochondrial DNA (mtDNA) have been commonly implicated in the mutagenesis of mtDNA deletions associated with neuromuscular disease and ageing. Further, these DRs have been hypothesized to put a constraint on the lifespan of mammals and are under a negative selection pressure. Using a compendium of 294 mammalian mtDNA, we re-examined the relationship between species lifespan and the mutagenicity of such DRs. Contradicting the prevailing hypotheses, we found no significant evidence that long-lived mammals possess fewer mutagenic DRs than short-lived mammals. By comparing DR counts in human mtDNA with those in selectively randomized sequences, we also showed that the number of DRs in human mtDNA is primarily determined by global mtDNA properties, such as the bias in synonymous codon usage (SCU) and nucleotide composition. We found that SCU bias in mtDNA positively correlates with DR counts, where repeated usage of a subset of codons leads to more frequent DR occurrences. While bias in SCU and nucleotide composition has been attributed to nucleotide mutational bias, mammalian mtDNA still exhibit higher SCU bias and DR counts than expected from such mutational bias, suggesting a lack of negative selection against non D-loop DRs. PMID:25855815
Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J
1996-01-01
A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004
Congenital deficiency of alpha feto-protein.
Sharony, Reuven; Zadik, Idit; Parvari, Ruti
2004-10-01
Alpha-fetoprotein (AFP) is the main fetus serum glycoprotein with a very low concentration in the adult. AFP deficiency is a rare phenomenon. We studied two families with congenital AFP deficiency and searched for mutations in the AFP gene. We identified one mutation of 2 base deletion in exon 8, in both families, that leads to the congenital deficiency of AFP. The mutation nt930-931delCT (T294fs25X) creates a frameshift after codon 294 that leads to a stop codon after 24 amino acids, thus truncating the normal length of AFP of 609 amino acids. All the affected children were found to be homozygous for the mutation as was one of the fathers. The affected individuals were asymptomatic and presented normal development. This first identification of a mutation in the AFP gene demonstrates for the first time that deficiency of AFP is compatible with human normal fetal development and further reproduction in males.
Complete mitochondrial genome of the Freshwater Whipray Himantura dalyensis.
Feutry, Pierre; Kyne, Peter M; Peng, Zaiqing; Pan, Lianghao; Chen, Xiao
2016-05-01
The complete mitochondrial genome of the Freshwater Whipray Himantura dalyensis is presented in this study. It is 17,693 bp in length and contains 37 genes in typical gene order and transcriptional orientation observed in vertebrates. There were a total of 86 bp short intergenic spacers and 22 bp overlaps in the genome. The overall base composition was 31.4% A, 25.5% C, 13.2% G and 29.9% T. Two start codons (GTG and ATG) and two stop codons (TAG and TAA/T) were found in 13 protein-coding genes. The length of 22 tRNA genes ranged from 68 (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1). The origin of L-strand replication (OL) was found between the tRNA-Asn and tRNA-Cys genes. The base composition of the control region (1940 bp) was similar to the whole mitogenome.
Saito, Yuki; Mao, Han; Sekimizu, Kazuhisa; Kaito, Chikara
2014-01-01
Staphylococcal species acquire antibiotic resistance by incorporating the mobile-genetic element SCCmec. We previously found that SCCmec-encoded psm-mec RNA suppresses exotoxin production as a regulatory RNA, and the psm-mec translation product increases biofilm formation in Staphylococcus aureus. Here, we examined whether the regulatory role of psm-mec on host bacterial virulence properties is conserved among other staphylococcal species, S. epidermidis and S. haemolyticus, both of which are important causes of nosocomial infections. In S. epidermidis, introduction of psm-mec decreased the production of cytolytic toxins called phenol-soluble modulins (PSMs) and increased biofilm formation. Introduction of psm-mec with a stop-codon mutation that did not express PSM-mec protein but did express psm-mec RNA also decreased PSM production, but did not increase biofilm formation. Thus, the psm-mec RNA inhibits PSM production, whereas the PSM-mec protein increases biofilm formation in S. epidermidis. In S. haemolyticus, introduction of psm-mec decreased PSM production, but did not affect biofilm formation. The mutated psm-mec with a stop-codon also caused the same effect. Thus, the psm-mec RNA also inhibits PSM production in S. haemolyticus. These findings suggest that the inhibitory role of psm-mec RNA on exotoxin production is conserved among staphylococcal species, although the stimulating effect of the psm-mec gene on biofilm formation is not conserved. PMID:24926994
Constructing high complexity synthetic libraries of long ORFs using in vitro selection
NASA Technical Reports Server (NTRS)
Cho, G.; Keefe, A. D.; Liu, R.; Wilson, D. S.; Szostak, J. W.
2000-01-01
We present a method that can significantly increase the complexity of protein libraries used for in vitro or in vivo protein selection experiments. Protein libraries are often encoded by chemically synthesized DNA, in which part of the open reading frame is randomized. There are, however, major obstacles associated with the chemical synthesis of long open reading frames, especially those containing random segments. Insertions and deletions that occur during chemical synthesis cause frameshifts, and stop codons in the random region will cause premature termination. These problems can together greatly reduce the number of full-length synthetic genes in the library. We describe a strategy in which smaller segments of the synthetic open reading frame are selected in vitro using mRNA display for the absence of frameshifts and stop codons. These smaller segments are then ligated together to form combinatorial libraries of long uninterrupted open reading frames. This process can increase the number of full-length open reading frames in libraries by up to two orders of magnitude, resulting in protein libraries with complexities of greater than 10(13). We have used this methodology to generate three types of displayed protein library: a completely random sequence library, a library of concatemerized oligopeptide cassettes with a propensity for forming amphipathic alpha-helical or beta-strand structures, and a library based on one of the most common enzymatic scaffolds, the alpha/beta (TIM) barrel. Copyright 2000 Academic Press.
Mitrovich, Quinn M.; Anderson, Philip
2000-01-01
Messenger RNA surveillance, the selective and rapid degradation of mRNAs containing premature stop codons, occurs in all eukaryotes tested. The biological role of this decay pathway, however, is not well understood. To identify natural substrates of mRNA surveillance, we used a cDNA-based representational difference analysis to identify mRNAs whose abundance increases in Caenorhabditis elegans smg(−) mutants, which are deficient for mRNA surveillance. Alternatively spliced mRNAs of genes encoding ribosomal proteins L3, L7a, L10a, and L12 are abundant natural targets of mRNA surveillance. Each of these genes expresses two distinct mRNAs. A productively spliced mRNA, whose abundance does not change in smg(−) mutants, encodes a normal, full-length, ribosomal protein. An unproductively spliced mRNA, whose abundance increases dramatically in smg(−) mutants, contains premature stop codons because of incomplete removal of an alternatively spliced intron. In transgenic animals expressing elevated quantities of RPL-12, a greater proportion of endogenous rpl-12 transcript is spliced unproductively. Thus, RPL-12 appears to autoregulate its own splicing, with unproductively spliced mRNAs being degraded by mRNA surveillance. We demonstrate further that alternative splicing of rpl introns is conserved among widely diverged nematodes. Our results suggest that one important role of mRNA surveillance is to eliminate unproductive by-products of gene regulation. PMID:10970881
Kuschal, Christiane; Khan, Sikandar G; Enk, Benedikt; DiGiovanna, John J; Kraemer, Kenneth H
2015-04-01
Readthrough of premature termination (stop) codons (PTC) is a new approach to treatment of genetic diseases. We recently reported that readthrough of PTC in cells from some xeroderma pigmentosum complementation group C (XP-C) patients could be achieved with the aminoglycosides geneticin or gentamicin. We found that the response depended on several factors including the PTC sequence, its location within the gene and the aminoglycoside used. Here, we extended these studies to investigate the effects of other aminoglycosides that are already on the market. We reasoned that topical treatment could deliver much higher concentrations of drug to the skin, the therapeutic target, and thus increase the therapeutic effect while reducing renal or ototoxicity in comparison with systemic treatment. Our prior clinical studies indicated that only a few percent of normal XPC expression was associated with mild clinical disease. We found minimal cell toxicity in the XP-C cells with several aminoglycosides. We found increased XPC mRNA expression in PTC-containing XP-C cells with G418, paromomycin, neomycin and kanamycin and increased XPC protein expression with G418. We conclude that in selected patients with XP, topical PTC therapy can be investigated as a method of personalized medicine to alleviate their cutaneous symptoms. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Major histocompatibility complex variation in the endangered Przewalski's horse.
Hedrick, P W; Parker, K M; Miller, E L; Miller, P S
1999-01-01
The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594
Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales
Meredith, Robert W.; Gatesy, John; Cheng, Joyce; Springer, Mark S.
2011-01-01
Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation. PMID:20861053
Dickson, Robert L; Sumathipala, Dineth; Reeves, Jennifer
2016-05-01
The objective of our study was to evaluate the effect of the Pulsara Stop Stroke© medical application on door-to-needle (DTN) time in patients presenting to our emergency department with acute ischemic stroke (AIS). The secondary objective was to evaluate the DTN performance of dedicated neurohospitalists versus private practice neurologists covering emergency department stroke call. We conducted a retrospective cohort study of the Good Shepherd Health System stroke quality improvement dashboard for an 18-month period. The primary outcome was mean DTN time performance in cases with and without Stop Stroke© usage. Secondary outcome was mean DTN time between neurohospitalist and private neurologists with and without use of Stop Stroke©. During the study period, there were 85 stroke activations receiving tissue plasminogen activator (63 with Stop Stroke©, 22 without Stop Stroke©). In cases where the app was used, we observed a reduction in mean DTN time of 40 minutes (87-47 minutes), a 46% reduction. There was no significant difference in DTN time observed between the neurohospitalist and private neurologist performance independent of app usage. Mean DTN less than 60 minutes improved with app use from 18% to 85% with Stop Stroke©. In patients arriving to our primary stroke center with AIS, use of Pulsara Stop Stroke© acute care coordination app decreased mean DTN time by 40 minutes, a significant 46% improvement in this metric and is consistent with other studies of the app. We further observed a 3.7× improvement in DTN less than 60 minutes with use of the app. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Dubey, Bhawna; Meganathan, P R; Haque, Ikramul
2012-07-01
This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.
A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici☆
Kilaru, S.; Schuster, M.; Studholme, D.; Soanes, D.; Lin, C.; Talbot, N.J.; Steinberg, G.
2015-01-01
Fluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localization. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observation of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence, and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is significantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better than eGFP, showing significantly slower bleaching and a 20–30% further increase in signal intensity. Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection stages of this wheat pathogen inside host tissue. PMID:26092799
Herrera, Victoria L M; Steffen, Martin; Moran, Ann Marie; Tan, Glaiza A; Pasion, Khristine A; Rivera, Keith; Pappin, Darryl J; Ruiz-Opazo, Nelson
2016-06-14
In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein's existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions. To dissect the nucleotide sequence discrepancy, we performed Maxam-Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR's existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects. Maxam-Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5 kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass spectrometry analysis of anti-DEspR mAb pull-down proteins do not detect DEspR, but detect DEspR-protein interactions with proteins implicated in intracellular trafficking and cancer. FACS analyses also detect DEspR-protein in different human cancer stem-like cells (CSCs). DEspR-inhibition studies identify DEspR-roles in CSC survival and growth. Live cell imaging detects fluorescently-labeled anti-DEspR mAb targeted-receptor internalization, concordant with the single internalization-recognition sequence also located beyond codon#14. Data confirm translatability of DEspR, the full-length DEspR protein beyond codon#14, and elucidate DEspR-specific functionality. Along with detection of the tryptophan [TGG]-codon#14 within an error-prone compression site, cumulative data demonstrating DEspR protein existence fulfill multiple UNIPROT criteria, thus refuting its pseudogene designation.
Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X
2012-10-01
Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighton, J.K.; Joyner, J.; Zamarripa, J.
Two different molecular weight forms of apoB are produced from a common initial transcript via editing of a Gln codon (CAA) to a stop codon (UAA), leading to a truncated translation product (apo BS) that consists of the amino terminal half of the larger form (apoBL). Previous studies have shown that fasting coordinately decreases lipogenesis and the secretion of very low density lipoprotein (VLDL) lipids and apoBS. Secretion of the apoBL is unaffected by fasting. We studied whether editing of apoB RNA is repressed by fasting, thus accounting for the selective decreased secretion of apoBS. Column chromatography of (35S)methionine-labeled lipoproteinsmore » secreted by hepatocytes from fed rats showed that essentially all of apoBL is secreted in the VLDL fraction, whereas a significant amount (15%) of apoBS is secreted associated as lipoproteins eluting in the HDL fractions. Fasting decreased the relative amount of apoBS that eluted in the VLDL fractions and increased the amount secreted in the HDL fractions. Consistent with previous results, hepatocytes from fasted rats show a selective twofold decrease in apoBS secretion. Fasting did not affect the relative abundance of apoB RNA, determined by slot blot hybridization assays using two different 32P-labeled cDNA probes coding either for both molecular weight forms or for only the large molecular weight form. However, quantitative of the editing of apoB RNA showed that fasting caused a 60% decrease in the amount of apoB RNA possessing the stop codon. These data show that the editing of apoB RNA is sensitive to metabolic state (i.e., fasting) resulting in a selective decrease in the secretion of apoBS. However, since the total secretion of apoB was decreased by fasting, while apoB mRNA levels remained constant, additional (post-transcriptional) mechanisms play a role in regulating apoB secretion.« less
Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates
Figuet, Emeric; Ballenghien, Marion; Romiguier, Jonathan; Galtier, Nicolas
2015-01-01
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins. PMID:25527834
Peng, Rui; Zeng, Bo; Meng, Xiuxiang; Yue, Bisong; Zhang, Zhihe; Zou, Fangdong
2007-08-01
The complete mitochondrial genome sequence of the giant panda, Ailuropoda melanoleuca, was determined by the long and accurate polymerase chain reaction (LA-PCR) with conserved primers and primer walking sequence methods. The complete mitochondrial DNA is 16,805 nucleotides in length and contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one control region. The total length of the 13 protein-coding genes is longer than the American black bear, brown bear and polar bear by 3 amino acids at the end of ND5 gene. The codon usage also followed the typical vertebrate pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 5 (ND5) gene. The molecular phylogenetic analysis was performed on the sequences of 12 concatenated heavy-strand encoded protein-coding genes, and suggested that the giant panda is most closely related to bears.
Expression of recombinant myostatin propeptide pPIC9K-Msp plasmid in Pichia pastoris.
Du, W; Xia, J; Zhang, Y; Liu, M J; Li, H B; Yan, X M; Zhang, J S; Li, N; Zhou, Z Y; Xie, W Z
2015-12-28
Myostatin propeptide can inhibit the biological activity of myostatin protein and promote muscle growth. To express myostatin propeptide in vitro with a higher biological activity, we performed codon optimization on the sheep myostatin propeptide gene sequence, and mutated aspartic acid-76 to alanine based on the codon usage bias of Pichia pastoris and the enhanced biological activity of myostatin propeptide mutant. Modified myostatin propeptide gene was cloned into the pPIC9K plasmid to form the recombinant plasmid pPIC9K-Msp. Recombinant plasmid pPIC9K-Msp was transformed into Pichia pastoris GS115 by electrotransformation. Transformed cells were screened, and methanol was used to induce expression. SDS-PAGE and western blotting were used to verify the successful expression of myostatin propeptide with biological activity in Pichia pastoris, providing the basis for characterization of this protein.
Sugita, Mamoru; Shinozaki, Kazuo; Sugiura, Masahiro
1985-01-01
The nucleotide sequence of a tRNALys(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNAGly(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long. Images PMID:16593561
Sugita, M; Shinozaki, K; Sugiura, M
1985-06-01
The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.
Role of the Integrin-Linked Kinase, ILK, in Mammary Carcinogensis
2000-08-01
have been implicated in environmental stress clonei 6-10 responses in yeasts, plants and mammals, as well as regulating abscisic acid signal transduction...phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl Acad. Sci. USA, 95, 975-980. Strovel,E.T., Wu,D. and Sussman,D.J...contain a 450bp open reading frame, coding for 149 amino acids and a poly A tail 245bp downstream of the stop codon, although no polyadenylation site
Lalaouna, David; Morissette, Audrey; Carrier, Marie-Claude; Massé, Eric
2015-10-01
The 87 nucleotide long DsrA sRNA has been mostly studied for its translational activation of the transcriptional regulator RpoS. However, it also represses hns mRNA, which encodes H-NS, a major regulator that affects expression of nearly 5% of Escherichia coli genes. A speculative model previously suggested that DsrA would block hns mRNA translation by binding simultaneously to start and stop codon regions of hns mRNA (coaxial model). Here, we show that DsrA efficiently blocked translation of hns mRNA by base-pairing immediately downstream of the start codon. In addition, DsrA induced hns mRNA degradation by actively recruiting the RNA degradosome complex. Data presented here led to a model of DsrA action on hns mRNA, which supports a canonical mechanism of sRNA-induced mRNA degradation by binding to the translation initiation region. Furthermore, using MS2-affinity purification coupled with RNA sequencing technology (MAPS), we also demonstrated that DsrA targets rbsD mRNA, involved in ribose utilization. Surprisingly, DsrA base pairs far downstream of rbsD start codon and induces rapid degradation of the transcript. Thus, our study enables us to draw an extended DsrA targetome. © 2015 John Wiley & Sons Ltd.
Translation regulation of mammalian selenoproteins.
Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent
2018-05-09
Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.
Wada, Takahito; Haddad, Marie Reine; Yi, Ling; Murakami, Tomomi; Sasaki, Akiko; Shimbo, Hiroko; Kodama, Hiroko; Osaka, Hitoshi; Kaler, Stephen G
2014-04-01
Determining the relationship between clinical phenotype and genotype in genetic diseases is important in clinical practice. In general, frameshift mutations are expected to produce premature termination codons, leading to production of mutant transcripts destined for degradation by nonsense-mediated decay. In X-linked recessive diseases, male patients with frameshift mutations typically have a severe or even lethal phenotype. We report a case of a 17-month-old boy with Menkes disease (NIM #309400), an X-linked recessive copper metabolism disorder caused by mutations in the ATP7A copper transporter gene. He exhibited an unexpectedly late onset and experienced milder symptoms. His genomic DNA showed a de novo two-nucleotide deletion in exon 4 of ATP7A, predicting a translational frameshift and premature stop codon, and a classic severe phenotype. Characterization of his ATP7A mRNA showed no abnormal splicing. We speculate that translation reinitiation could occur downstream to the premature termination codon and produce a partially functional ATP7A protein. Study of the child's fibroblasts found no evidence of translation reinitiation; however, the possibility remains that this phenomenon occurred in neural tissues and influenced the clinical phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.
Cui, Peng; Ji, Rimutu; Ding, Feng; Qi, Dan; Gao, Hongwei; Meng, He; Yu, Jun; Hu, Songnian; Zhang, Heping
2007-01-01
Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus), the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp) from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC) that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years). An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L. pacos suggested that the two tribes diverged from their common ancestor about 25 million years ago, much earlier than what was predicted based on fossil records. PMID:17640355
Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes
NASA Astrophysics Data System (ADS)
Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.
2012-02-01
Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.
Selenium. Role of the Essential Metalloid in Health
Kurokawa, Suguru; Berry, Marla J.
2015-01-01
Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102
Evolution of Nucleotide Punctuation Marks: From Structural to Linear Signals.
El Houmami, Nawal; Seligmann, Hervé
2017-01-01
We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication initiation fits this scenario. Some observations reported in the literature corroborate that several signals for nucleotide synthesis function in translation, and vice versa. (a) Polymerase-induced frameshift mutations occur preferentially at translational termination signals (nucleotide deletion is interpreted as termination of nucleotide polymerization, paralleling the role of stop codons in translation). (b) Stem-loop hairpin presence/absence modulates codon-amino acid assignments, showing that translational signals sometimes combine primary and secondary nucleotide structures (here codon and stem-loop). (c) Homopolymer nucleotide triplets (AAA, CCC, GGG, TTT) cause transcriptional and ribosomal frameshifts. Here we find in recently described human mitochondrial RNAs that systematically lack mono-, dinucleotides after each trinucleotide (delRNAs) that delRNA triplets include 2x more homopolymers than mitogenome regions not covered by delRNA. Further analyses of delRNAs show that the natural circular code X (a little-known group of 20 translational signals enabling ribosomal frame retrieval consisting of 20 codons {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} universally overrepresented in coding versus other frames of gene sequences), regulates frameshift in transcription and translation. This dual transcription and translation role confirms for X the hypothesis that translational signals were carried over from transcriptional signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumbroso, R.; Vasiliou, M.; Beitel, L.K.
1994-09-01
Exon 1 at the X-linked androgen receptor (AR) locus encodes an N-terminal modulatory domain that contains two large homopolyamino acid tracts: (CAG;glutamine;Gln){sub 11-33} and (GGN;Glycine;Cly){sub 15-27}. Certain AR mutations cause partial androgen insensitivity (PAI) with frank genital ambiguity that may engender appreciable parental anxiety and patient morbidity. If the AR mutation in a PAI family is unknown, the AR`s intragenic trinucleotide repeat polymorphisms may be used for prenatal diagnosis. However, intergenerational instability of repeat-size may be worrisome, particularly when the information alleles differ by only a few repeats. Here, we report the discovery of a codon-usage (silent substitution) variant inmore » the GGN repeat, and describe its use as a source of complementary information for prenatal diagnosis. The standard sense sequence of the (GGN){sub n} tract is (GGT){sub 3} GGG(GGT){sub 2} (GGC){sub 9-21}. On 4 of 27 X chromosomes we noted that the internal GGT sequence was expanded to 3 or 4 repeats. We used an internal (GGT){sub 4} repeat in a total (GGN){sub 24} tract together with a (CAG){sub 20} tract to distinguish an X chromosome with a mutant AR allele from another X chromosome, bearing a normal allele, that had an internal (GGT){sub 2} repeat in a total (GGN){sub 23} tract together with a (CAG){sub 21} tract. Subsequently, we found the base change leading to a pathogenic amino acid substitution (M779I) in codon 6 of the mutant AR gene in an affected maternal aunt and the fetus at risk. This confirmed the prenatal diagnosis based on the intragenic trinucleotide repeat polymorphisms, and it strengthened the prediction of external genital ambiguity using our previous experience with M779I in another family.« less
Jewell, Brittany E.; Versalovic, Erika M.; Olsen, Randall J.; Bachert, Beth A.; Lukomski, Slawomir; Musser, James M.
2015-01-01
Group A Streptococcus (GAS) predominantly exists as a colonizer of the human oropharynx that occasionally breaches epithelial barriers to cause invasive diseases. Despite the frequency of GAS carriage, few investigations into the contributory molecular mechanisms exist. To this end, we identified a naturally occurring polymorphism in the gene encoding the streptococcal collagen-like protein A (SclA) in GAS carrier strains. All previously sequenced invasive serotype M3 GAS possess a premature stop codon in the sclA gene truncating the protein. The carrier polymorphism is predicted to restore SclA function and was infrequently identified by targeted DNA sequencing in invasive strains of the same serotype. We demonstrate that a strain with the carrier sclA allele expressed a full-length SclA protein, while the strain with the invasive sclA allele expressed a truncated variant. An isoallelic mutant invasive strain with the carrier sclA allele exhibited decreased virulence in a mouse model of invasive disease and decreased multiplication in human blood. Further, the isoallelic invasive strain with the carrier sclA allele persisted in the mouse nasopharynx and had increased adherence to cultured epithelial cells. Repair of the premature stop codon in the invasive sclA allele restored the ability to bind the extracellular matrix proteins laminin and cellular fibronectin. These data demonstrate that a mutation in GAS carrier strains increases adherence and decreases virulence and suggest selection against increased adherence in GAS invasive isolates. PMID:25561712
A novel homozygous stop-codon mutation in human HFE responsible for nonsense-mediated mRNA decay.
Padula, Maria Carmela; Martelli, Giuseppe; Larocca, Marilena; Rossano, Rocco; Olivieri, Attilio
2014-09-01
HFE-hemochromatosis (HH) is an autosomal disease characterized by excessive iron absorption. Homozygotes for H63D variant, and still less H63D heterozygotes, generally do not express HH phenotype. The data collected in our previous study in the province of Matera (Basilicata, Italy) underlined that some H63D carriers showed altered iron metabolism, without additional factors. In this study, we selected a cohort of 10/22 H63D carriers with severe biochemical iron overload (BIO). Additional analysis was performed for studying HFE exons, exon-intron boundaries, and untranslated regions (UTRs) by performing DNA extraction, PCR amplification and sequencing. The results showed a novel substitution (NM_000410.3:c.847C>T) in a patient exon 4 (GenBankJQ478433); it introduces a premature stop-codon (PTC). RNA extraction and reverse-transcription were also performed. Quantitative real-time PCR was carried out for verifying if our aberrant mRNA is targeted for nonsense-mediated mRNA decay (NMD); we observed that patient HFE mRNA was expressed much less than calibrator, suggesting that the mutated HFE protein cannot play its role in iron metabolism regulation, resulting in proband BIO. Our finding is the first evidence of a variation responsible for a PTC in iron cycle genes. The genotype-phenotype correlation observed in our cases could be related to the additional mutation. Copyright © 2014 Elsevier Inc. All rights reserved.
Cryptic tRNAs in chaetognath mitochondrial genomes.
Barthélémy, Roxane-Marie; Seligmann, Hervé
2016-06-01
The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Xiufeng; Wan, Shengqin; Pujar, Shashikant; Haskins, Mark E.; Schlafer, Donald H.; Lee, Mary M.; Meyers-Wallen, Vicki N.
2008-01-01
Müllerian Inhibiting Substance (MIS), a secreted glycoprotein in the Transforming Growth Factor-beta (TGF-beta) family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In Persistent Müllerian Duct Syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, Fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model may enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome. PMID:18723470
Masingue, Marion; Perrot, Jimmy; Carlier, Robert-Yves; Piguet-Lacroix, Guenaelle; Latour, Philippe; Stojkovic, Tanya
2018-05-01
Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.
A free VP3 C-terminus is essential for the replication of infectious bursal disease virus.
Mosley, Yung-Yi C; Wu, Ching Ching; Lin, Tsang Long
2017-03-15
Green fluorescent protein (GFP) has been successfully incorporated into the viral-like particles of infectious bursal disease virus (IBDV) with a linker at the C-terminus of VP3 in a baculovirus system. However, when the same locus in segment A was used to express GFP by a reverse genetic (RG) system, no viable GFP-expressing IBDV was recovered. To elucidate the underlying mechanism, cDNA construct of segment A with only the linker sequence (9 amino acids) was applied to generate RG IBDV virus (rIBDV). Similarly, no rIBDV was recovered. Moreover, when the incubation after transfection was extended, wildtype rIBDV without the linker was recovered suggesting a free C-terminus of VP3 might be necessary for IBDV replication. On the other hand, rIBDV could be recovered when additional sequence (up to 40 nucleotides) were inserted at the 3' noncoding region (NCR) adjacent to the stop codon of VP3, suggesting that the burden of the linker sequence was not in the stretched genome size but the disruption of the VP3 function. Finally, when the stop codon of VP3 was deleted in segment A to extend the translation into the 3' NCR without introducing additional genomic sequence, no rIBDV was recovered. Our data suggest that a free VP3 C-terminus is essential for IBDV replication. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanase, Toshihiko; Takayanagi, Ryoichi; Oba, Koichi
Congenital adrenal hypoplasia, an X-linked disorder, is characterized by primary adrenal insufficiency and frequent association with hypogonadotropic hypogonadism. The X-chromosome gene DAX-1 has been most recently identified and shown to be responsible for this disorder. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism by using PCR amplification of genomic DNA and its complete exonic sequencing. In a family containing several affected individuals, the proband male patient had a stop codon (TGA) in place of tryptophan (TGG) at amino acid position 171. As expected, his mother was a heterozygous carrier for themore » mutation, whereas his father and unaffected brother did not carry this mutation. In another male patient with noncontributory family history, sequencing revealed a 1-bp (T) deletion at amino acid position 280, leading to a frame shift and, subsequently a premature stop codon at amino acid position 371. The presence of this mutation in the patients` genome was further confirmed by digestion of genomic PCR product with MspI created by this mutation. Family studies using MspI digestion of genomic PCR products revealed that neither parent of this individual carried the mutation. These results clearly indicate that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. 31 refs., 4 figs., 2 tabs.« less
Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A
2012-01-15
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.
Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase.
Eriani, G; Dirheimer, G; Gangloff, J
1989-01-01
The gene coding for Escherichia coli arginyl-tRNA synthetase (argS) was isolated as a fragment of 2.4 kb after analysis and subcloning of recombinant plasmids from the Clarke and Carbon library. The clone bearing the gene overproduces arginyl-tRNA synthetase by a factor 100. This means that the enzyme represents more than 20% of the cellular total protein content. Sequencing revealed that the fragment contains a unique open reading frame of 1734 bp flanked at its 5' and 3' ends respectively by 247 bp and 397 bp. The length of the corresponding protein (577 aa) is well consistent with earlier Mr determination (about 70 kd). Primer extension analysis of the ArgRS mRNA by reverse transcriptase, located its 5' end respectively at 8 and 30 nucleotides downstream of a TATA and a TTGAC like element (CTGAC) and 60 nucleotides upstream of the unusual translation initiation codon GUG; nuclease S1 analysis located the 3'-end at 48 bp downstream of the translation termination codon. argS has a codon usage pattern typical for highly expressed E. coli genes. With the exception of the presence of a HVGH sequence similar to the HIGH consensus element, ArgRS has no relevant sequence homologies with other aminoacyl-tRNA synthetases. Images PMID:2668891
Rationalizing context-dependent performance of dynamic RNA regulatory devices.
Kent, Ross; Halliwell, Samantha; Young, Kate; Swainston, Neil; Dixon, Neil
2018-06-21
The ability of RNA to sense, regulate and store information is an attractive attribute for a variety of functional applications including the development of regulatory control devices for synthetic biology. RNA folding and function is known to be highly context sensitive, which limits the modularity and reuse of RNA regulatory devices to control different heterologous sequences and genes. We explored the cause and effect of sequence context sensitivity for translational ON riboswitches located in the 5' UTR, by constructing and screening a library of N-terminal synonymous codon variants. By altering the N-terminal codon usage we were able to obtain RNA devices with a broad range of functional performance properties (ON, OFF, fold-change). Linear regression and calculated metrics were used to rationalize the major determining features leading to optimal riboswitch performance, and to identify multiple interactions between the explanatory metrics. Finally, partial least squared (PLS) analysis was employed in order to understand the metrics and their respective effect on performance. This PLS model was shown to provide good explanation of our library. This study provides a novel multi-variant analysis framework by which to rationalize the codon context performance of allosteric RNA-devices. The framework will also serve as a platform for future riboswitch context engineering endeavors.
Geyer, David D.; Spence, M. Anne; Johannes, Meriam; Flodman, Pamela; Clancy, Kevin P.; Berry, Rebecca; Sparkes, Robert S.; Jonsen, Matthew D.; Isenberg, Sherwin J.; Bateman, J. Bronwyn
2006-01-01
PURPOSE To further elucidate the cataract phenotype, and identify the gene and mutation for autosomal dominant cataract (ADC) in an American family of European descent (ADC2) by sequencing the major intrinsic protein gene (MIP), a candidate based on linkage to chromosome 12q13. DESIGN Observational case series and laboratory experimental study. METHODS We examined two at-risk individuals in ADC2. We PCR-amplified and sequenced all four exons and all intron-exon boundaries of the MIP gene from genomic and cloned DNA in affected members to confirm one variant as the putative mutation. RESULTS We found a novel single deletion of nucleotide (nt) 3223 (within codon 235) in exon four, causing a frameshift that alters 41 of 45 subsequent amino acids and creates a premature stop codon. CONCLUSIONS We identified a novel single base pair deletion in the MIP gene and conclude that it is a pathogenic sequence alteration. PMID:16564824
The complete mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae).
Zhou, Xuming; Chen, Yu; Zhu, Shanliang; Xu, Haigen; Liu, Yan; Chen, Lian
2016-01-01
The mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae) is the first complete mtDNA sequence reported in the genus Pomacea. The total length of mtDNA is 15,707 bp, which containing 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a 359 bp non-coding region. The A + T content of the overall base composition of H-strand is 71.7% (T: 41%, C: 12.7%, A: 30.7%, G: 15.6%). ATP6, ATP8, CO1, CO2, ND1-3, ND5, ND6, ND4L and Cyt b genes begin with ATG as start codon, CO3 and ND4 begin with ATA. ATP8, CO2-3, ND4L, ND2-6 and Cyt b genes are terminated with TAA as stop codon, ATP6, ND1, and CO1 end with TAG. A long non-coding region is found and a 23 bp repeat unit repeat 11 times in this region.
Characterization of six mutations in Exon 37 of neurofibromatosis type 1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, M.; Osborn, M.; Maynard, J.
Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders, with an incidence of 1 in 3,000. We screened a total of 320 unrelated NF1 patients for mutations in exon 37 of the NF1 gene. Six independent mutations were identified, of which three are novel, and these include a recurrent nonsense mutation identified in 2 unrelated patients at codon 2281 (G2281X), a 1-bp insertion (6791 ins A) resulting in a change of TAG (tyrosine) to a TAA (stop codon), and a 3-bp deletion (6839 del TAC) which generated a frameshift. Another recurrent nonsense mutation, Y2264X, which was detectedmore » in 2 unrelated patients in this study, was also previously reported in 2 NF1 individuals. All the mutations were identified within a contiguous 49-bp sequence. Further studies are warranted to support the notion that this region of the gene contains highly mutable sequences. 17 refs., 2 figs., 1 tab.« less
Miura, Y; Hershkovitz, E; Inagaki, A; Parvari, R; Oiso, Y; Phillip, M
2000-10-01
T4-binding globulin (TBG) is the major thyroid hormone transport protein in human serum. Inherited TBG abnormalities do not usually alter the metabolic status and are transmitted in X-linked inheritance. A high prevalence of complete TBG deficiency (TBG-CD) has been reported among the Bedouin population in the Negev (southern Israel). In this study we report a novel single mutation causing complete TBG deficiency due to a deletion of the last base of codon 38 (exon 1), which led to a frame shift resulting in a premature stop at codon 51 and a presumed truncated peptide of 50 residues. This new variant of TBG (TBG-CD-Negev) was found among all of the patients studied. We conclude that a single mutation may account for TBG deficiency among the Bedouins in the Negev. This report is the first to describe a mutation in a population with an unusually high prevalence of TBG-CD.
The complete mitochondrial genome of the Aluterus monoceros.
Li, Wenshen; Zhang, Guoqing; Wen, Xin; Wang, Qian; Chen, Guohua
2016-07-01
The complete mitochondrial genome of Aluterus monoceros (A. monoceros) has been sequenced. The mitochondrial genome of A. monoceros is 16,429 bp in length, consisting of 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and a D-loop region (Gen Bank accession number KP637022). The base A + T of the mitochondrial genome is 63.25%, including 33.16% of A, 30.09% of T and 20.74% of C. Twelve protein-coding genes start with a standard ATG as the initiation codon, expect for the COXI, which begins with GTG. Some of the termination codons are incomplete T or TA, except for the ND1, COXI, ATP8, ND4L1, ND5 and ND6, which stop with TAA. Construction of phylogenetic trees based on the entire mitochondrial genome sequence of 14 Tetrodontiformes species constructed has suggested that A. monoceros has closer relationship with Acreichthys tomentosus and Monacanthus chinensis, and they constitute a sister group.
Odilorhabdins, Antibacterial Agents that Cause Miscoding by Binding at a New Ribosomal Site.
Pantel, Lucile; Florin, Tanja; Dobosz-Bartoszek, Malgorzata; Racine, Emilie; Sarciaux, Matthieu; Serri, Marine; Houard, Jessica; Campagne, Jean-Marc; de Figueiredo, Renata Marcia; Midrier, Camille; Gaudriault, Sophie; Givaudan, Alain; Lanois, Anne; Forst, Steve; Aumelas, André; Cotteaux-Lautard, Christelle; Bolla, Jean-Michel; Vingsbo Lundberg, Carina; Huseby, Douglas L; Hughes, Diarmaid; Villain-Guillot, Philippe; Mankin, Alexander S; Polikanov, Yury S; Gualtieri, Maxime
2018-04-05
Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome. Copyright © 2018 Elsevier Inc. All rights reserved.
Complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi (Rajiformes: Rajidae).
Li, Weidong; Chen, Xiao; Liu, Wenai; Sun, Renjie; Zhou, Haolang
2016-07-01
The complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi was determined in this study. It is 16,974 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one putative control region. The overall base composition is 30.5% A, 27.8% C, 14.0% G, and 27.8% T. There are 28 bp short intergenic spaces located in 12 gene junctions and 31 bp overlaps located in nine gene junctions in the whole mitogenome. Two start codons (ATG and GTG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The lengths of 22 tRNA genes range from 68 (tRNA-Ser2) to 75 (tRNA-Leu1) bp. The origin of L-strand replication (OL) sequence (37 bp) was identified between the tRNA-Asn and tRNA-Cys genes. The control region is 1311 bp in length with high A + T and poor G content.
High throughput protein production screening
Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA
2009-09-08
Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.
Sanli, G; Blaber, S I; Blaber, M
2001-01-01
Corynebacteria codon usage exhibits an overall GC content of 67%, and a wobble-position GC content of 88%. Escherichia coli, on the other hand has an overall GC content of 51%, and a wobble-position GC content of 55%. The high GC content of Corynebacteria genes results in an unfavorable codon preference for heterologous expression, and can present difficulties for polymerase-based manipulations due to secondary-structure effects. Since these characteristics are due primarily to base composition at the wobble-position, synthetic genes can, in principle, be designed to eliminate these problems and retain the wild-type amino acid sequence. Such genes would obviate the need for special additives or bases during in vitro polymerase-based manipulation and mutant host strains containing uncommon tRNA's for heterologous expression. We have evaluated synthetic genes with reduced wobble-position G/C content using two variants of the enzyme 2,5-diketo-D-gluconic acid reductase (2,5-DKGR A and B) from Corynebacterium. The wild-type genes are refractory to polymerase-based manipulations and exhibit poor heterologous expression in enteric bacteria. The results indicate that a subset of codons for five amino acids (alanine, arginine, glutamate, glycine and valine) contribute the greatest contribution to reduction in G/C content at the wobble-position. Furthermore, changes in codons for two amino acids (leucine and proline) enhance bias for expression in enteric bacteria without affecting the overall G/C content. The synthetic genes are readily amplified using polymerase-based methodologies, and exhibit high levels of heterologous expression in E. coli.
Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.
Dilucca, Maddalena; Cimini, Giulio; Giansanti, Andrea
2018-07-15
Essential genes constitute the core of genes which cannot be mutated too much nor lost along the evolutionary history of a species. Natural selection is expected to be stricter on essential genes and on conserved (highly shared) genes, than on genes that are either nonessential or peculiar to a single or a few species. In order to further assess this expectation, we study here how essentiality of a gene is connected with its degree of conservation among several unrelated bacterial species, each one characterised by its own codon usage bias. Confirming previous results on E. coli, we show the existence of a universal exponential relation between gene essentiality and conservation in bacteria. Moreover, we show that, within each bacterial genome, there are at least two groups of functionally distinct genes, characterised by different levels of conservation and codon bias: i) a core of essential genes, mainly related to cellular information processing; ii) a set of less conserved nonessential genes with prevalent functions related to metabolism. In particular, the genes in the first group are more retained among species, are subject to a stronger purifying conservative selection and display a more limited repertoire of synonymous codons. The core of essential genes is close to the minimal bacterial genome, which is in the focus of recent studies in synthetic biology, though we confirm that orthologs of genes that are essential in one species are not necessarily essential in other species. We also list a set of highly shared genes which, reasonably, could constitute a reservoir of targets for new anti-microbial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Cloning, Codon Optimization, and Expression of Yersinia intermedia Phytase Gene in E. coli.
Mirzaei, Maryam; Saffar, Behnaz; Shareghi, Behzad
2016-06-01
Phytate is an anti-nutritional factor in plants, which catches the most phosphorus contents and some vital minerals. Therefore, Phytase is added mainly as an additive to the monogastric animals' foods to hydrolyze phytate and increase absorption of phosphorus. Y. intermedia phytase is a new phytase with special characteristics such as high specific activity, pH stability, and thermostability. Our aim was to clone, express, and characterizea codon optimized Y. intermedia phytase gene in E. coli . The Y. intermedia phytase gene was optimized according to the codon usage in E. coli . The sequence was synthesized and sub-cloned in pET-22b (+) vector and transformed into E. coli Bl21 (DE3). The protein was expressed in the presence of IPTG at a final concentration of 1 mM at 30°C. The purification of recombinant protein was performed by Ni 2+ affinity chromatography. Phytase activity and stability were determined in various pH and temperatures. The codon optimized Y. intermedia phytase gene was sub-cloned successfully.The expression was confirmed by SDS-PAGE and Western blot analysis. The recombinant enzyme (approximately 45 kDa) was purified. Specific activity of enzyme was 3849 (U.mg -1 ) with optimal pH 5 and optimal temperature of 55°C. Thermostability (80°C for 15 min) and pH stability (3-6) of the enzyme were 56 and more than 80%, respectively. The results of the expression and enzyme characterization revealed that the optimized Y. intermedia phytase gene has a good potential to be produced commercially andto be applied in animals' foodsindustry.
Ortí, G; Meyer, A
1996-04-01
The rate and pattern of DNA evolution of ependymin, a single-copy gene coding for a highly expressed glycoprotein in the brain matrix of teleost fishes, is characterized and its phylogenetic utility for fish systematics is assessed. DNA sequences were determined from catfish, electric fish, and characiforms and compared with published ependymin sequences from cyprinids, salmon, pike, and herring. Among these groups, ependymin amino acid sequences were highly divergent (up to 60% sequence difference), but had surprisingly similar hydropathy profiles and invariant glycosylation sites, suggesting that functional properties of the proteins are conserved. Comparison of base composition at third codon positions and introns revealed AT-rich introns and GC-rich third codon positions, suggesting that the biased codon usage observed might not be due to mutational bias. Phylogenetic information content of third codon positions was surprisingly high and sufficient to recover the most basal nodes of the tree, in spite of the observation that pairwise distances (at third codon positions) were well above the presumed saturation level. This finding can be explained by the high proportion of phylogenetically informative nonsynonymous changes at third codon positions among these highly divergent proteins. Ependymin DNA sequences have established the first molecular evidence for the monophyly of a group containing salmonids and esociforms. In addition, ependymin suggests a sister group relationship of electric fish (Gymnotiformes) and Characiformes, constituting a significant departure from currently accepted classifications. However, relationships among characiform lineages were not completely resolved by ependymin sequences in spite of seemingly appropriate levels of variation among taxa and considerably low levels of homoplasy in the data (consistency index = 0.7). If the diversification of Characiformes took place in an "explosive" manner, over a relatively short period of time this pattern should also be observed using other phylogenetic markers. Poor conservation of ependymin's primary structure hinders the design of efficient primers for PCR that could be used in wide-ranging fish systematic studies. However, alternative methods like PCR amplification from cDNA used here should provide promising comparative sequence data for the resolution of phylogenetic relationships among other basal lineages of teleost fishes.
Krefft, Daria; Papkov, Aliaksei; Zylicz-Stachula, Agnieszka; Skowron, Piotr M
2017-01-01
Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes' expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified 'codon randomization' strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending the palette of available REase specificities.
Reynolds, Sara E; Earl, Patricia L; Minai, Mahnaz; Moore, Ian; Moss, Bernard
2017-01-15
Most poxviruses encode a homolog of a ~200,000-kDa membrane protein originally identified in variola virus. We investigated the importance of the ectromelia virus (ECTV) homolog C15 in a natural infection model. In cultured mouse cells, the replication of a mutant virus with stop codons near the N-terminus (ECTV-C15Stop) was indistinguishable from a control virus (ECTV-C15Rev). However, for a range of doses injected into the footpads of BALB/c mice there was less mortality with the mutant. Similar virus loads were present at the site of infection with mutant or control virus whereas there was less ECTV-C15Stop in popliteal and inguinal lymph nodes, spleen and liver indicating decreased virus spread and replication. The latter results were supported by immunohistochemical analyses. Decreased spread was evidently due to immune modulatory activity of C15, rather than to an intrinsic viral function, as the survival of infected mice depended on CD4+ and CD8+ T cells. Published by Elsevier Inc.
Two alternative ways of start site selection in human norovirus reinitiation of translation.
Luttermann, Christine; Meyers, Gregor
2014-04-25
The calicivirus minor capsid protein VP2 is expressed via termination/reinitiation. This process depends on an upstream sequence element denoted termination upstream ribosomal binding site (TURBS). We have shown for feline calicivirus and rabbit hemorrhagic disease virus that the TURBS contains three sequence motifs essential for reinitiation. Motif 1 is conserved among caliciviruses and is complementary to a sequence in the 18 S rRNA leading to the model that hybridization between motif 1 and 18 S rRNA tethers the post-termination ribosome to the mRNA. Motif 2 and motif 2* are proposed to establish a secondary structure positioning the ribosome relative to the start site of the terminal ORF. Here, we analyzed human norovirus (huNV) sequences for the presence and importance of these motifs. The three motifs were identified by sequence analyses in the region upstream of the VP2 start site, and we showed that these motifs are essential for reinitiation of huNV VP2 translation. More detailed analyses revealed that the site of reinitiation is not fixed to a single codon and does not need to be an AUG, even though this codon is clearly preferred. Interestingly, we were able to show that reinitiation can occur at AUG codons downstream of the canonical start/stop site in huNV and feline calicivirus but not in rabbit hemorrhagic disease virus. Although reinitiation at the original start site is independent of the Kozak context, downstream initiation exhibits requirements for start site sequence context known for linear scanning. These analyses on start codon recognition give a more detailed insight into this fascinating mechanism of gene expression.
Grossman, M J; Lampen, J O
1987-01-01
The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148
Gai, Nan; Jiang, Chen; Zou, Yong-Yi; Zheng, Yu; Liang, De-Sheng; Wu, Ling-Qian
2016-07-01
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive disorder, which is characterized by congenital cataracts, cerebellar ataxia, progressive muscle weakness, and delayed psychomotor development. SIL1, which is located at 5q31.2, is the only gene known to cause MSS. Dandy-Walker syndrome (DWS) is defined by hypoplasia, upward rotation of the cerebellar vermis, and cystic dilation of the fourth ventricle; however, its genetic pathogeny remains unclear. Here, we report a Chinese consanguineous family with MSS and DWS. Whole exome sequencing identified a novel nonstop mutation in SIL1. Sanger sequencing revealed that the mutation was segregated in this family according to a recessive mode of inheritance. We found that the mutation changed a stop codon (TGA) to an arginine codon (CGA), and no in-frame termination codon in the 3' untranslated region (UTR) of SIL1 could be found. The mRNA levels of SIL1 were decreased by 56.6% and 37.5% in immortalized lymphoblasts of the patients respectively; the protein levels of SIL1 were substantially decreased. This case study is the first report on Chinese MSS patients, MSS complicated by DWS, and a nonstop mutation in SIL1. Our findings imply the pathogenetic association between DWS and MSS. Copyright © 2016 Elsevier B.V. All rights reserved.
Ocular phenotypes associated with two mutations (R121W, C126X) in the Norrie disease gene.
Kellner, U; Fuchs, S; Bornfeld, N; Foerster, M H; Gal, A
1996-06-01
To describe the ocular phenotypes associated with 2 mutations in the Norrie disease gene including a manifesting carrier. Ophthalmological examinations were performed in 2 affected males and one manifesting carrier. Genomic DNA was analyzed by direct sequencing of the Norrie disease gene. Family I: A 29-year-old male had the right eye enucleated at the age of 3 years. His left eye showed severe temporal dragging of the retina and central scars. Visual acuity was 20/300. DNA analysis revealed a C-to-T transition of the first nucleotide in codon 121 predicting the replacement of arginine-121 by tryptophan (R121W). Both the mother and maternal grandmother carry the same mutation in heterozygous form. Family 2: A 3-month-old boy presented with severe temporal dragging of the retina on both eyes and subsequently developed retinal detachment. Visual acuity was limited to light perception. His mother's left eye was amaurotic and phthitic. Her right eye showed severe retinal dragging, visual acuity was reduced to 20/60. DNA analysis revealed a T-to-A transversion of the third nucleotide in codon 126 creating a stop codon (C126X). The mother and maternal grandmother were carriers. Mutations in the Norrie disease gene can lead to retinal malformations of variable severity both in hemizygous males and manifesting carriers.
BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.
Jiang, Wen; Feng, Songjie; Huang, Shisheng; Yu, Wenxia; Li, Guanglei; Yang, Guang; Liu, Yajing; Zhang, Yu; Zhang, Lei; Hou, Yu; Chen, Jia; Chen, Jieping; Huang, Xingxu
2018-06-06
Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.
Stabilizing Selection, Purifying Selection, and Mutational Bias in Finite Populations
Charlesworth, Brian
2013-01-01
Genomic traits such as codon usage and the lengths of noncoding sequences may be subject to stabilizing selection rather than purifying selection. Mutations affecting these traits are often biased in one direction. To investigate the potential role of stabilizing selection on genomic traits, the effects of mutational bias on the equilibrium value of a trait under stabilizing selection in a finite population were investigated, using two different mutational models. Numerical results were generated using a matrix method for calculating the probability distribution of variant frequencies at sites affecting the trait, as well as by Monte Carlo simulations. Analytical approximations were also derived, which provided useful insights into the numerical results. A novel conclusion is that the scaled intensity of selection acting on individual variants is nearly independent of the effective population size over a wide range of parameter space and is strongly determined by the logarithm of the mutational bias parameter. This is true even when there is a very small departure of the mean from the optimum, as is usually the case. This implies that studies of the frequency spectra of DNA sequence variants may be unable to distinguish between stabilizing and purifying selection. A similar investigation of purifying selection against deleterious mutations was also carried out. Contrary to previous suggestions, the scaled intensity of purifying selection with synergistic fitness effects is sensitive to population size, which is inconsistent with the general lack of sensitivity of codon usage to effective population size. PMID:23709636
Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.
Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil
2017-06-02
The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC gene alter the protein expression and cell cycle regulation in diffuse type gastric adenocarcinoma.
Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes
Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded
2016-01-01
Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950
Microbial Lifestyle and Genome Signatures
Dutta, Chitra; Paul, Sandip
2012-01-01
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607
Systematic bacterialization of yeast genes identifies a near-universally swappable pathway
Kachroo, Aashiq H; Laurent, Jon M; Akhmetov, Azat; Szilagyi-Jones, Madelyn; McWhite, Claire D; Zhao, Alice; Marcotte, Edward M
2017-01-01
Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway. DOI: http://dx.doi.org/10.7554/eLife.25093.001 PMID:28661399
Host influence in the genomic composition of flaviviruses: A multivariate approach.
Simón, Diego; Fajardo, Alvaro; Sóñora, Martín; Delfraro, Adriana; Musto, Héctor
2017-10-28
Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces. Copyright © 2017 Elsevier Inc. All rights reserved.
Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun
2016-01-01
Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.
Georgiou, Theodoros; Chuang, Jacinta L.; Wynn, R. Max; Stylianidou, Goula; Korson, Mark; Chuang, David T.
2009-01-01
We report five mutations, three of them novel, responsible for maple syrup urine disease in four unrelated Cypriot families. The five children studied are the first cases of classic maple syrup urine disease to be reported among Cypriots. The first novel mutation identified is a single-base deletion in exon 6 of the Elα gene (c.718delG), which leads to a frameshift after Ala240 and to a stop codon 89 residues further downstream. The other two novel mutations identified are in the Elβ subunit: a two-base deletion in exon 6, c.662_663delCC, which leads to a frameshift after Ala221 and creates a stop codon 17 residues further downstream, as well as a splice mutation, IVS3[+3]delA, which results in the skipping of exon 3. The two known mutations identified are in the Elα gene: the G > C transversion at the 3′-splice acceptor site, (IVS5-1G > C), which results in the deletion of the entire exon 6, and the missense mutation in exon 5 (c.632C > T), which corresponds to a p.Thr211Met substitution. The p.Thr211Met substitution is located in a potassium-ion pocket in the E1 component required for stability of the bound cofactor thiamine diphosphate. The mutant E1 protein harboring the p.Thr211Met substitution was shown unable to bind thiamine diphosphate, leading to undetectable E1 activity. PMID:19715473
Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.
Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A
2013-04-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita
Ballew, Bari J.; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P.; Savage, Sharon A.
2013-01-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC. PMID:23329068
[Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].
Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie
2012-07-01
To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.
Neymotin, Benjamin; Ettorre, Victoria; Gresham, David
2016-01-01
Degradation of mRNA contributes to variation in transcript abundance. Studies of individual mRNAs have shown that both cis and trans factors affect mRNA degradation rates. However, the factors underlying transcriptome-wide variation in mRNA degradation rates are poorly understood. We investigated the contribution of different transcript properties to transcriptome-wide degradation rate variation in the budding yeast, Saccharomyces cerevisiae, using multiple regression analysis. We find that multiple transcript properties are significantly associated with variation in mRNA degradation rates, and that a model incorporating these properties explains ∼50% of the genome-wide variance. Predictors of mRNA degradation rates include transcript length, ribosome density, biased codon usage, and GC content of the third position in codons. To experimentally validate these factors, we studied individual transcripts expressed from identical promoters. We find that decreasing ribosome density by mutating the first translational start site of a transcript increases its degradation rate. Using coding sequence variants of green fluorescent protein (GFP) that differ only at synonymous sites, we show that increased GC content of the third position of codons results in decreased rates of mRNA degradation. Thus, in steady-state conditions, a large fraction of genome-wide variation in mRNA degradation rates is determined by inherent properties of transcripts, many of which are related to translation, rather than specific regulatory mechanisms. PMID:27633789
Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor
Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL
2008-02-05
The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.
Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.
2014-01-01
Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324
Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis.
Legnini, Ivano; Di Timoteo, Gaia; Rossi, Francesca; Morlando, Mariangela; Briganti, Francesca; Sthandier, Olga; Fatica, Alessandro; Santini, Tiziana; Andronache, Adrian; Wade, Mark; Laneve, Pietro; Rajewsky, Nikolaus; Bozzoni, Irene
2017-04-06
Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.
2012-01-01
SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Chad A.; Smith, Harold C., E-mail: harold.smith@rochester.edu
Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expressionmore » of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.« less
Identification of a novel mutation in a patient with pseudohypoparathyroidism type Ia
Lee, Ye Seung; Kim, Hui Kwon; Kim, Hye Rim; Lee, Jong Yoon; Choi, Joong Wan; Bae, Eun Ju; Oh, Phil Soo; Park, Won Il; Ki, Chang Seok
2014-01-01
Pseudohypoparathyroidism type Ia (PHP Ia) is a disorder characterized by multiform hormonal resistance including parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO). It is caused by heterozygous inactivating mutations within the Gs alpha-encoding GNAS exons. A 9-year-old boy presented with clinical and laboratory abnormalities including hypocalcemia, hyperphosphatemia, PTH resistance, multihormone resistance and AHO (round face, short stature, obesity, brachydactyly and osteoma cutis) which were typical of PHP Ia. He had a history of repeated convulsive episodes that started from the age of 2 months. A cranial computed tomography scan showed bilateral calcifications in the basal ganglia and his intelligence quotient testing indicated mild mental retardation. Family history revealed that the patient's maternal relatives, including his grandmother and 2 of his mother's siblings, had features suggestive of AHO. Sequencing of the GNAS gene of the patient identified a heterozygous nonsense mutation within exon 11 (c.637 C>T). The C>T transversion results in an amino acid substitution from Gln to stop codon at codon 213 (p.Gln213*). To our knowledge, this is a novel mutation in GNAS. PMID:25045367
The complete genome sequence of freesia mosaic virus and its relationship to other potyviruses.
Choi, H I; Lim, H R; Song, Y S; Kim, M J; Choi, S H; Song, Y S; Bae, S C; Ryu, K H
2010-07-01
We have completed the genomic sequence of a potyvirus, freesia mosaic virus (FreMV), and compared it to those of other known potyviruses. The full-length genome sequence of FreMV consists of 9,489 nucleotides. The large protein contains 3,077 amino acids, with an AUG start codon and UAA stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of FreMV-Kr gives rise to eleven proteins (P1, HC-pro, P3, PIPO, 6K1, CI, 6K2, VPg, NIa, NIb and CP), and putative cleavage sites of each protein were identified by sequence comparison to those of other known potyviruses. Phylogenetic analysis of the polyprotein revealed that FreMV-Kr was most closely related to PeMoV and was related to BtMV, BaRMV and PeLMV, which belong to the BCMV subgroup. This is the first information on the complete genome structure of FreMV, and the sequence information clearly supports the status of FreMV as a member of a distinct species in the genus Potyvirus.
Wagner-Schuman, Melissa; Neitz, Jay; Rha, Jungtae; Williams, David R.; Neitz, Maureen; Carroll, Joseph
2010-01-01
Our understanding of the etiology of red-green color vision defects is evolving. While missense mutations within the long- (L-) and middle-wavelength sensitive (M-) photopigments and gross rearrangements within the L/M-opsin gene array are commonly associated with red-green defects, recent work using adaptive optics retinal imaging has shown that different genotypes can have distinct consequences for the cone mosaic. Here we examined the cone mosaic in red-green color deficient individuals with multiple X-chromosome opsin genes that encode L opsin, as well as individuals with a single X-chromosome opsin gene that encodes L opsin and a single patient with a novel premature termination codon in his M-opsin gene and a normal L-opsin gene. We observed no difference in cone density between normal trichomats and multiple or single gene dichromats. In addition, we demonstrate different phenotypic effects of a nonsense mutation versus the previously described deleterious polymorphism, (LIAVA), both of which differ from multiple and single gene dichromats. Our results help refine the relationship between opsin genotype and cone photoreceptor mosaic phenotype. PMID:20854834
The complete mitochondrial genome of Rondotia menciana (Lepidoptera: Bombycidae)
Kong, Weiqing; Yang, Jinhong
2015-01-01
The mulberry white caterpillar, Rondotia menciana Moore (Lepidoptera: Bombycidae) is a species with closest relationship with Bombyx mori and Bombyx mandarina, and the genetic information of R. menciana is important for understanding the diversity of the Bombycidae. In this study, the mitochondrial genome (mitogenome) of R. menciana was amplified by polymerase chain reaction and sequenced. The mitogenome of R. menciana was determined to be 15,301 bp, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and an AT-rich region. The A+T content (78.87%) was lower than that observed for other Bombycidae insects. All PCGs were initiated by ATN codons and terminated with the canonical stop codons, except for coxII, which was terminated by a single T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The length of AT-rich region (360 bp) of R. menciana mitogenome is shorter than that of other Bombycidae species. Phylogenetic analysis showed that the R. menciana was clustered on one branch with B. mori and B. mandarina from Bombycidae. PMID:25888706
Doğan, Özgül; Korkmaz, E Mahir
2017-10-01
The Cimbicidae is a small family of the primitive and relatively less diverse suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genome (mitogenome) of hairy sawfly, Corynis lateralis (Hymenoptera: Cimbicidae) was sequenced using next generation sequencing and comparatively analysed with the mitogenome of Trichiosoma anthracinum. The sequenced length of C. lateralis mitogenome was 14,899 bp with an A+T content of 80.60%. All protein coding genes (PCGs) are initiated by ATN codons and all are terminated with TAR or T- stop codon. All tRNA genes preferred usual anticodons. Compared with the inferred insect ancestral mitogenome, two tRNA rearrangements were observed in the IQM and ARNS1EF gene clusters, representing a new event not previously reported in Symphyta. An illicit priming of replication and/or intra/inter-mitochondrial recombination and TDRL seem to be responsible mechanisms for the rearrangement events in these gene clusters. Phylogenetic analyses confirmed the position of Corynis within Cimbicidae and recovered a relationship of Tenthredinoidea + (Cephoidea + Orussoidea) in Symphyta.
Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G
1995-01-01
Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776
Is DNA code periodicity only due to CUF-codons usage frequency?
Zoltowski, Mariusz
2007-01-01
The triplet code for proteins and functional RNA has been either from the universal pattern of ancient RNA (-H1) [1], with a key role of an uneven codon usage frequency (CUF) in the periodic patterns origination, or a reading frame monitoring device (RFMD -H2) [2- 4]. H1 has lately been upheld [1] but in a single sequence sensitive way [1]. Since H1 and H2 are not mutually exclusive [2, 3, 4], a single sequence-wise sensitive approach by a resonant recognition model (RRM) has become the attempt described in this paper to challenge H1 and H2 in eukaryotes case as a novelty. In the RRM model [5, 6, 7] two bio-molecules interact favorably provided they both obey a common frequency and opposite phases consensus in their delocalized electron energy (DEE-) distributions [5]. Hence it has been possible to learn how well the DEE-s of the mRNA and of the ribosome match each other at 1/3 Hz - that applied to both the original and the CUF preserving randomly shuffled genomic data across the well known Bursét and Guigo collection of 570 coding vertebrates' genes. The matching of RRM patterns reduces to harmonics phase comparison of the relevant DEE-s, a task by a digital phase locked loop (DPLL) [8, 9, and 10]. The DPLL phase control to meet the RRM phase matching case is quantified into a small number of classes to describe the mRNA-ribosome interaction in a categorical way.
Fontanillas, Eric; Galzitskaya, Oxana V.; Lecompte, Odile; Lobanov, Mikhail Y.; Tanguy, Arnaud; Mary, Jean; Girguis, Peter R.; Hourdez, Stéphane
2017-01-01
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level. PMID:28082607
Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.
Cutter, Asher D
2008-03-01
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
Khrustalev, Vladislav Victorovich
2010-01-01
We used a DiscoTope 1.2 (http://www.cbs.dtu.dk/services/DiscoTope/), Epitopia (http://epitopia.tau.ac.il/) and EPCES (http://www.t38.physik.tu-muenchen.de/programs.htm) algorithms to map discontinuous B-cell epitopes in HIV1 gp120. The most mutable nucleotides in HIV genes are guanine (because of G to A hypermutagenesis) and cytosine (because of C to U and C to A mutations). The higher is the level of guanine and cytosine usage in third (neutral) codon positions and the lower is their level in first and second codon positions of the coding region, the more stable should be an epitope encoded by this region. We compared guanine and cytosine usage in regions coding for five predicted 3D B-cell epitopes of gp120. To make this comparison we used GenBank resource: 385 sequences of env gene obtained from ten HIV1-infected individuals were studied (http://www.barkovsky.hotmail.ru/Data/Seqgp120.htm). The most protected from nonsynonymous nucleotide mutations of guanine and cytosine 3D B-cell epitope is situated in the first conserved region of gp120 (it is mapped from 66th to 86th amino acid residue). We applied a test of variability to confirm this finding. Indeed, the less mutable predicted B-cell epitope is the less variable one. MEGA4 (standard PAM matrix) was used for the alignments and "VVK Consensus" algorithm (http://www.barkovsky.hotmail.ru) was used for the calculations.
Farshadpour, Fatemeh; Makvandi, Manoochehr; Taherkhani, Reza
2015-01-01
Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal. Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus. Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells. Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method. Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations. PMID:26865938
Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*
Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135
Lévy, Romain; Okada, Satoshi; Béziat, Vivien; Moriya, Kunihiko; Liu, Caini; Chai, Louis Yi Ann; Migaud, Mélanie; Hauck, Fabian; Al Ali, Amein; Cyrus, Cyril; Vatte, Chittibabu; Patiroglu, Turkan; Unal, Ekrem; Ferneiny, Marie; Hyakuna, Nobuyuki; Nepesov, Serdar; Oleastro, Matias; Ikinciogullari, Aydan; Dogu, Figen; Asano, Takaki; Ohara, Osamu; Yun, Ling; Della Mina, Erika; Bronnimann, Didier; Itan, Yuval; Gothe, Florian; Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Tahuil, Natalia; Aytekin, Caner; Salhi, Aicha; Al Muhsen, Saleh; Kobayashi, Masao; Toubiana, Julie; Abel, Laurent; Li, Xiaoxia; Camcioglu, Yildiz; Celmeli, Fatih; Klein, Christoph; AlKhater, Suzan A.; Casanova, Jean-Laurent; Puel, Anne
2016-01-01
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC—autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency—was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface. PMID:27930337
Tay, Wee Tek; Elfekih, Samia; Court, Leon N; Gordon, Karl H J; Delatte, Hélène; De Barro, Paul J
2017-10-01
Molecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies. This problem is identified in the B. tabaci Africa/Middle East/Asia Minor clade which comprises the globally invasive Mediterranean (MED) and Middle East Asia Minor I (MEAM1) species, Middle East Asia Minor 2 (MEAM2), and the Indian Ocean (IO) species. Initially identified from the Indian Ocean island of Réunion, MEAM2 has since been reported from Japan, Peru, Turkey and Iraq. We identified MEAM2 individuals from a Peruvian population via Sanger sequencing of the mtDNA COI gene. In attempting to characterize the MEAM2 mitogenome, we instead characterized mitogenomes of MEAM1. We also report on the mitogenomes of MED, AUS, and IO thereby increasing genomic resources for members of this complex. Gene synteny (i.e., same gene composition and orientation) was observed with published B. tabaci cryptic species mitogenomes. Pseudogene fragments matching MEAM2 partial mtDNA COI gene exhibited low frequency single nucleotide polymorphisms that matched low copy number DNA fragments (<3%) of MEAM1 genomes, whereas presence of internal stop codons, loss of expected stop codons and poor primer annealing sites, all suggested MEAM2 as a pseudogene artifact and so not a real species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes
Liu, Huiquan; Wang, Qinhu; He, Yi; Chen, Lingfeng; Hao, Chaofeng; Jiang, Cong; Li, Yang; Dai, Yafeng; Kang, Zhensheng; Xu, Jin-Rong
2016-01-01
Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1 (FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA1831GUA1834G, in its kinase domain were changed to UG1831GUG1834G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG1831GUG1834G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites in F. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69 PUK1-like pseudogenes with stop codons in ORFs. PUK1 orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides. Furthermore, F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing in F. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs. PMID:26934920
Mutation in the 5' alternatively spliced region of the XNP/ATR-X gene causes Chudley-Lowry syndrome.
Abidi, Fatima E; Cardoso, Carlos; Lossi, Anne-Marie; Lowry, Robert Brian; Depetris, Danielle; Mattéi, Marie-Geneviève; Lubs, Herbert A; Stevenson, Roger E; Fontes, Michel; Chudley, Albert E; Schwartz, Charles E
2005-02-01
The Chudley-Lowry syndrome (ChLS, MIM 309490) is an X-linked recessive condition characterized by moderate to severe mental retardation, short stature, mild obesity, hypogonadism, and distinctive facial features characterized by depressed nasal bridge, anteverted nares, inverted-V-shaped upper lip, and macrostomia. The original Chudley-Lowry family consists of three affected males in two generations. Linkage analysis had localized the gene to a large interval, Xp21-Xq26 and an obligate carrier was demonstrated to have highly skewed X inactivation. The combination of the clinical phenotype, consistent with that of the patients with ATR-X syndrome, the skewed X-inactivation pattern in a carrier female, as well as the mapping interval including band Xq13.3, prompted us to consider the XNP/ATR-X gene being involved in this syndrome. Using RT-PCR analysis, we screened the entire XNP/ATR-X gene and found a mutation in exon 2 (c.109C > T) giving rise to a stop codon at position 37 (p.R37X). Western blot and immunocytochemical analyses using a specific monoclonal antibody directed against XNP/ATR-X showed the protein to be present in lymphoblastoid cells from one affected male, despite the premature stop codon. To explain these discordant results, we further analyzed the 5' region of the XNP/ATR-X gene and found three alternative transcripts, which differ in the presence or absence of exon 2, and the length of exon 1. Our data suggest that ChLS is allelic to the ATR-X syndrome with its less severe phenotype being due to the presence of some XNP/ATR-X protein.
Agarwal, S K; Cogburn, L A; Burnside, J
1994-09-01
The sex-linked dwarf (dwdw) chicken represents a valuable animal model for studying GH insensitivity and the consequence of mutations in the GH receptor (GHR) gene. We have recently reported undetectable hepatic GH-binding activity and an aberrantly sized transcript in a strain of dwdw chickens obtained from Arbor Acre Farms, Inc. (Glastonbury, CT, USA). Southern blot analysis of the chicken GHR (cGHR) gene revealed a restriction-fragment length polymorphism in HindIII and EcoRI digests of genomic DNA in this strain of dwdw chicken. In order to localize the molecular mutation, we analysed the gene structure and determined the complete sequence of the 3' untranslated region (3' UTR) of the normal cGHR. With the use of this information, we located a large deletion in the 3' end of the cGHR gene of the Connecticut (CT) strain of dwdw chicken. This deletion (1773 bp) contained 27 highly conserved amino acids of the 3' end of the coding region, the in-frame stop codon, a less frequently used poly(A) signal that is normally found 445 bp downstream of the stop codon, and a large portion of the 3' UTR. Because of this deletion, 27 novel amino acids were substituted and the open reading frame was extended for an additional 26 amino acids before reaching the transcriptional termination site. The predicted amino acid sequence of the novel carboxyl-terminus of the dwdw cGHR is largely hydrophobic with a polylysine tail, whereas the carboxyl-terminus of the wild-type (DwDw) cGHR is composed of hydrophilic amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)
Nicholas, Frank W; Hobbs, Matthew
2014-01-01
Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556
dupA polymorphisms and risk of Helicobacter pylori-associated diseases.
Queiroz, Dulciene M M; Rocha, Gifone A; Rocha, Andreia M C; Moura, Sílvia B; Saraiva, Ivan E B; Gomes, Luciana I; Soares, Taciana F; Melo, Fabrício F; Cabral, Mônica M D A; Oliveira, Celso A
2011-03-01
The dupA of Helicobacter pylori has been suggested as a virulence marker associated with the development of duodenal ulcer disease. However, the studies performed in different geographical areas have shown that there are variations in the prevalence of dupA and its association with H. pylori clinical outcomes. Our group did not observe associations between the presence of dupA and H. pylori clinical outcomes in Brazil. On the other hand, we observed 2 mutations in the sequence of dupA that lead to stop codons: a deletion of an adenine at position 1311 and an insertion of an adenine at position 1426 of the gene. Our aim was to evaluate associations of the presence of dupA with duodenal ulcer and gastric cancer, considering dupA-positive only those H. pylori strains that do not have the mutations in the gene sequence. We also evaluated the effect of infection with a strain carrying an intact dupA on the gastric mucosa histology and IL-8 gastric levels. Colonization with strains that had the intact dupA was negatively associated with gastric carcinoma (p=0.001, OR=0.32, 95% CI=0.16-0.66). The presence of dupA was also associated with an increased degree of antral mucosa inflammation (p=0.01) and with decreased corpus atrophy (p<0.01) as well as with increased gastric mucosa IL-8 levels (p=0.04). In conclusion, the infection with a H. pylori strain containing the dupA without the stop codon polymorphisms is associated with a lower risk of development of gastric carcinoma in Brazilian subjects. Copyright © 2010 Elsevier GmbH. All rights reserved.
Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.
Lise, Stefano; Clarkson, Yvonne; Perkins, Emma; Kwasniewska, Alexandra; Sadighi Akha, Elham; Schnekenberg, Ricardo Parolin; Suminaite, Daumante; Hope, Jilly; Baker, Ian; Gregory, Lorna; Green, Angie; Allan, Chris; Lamble, Sarah; Jayawant, Sandeep; Quaghebeur, Gerardine; Cader, M Zameel; Hughes, Sarah; Armstrong, Richard J E; Kanapin, Alexander; Rimmer, Andrew; Lunter, Gerton; Mathieson, Iain; Cazier, Jean-Baptiste; Buck, David; Taylor, Jenny C; Bentley, David; McVean, Gilean; Donnelly, Peter; Knight, Samantha J L; Jackson, Mandy; Ragoussis, Jiannis; Németh, Andrea H
2012-01-01
β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.
Taylor, Ethan Will; Ruzicka, Jan A.; Premadasa, Lakmini; Zhao, Lijun
2016-01-01
Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818
Qian, Chaoju; Wang, Yuanxiu; Guo, Zhichun; Yang, Jianke; Kan, Xianzhao
2013-06-01
The circular mitochondrial genome of Alauda arvensis is 17,018 bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA (tRNA) genes, and 2 extensive heteroplasmic control regions. All of the genes encoded on the H-strand, with the exceptions of one PCG (nad6) and eight tRNA genes (tRNA(Gln), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr), tRNA(Ser(UCN)), tRNA(Pro), and tRNA(Glu)), as found in other birds' mitochondrial genomes. All of these PCGs are initiated with ATG, while stopped by six types of stop codons. All tRNA genes have the potential to fold into typical clover-leaf structure. Two extensive heteroplasmic control regions were found, and more interestingly, a minisatellite of 37 nucleotides (5'-TCAATCCCATTGATTTCATTATATTAGTATAAAGAAA-3') with 6 tandem repeats was detected at the end of CR2.
Evolution of the viral hemorrhagic septicemia virus: divergence, selection and origin.
He, Mei; Yan, Xue-Chun; Liang, Yang; Sun, Xiao-Wen; Teng, Chun-Bo
2014-08-01
Viral hemorrhagic septicemia virus (VHSV) is an economically significant rhabdovirus that affects an increasing number of freshwater and marine fish species. Extensive studies have been conducted on the molecular epizootiology, genetic diversity, and phylogeny of VHSV. However, there are discrepancies between the reported estimates of the nucleotide substitution rate for the G gene and the divergence times for the genotypes. Herein, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of the six VHSV genes. Rate estimates based on the G gene indicated that the marine genotypes/subtypes might not all evolve slower than their major European freshwater counterpart. Age calculations on the six genes revealed that the first bifurcation event of the analyzed isolates might have taken place within the last 300 years, which was much younger than previously thought. Selection analyses suggested that two codons of the G gene might be positively selected. Surveys of codon usage bias showed that the P, M and NV genes exhibited genotype-specific variations. Furthermore, we proposed that VHSV originated from the Pacific Northwest of North America. Copyright © 2014 Elsevier Inc. All rights reserved.
Lim, P O; Sears, B B
1992-01-01
The families within the class Mollicutes are distinguished by their morphologies, nutritional requirements, and abilities to metabolize certain compounds. Biosystematic classification of the plant-pathogenic mycoplasmalike organisms (MLOs) has been difficult because these organisms have not been cultured in vitro, and hence their nutritional requirements have not been determined nor have physiological characterizations been possible. To investigate the evolutionary relationship of the MLOs to other members of the class Mollicutes, a segment of a ribosomal protein operon was cloned and sequenced from an aster yellows-type MLO which is pathogenic for members of the genus Oenothera and from Acholeplasma laidlawii. The deduced amino acid sequence data from the rpl22 and rps3 genes indicate that the MLOs are more closely related to A. laidlawii than to animal mycoplasmas, confirming previous results from 16S rRNA sequence comparisons. This conclusion is also supported by the finding that the UGA codon is not read as a tryptophan codon in the MLO and A. laidlawii, in contrast to its usage in Mycoplasma capricolum. PMID:1556079
Meiler, Arno; Klinger, Claudia; Kaufmann, Michael
2012-09-08
The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.
2012-01-01
Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836
Human HLA-Ev (147) Expression in Transgenic Animals.
Matsuura, R; Maeda, A; Sakai, R; Eguchi, H; Lo, P-C; Hasuwa, H; Ikawa, M; Nakahata, K; Zenitani, M; Yamamichi, T; Umeda, S; Deguchi, K; Okuyama, H; Miyagawa, S
2016-05-01
In our previous study, we reported on the development of substituting S147C for HLA-E as a useful gene tool for xenotransplantation. In this study we exchanged the codon of HLA-Ev (147), checked its function, and established a line of transgenic mice. A new construct, a codon exchanging human HLA-Ev (147) + IRES + human beta 2-microgloblin, was established. The construct was subcloned into pCXN2 (the chick beta-actin promoter and cytomegalovirus enhancer) vector. Natural killer cell- and macrophage-mediated cytotoxicities were performed using the established the pig endothelial cell (PEC) line with the new gene. Transgenic mice with it were next produced using a micro-injection method. The expression of the molecule on PECs was confirmed by the transfection of the plasmid. The established molecules on PECs functioned well in regulating natural killer cell-mediated cytotoxicity and macrophage-mediated cytotoxicity. We have also successfully generated several lines of transgenic mice with this plasmid. The expression of HLA-Ev (147) in each mouse organ was confirmed by assessing the mRNA. The chick beta-actin promoter and cytomegalovirus enhancer resulted in a relatively broad expression of the gene in each organ, and a strong expression in the cases of the heart and lung. A synthetic HLA-Ev (147) gene with a codon usage optimized to a mammalian system represents a critical factor in the development of transgenic animals for xenotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Ming Ru; Zhou, Zhi Jun; Chang, Yan Lin; Zhao, Le Hong
2012-08-01
To help determine whether the typical arthropod arrangement was a synapomorphy for the whole Tettigoniidae, we sequenced the mitochondrial genome (mitogenome) of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). The 16,166-bp nucleotide sequences of X. fascipes mitogenome contains the typical gene content, gene order, base composition, and codon usage found in arthropod mitogenomes. As a whole, the X. fascipes mitogenome contains a lower A+T content (70.2%) found in the complete orthopteran mitogenomes determined to date. All protein-coding genes started with a typical ATN codon. Ten of the 13 protein-coding genes have a complete termination codon, but the remaining three genes (COIII, ND5 and ND4) terminate with incomplete T. All tRNAs have the typical clover-leaf structure of mitogenome tRNA, except for tRNA(Ser(AGN)), in which lengthened anticodon stem (9 bp) with a bulged nuleotide in the middle, an unusual T-stem (6 bp in constrast to the normal 5 bp), a mini DHU arm (2 bp) and no connector nucleotides. In the A+T-rich region, two (TA)n conserved blocks that were previously described in Ensifera and two 150-bp tandem repeats plus a partial copy of the composed at 61 bp of the beginning were present. Phylogenetic analysis found: i) the monophyly of Conocephalinae was interrupted by Elimaea cheni from Phaneropterinae; and ii) Meconematinae was the most basal group among these five subfamilies.
2010-01-01
The canonical genetic code is on a sub-optimal adaptive peak with respect to its ability to minimize errors, and is close to, but not quite, optimal. This is demonstrated by the near-total adjacency of synonymous codons, the similarity of adjacent codons, and comparisons of frequency of amino acid usage with number of codons in the code for each amino acid. As a rare empirical example of an adaptive peak in nature, it shows adaptive peaks are real, not merely theoretical. The evolution of deviant genetic codes illustrates how populations move from a lower to a higher adaptive peak. This is done by the use of “adaptive bridges,” neutral pathways that cross over maladaptive valleys by virtue of masking of the phenotypic expression of some maladaptive aspects in the genotype. This appears to be the general mechanism by which populations travel from one adaptive peak to another. There are multiple routes a population can follow to cross from one adaptive peak to another. These routes vary in the probability that they will be used, and this probability is determined by the number and nature of the mutations that happen along each of the routes. A modification of the depiction of adaptive landscapes showing genetic distances and probabilities of travel along their multiple possible routes would throw light on this important concept. PMID:20711776
Quinolone Resistance Determinants of Clinical Salmonella Enteritidis in Thailand.
Utrarachkij, Fuangfa; Nakajima, Chie; Changkwanyeun, Ruchirada; Siripanichgon, Kanokrat; Kongsoi, Siriporn; Pornruangwong, Srirat; Changkaew, Kanjana; Tsunoda, Risa; Tamura, Yutaka; Suthienkul, Orasa; Suzuki, Yasuhiko
2017-10-01
Salmonella Enteritidis has emerged as a global concern regarding quinolone resistance and invasive potential. Although quinolone-resistant S. Enteritidis has been observed with high frequency in Thailand, information on the mechanism of resistance acquisition is limited. To elucidate the mechanism, a total of 158 clinical isolates of nalidixic acid (NAL)-resistant S. Enteritidis were collected throughout Thailand, and the quinolone resistance determinants were investigated in the context of resistance levels to NAL, norfloxacin (NOR), and ciprofloxacin (CIP). The analysis of point mutations in type II topoisomerase genes and the detection of plasmid-mediated quinolone resistance genes showed that all but two harbored a gyrA mutation, the qnrS1 gene, or both. The most commonly affected codon in mutant gyrA was 87, followed by 83. Double codon mutation in gyrA was found in an isolate with high-level resistance to NAL, NOR, and CIP. A new mutation causing serine to isoleucine substitution at codon 83 was identified in eight isolates. In addition to eighteen qnrS1-carrying isolates showing nontypical quinolone resistance, one carrying both the qnrS1 gene and a gyrA mutation also showed a high level of resistance. Genotyping by multilocus variable number of tandem repeat analysis suggested a possible clonal expansion of NAL-resistant strains nationwide. Our data suggested that NAL-resistant isolates with single quinolone resistance determinant may potentially become fluoroquinolone resistant by acquiring secondary determinants. Restricted therapeutic and farming usage of quinolones is strongly recommended to prevent the emergence of fluoroquinolone-resistant isolates.
Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.
2013-01-01
Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144
Chai, Huan-Na; Du, Yu-Zhou
2012-01-01
The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif "ATAGA" followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite "(AT)(7)", without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae.
Chai, Huan-Na; Du, Yu-Zhou
2012-01-01
The complete 15,413-bp mitochondrial genome (mitogenome) of Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was sequenced and compared with those of four other noctuid moths. All of the mitogenomes analyzed displayed similar characteristics with respect to gene content, genome organization, nucleotide comparison, and codon usages. Twelve-one protein-coding genes (PCGs) utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; cox1, cox2, and nad4 genes had the truncated termination codon T in the S. inferens mitogenome. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Both the secondary structures of rrnL and rrnS genes inferred from the S. inferens mitogenome closely resembled those of other noctuid moths. In the A+T-rich region, the conserved motif “ATAGA” followed by a long T-stretch was observed in all noctuid moths, but other specific tandem-repeat elements were more variable. Additionally, the S. inferens mitogenome contained a potential stem-loop structure, a duplicated 17-bp repeat element, a decuplicated segment, and a microsatellite “(AT)7”, without a poly-A element upstream of the trnM in the A+T-rich region. Finally, the phylogenetic relationships were reconstructed based on amino acid sequences of mitochondrial 13 PCGs, which support the traditional morphologically based view of relationships within the Noctuidae. PMID:22949858
TIP: protein backtranslation aided by genetic algorithms.
Moreira, Andrés; Maass, Alejandro
2004-09-01
Several applications require the backtranslation of a protein sequence into a nucleic acid sequence. The degeneracy of the genetic code makes this process ambiguous; moreover, not every translation is equally viable. The usual answer is to mimic the codon usage of the target species; however, this does not capture all the relevant features of the 'genomic styles' from different taxa. The program TIP ' Traducción Inversa de Proteínas') applies genetic algorithms to improve the backtranslation, by minimizing the difference of some coding statistics with respect to their average value in the target. http://www.cmm.uchile.cl/genoma/tip/
Discovery of a novel hepatovirus (Phopivirus of seals) related to human Hepatitis A Virus
Anthony. S.J.,; St. Leger, J.A; Liang, E.; Hicks, A.L.; Sanchez-Leon, M.D; Ip, Hon S.; Jain, K.; Lefkowitch, J. H.; Navarrete-Macias, I.; Knowles, N.; Goldstein, T.; Pugliares, K.; Rowles, T.; Lipkin, W.I.
2015-01-01
Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV.
DNASynth: a software application to optimization of artificial gene synthesis
NASA Astrophysics Data System (ADS)
Muczyński, Jan; Nowak, Robert M.
2017-08-01
DNASynth is a client-server software application in which the client runs in a web browser. The aim of this program is to support and optimize process of artificial gene synthesizing using Ligase Chain Reaction. Thanks to LCR it is possible to obtain DNA strand coding defined by user peptide. The DNA sequence is calculated by optimization algorithm that consider optimal codon usage, minimal energy of secondary structures and minimal number of required LCR. Additionally absence of sequences characteristic for defined by user set of restriction enzymes is guaranteed. The presented software was tested on synthetic and real data.
Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation
Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi
2015-01-01
In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921
Treacher Collins syndrome with a de Novo 5-bp deletion in the TCOF1 gene.
Su, Pen-Hua; Chen, Jia-Yu; Chen, Suh-Jen; Yu, Ju-Shan
2006-06-01
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development with features including malar hypoplasia, micrognathia, microtia, downward slanting palpebral fissures, lower eyelid coloboma, conductive hearing loss, and cleft palate. TCS is caused by mutations in the TCOF1 gene, which encodes the nuclear phosphoprotein treacle. Here, we describe a 1-day-old male infant with classical TCS presentation. A 5-bp deletion in exon 22 of the TCOF1 gene (3469del ACTCT) was found to cause a premature stop codon. This is the first report of TCOF1 gene mutation in the Taiwanese population.
Designer proteins: applications of genetic code expansion in cell biology.
Davis, Lloyd; Chin, Jason W
2012-02-15
Designer amino acids, beyond the canonical 20 that are normally used by cells, can now be site-specifically encoded into proteins in cells and organisms. This is achieved using 'orthogonal' aminoacyl-tRNA synthetase-tRNA pairs that direct amino acid incorporation in response to an amber stop codon (UAG) placed in a gene of interest. Using this approach, it is now possible to study biology in vitro and in vivo with an increased level of molecular precision. This has allowed new biological insights into protein conformational changes, protein interactions, elementary processes in signal transduction and the role of post-translational modifications.
A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.
Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza
2014-07-01
In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.
Complete plastid genome of Astragalus mongholicus var. nakaianus (Fabaceae).
Choi, In-Su; Kim, Joo-Hwan; Choi, Byoung-Hee
2016-07-01
The first complete plastid genome (plastome) of the largest angiosperm genus, Astragalus, was sequenced for the Korean endangered endemic species A. mongholicus var. nakaianus. Its genome is relatively short (123,633 bp) because it lacks an Inverted Repeat (IR) region. It comprises 110 genes, including four unique rRNAs, 30 tRNAs, and 76 protein-coding genes. Similar to other closely related plastomes, rpl22 and rps16 are absent. The putative pseudogene with abnormal stop codons is atpE. This plastome has no additional inversions when compared with highly variable plastomes from IRLC tribes Fabeae and Trifolieae. Our phylogenetic analysis confirms the non-monophyly of Galegeae.
40 CFR 205.174 - Remedial orders.
Code of Federal Regulations, 2012 CFR
2012-07-01
... not in compliance with the regulations of this subpart. Potential orders are stop sale orders, orders... Noise Emission Test Procedures Appendix I-1 to Subparts D and E—Test Procedure for Street and off-road Motorcycles (a) Instrumentation. Proper usage of all test instrumentation is essential to obtain valid...
40 CFR 205.174 - Remedial orders.
Code of Federal Regulations, 2011 CFR
2011-07-01
... not in compliance with the regulations of this subpart. Potential orders are stop sale orders, orders... Noise Emission Test Procedures Appendix I-1 to Subparts D and E—Test Procedure for Street and off-road Motorcycles (a) Instrumentation. Proper usage of all test instrumentation is essential to obtain valid...
40 CFR 205.174 - Remedial orders.
Code of Federal Regulations, 2013 CFR
2013-07-01
... not in compliance with the regulations of this subpart. Potential orders are stop sale orders, orders... Noise Emission Test Procedures Appendix I-1 to Subparts D and E—Test Procedure for Street and off-road Motorcycles (a) Instrumentation. Proper usage of all test instrumentation is essential to obtain valid...
Broadbent, Andrew J.; Santos, Celia P.; Anafu, Amanda; Wimmer, Eckard; Mueller, Steffen; Subbarao, Kanta
2015-01-01
Codon-pair bias de-optimization (CPBD) of viruses involves re-writing viral genes using statistically underrepresented codon pairs, without any changes to the amino acid sequence or codon usage. Previously, this technology has been used to attenuate the influenza A/Puerto Rico/8/34 (H1N1) virus. The de-optimized virus was immunogenic and protected inbred mice from challenge. In order to assess whether CPBD could be used to produce a live vaccine against a clinically relevant influenza virus, we generated an influenza A/California/07/2009 pandemic H1N1 (2009 pH1N1) virus with de-optimized HA and NA gene segments (2009 pH1N1-(HA+NA)Min), and evaluated viral replication and protein expression in MDCK cells, and attenuation, immunogenicity, and efficacy in outbred ferrets. The 2009 pH1N1-(HA+NA)Min virus grew to a similar titer as the 2009 pH1N1 wild type (wt) virus in MDCK cells (~106 TCID50/ml), despite reduced HA and NA protein expression on western blot. In ferrets, intranasal inoculation of 2009 pH1N1-(HA+NA)Min virus at doses ranging from 103 to 105 TCID50 led to seroconversion in all animals and protection from challenge with the 2009 pH1N1 wt virus 28 days later. The 2009 pH1N1-(HA+NA)Min virus did not cause clinical illness in ferrets, but replicated to a similar titer as the wt virus in the upper and lower respiratory tract, suggesting that de-optimization of additional gene segments may be warranted for improved attenuation. Taken together, our data demonstrate the potential of using CPBD technology for the development of a live influenza virus vaccine if the level of attenuation is optimized. PMID:26655630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholten, Johannes C.; Culley, David E.; Brockman, Fred J.
2007-01-05
The sulfate reducing bacteria Desulfovibrio vulgaris and the methanogenic archaea Methanosarcina barkeri can grow syntrophically on lactate. In this study, three functionally unknown genes of D. vulgaris, DVU2103, DVU2104 and DVU2108, were found to be up-regulated 2-4 fold following the lifestyle shift from syntroph to sulfatereducer; moreover, none of these genes were regulated when D. vulgaris was grown alone in various pure culture conditions. These results suggest that these genes may play roles related to the lifestyle change of D. vulgaris from syntroph to sulfate reducer. This hypothesis is further supported by phylogenomic analyses showing that homologies of these genesmore » were only narrowly present in several groups of bacteria, most of which are restricted to a syntrophic life-style, such as Pelobacter carbinolicus, Syntrophobacter fumaroxidans, Syntrophomonas wolfei and Syntrophus aciditrophicus. Phylogenetic analysis showed that the genes tended to be clustered with archaeal genera, and they were rooted on archaeal species in the phylogenetic trees, suggesting that they originated from an archaeal methanogen and were horizontally transferred to a common ancestor of delta- Proteobacteria, Clostridia and Thermotogae. While lost in most species during evolution, these genes appear to have been retained in bacteria capable of syntrophic relationships, probably due to their providing a selective advantage. In addition, no significant bias in codon and amino acid usages was detected between these genes and the rest of the D. vulgaris genome, suggesting these gene transfers may have occurred early in the evolutionary history so that sufficient time has elapsed to allow an adaptation to the codon and amino acid usages of D. vulgaris. This report provides novel insights into the origin and evolution of bacterial genes involved in the syntrophic lifestyle.« less
Emerging genetic therapies to treat Duchenne muscular dystrophy
Nelson, Stanley F.; Crosbie, Rachelle H.; Miceli, M. Carrie; Spencer, Melissa J.
2010-01-01
Purpose of review Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called `exon skipping' and `nonsense codon suppression'. Recent findings A drug, PTC124, was identified that suppresses nonsense codon translation termination. PTC124 can lead to restoration of some dystrophin expression in human Duchenne muscular dystrophy muscles with mutations resulting in premature stops. Two drugs developed for exon skipping, PRO051 and AVI-4658, result in the exclusion of exon 51 from mature mRNA. They can restore the translational reading frame to dystrophin transcripts from patients with a particular subset of dystrophin gene deletions and lead to some restoration of dystrophin expression in affected boys' muscle in vivo. Both approaches have concluded phase I trials with no serious adverse events. Summary These novel therapies that act to correct the primary genetic defect of dystrophin deficiency are among the first generation of therapies tailored to correct specific mutations in humans. Thus, they represent paradigm forming approaches to personalized medicine with the potential to lead to life changing treatment for those affected by Duchenne muscular dystrophy. PMID:19745732
Iwasaki, Yasushi
2012-08-15
Although there are no reports of pathological laughing and crying being observed in patients with Creutzfeldt-Jakob disease (CJD), the author experienced three patients with CJD with prion protein gene codon180 mutation (V180I CJD) who showed this characteristic clinical finding. This finding was observed from the early disease stage in all 3 patients and continued for several months. Startle reaction was also remarkable in all patients, although myoclonus was generally mild. The dissociation between the startle reaction and myoclonus was suspected to be another feature of V180I CJD. The pathological laughing and crying co-occured with the startle reaction and stopped right before the onset of akinetic mutism, and the degree of both symptoms was almost parallel during this period. On the basis of MRI and autopsy findings, pathological laughing and crying was suspected of being induced by the widespread cerebral cortical involvement that is characteristic of V180I CJD. From the present observations, the author speculated that pathological laughing and crying may be a comparatively frequent observation in V180I CJD patients. Copyright © 2012 Elsevier B.V. All rights reserved.
The mitochondrial genome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae).
Xin, Tianrong; Li, Lei; Yao, Chengyi; Wang, Yayu; Zou, Zhiwen; Wang, Jing; Xia, Bin
2016-07-01
We present the complete mitogenome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae) in this article. The mitogenome was a circle molecular consisting of 15,286 nucleotides, 37 genes, and an A + T-rich region. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. The overall base composition of the genome is A (37.41%), T (42.80%), C (11.87%), and G (7.91%) with an A + T-rich hallmark as that of other invertebrate mitochondrial genomes. The start codon was mainly ATA in most of the mitochondrial protein-coding genes such as ND2, COI, ATP8, ND3, ND5, ND4, ND6, and ND1, but COII, ATP6, COIII, ND4L, and Cob genes employing ATG. The stop codon was TAA in all the protein-coding genes. The A + T region is located between 12S rRNA and tRNA(M)(et). The phylogenetic relationships of Lepidoptera species were constructed based on the nucleotides sequences of 13 PCGs of mitogenomes using the neighbor-joining method. The molecular-based phylogeny supported the traditional morphological classification on relationships within Lepidoptera species.
Meredith, Robert W.; Gatesy, John; Murphy, William J.; Ryder, Oliver A.; Springer, Mark S.
2009-01-01
Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory. PMID:19730686
Wang, Jiajia; Li, Hu; Dai, Renhuai
2017-12-01
Here, we describe the first complete mitochondrial genome (mitogenome) sequence of the leafhopper Taharana fasciana (Coelidiinae). The mitogenome sequence contains 15,161 bp with an A + T content of 77.9%. It includes 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding (A + T-rich) region; in addition, a repeat region is also present (GenBank accession no. KY886913). These genes/regions are in the same order as in the inferred insect ancestral mitogenome. All protein-coding genes have ATN as the start codon, and TAA or single T as the stop codons, except the gene ND3, which ends with TAG. Furthermore, we predicted the secondary structures of the rRNAs in T. fasciana. Six domains (domain III is absent in arthropods) and 41 helices were predicted for 16S rRNA, and 12S rRNA comprised three structural domains and 24 helices. Phylogenetic tree analysis confirmed that T. fasciana and other members of the Cicadellidae are clustered into a clade, and it identified the relationships among the subfamilies Deltocephalinae, Coelidiinae, Idiocerinae, Cicadellinae, and Typhlocybinae.
Jaeckisch, Nina; Yang, Ines; Wohlrab, Sylke; Glöckner, Gernot; Kroymann, Juergen; Vogel, Heiko; Cembella, Allan; John, Uwe
2011-01-01
Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins. PMID:22164224
Salvato, Paola; Simonato, Mauro; Battisti, Andrea; Negrisolo, Enrico
2008-01-01
Background Knowledge of animal mitochondrial genomes is very important to understand their molecular evolution as well as for phylogenetic and population genetic studies. The Lepidoptera encompasses more than 160,000 described species and is one of the largest insect orders. To date only nine lepidopteran mitochondrial DNAs have been fully and two others partly sequenced. Furthermore the taxon sampling is very scant. Thus advance of lepidopteran mitogenomics deeply requires new genomes derived from a broad taxon sampling. In present work we describe the mitochondrial genome of the moth Ochrogaster lunifer. Results The mitochondrial genome of O. lunifer is a circular molecule 15593 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. It contains also 7 intergenic spacers. The gene order of the newly sequenced genome is that typical for Lepidoptera and differs from the insect ancestral type for the placement of trnM. The 77.84% A+T content of its α strand is the lowest among known lepidopteran genomes. The mitochondrial genome of O. lunifer exhibits one of the most marked C-skew among available insect Pterygota genomes. The protein-coding genes have typical mitochondrial start codons except for cox1 that present an unusual CGA. The O. lunifer genome exhibits the less biased synonymous codon usage among lepidopterans. Comparative genomics analysis study identified atp6, cox1, cox2 as cox3, cob, nad1, nad2, nad4, and nad5 as potential markers for population genetics/phylogenetics studies. A peculiar feature of O. lunifer mitochondrial genome it that the intergenic spacers are mostly made by repetitive sequences. Conclusion The mitochondrial genome of O. lunifer is the first representative of superfamily Noctuoidea that account for about 40% of all described Lepidoptera. New genome shares many features with other known lepidopteran genomes. It differs however for its low A+T content and marked C-skew. Compared to other lepidopteran genomes it is less biased in synonymous codon usage. Comparative evolutionary analysis of lepidopteran mitochondrial genomes allowed the identification of previously neglected coding genes as potential phylogenetic markers. Presence of repetitive elements in intergenic spacers of O. lunifer genome supports the role of DNA slippage as possible mechanism to produce spacers during replication. PMID:18627592
Motivating signage prompts safety belt use among drivers exiting senior communities.
Cox, B S; Cox, A B; Cox, D J
2000-01-01
Senior drivers are vulnerable to automobile crashes and subsequent injury and death. Safety belts reduce health risks associated with auto crashes. Therefore, it is important to encourage senior drivers to wear safety belts while driving. Using an AB design, replicated five times, we evaluated the short- and long-term effects of a sign with the message "BUCKLE UP, STAY SAFE" attached to a stop sign at the exits of five different senior communities. Safety belt use was stable during two pretreatment assessments averaged across the five sites and 250 drivers (72% and 68% usage), but significantly increased following installation of these signs (94% usage). Six months after installation of the signs, the effect persisted (88% usage). Use of such signs may be a cost-effective way of promoting safety belt use.
Discovery of a Novel Hepatovirus (Phopivirus of Seals) Related to Human Hepatitis A Virus
St. Leger, J. A.; Liang, E.; Hicks, A. L.; Sanchez-Leon, M. D.; Jain, K.; Lefkowitch, J. H.; Navarrete-Macias, I.; Knowles, N.; Goldstein, T.; Pugliares, K.; Rowles, T.; Lipkin, W. I.
2015-01-01
ABSTRACT Describing the viral diversity of wildlife can provide interesting and useful insights into the natural history of established human pathogens. In this study, we describe a previously unknown picornavirus in harbor seals (tentatively named phopivirus) that is related to human hepatitis A virus (HAV). We show that phopivirus shares several genetic and phenotypic characteristics with HAV, including phylogenetic relatedness across the genome, a specific and seemingly quiescent tropism for hepatocytes, structural conservation in a key functional region of the type III internal ribosomal entry site (IRES), and a codon usage bias consistent with that of HAV. PMID:26307166
Gutiérrez, Verónica; Rego, Natalia; Naya, Hugo; García, Graciela
2015-10-28
Among teleosts, the South American genus Austrolebias (Cyprinodontiformes: Rivulidae) includes 42 taxa of annual fishes divided into five different species groups. It is a monophyletic genus, but morphological and molecular data do not resolve the relationship among intrageneric clades and high rates of substitution have been previously described in some mitochondrial genes. In this work, the complete mitogenome of a species of the genus was determined for the first time. We determined its structure, gene order and evolutionary peculiar features, which will allow us to evaluate the performance of mitochondrial genes in the phylogenetic resolution at different taxonomic levels. Regarding gene content and order, the circular mitogenome of A. charrua (17,271 pb) presents the typical pattern of vertebrate mitogenomes. It contains the full complement of 13 proteins-coding genes, 22 tRNA, 2 rRNA and one non-coding control region. Notably, the tRNA-Cys was only 57 bp in length and lacks the D-loop arm. In three full sibling individuals, heteroplasmatic condition was detected due to a total of 12 variable sites in seven protein-coding genes. Among cyprinodontiforms, the mitogenome of A. charrua exhibits the lowest G+C content (37 %) and GCskew, as well as the highest strand asymmetry with a net difference of T over A at 1st and 3rd codon positions. Considering the 12 coding-genes of the H strand, correspondence analyses of nucleotide composition and codon usage show that A and T at 1st and 3rd codon positions have the highest weight in the first axis, and segregate annual species from the other cyprinodontiforms analyzed. Given the annual life-style, their mitogenomes could be under different selective pressures. All 13 protein-coding genes are under strong purifying selection and we did not find any significant evidence of nucleotide sites showing episodic selection (dN >dS) at annual lineages. When fast evolving third codon positions were removed from alignments, the "supergene" tree recovers our reference species phylogeny as well as the Cytb, ND4L and ND6 genes. Therefore, third codon positions seem to be saturated in the aforementioned coding regions at intergeneric Cyprinodontiformes comparisons. The complete mitogenome obtained in present work, offers relevant data for further comparative studies on molecular phylogeny and systematics of this taxonomic controversial endemic genus of annual fishes.
Ito, Matthew K; Maki, Kevin C; Brinton, Eliot A; Cohen, Jerome D; Jacobson, Terry A
2014-01-01
Drug interactions have been identified as a risk factor for muscle-related side effects in statin users. The aim was to assess whether use of medications that inhibit cytochrome P450 (CYP450) isozymes, organic anion transporting polypeptide 1B1 (OATP1B1), or P-glycoprotein (P-gp) are associated with muscle-related symptoms among current and former statin users. Persons (n = 10,138) from the Understanding Statin Use in America and Gaps in Education (USAGE) internet survey were categorized about whether they ever reported new or worsening muscle pain while taking a statin (n = 2935) or ever stopped a statin because of muscle pain (n = 1516). Univariate and multivariate logistic regression models were used to assess associations between use of concomitant therapies that inhibit CYP450 isozymes, OATP1B1, P-gp, or a combination and muscle-related outcomes. In multivariate analyses, concomitant use of a CYP450 inhibitor was associated with increased odds for new or worse muscle pain (odds ratio [OR] = 1.42; P < .001) or ever having stopped a statin because of muscle pain (OR = 1.28; P = .037). Concomitant use of medication known to inhibit both OATP1B1 and P-gp was also associated with increased odds (OR = 1.80; P = .030) of ever having stopped a statin because of muscle pain. Concomitant use of medication(s) that inhibit statin metabolism was associated with increased odds of new or worse muscle pain while taking a statin and having previously stopped a statin because of muscle symptoms. These data emphasize the importance of enhancing the capabilities of clinicians and health systems for identifying and reducing statin drug interactions. Copyright © 2014 National Lipid Association. All rights reserved.
Zhong, Hua-Ming; Zhang, Hong-Hai; Sha, Wei-Lai; Zhang, Cheng-De; Chen, Yu-Cai
2010-04-01
The whole mitochondrial genome sequence of red fox (Vuples vuples) was determined. It had a total length of 16 723 bp. As in most mammal mitochondrial genome, it contained 13 protein coding genes, two ribosome RNA genes, 22 transfer RNA genes and one control region. The base composition was 31.3% A, 26.1% C, 14.8% G and 27.8% T, respectively. The codon usage of red fox, arctic fox, gray wolf, domestic dog and coyote followed the same pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 3 gene in the red fox. A long tandem repeat rich in AC was found between conserved sequence block 1 and 2 in the control region. In order to confirm the phylogenetic relationships of red fox to other canids, phylogenetic trees were reconstructed by neighbor-joining and maximum parsimony methods using 12 concatenated heavy-strand protein-coding genes. The result indicated that arctic fox was the sister group of red fox and they both belong to the red fox-like clade in family Canidae, while gray wolf, domestic dog and coyote belong to wolf-like clade. The result was in accordance with existing phylogenetic results.
Zhao, Qianqian; Liu, Fei; Hou, Zhongwen; Yuan, Chao; Zhu, Xiqiang
2014-03-01
A β-galactosidase gene from Aspergillus oryzae was engineered utilizing codon usage optimization to be constitutively and highly expressed in the Pichia pastoris SMD1168H strain in a high-cell-density fermentation. After fermentation for 96 h in a 50-L fermentor using glucose and glycerol as combined carbon sources, the recombinant enzyme in the culture supernatant had an activity of 4,239.07 U mL(-1) with o-nitrophenyl-β-D-galactopyranoside as the substrate, and produced a total of extracellular protein content of 7.267 g L(-1) in which the target protein (6.24 g L(-1)) occupied approximately 86 %. The recombinant β-galactosidase exhibited an excellent lactose hydrolysis ability. With 1,000 U of the enzyme in 100 mL milk, 92.44 % lactose was degraded within 24 h at 60 °C, and the enzyme could also accomplish the hydrolysis at low temperatures of 37, 25, and 10 °C. Thus, this engineered strain had significantly higher fermentation level of A. oryzae lactase than that before optimization and the β-galactosidase may have a good application potential in whey and milk industries.
Álvaro-Benito, Miguel; de Abreu, Miguel; Portillo, Francisco; Sanz-Aparicio, Julia; Fernández-Lobato, María
2010-01-01
Schwanniomyces occidentalis β-fructofuranosidase (Ffase) releases β-fructose from the nonreducing ends of β-fructans and synthesizes 6-kestose and 1-kestose, both considered prebiotic fructooligosaccharides. Analyzing the amino acid sequence of this protein revealed that it includes a serine instead of a leucine at position 196, caused by a nonuniversal decoding of the unique mRNA leucine codon CUG. Substitution of leucine for Ser196 dramatically lowers the apparent catalytic efficiency (kcat/Km) of the enzyme (approximately 1,000-fold), but surprisingly, its transferase activity is enhanced by almost 3-fold, as is the enzymes' specificity for 6-kestose synthesis. The influence of 6 Ffase residues on enzyme activity was analyzed on both the Leu196/Ser196 backgrounds (Trp47, Asn49, Asn52, Ser111, Lys181, and Pro232). Only N52S and P232V mutations improved the transferase activity of the wild-type enzyme (about 1.6-fold). Modeling the transfructosylation products into the active site, in combination with an analysis of the kinetics and transfructosylation reactions, defined a new region responsible for the transferase specificity of the enzyme. PMID:20851958
Man, Orna; Pilpel, Yitzhak
2007-03-01
A major challenge in comparative genomics is to understand how phenotypic differences between species are encoded in their genomes. Phenotypic divergence may result from differential transcription of orthologous genes, yet less is known about the involvement of differential translation regulation in species phenotypic divergence. In order to assess translation effects on divergence, we analyzed approximately 2,800 orthologous genes in nine yeast genomes. For each gene in each species, we predicted translation efficiency, using a measure of the adaptation of its codons to the organism's tRNA pool. Mining this data set, we found hundreds of genes and gene modules with correlated patterns of translational efficiency across the species. One signal encompassed entire modules that are either needed for oxidative respiration or fermentation and are efficiently translated in aerobic or anaerobic species, respectively. In addition, the efficiency of translation of the mRNA splicing machinery strongly correlates with the number of introns in the various genomes. Altogether, we found extensive selection on synonymous codon usage that modulates translation according to gene function and organism phenotype. We conclude that, like factors such as transcription regulation, translation efficiency affects and is affected by the process of species divergence.
Mitochondrial genome and phylogenetic position of the tawny nurse shark (Nebrius ferrugineus).
Wang, Junjie; Chen, Hao; Lin, Lingling; Ai, Weiming; Chen, Xiao
2017-01-01
The complete mitochondrial genome of the tawny nurse shark (Nebrius ferrugineus) was first presented in this study. It was 16 693 bp in length with the typical gene order in vertebrates. The overall base composition was 33.6% A, 25.6% C, 12.7% G and 28.1% T. Two start (ATG and GTG) and two stop (TAG and TAA/T--) codons were found in the protein-coding genes. The size of 22 tRNA genes ranged from 67 to 75 bp. The origin of L-strand replication could form a hairpin structure. All nodes strongly supported that N. ferrugineus was placed as sister to Rhincodon typus in the Bayesian tree.
Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).
Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping
2015-01-01
We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, Corey M.; Williams, Kelly P.
We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less
Cryptic splice site in the complementary DNA of glucocerebrosidase causes inefficient expression.
Bukovac, Scott W; Bagshaw, Richard D; Rigat, Brigitte A; Callahan, John W; Clarke, Joe T R; Mahuran, Don J
2008-10-15
The low levels of human lysosomal glucocerebrosidase activity expressed in transiently transfected Chinese hamster ovary (CHO) cells were investigated. Reverse transcription PCR (RT-PCR) demonstrated that a significant portion of the transcribed RNA was misspliced owing to the presence of a cryptic splice site in the complementary DNA (cDNA). Missplicing results in the deletion of 179 bp of coding sequence and a premature stop codon. A repaired cDNA was constructed abolishing the splice site without changing the amino acid sequence. The level of glucocerebrosidase expression was increased sixfold. These data demonstrate that for maximum expression of any cDNA construct, the transcription products should be examined.
Gene Model Annotations for Drosophila melanogaster: The Rule-Benders
Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.
2015-01-01
In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356
Peeling skin syndrome: genetic defects in late terminal differentiation of the epidermis.
Bowden, Paul E
2011-03-01
In this issue, Israeli and colleagues confirm that homozygous mutations in corneodesmosin (CDSN) cause type B peeling skin syndrome (PSS), an autosomal recessive skin disorder. The deletion mutation described resulted in a frameshift, producing a downstream premature stop codon and early truncation of the protein. The recently described CDSN nonsense mutation in another PSS family also resulted in protein truncation and nonsense-mediated mRNA decay. Type B generalized PSS can now be clearly distinguished from acral PSS, caused by mutations in transglutaminase 5. This directly affects cornified envelope cross-linking rather than corneodesmosome adherence. These observations provide new insight into the molecular defects underlying two closely related forms of PSS.
Hudson, Corey M.; Williams, Kelly P.
2014-11-05
We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen in invertebrates and plants. The reverse engineering of chromosome I' into 2D rotating circles and squares was undertaken, yielding a 100% symmetrical 3D geometry which was coupled to a previously obtained genetic code tetrahedron in order to differentiate the start methionine from the methionine that is acting as a codifying non-start codon. PMID:23431415
Widespread Use of Non-productive Alternative Splice Sites in Saccharomyces cerevisiae
Kawashima, Tadashi; Douglass, Stephen; Gabunilas, Jason; Pellegrini, Matteo; Chanfreau, Guillaume F.
2014-01-01
Saccharomyces cerevisiae has been used as a model system to investigate the mechanisms of pre-mRNA splicing but only a few examples of alternative splice site usage have been described in this organism. Using RNA-Seq analysis of nonsense-mediated mRNA decay (NMD) mutant strains, we show that many S. cerevisiae intron-containing genes exhibit usage of alternative splice sites, but many transcripts generated by splicing at these sites are non-functional because they introduce premature termination codons, leading to degradation by NMD. Analysis of splicing mutants combined with NMD inactivation revealed the role of specific splicing factors in governing the use of these alternative splice sites and identified novel functions for Prp17p in enhancing the use of branchpoint-proximal upstream 3′ splice sites and for Prp18p in suppressing the usage of a non-canonical AUG 3′-splice site in GCR1. The use of non-productive alternative splice sites can be increased in stress conditions in a promoter-dependent manner, contributing to the down-regulation of genes during stress. These results show that alternative splicing is frequent in S. cerevisiae but masked by RNA degradation and that the use of alternative splice sites in this organism is mostly aimed at controlling transcript levels rather than increasing proteome diversity. PMID:24722551
Macular corneal dystrophy in a Chinese family related with novel mutations of CHST6
Dang, Xiuhong; Zhu, Qingguo; Wang, Li; Su, Hong; Lin, Hui; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shangzhi; Ren, Qiushi
2009-01-01
Purpose To identify mutations in the carbohydrate sulfotransferase gene (CHST6) for a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes in the affected cornea. Methods A corneal button of the proband was obtained by penetrating keratoplasty. The half button and ultrathin sections from the other half button were examined with special stains under a light microscope (LM) and an electron microscope (EM) separately. Genomic DNA was extracted from peripheral blood of 11 family members, and the coding region of CHST6 was amplified by the polymerase chain reaction (PCR) method. The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Results The positive reaction to colloidal iron stain (extracellular blue accumulations in the stroma) was detected under light microscopy. Transmission electron microscopy revealed the enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. The compound heterozygous mutations, c.892C>T and c.1072T>C, were identified in exon 3 of CHST6 in three patients. The two transversions resulted in the substitution of a stop codon for glutamine at codon 298 (p.Q298X) and a missense mutation at codon 358, tyrosine to histidine (p.Y358H). The six unaffected family individuals carried alternative heterozygous mutations. These two mutations were not detected in any of the 100 control subjects. Conclusions Those novel compound heterozygous mutations were thought to contribute to the loss of CHST6 function, which induced the abnormal metabolism of keratan sulfate (KS) that deposited in the corneal stroma. It could be proved by the observation of a positive stain reaction and the enlarged collagen fibers as well as hyperplastic fibroblasts under microscopes. PMID:19365571
Conserved small mRNA with an unique, extended Shine-Dalgarno sequence
Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald
2017-01-01
ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614
Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi
2003-08-01
To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).
Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations
Porto, Markus; Bastolla, Ugo
2010-01-01
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869
Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms
Takács, Ádám
2017-01-01
Response inhibition is frequently measured by the Go/no-go and Stop-signal tasks. These two are often used indiscriminately under the assumption that both measure similar inhibitory control abilities. However, accumulating evidence show differences in both tasks' modulations, raising the question of whether they tap into equivalent cognitive mechanisms. In the current study, a comparison of the performance in both tasks took place under the influence of negative stimuli, following the assumption that ''controlled inhibition'', as measured by Stop-signal, but not ''automatic inhibition'', as measured by Go/no-go, will be affected. 54 young adults performed a task in which negative pictures, neutral pictures or no-pictures preceded go trials, no-go trials, and stop-trials. While the exposure to negative pictures impaired performance on go trials and improved the inhibitory capacity in Stop-signal task, the inhibitory performance in Go/no-go task was generally unaffected. The results support the conceptualization of different mechanisms operated by both tasks, thus emphasizing the necessity to thoroughly fathom both inhibitory processes and identify their corresponding cognitive measures. Implications regarding the usage of cognitive tasks for strengthening inhibitory capacity among individuals struggling with inhibitory impairments are discussed. PMID:29065184
Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primorac, D.; Stover, M.L.; McKinstry, M.B.
Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or themore » donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoeny, B.; Leimbacher, W.; Blau, N.
1994-05-01
A variant type of hyperphenylalaninemia is caused by a deficiency of tetrahydrobiopterin (BH[sub 4]), the obligatory cofactor for phenylalanine hydroxylase. The most frequent form of this cofactor deficiency is due to lack of 6-pyruvoyl-tetrahydropterin synthase (PTPS) activity, the second enzyme in the biosynthetic pathway for BH[sub 4]. The human liver cDNA for PTPS was previously isolated, and the recombinant protein was found to be active when expressed in Escherichia coli. The authors now have investigated two patients for their molecular nature of this autosomal recessive disorder. Both patients were diagnosed as PTPS deficient, one with the central and one withmore » the peripheral form, on the basis of an elevated serum phenylalanine concentration concomitant with lowered levels of urinary biopterin and PTPS activity in erythrocytes. Molecular analysis was performed on the patients' cultured primary skin fibroblasts. PTPS activities were found in vitro to be reduced to background activity. Direct cDNA sequence analysis using reverse transcriptase-PCR technology showed for the patient with the central form a homozygous G-to-A transition at codon 25, causing the replacement of an arginine by glutamine (R25Q). Expression of this mutant allele in E.coli revealed 14% activity when compared with the wild-type enzyme. The patient with the peripheral form exhibited compound heteroxygosity, having on one allele a C-to-T transition resulting in the substitution of arginine 16 for cysteine (R16C) in the enzyme and having on the second allele a 14-bp deletion ([Delta]14bp), leading to a frameshift at lysine 120 and a premature stop codon (K120[yields]Stop). Heterologous expression of the enzyme with the single-amino-acid exchange R16C revealed only 7% enzyme activity, whereas expression of the deletion allele [Delta]14bp exhibited no detectable activity. All three mutations result in reduced enzymatic activity when reconstituted in E. coli.« less
Two recessive mutations in FGF5 are associated with the long-hair phenotype in donkeys.
Legrand, Romain; Tiret, Laurent; Abitbol, Marie
2014-09-25
Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae. We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses. We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical β strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth. Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.
Bharathi, Vidhya; Girdhar, Amandeep; Prasad, Archana; Verma, Meenkshi; Taneja, Vibha; Patel, Basant K
2016-12-01
Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI + ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi - ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI + ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Chan, Kok-Gan; Chow, Wan-Loo; Eamsobhana, Praphathip
2015-01-01
The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general. PMID:26472633
Tracking of Engineered Bacteria In Vivo Using Nonstandard Amino Acid Incorporation.
Praveschotinunt, Pichet; Dorval Courchesne, Noémie-Manuelle; den Hartog, Ilona; Lu, Chaochen; Kim, Jessica J; Nguyen, Peter Q; Joshi, Neel S
2018-06-15
The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.
Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.
Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi
2015-06-01
The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.
Whole Genome Sequencing Reveals a De Novo SHANK3 Mutation in Familial Autism Spectrum Disorder
Nemirovsky, Sergio I.; Córdoba, Marta; Zaiat, Jonathan J.; Completa, Sabrina P.; Vega, Patricia A.; González-Morón, Dolores; Medina, Nancy M.; Fabbro, Mónica; Romero, Soledad; Brun, Bianca; Revale, Santiago; Ogara, María Florencia; Pecci, Adali; Marti, Marcelo; Vazquez, Martin; Turjanski, Adrián; Kauffman, Marcelo A.
2015-01-01
Introduction Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. Methods We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Results Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). Conclusions We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder. PMID:25646853
Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder.
Nemirovsky, Sergio I; Córdoba, Marta; Zaiat, Jonathan J; Completa, Sabrina P; Vega, Patricia A; González-Morón, Dolores; Medina, Nancy M; Fabbro, Mónica; Romero, Soledad; Brun, Bianca; Revale, Santiago; Ogara, María Florencia; Pecci, Adali; Marti, Marcelo; Vazquez, Martin; Turjanski, Adrián; Kauffman, Marcelo A
2015-01-01
Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.
Ribosome reinitiation at leader peptides increases translation of bacterial proteins.
Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A
2016-04-16
Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.
Strategies for achieving high-level expression of genes in Escherichia coli.
Makrides, S C
1996-01-01
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli. PMID:8840785
The layout of a bacterial genome.
Képès, François; Jester, Brian C; Lepage, Thibaut; Rafiei, Nafiseh; Rosu, Bianca; Junier, Ivan
2012-07-16
Recently the mismatch between our newly acquired capacity to synthetize DNA at genome scale, and our low capacity to design ab initio a functional genome has become conspicuous. This essay gathers a variety of constraints that globally shape natural genomes, with a focus on eubacteria. These constraints originate from chromosome replication (leading/lagging strand asymmetry; gene dosage gradient from origin to terminus; collisions with the transcription complexes), from biased codon usage, from noise control in gene expression, and from genome layout for co-functional genes. On the basis of this analysis, lessons are drawn for full genome design. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea
Rother, Michael; Krzycki, Joseph A.
2010-01-01
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less
Novel mutation of OCRL1 in Lowe syndrome.
Liu, Ting; Yue, Zhihui; Wang, Haiyan; Tong, Huajuan; Sun, Liangzhong
2015-01-01
Lowe syndrome is a rare, X-linked recessive genetic disease with multi-organ involvement. The pathogenic gene is OCRL1. The authors analyzed the OCRL1 mutation and summarized the clinical features of a Chinese child with Lowe syndrome. The patient is a 3 year 7 mo-old boy. He presented with hypotonia at birth and gradually presented with bilateral congenital cataracts, psychomotor retardation, hypophosphatemic rickets and renal tubular function disorder. Sequence analysis of OCRL1 revealed a novel insertion mutation, c.2367insA (p. Ala813X), in exon 22. This mutation was suspected to cause a premature stop codon of OCRL1 and truncation of the OCRL1 protein. His mother, who carried a heterozygous mutation, had no sign of abnormality.
Carlsson, Göran; Elinder, Göran; Malmgren, Helena; Trebinska, Alicja; Grzybowska, Ewa; Dahl, Niklas; Nordenskjöld, Magnus; Fadeel, Bengt
2009-12-01
Kostmann disease or severe congenital neutropenia (SCN) is an autosomal recessive disorder of neutrophil production. Homozygous HAX1 mutations were recently identified in SCN patients belonging to the original family in northern Sweden described by Kostmann. Moreover, recent studies have suggested an association between neurological dysfunction and HAX1 deficiency. Here we describe a patient with a compound heterozygous HAX1 mutation consisting of a nonsense mutation (c.568C > T, p.Glu190X) and a frame-shift mutation (c.91delG, p.Glu31LysfsX54) resulting in a premature stop codon. The patient has a history of neutropenia and a propensity for infections, but has shown no signs of neurodevelopmental abnormalities.
Does RecA have a role in Borrelia recurrentis?
Cutler, S J; Rinky, I J; Bonilla, E M
2011-02-01
Genomic sequencing of two relapsing fever spirochaetes showed truncation of recA in Borrelia recurrentis, but not in Borrelia duttonii. RecA has an important role among bacteria; we investigated whether this characteristic was representative of B. recurrentis, or an artefact following in vitro cultivation. We sequenced recA directly from samples of patient with louse-borne relapsing fever (B. recurrentis) or tick-borne relapsing fever (B. duttonii). We confirmed the premature stop codon in seven louse-borne relapsing fever samples, and its absence from three tick-borne relapsing fever samples. Furthermore, specific signature polymorphisms were found that could differentiate between these highly similar spirochaetes. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.
A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis
Fayez, Alaaeldin; Aglan, Mona; Esmaiel, Nora; El Zanaty, Taher; Abdel Kader, Mohamed; El Ruby, Mona
2015-01-01
Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation. PMID:25984533
Novović, Katarina; Trudić, Anika; Brkić, Snežana; Vasiljević, Zorica; Kojić, Milan; Medić, Deana; Ćirković, Ivana
2017-01-01
ABSTRACT Twenty-seven colistin-resistant, carbapenemase-producing Klebsiella pneumoniae isolates were identified from hospitals in Serbia. All isolates were blaCTX-M-15 positive; ST101, ST888, ST437, ST336, and ST307 were blaOXA-48 positive; and ST340 was blaNDM-1 positive. ST307 had an insertion, and ST336 had a premature stop codon in the mgrB gene. Amino acid substitutions were detected in PmrAB of isolates ST101, ST888, ST336, and ST307. The mcr-1 and mcr-2 were not detected. An increase in phoP, phoQ, and pmrK gene transcription was detected for all sequence types. PMID:28242665
T4-Like Genome Organization of the Escherichia coli O157:H7 Lytic Phage AR1▿†
Liao, Wei-Chao; Ng, Wailap Victor; Lin, I-Hsuan; Syu, Wan-Jr; Liu, Tze-Tze; Chang, Chuan-Hsiung
2011-01-01
We report the genome organization and analysis of the first completely sequenced T4-like phage, AR1, of Escherichia coli O157:H7. Unlike most of the other sequenced phages of O157:H7, which belong to the temperate Podoviridae and Siphoviridae families, AR1 is a T4-like phage known to efficiently infect this pathogenic bacterial strain. The 167,435-bp AR1 genome is currently the largest among all the sequenced E. coli O157:H7 phages. It carries a total of 281 potential open reading frames (ORFs) and 10 putative tRNA genes. Of these, 126 predicted proteins could be classified into six viral orthologous group categories, with at least 18 proteins of the structural protein category having been detected by tandem mass spectrometry. Comparative genomic analysis of AR1 and four other completely sequenced T4-like genomes (RB32, RB69, T4, and JS98) indicated that they share a well-organized and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. The major diverse features between these phages include the modules of distal tail fibers and the types and numbers of internal proteins, tRNA genes, and mobile elements. Codon usage analysis suggested that the presence of AR1-encoded tRNAs may be relevant to the codon usage of structural proteins. Furthermore, protein sequence analysis of AR1 gp37, a potential receptor binding protein, indicated that eight residues in the C terminus are unique to O157:H7 T4-like phages AR1 and PP01. These residues are known to be located in the T4 receptor recognition domain, and they may contribute to specificity for adsorption to the O157:H7 strain. PMID:21507986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.
2009-04-01
Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilicmore » archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years as it adapted from a marine, to an Antarctic lake environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Michele A; Lauro, Federico M; Williams, Timothy J
2009-01-01
Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five-tiered evidence rating (ER) system that ranked annotations from ER1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea, which aremore » subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino-acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall, membrane, envelope biogenesis COG genes are overrepresented. Likewise, signal transduction (COG category T) genes are overrepresented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two overrepresented COG categories appear to have been acquired from - and -Proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they have an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years as it adapted from a marine to an Antarctic lake environment.« less
Huang, Kun; Caplan, Jeff; Sweigard, James A; Czymmek, Kirk J; Donofrio, Nicole M
2017-02-01
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H 2 O 2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H 2 O 2 dynamics in real time during important stages of the plant infection process. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs).
Nagel-Wolfrum, Kerstin; Möller, Fabian; Penner, Inessa; Baasov, Timor; Wolfrum, Uwe
2016-04-01
In recent years, remarkable advances in the ability to diagnose genetic disorders have been made. The identification of disease-causing genes allows the development of gene-specific therapies with the ultimate goal to develop personalized medicines for each patient according to their own specific genetic defect. In-depth genotyping of many different genes has revealed that ~12% of inherited genetic disorders are caused by in-frame nonsense mutations. Nonsense (non-coding) mutations are caused by point mutations, which generate premature termination codons (PTCs) that cause premature translational termination of the mRNA, and subsequently inhibit normal full-length protein expression. Recently, a gene-based therapeutic approach for genetic diseases caused by nonsense mutations has emerged, namely the so-called translational read-through (TR) therapy. Read-through therapy is based on the discovery that small molecules, known as TR-inducing drugs (TRIDs), allow the translation machinery to suppress a nonsense codon, elongate the nascent peptide chain, and consequently result in the synthesis of full-length protein. Several TRIDs are currently under investigation and research has been performed on several genetic disorders caused by nonsense mutations over the years. These findings have raised hope for the usage of TR therapy as a gene-based pharmacogenetic therapy for nonsense mutations in various genes responsible for a variety of genetic diseases.
Hong, Jin-Bon; Chou, Fu-Ju; Ku, Amy T; Fan, Hsiang-Hsuan; Lee, Tung-Lung; Huang, Yung-Hsin; Yang, Tsung-Lin; Su, I-Chang; Yu, I-Shing; Lin, Shu-Wha; Chien, Chung-Liang; Ho, Hong-Nerng; Chen, You-Tzung
2014-01-01
PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3-4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.
Fukao, T; Yamaguchi, S; Wakazono, A; Orii, T; Hoganson, G; Hashimoto, T
1994-01-01
We identified a novel exonic mutation which causes exon skipping in the mitochondrial acetoacetyl-CoA thiolase (T2) gene from a girl with T2 deficiency (GK07). GK07 is a compound heterozygote; the maternal allele has a novel G to T transversion at position 1136 causing Gly379 to Val substitution (G379V) of the T2 precursor. In case of in vivo expression analysis, cells transfected with this mutant cDNA showed no evidence of restored T2 activity. The paternal allele was associated with exon 8 skipping at the cDNA level. At the gene level, a C to T transition causing Gln272 to termination codon (Q272STOP) was identified within exon 8, 13 bp from the 5' splice site of intron 8 in the paternal allele. The mRNA with Q272STOP could not be detected in GK07 fibroblasts, presumably because pre-mRNA with Q272STOP was unstable because of the premature termination. In vivo splicing experiments revealed that the exonic mutation caused partial skipping of exon 8. This substitution was thought to alter the secondary structure of T2 pre-mRNA around exon 8 and thus impede normal splicing. The role of exon sequences in the splicing mechanism is indicated by the exon skipping which occurred with an exonic mutation. Images PMID:7907600
Partial attenuation of Marek's disease virus by manipulation of Di-codon bias
USDA-ARS?s Scientific Manuscript database
All species studied to date demonstrate a preference for certain codons over other synonymous codons (codon bias), a preference which is also observed for pairs of codons (di-codon bias). Previous studies using poliovirus and influenza virus as models have demonstrated the ability to cause attenuat...
Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes
Detanico, Thiago; Phillips, Matthew; Wysocki, Lawrence J.
2016-01-01
In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been driven by their exceptional functional versatility, despite potential autoreactive consequences. PMID:27920779
Sebastian, Alexandra; Rössler, Kora; Wibral, Michael; Mobascher, Arian; Lieb, Klaus; Jung, Patrick; Tüscher, Oliver
2017-10-04
In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate strategy). Alternatively, the discrimination process of the critical signal (stop vs attentional capture signal) may interact with the go process (dependent discriminate then stop strategy). Those different strategies might differentially involve attention- and stopping-related processes that might be implemented by divergent neural networks. This should lead to divergent activation patterns and, if disregarded, interfere with analyses in neuroimaging studies. To clarify this crucial issue, we studied 87 human participants of both sexes during a stimulus-selective stop-signal task and performed strategy-dependent functional magnetic resonance imaging analyses. We found that, regardless of the strategy applied, outright stopping displayed indistinguishable brain activation patterns. However, during attentional capture different strategies resulted in divergent neural activation patterns with variable activation of right IFJ and bilateral VLPFC. In conclusion, the neural network involved in outright stopping is ubiquitous and independent of strategy, while different strategies impact on attention-related processes and underlying neural network usage. Strategic differences should therefore be taken into account particularly when studying attention-related processes in stimulus-selective stopping. SIGNIFICANCE STATEMENT Dissociating inhibition from attention has been a major challenge for the cognitive neuroscience of executive functions. Selective stopping tasks have been instrumental in addressing this question. However, recent theoretical, cognitive and behavioral research suggests that different strategies are applied in successful execution of the task. The underlying strategy-dependent neural networks might differ substantially. Here, we show evidence that, regardless of the strategy used, the neural network involved in outright stopping is ubiquitous. However, significant differences can only be found in the attention-related processes underlying those different strategies. Thus, when studying attentional processing of salient stop signals, strategic differences should be considered. In contrast, the neural networks implementing outright stopping seem less or not at all affected by strategic differences. Copyright © 2017 the authors 0270-6474/17/379786-10$15.00/0.
Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability.
Morton, B R
1993-09-01
Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.